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Abstract 
 
The stability of the homogeneous and steady flow based on the one-dimensional Saint-Venant 

equations for free surface and shallow water flows of constant slope is derived and displayed 

through graphs. With a suitable choice of units, the small and large drag limits, respectively, 

correspond to the small and large spatio-temporal scales of a linear system only controlled by 

the Froude number and two other dimensionless numbers associated with the bottom drag 

parameterization. Between the small drag limit, with the two families of marginal and non-

dispersive shallow water waves, and the large drag limit, with the marginal and non-

dispersive waves of the kinematic wave approximation, dispersive roll waves are detailed. 

These waves are damped or amplified, depending on the value of the three control parameters. 

The spatial generalized dispersion relations are also derived indicating that the roll-wave 

instability is of the convective type for all drag parameterizations.  

 

Résumé  
 
La stabilité de l’écoulement homogène et stationnaire fondé sur les équations de Saint-Venant 

unidimensionelles pour des écoulements à surface libre en eaux peu profondes avec pente 

constante est calculée et représentée à l’aide de graphes. Avec un choix d’unités approprié, les 

limites des grands et petits frottements correspondent respectivement aux grandes et petites 



échelles spatiotemporelles d’un système linéaire seulement contrôlé par le nombre de Froude 

et deux autres nombres sans dimension associés au choix de la paramétrisation du frottement 

au fond. Entre la limite des faibles frottements, avec les deux familles d'ondes marginales et 

non dispersives en eaux peu profondes, et la limite des grands frottements, avec les ondes 

marginales et non dispersives de l'approximation de l'onde cinématique, les ondes dispersives 

« roll waves » sont décrites. Ces roll waves sont amorties ou amplifiées selon la valeur des 

trois paramètres de contrôle. Les relations de dispersion généralisées spatiales sont aussi 

dérivées indiquant que l'instabilité des ondes de rouleaux est de type convectif pour toutes les 

paramétrisations du frottement.  

 

Keywords: Convective instability, kinematic-wave approximation, roll-wave instability, Saint-

Venant equations, shallow water 

 

1 Introduction 

The Saint-Venant equations, also referred to as shallow-water equations, constitute a model 

for free surface flows in which the horizontal scales are significantly larger than the flow 

depth. In typical hydraulic textbooks, including Chow (1959) or Akan (2006), these equations 

are derived from the incompressible Navier-Stokes equations. In this process, a wide range of 

bottom friction parameterizations are used, ranging from constant Chézy coefficients to the 

empirical Colebrook-White (1937) formula. 

The linear stability problem of the steady solution of the one-dimensional (1D) Saint-

Venant equations, referred as normal flow, is well-known. If the bottom friction forces and 

the channel slope are neglected, small perturbations of the normal flow are classified in two 

families of both non-dispersive and un-damped waves. Their phase velocities are U±(gh)1/2 

where U = fluid velocity, h = flow depth and g = gravity constant. If the bottom friction and 

the gravity forces dominate the inertia and the pressure forces, one finds a single family of 

non-dispersive and un-damped waves. Their phase velocity is 5U/3 for the Strickler 

parameterization (e.g. Chow 1959). Between these two limit cases, if all the above forces are 

of the same order, amplified or damped dispersive waves characterize the linear dynamics of 

a small perturbation of normal flow. 

The pioneering work of Jeffreys (1925) exhibited an instability for a Froude number F = 

U/(ghcosα)1/2 > 2 for constant Chézy parameterization, where α = bottom angle with the 

horizontal plane. This instability was used to explain ‘roll waves’ observed by Cornish 



(1910). Several works followed to study the nonlinear wave dynamics for laminar flow 

(Jeffreys 1925, Kapitza and Kapitza 1948, Benjamin 1957, Yih 1963, Julien and Hartley 

1986, Chang 1994, Coussot 1994) or for turbulent flow (Dressler 1949, Benney 1966, Brock 

1969, 1970, Ponce and Simon 1977, Needham and Merkin 1984, Hwang and Chang 1987, 

Kranenburg 1992, Balmforth and Mandre 2004). The convective nature of the roll wave 

instability has been analyzed by Di Cristo and Vacca (2005) and Di Cristo et al. (2008) for 

constant Chézy parameterization, using the concepts of spatial stability: an initial impulse 

perturbation of the normal flow will thus grow while being advected downstream, e.g. Briggs 

(1964) or Huerre and Monkewitz (1990).  

Herein, these linear analyses are extended to a large class of drag parameterization. It is 

demonstrated that the convective nature of the roll wave instability does not depend on the 

choice of drag parameterization. A quantitative comparison between the spatial (response to a 

boundary condition) and temporal (response to an initial condition) stability analyses in a 

framework moving at the wave phase velocity is also performed. Analytical results and 

graphs are provided, which are useful for applications dealing with open channel flows. A 

special attention is paid to the small and large drag limits for which the roll wave instability is 

replaced by marginal waves. 

The Saint-Venant equations are set in Section 2. The normal flow and the drag sensitivity 

are defined in Section 3. In Section 4, a system of units is chosen to minimize the number of 

dimensionless control parameters. In Section 5, the generalized dispersion relation used for 

the temporal and spatial stability analyses are derived with results presented in Section 6. The 

convective nature of the roll wave instability is analyzed in Section 7 with a discussion on the 

small and large drag limits performed in Section 8. Conclusions are finally offered. 

2 Saint-Venant equations 

Consider 1D flows slopping down a tilted and flat bottom (Fig. 1). If the horizontal scales are 

large compared to the flow depth, the flow can be modelled by the 1D Saint-Venant equations 
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where h(x,t) = flow depth, U(x,t) = vertically-averaged velocity, and g = gravity. The 

dimensionless function Cf (h,U) = drag coefficient that parameterizes the turbulent momentum 

stress at the bottom. 

 

Figure 1 Free surface flow slopping down a tilted and flat bottom 

 

The simple Chézy drag parameterization assumes that the Chézy coefficient Cf is 

constant. In the Manning-Strickler parameterization, Cf (h) is independent of U and reads 

Cf (h) = ΦMS Ru1/3 where Ru = ks/(4h) = dimensionless number characterizing bottom 

roughness, ks = bottom roughness height and ΦMS = dimensionless coefficient whose typical 

value is ΦMS = 0.05. The Colebrook-White (1937) semi-empirical correlation is a 

parameterization in which Cf (h,U) is the solution of the implicit equation Cf 
−1/2 = − 4.0 

log10 ( Ru/αf  + 0.5 Cf
−1/2 βf / R), where R = 4hU/ν = Reynolds number, ν = molecular fluid 

viscosity and (αf , βf ) = dimensionless coefficients of which typical values for open channel 

flows are αf = 3 and βf = 2.5. These three examples are part of a large variety of 

parameterizations found in the literature. It is considered here that Cf (h,U) is an arbitrary 

derivable and positive function. 

 

3 Normal flow and drag sensitivity 

If Cf does not vanish, the homogeneous and steady model solutions, also called ‘normal flow’ 

(subscript n), is (h,U) = (hn,Un), where the constants hn and Un satisfy 2ghn sinα =Cn Un
2 with 

Cn = Cf (hn,Un) for Un >0 that will be considered from now. The two dimensionless functions 
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express the sensitivity of the drag coefficient with respect to h or U. 

The Chézy parameterization (constant Cf) corresponds to µ = χ =0, the Manning-Strickler 

parameterization Cf (h) is such that (µ,χ)=(1/3,0) and the Colebrook-White parameterization 



leads to typical values of µ ∈ [0.2,0.4] and χ ∈ [−0.1, 0]. The two constants µ  = µ(hn,Un) and 

χn = χ(hn,Un) denote their values for the normal flow. 

4 Dimensionless controlling parameters 

The dimensionless functions h*(x*,t*) and U*(x*,t*) are defined by x=L0 x*, t=(L0/U0) t*, h=h0 h* 

and U*=U0 U*. With this choice of reference scales, the dimensionless Saint-Venant equations 

read 
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where ε0=h0/L0, F0=U0/(g h0 cosα)1/2 = Froude number, C0=Cf (h0,U0) = drag coefficient and 

φ0(h*,U*) =Cf (h0h*,U0U*)/Cf (h0,U0) = renormalized drag function. 

Since shallow water is considered, ε0 « 1. In the following, restriction to the case F0=O(1) 

is made. Three cases are relevant: small drag limit ε0 « C0, large drag limit C0 « ε0  and the 

general case. In the latter, ε0=C0 can be chosen, which reads L0=h0/Cf (h0,U0), so that F0 and 

φ0(h*,U*) are the only control parameters of Eqs. (4) and (5). The Cf →0 and Cf →∞ drag 

limits are then recovered by respectively looking at the small or large x and t scales. This 

point of view is adopted in the following. 

 

5 Temporal and spatial stability analyses 

Choosing h0=hn, U0=Un and L0=hn/Cn, the dimensionless 1D Saint-Venant equations read 
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where all subscripts * were dropped for reading simplicity. The normal Froude number Fn = 

Un/(ghncosα)1/2 and the normal drag function φn(h,U) =Cf (h,U)/Cn are the only dimensionless 

parameters controlling this set of equations. 

 



The small dimensionless perturbations h=1+h̃ and U=1+Ũ of dimensionless normal flow 

(h,U)=(1,1) obey the linear equations 
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where µn = µ(hn,Un) and χn = χ(hn,Un) are defined by Eq. (3). Their complex solutions are of 

the form (h̃,Ũ)=(h̃m,Ũm)⋅exp(γx+σt)⋅exp(ikx−iωt). By setting λ=σ−iω and κ=γ+ik the 

generalized dispersion relation reads 
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The temporal stability analysis is obtained by setting γ = 0 and looking for two branches of 

roots λ±(k)=σ±(k)−iω±(k) of the second order equation upon λ obtained for any given k. The 

spatial stability analysis is obtained by setting ω in Eq. (10) and looking for two branches of 

roots κ±(ω)=γ±(ω)+ik±(ω) of the second order equation upon λ obtained for any given ω. 

These generalized dispersion relations are analytically derived in Appendix 1. 

 

6 Roll-wave instability 

Figure 2 shows that the amplification rates and the phase velocity of the temporal and spatial 

corresponding modes are almost similar for the ‘upper branch of modes’, issued from the 

marginal k =0 mode, and significantly different for the ‘lower branch’, issued from the 

damped k =0 mode. One can indeed see that the temporal and spatial stability analyzes on the 

upper branch of modes are such that ω(k) and k(ω) are close to be inverse functions of each 

other, and that σ(k) and γ[ω(k)] ω(k)/k, which is the apparent growth rate in the frame moving 

at phase velocity, are closely related. On the lower branch of modes, the comparison between 

[k,σ(k)] and [ω,ε γ−(ω) ω/k−(ω)] must satisfy ε = −1 in the sub-critical case Fn ≤ 1, whereas 

ε = 1 for the super-critical case Fn ≥ 1. This is due to the fact that the phase velocity ω/k−(ω) 

of this mode changes signs at criticality. 

 

 



 

Figure 2 Generalized dispersion relations for Fn ∈ [.5, 2], µn = 1/3 and χn = 0. Temporal 

stability (plain) versus spatial stability (dot-dashed); (a) Above [k, σ+(k)] versus 

[k+(ω), γ+(ω) ω/k+(ω)]; below [k, σ−(k)] versus [k−(ω), ε γ−(ω) ω/k−(ω)] with ε =−1 if Fn ≤ 1 

and ε = 1 if Fn ≥1; (b) above [k, ω+(k)/k] versus [k+(ω), ω/k+(ω)]; below [k, ω−(k)/k] versus 

[k−(ω), ω/k− (ω)]  

 

The critical Froude number Fc for the onset of both temporal and spatial instabilities is 

obtained by setting λ = −iω and κ = ik in Eq. (10). This leads to 
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where ξn = (3+µn+2χn)/[2(1+χn)] = 1+1/Fc. For the values (µn, χn)=(1/3,0) associated with the 

Manning-Strickler parameterization, the modes of the upper branch are marginal and non-

dispersive for Fn = Fc(1/3,0) = 3/2 with a phase velocity ξn = 5/3 (Fig. 2). The influence of µn 

on the generalized dispersion relations is shown in Fig. 3 where Fn = 3/2, µn ∈ [0,1/2] and 

χn=0. 

 

 

 



 

Figure 3 Generalized dispersion relations for Fn = 1.5, µn ∈ {0, 1/6, 1/3, 1/2} and χn = 0. Same 

curves as in Fig. 2  

7 Convective nature of roll wave instability 

To conclude the stability analysis of the linear Eqs. (8) and (9), it has to be determined 

whether the roll wave instability is of convective or absolute type. In a framework moving 

with the arbitrary velocity c, the new generalized dispersion relations Λ(k) = Σ(k)−iΩ(k) are 

obtained by replacing  λ  by Λ – c κ in Eq. (10), which leads to 
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and performing a temporal stability analysis (κ = ik) with this new equation. The response of 

the linear system to an initial impulse (h̃,Ũ) = (hm,Um)⋅δ(x)⋅δ(t) depends on the behavior at 

large t of the integrals ∫R eΛ(k)tdk for all branches of solutions Λ±(k). The steepest descent 

method shows that this behavior depends of the vicinity of the saddle point κa ∈ C such that 

dΛ/dκ (κa) = 0. If one of the real parts of the solutions Λa = Λ(κa) of Eq. (12) is positive for 

κ = κa, the flow depth increases with time in the moving framework. The saddle nodes (κa, Λa) 

are found if the second order polynomial in κ of Eq. (12) has a double root, that is if Λa is, 

after some algebra, solution of the equation 
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The real part of their solutions Λa is negative if c ≤ 1+Fc /Fn
2 and one of them vanishes, with 

no change of sign of the real part, for c = 1+1/Fc . Both solutions are real if Fn ≥ Fc and 

c ∉ ]1−1/Fn,1+1/Fn [ or if Fn ≤ Fc and c ∈ [ 1−1/Fn, 1+1/Fn ]. Since the real part of the two 

solutions Λa are real and strictly negative for c = 0, the instability is of convective type in the 

fixed framework: the growth of an initial perturbation, if any, is wiped out from any fixed 

point.  

8 Small and large drag limits  

The analysis of these generalized dispersion relations is completed in Appendix 1 by 

presenting their asymptotic expansions for large and small (k,ω), corresponding to the small 

and large drag limits, respectively, as discussed above. Non-dispersive and marginal modes 

are obtained in both cases with two families ω±(k) ≈ (1±1/Fn) k for small drag and only one 

mode ω+(k) ≈ ξn k = (1+1/Fc) k for large drag. 

Taking small Cn for the small drag limit is equivalent to a backward zoom with k, ω, γ 

and σ →∞ (Fig. 2). At this large scale, both modes are almost marginal since γ and σ are of 

order 1. They are also almost non-dispersive since their phase velocities converge to constant 

limits. 

Taking large Cn for the large drag limit is equivalent to a forward zoom with k, ω, γ and σ 

→0 (Fig. 2). Then, only one almost marginal and non-dispersive mode is present. Note the 

large literature on the ‘relaxation limit’ for hyperbolic systems (Liu and Natalini 2001, Jin and 

Katsoulakis 2000, Katsoulakis and Jin 2000, Dafermos 2000, Liu 1987, or Chen et al. 1994), 

generalizing the present linear analysis to a nonlinear equation. For the constant Cf case (λn = 

0 and µn = 0), the asymptotic form of the Saint-Venant equations reads 
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and is well-posed as an initial value problem in the stable case Fn ≤ Fc = 2. 

 

9 Conclusions 

The detailed stability properties of the normal flow of the 1D Saint-Venant equations forced 

by gravity on a titled bottom were computed for a wide class of drag parameterizations. It was 

demonstrated that this analysis only depends on the normal Froude number and two 

dimensionless parameters expressing the sensitivity of the drag coefficient with the normal 



flow depth and normal velocity. The critical Froude numbers at the onset of the roll wave 

instability was computed indicating that this instability was of convective type. The regions of 

the control parameter where temporal and spatial stabilities are not close to each other were 

also identified. All these observations are useful to compare between real flows and their 

modeling with the Saint-Venant equations. 

 

Appendix 1 

The analytical solutions of Eq. (10) is 
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for both temporal κ = ik and spatial stability λ = −iω analyses. For the temporal stability 

analysis, set κ = ik and look at the complex solutions λ = σ − iω of 
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The two solutions λ±(k) = σ±(k) + iω±(k) are 
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The asymptotic expansions for small k read  
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with Fc (µn, χn) = 2(1+ χn )/(1+ µn ). The asymptotic expansions for large k read 
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For the spatial stability analysis, set λ = −iω and look at the complex solutions κ = γ + ik of 
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If 1/Fn
2 ≠ 1, the two solutions κ±(ω) = γ±(ω) + ik±(ω) are 
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For 1/Fn
2 = 1, a continuity argument indicates that the unique solution of Eq. (23) is κ+(ω) = 

γ+(ω) + ik+(ω) with 
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while the curve [ω, k−(ω)] becomes the straight ω = 0 and the curve [ω, γ−(ω)ω/k−(ω)] the 

straight γ ω / k = − (3+µn+2 χn )/4.  

The asymptotic expansions for small ω read 
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Notations 

Cf = Chézy coefficient 

Fc = Critical Froude number for roll wave instability 

g  = Gravity acceleration 

h  = Flow depth 

k  = Wave number 

ks  = Roughness height 

L0 = Horizontal unit length 

R = Reynolds number 

Ru = Roughness number 

t = Time 

U = Mean streamwise velocity 

x = Streamwise coordinate 

z = Coordinate normal to bottom 

α = Angle of inclined plane with horizontal 

αf = Coefficient of Colebrook-White formula 

βf = Coefficient of Colebrook-White formula 

δ = Dirac function 



ε0 = Dimensionless number h0 /L0 

φ = Notation for Cf /Cn or Cf /C0 

ΦMS = Coefficient of Manning-Strickler parameterization 

γ(ω) = Spatial wave growth rate 

κ = Notation for γ + ik 

λ = Notation for σ − iω 

Λ(k) = Generalized dispersion relation 

µ = Dimensionless derivative of Cf with h 

ν = Molecular viscosity 

χ = Dimensionless derivative of Cf with U 

σ(k) = Temporal wave growth rate 

ξ = Constant expressed with µ and χ 

ω = Temporal wave pulsation 

~ = Notation for perturbations 

 
Subscripts 

a  = Index for values at saddle point 

m = Index for complex amplitudes 

n  = Index for normal flow fields 

*  = Index for non-dimensional fields 

+ = Index for upper branch of modes 

−  = Index for lower branch of modes 
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