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Although the favored glide planes in hexagonal close-packed Zr are prismatic, screw dislocations
can escape their habit plane to glide in either pyramidal or basal planes. Using ab initio calculations
within the nudged elastic band method, we show that, surprisingly, both events share the same
thermally activated process with an unusual conservative motion of the prismatic stacking fault
perpendicularly to itself. Halfway through the migration, the screw dislocation adopts a nonplanar
metastable configuration with stacking faults in adjacent prismatic planes joined by a two-layer
pyramidal twin.

Plastic deformation in metals results mainly from the
motion of line defects called dislocations. Many disloca-
tion properties derive from the atomic-scale structure of
their core, the region in the immediate vicinity of the dis-
location line where crystallinity is disrupted. One such
property is cross slip, i.e., the ability for screw disloca-
tions to change glide plane, a stress-releaving process cen-
tral to strain hardening and fatigue resistance [1, 2].

Thus far, cross slip has mostly been studied in face-
centered cubic (fcc) metals for the conventional pla-
nar dissociated 1/2〈110〉{111} dislocations. Elastic-
ity models [2, 3] confirmed by atomic-scale simulations
[4, 5] showed that the dominant cross-slip mechanism in-
volves a local constriction of the dislocation in its ini-
tial glide plane followed by redissociation in the cross-
slip plane (Friedel-Escaig mechanism). Another mech-
anism, which occurs under higher stresses met, for in-
stance, in nanocrystalline plasticity [6], involves the suc-
cessive change of glide plane of both partial dislocations
[7]. Mechanisms involving a metastable configuration of
the screw dislocation spread over several planes are also
possible, as found in iridium [8].

Cross slip is also observed in hexagonal close-packed
(hcp) metals. In zirconium and titanium, 1/3〈12̄10〉 dis-
locations are dissociated and glissile in prismatic {101̄0}
planes [9], as confirmed by first-principles calculations
[10, 11]. But screw dislocations have also been reported
experimentally to glide at high temperatures in both
first-order pyramidal π1 {101̄1} planes [12–14] and basal
{0001} planes [12, 15] (see Fig. 1 for a graphical descrip-
tion of these planes). These secondary-slip processes do
not correspond to cross slip as understood in fcc metals
because the parent and the cross-slipped glide planes are
not equivalent. Rather, this secondary slip in hcp met-
als is related to the fundamental question: how can a
dislocation dissociated in a plane glide in another plane?

In this Letter, we employ a combination of first-
principles and empirical potential atomic-scale calcula-
tions to study secondary slip in hcp metals. We fo-
cus mainly on zirconium, although we checked that the

FIG. 1. Hexagonal close-packed structure showing the differ-
ent potential glide planes for a screw dislocation of Burgers

vector~b = 1/3[12̄10]. A projection perpendicular to~b is shown
on the left, where atoms are sketched by circles with a color
depending on their (12̄10) plane.

present findings also apply to titanium. We show that
unexpectedly, both basal and pyramidal slips are limited
by the same thermally activated process, which involves
an unusual motion of the prismatic stacking fault perpen-
dicularly to itself, and results in a nonplanar metastable
configuration composed of stacking faults in two succes-
sive prismatic planes joined by an elementary two-layer
twin in the pyramidal plane.

We employed the pwscf code [16] as described in Ref.
[11] to perform ab initio calculations based on the density
functional theory, an approach that has proved instru-
mental in unravelling dislocation core properties in vari-
ous metals [10, 11, 17–21]. We also performed atomistic
simulations with the embedded atom method (EAM) po-
tential developed by Mendelev and Ackland [22] to check
the validity of our results in larger simulation cells. This
potential is suitable to model screw dislocations, predict-
ing, in particular, dissociation in a prismatic plane [23],
in contrast with most other empirical potentials. The
cells are fully periodic and contain a dislocation dipole
with a periodic quadrupolar arrangement, described as
an S arrangement in a previous paper [11]. Since the
two dislocations are equivalent, we consider below only
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one of them. The simulation cell has the following peri-
odicity vectors: ~a1 = n/2 a[101̄0], ~a2 = m c[0001] and

~a3 = ~b = 1/3 a[12̄10], where n and m are two integers.

FIG. 2. Secondary slip in the pyramidal (1̄011) plane. (a) En-
ergy barrier encountered by a screw dislocation dissociated in
a prismatic plane when gliding in a pyramidal plane. Differen-
tial displacement maps show the dislocation in its (b) initial,
(c) intermediate, and (d) final states. The arrow between
two atomic columns is proportional to the relative displace-
ment of the columns in the [12̄10] direction. Displacements
smaller than 0.08 b are not shown. The pink squares indicate
the dislocation center. The pyramidal stacking fault is shown
through its differential displacement map with respect to a
perfect crystal in (e) and through its stacking sequence in (f),
so as to display the two mirror planes (B and D) associated
with the twin structure. The intermediate dislocation config-
uration is sketched in (g). The prismatic and pyramidal faults
are shown in blue and purple, respectively.

We first consider the glide in a pyramidal π1 plane of a
perfect screw dislocation dissociated in a prismatic plane
[Fig. 2(b)]. To this end, we employ the nudged elastic
band (NEB) method [24] (with a tolerance on forces of
20meV/Å) to compute the energy barrier against migra-

tion to the next equilibrium position along the π1 plane,
located at the intersection with the next prismatic plane
[Fig. 2(d)]. The initial path was constructed by adding
to the initial cut-plane of the dipole two new cut-planes
that progressively shear inside a corrugated π1 plane
[plane in blue in Fig. 2(e)], thus resulting in the glide
of the screw dislocations in these planes. We checked
that other paths (for instance shearing in between two
corrugated planes) lead to higher energy barriers. We
also checked with the EAM potential that relaxed paths
extending over multiple prismatic planes decompose into
successions of elementary jumps following the mechanism
described below. As shown in Fig. 2(a), both ab initio

and EAM potential calculations result in minimum en-
ergy paths with a local minimum at halfway, indepen-
dently of the simulation cell size. Ab initio calculations
suffer from a size effect, but convergence is reached with
the EAM potential for cells containing more than 2000
atoms. The difference between this local minimum and
the energy of the initial configuration is estimated at
about ∆E = 3.2± 1.6meV/Å with ab initio calculations
and ∆E = 24meV/Å with the EAM potential.

The above intermediate state was found stable upon
full relaxation after removal of the NEB constraint. The
corresponding core structure is shown in Fig. 2(c) by
means of its differential displacement map [25]. The plas-
tic strain of the dislocation spreads in the initial and
final prismatic planes and in between, in a pyramidal
π1 plane. The dislocation center, shown as squares in
Fig. 2 and estimated from the symmetry of the differen-
tial displacements, lies in the π1 plane, halfway between
the initial and final prismatic planes. Ghazisaeidi and
Trinkle [10] obtained by ab initio calculations a simi-
lar metastable configuration in titanium after relaxation
of a dislocation initially introduced at the center posi-
tion identified above, but the connection to nonprismatic
glide was not made. On the other hand, the present NEB
calculations show that this intermediate metastable core
appears spontaneously in the course of pyramidal glide.

Zr Ti

pwscf EAM pwscf

Prismatic 211 135 256

Pyramidal 163 243 227

TABLE I. Energies in Zr and Ti of the stable stacking
faults in the (101̄0) prismatic and (1̄011) pyramidal planes,
corresponding, respectively, to the fault vectors 1/6 [12̄10]

and 1/6 [12̄10] + be/
√

3 + 4γ2 [101̄2]. Energies are given in
mJm−2.

Spreading of the screw dislocation in the pyramidal
(1̄011) plane results from the existence of a stable stack-
ing fault in this plane. The fault appears when shearing
the lattice in between two closely spaced atomic planes
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that form a corrugated pyramidal plane. Analyzing the
atomic structure in the faulted region, we found that this
fault corresponds to an elementary two-layer pyramidal
twin, produced by the glide of a two-layer disconnection
[26]. The Burgers vector of the disconnection, which is
also the fault vector, has a screw component equal to
half a full screw dislocation bs = a/2 and an edge com-

ponent be = a(4γ2 − 9)/2
√

3 + 4γ2 (γ is the c/a ratio)
[26]. The structure of the elementary twin is displayed in
Fig. 2(f), which is the same structure as in Fig. 2(e) but
showing the atomic stacking rather than the differential
displacements. In the pyramidal direction, the hcp struc-
ture corresponds to the stacking of corrugated planes
. . . ABCDEFG. . . with no repeatable sequence. The glide
of the two-layer disconnection creates locally a stacking
. . . ABCDCBCDE. . . , with two mirror planes underlined
in the previous sequence, D and B .
Ab initio calculations show that this pyramidal stack-

ing fault has an energy lower than the prismatic stacking
fault (see Table I). The EAM potential leads to the re-
verse order, which is an artifact partially due to the low
prismatic stacking fault predicted by this potential. Inci-
dentally, this difference in fault energies also explains the
higher energy barriers obtained in Fig. 2 with the EAM
potential. We also performed ab initio calculations in
titanium and found a similar stable pyramidal stacking
fault with an energy still lower than the prismatic stack-
ing fault (see Table I).
A comparison of the pattern of differential displace-

ments in the pyramidal stacking fault (2e) and in the
metastable configuration [Fig. 2(c)] shows that the fault
corresponds to the section of the metastable core spread
in the pyramidal plane. In the metastable core, the ele-
mentary twin is of finite length and is thus bordered by
a dipole of disconnections. Since the disconnections have
the same screw component (bs) as the prismatic stack-
ing fault, only the edge component (be) remains at the
intersections. As illustrated in Fig. 2(g), the metastable
core may thus be described as two screw partial disloca-
tions (bs) in adjacent prismatic planes separated by two
prismatic stacking faults and a two-layer pyramidal twin.
The prismatic faults and the twin are connected by stair
rods forming a dipole of edge disconnections (±be). The
corresponding decomposition of the total Burgers vector
is then

1

3
a[12̄10] →

1

6
a[12̄10] +

be
√

3 + 4γ2
[101̄2]

−
be

√

3 + 4γ2
[101̄2] +

1

6
a[12̄10].

The dislocation glide mechanism in the π1 plane may
be described as a two-step process. The dislocation is ini-
tially dissociated into two partial dislocations of Burgers
vector bs separated by a planar prismatic stacking fault
[Fig. 2(b)]. In the first half of the minimum energy path,

one partial dislocation and part of the stacking fault move
perpendicularly to the habit plane and migrate to the
next prismatic plane, creating the two-layer twin along a
π1 plane and resulting in the metastable dislocation con-
figuration [Fig. 2(c)]. In the second half of the path, the
remaining partial dislocation repeats the same process,
removing the twin and restoring a planar fault spread in
the final prismatic plane [Fig. 2(d)]. We should note that
the partials, being of screw character, do not need to de-
compose and can glide out of the initial prismatic plane
taking with them part of the stacking fault. We believe
our calculations show the first instance of a conservative
motion of a stacking fault perpendicularly to itself. The
mechanism involves a collective motion of the atoms near
the fault [27].

FIG. 3. Secondary slip in the basal (0001) plane. (a) Energy
barrier encountered by a screw dislocation when gliding in
a basal plane. The differential displacement maps show the
dislocation (b) initial, (c) intermediate, and (d) final configu-
rations.

Following the same approach, we investigated basal
slip. We computed the energy barrier required for a screw
dislocation spread in a prismatic plane to glide in a basal
plane [Fig. 3(a)]. Surprisingly, we obtained the same en-
ergy barrier as for pyramidal slip and the local minimum
at halfway (ζ = 0.5) corresponds to the same metastable
configuration as obtained for pyramidal slip. The config-
urations in Figs. 3(c) and 2(c) are two variants of the
same configuration, with the pyramidal fault lying in the
(101̄1) plane in Figs. 3(c) and in the (1̄011) plane in Fig.
2(c).
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To understand the correspondence between pyramidal
and basal slips, we determined the position of the dislo-
cation in the (12̄10) plane along both minimum energy
paths. The position was deduced from the stress varia-
tion along the paths. Within elasticity theory [28], the
total stress of a periodic unit cell containing a dislocation
dipole of Burgers vector ~b is given by

σij = Cijkl

(

εkl −
bkAl + blAk

2S

)

, (1)

where S is the area of the simulation cell perpendicular
to the dislocation lines, Cijkl are the elastic constants of
the perfect crystal, and εkl is the homogeneous applied
strain. The cut vector ~A defines the dislocation dipole
and is directly related to the relative positions of the dis-
locations. For dislocations with a line direction along the
z axis, we have Ax = y1 − y2 and Ay = x2 − x1, where
(x1, y1) and (x2, y2) are the coordinates of the disloca-

tions with Burgers vector ~b and −~b, respectively. Hence,
any variation of the dislocation positions results in a vari-
ation of the ~A vector, and in turn, a variation of the
stress. Since the strain εkl is kept constant along the
paths, we can invert Eq. (1) to determine the dislocation
position from the stress variation along the minimum en-
ergy paths.

FIG. 4. Dislocation position in the (12̄10) plane when slipping
(a) in a pyramidal π1 plane and (b) in a basal plane. The pink
squares indicate the initial, intermediate and final positions.

We computed with the NEB method the same barri-
ers as described previously but with the two dipole dis-
locations now moving in opposite directions to induce
stress variations. The dislocation paths obtained with
the EAM potential are shown in Fig. 4. For the initial
(ζ = 0), intermediate (ζ = 0.5), and final states (ζ = 1),
we found the same positions as previously determined
from the differential displacement maps. For pyramidal
slip [Fig. 4(a)], the dislocation takes the shortest path,

which corresponds to a progressive shear of a π1 corru-
gated plane. On the other hand, for basal slip [Fig. 4(b)],
the path is not straight but can be decomposed in three
steps : the dislocation glides first in a prismatic plane,
then in a pyramidal plane, and finally again in a pris-
matic plane. Comparing Figs. 4(a) and 4(b), we see
that the sections along the pyramidal planes are identi-
cal, apart from a symmetry operation between the two
equivalent (101̄1) and (1̄011) pyramidal planes. Since the
energy barrier associated with prismatic glide is very low
(less than 0.4meV Å−1 [11]), we now understand that
pyramidal and basal slips are both limited by the same
process, the elementary jump along the pyramidal plane,
explaining why the same energy barrier is obtained for
both pyramidal and basal slips.

Finally, to confirm the analogy between pyramidal and
basal slips, we checked that they both have the same
Peierls stress, defined as the critical shear stress at which
the energy barrier disappears. To do so, a strain, corre-
sponding to the target stress, was applied to the simu-
lation cell and the energy barrier was recalculated using
the NEB method. The two dislocations of the dipole
were moved again in opposite directions to ensure that
their motion agreed with their respective Peach-Koehler
force directions. Calculations were performed only with
the EAM potential in order to use a simulation cell large
enough to neglect the variation of the elastic energy along
the path. The only nonzero component of the applied
stress tensor was τyz (see axis definition in Fig. 1). No
τxz component could be applied because the Peierls stress
for prismatic glide is so low (22MPa [23]) that any τxz
stress will cause the dislocations to glide in their pris-
matic plane. As expected, the energy barrier for pyra-
midal and basal slip canceled at the same applied shear
stress, τyz = 1.79GPa. Since the EAM potential over-
estimates the energy barrier, we expect a lower Peierls
stress with ab initio calculations but the value will prob-
ably remain too high to allow for pyramidal and basal
slip without thermal activation, in agreement with ex-
periments where cross slip is observed only at high tem-
peratures [12–15].

To summarize, we have shown that pyramidal and
basal slips share the same dislocation mechanism, involv-
ing a displacement of the prismatic stacking fault perpen-
dicular to its habit plane and resulting in a metastable
configuration partially spread in a pyramidal π1 plane.
This configuration has been found in both zirconium and
titanium and involves the formation of an elementary
two-layer twin inside the dislocation core. No constric-
tion of the dislocation is necessary, in analogy with the
Fleischer cross-slip mechanism in fcc metals. We antici-
pate that this new slip mechanism, which allows a dislo-
cation spread in a plane to glide in another plane, will be
of importance not only in hcp transition metals, but also
in other more complex materials such as complex alloys
or minerals.
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