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NON-UNIFORM SPLINE RECOVERY FROM SMALL DEGREE

POLYNOMIAL APPROXIMATION

YOHANN DE CASTRO AND GUILLAUME MIJOULE

ABSTRACT. We investigate the sparse spikes deconvolution problem onto spaces

of algebraic polynomials. Our framework encompasses the measure reconstruc-

tion problem from a combination of noiseless and noisy moment measurements.

We study a TV-norm regularization procedure to localize the support and estimate

the weights of a target discrete measure in this frame. Furthermore, we derive

quantitative bounds on the support recovery and the amplitudes errors under a

Chebyshev-type minimal separation condition on its support. Finally, we study

the localization of the knots of non-uniform splines from small degree polynomial

approximations.

1. INTRODUCTION

1.1. Sparse spikes deconvolution onto spaces of algebraic polynomials. This
paper is devoted to the extension of some recent results in spike deconvolution
to the frame of algebraic polynomials. Beyond the theoretical interest, we focus
on this model in order to bring tools and quantitative guarantees from the super-
resolution theory [9, 7, 8] to the companion problem of the recovery of knots of
non-uniform splines [3]. At first glance, this setting can be depicted as a deconvo-
lution problem where one wants to recover the location of the support of a discrete
measure from the observation of its convolution with an algebraic polynomial of
given degree m. Equivalently, we aim at recovering a discrete measure from the
knowledge of the true (d + 1) first moments and a noisy version of the (m − d)
next ones.

1.2. Non-uniform spline recovery. Our framework involves the recovery of non-
uniform splines, i.e. a smooth polynomial function that is piecewise-defined on
subintervals of different lengths. More precisely, we investigate a grid-free proce-
dure to estimate a non-uniform spline from a polynomial approximation of small
degree. Our estimation procedure can be used as a post-processing technique in
various fields such as data assimilation [15], shape optimization [14] or spectral
methods in PDE’s [13].

For instance, one gets a polynomial approximation of the solution of a PDE
when using spectral methods such as Galerkin method. In this setting, one seeks
a weak solution of a PDE using bounded degree polynomials as test functions.
Then, Lax-Milgram theorem grants the existence of a unique weak solution f for
which a polynomial approximation P can be computed. Moreover, Céa’s lemma
shows that the Galerkin approximation P is comparable to the best polynomial
approximation p(f) of the weak solution f. In this paper, this situation is depicted
by (1.6). Hence, if one knows the weak solution f is a non-uniform spline then our
(post-processing) procedure can provide a grid-free estimate f from the Galerkin
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approximation P. Moreover, Theorem 2 shows that the recovered spline has large
discontinuities near the large discontinuities of the target spline f. Hence, the loca-
tion of the large enough discontinuities of the weak solution f can be quantitatively
and in a grid-free manner estimated from the Galerkin approximation using our
algorithm.

As an example, Figure 1 illustrates how our procedure improves a polynomial
approximation of a non-uniform spline. Observe that discontinuities of splines
make them difficult to approximate by polynomials. Even the best polynomial
approximation given by orthogonal projection (thin dashed gray line) fails in lo-
calizing the knots of splines. Consider a worse approximation (thin black line) of
the spline (thick dashed gray line). It seems rather difficult to localize the discon-
tinuities of the spline from the knowledge of this polynomial approximation and
the boundary conditions.
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FIGURE 1. Estimated spline (thick black line) of a non-uniform
spline (thick dashed gray line) and its knots from a polynomial
approximation (thin black line).

Nevertheless, our procedure produces a non-uniform spline (thick black line)
whose large discontinuities are close to the knots of the target spline.

1.3. Previous works. The super-resolution problem has been intensively inves-
tigated in the last years. In [8] the authors give an exact recovery condition for
the noiseless problem in a general setting. In the Fourier frame, this analysis was
greatly refined in [7] which shows that the exact recovery condition is satisfied
for all measure satisfying a “minimum separation condition”. The recovery from
noisy samplings was investigated in [6] which characterizes the reconstruction er-
ror as the resolution increases. The first result on quantitative localization was
brought by [1] which gives the bounds on the support detection error in a general
frame. This analysis was derived in terms of the amplitude of the target measure
in [12]. In the Fourier frame, the optimal rates in prediction error have been in-
vestigated in [17]. Lastly, the behavior and the stability of ℓ1-norm regularization
in the space of measures has been investigated in [11] when observing small noise
errors.

The spline recovery problem in the noiseless case has been studied in [3] where
the authors assume that one knows the orthogonal projection p(f) of the non-
uniform spline f. Our frame extends their point of view to the noisy case where
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one observes a polynomial approximation P close to the best polynomial approx-
imation p(f). To the best of our knowledge, there is no result on a quantitative
localization of the knots of non-uniform splines from noisy measurements.

1.4. General model and notation. Let [−1, 1] equipped with the distance:

∀ u , v ∈ [−1, 1] , d(u, v) = | arccos u − arccos v| .

Let x be a complex measure on [−1, 1] with finite support of size s. In particular, x

has polar decomposition:

(1.1) x =
s

∑
k=1

ak δtk
,

where ak ∈ R \ {0}, tk ∈ [−1, 1], and δt denotes the Dirac measure at point t. Let
m be a positive integer and F = {ϕ0 ,ϕ1, . . . ,ϕm} be such that ϕ0 = 1 and for
k = 1, . . . , m,

ϕk =
√

2 Tk ,

where Tk(t) = cos(k arccos(t)) is the k-th Chebyshev polynomial of the first kind.
Define the k-th generalized moment of a signed measure µ on [−1, 1] as:

ck(µ) =
∫

[−1,1]
ϕk dµ ,

for k = 0, 1, . . . , m. Assume that we observe ck(x) for 0 ≤ k ≤ d and a noisy
version of ck(x) for d + 1 ≤ k ≤ m where possibly d = −1. Define yk = ck(x) +εk

such as εk = 0 for 0 ≤ k ≤ d and εk are i.i.d. N (0,σ2) for d + 1 ≤ k ≤ m. This can
be written as:

(1.2) y = c(x) + e ,

where c(x) = (ck(x))
m
k=0 and e = (0, n) with n ∼ N (0,σ2 Idm−d). Note we know

the first true moments up to the order d and a noisy version of them up to the
order m. Moreover, the degree d is allowed to be −1. In this case, we only observe
a noisy version of the moments up to the order m.

1.5. An ℓ1-minimization procedure. Our analysis follows recent proposal on ℓ1-
minimization [1, 17, 11]. Denote by M the set of all finite signed measures on
[−1, 1] which is isometrically isomorphic to the dual C ([−1, 1])⋆ of the continu-
ous function endowed with the supremum norm and by ‖ . ‖TV the total variation
norm. We recall that for all µ ∈ M,

‖µ‖TV = sup
P

∑
E∈P

|µ(E)| ,

where the supremum is taken over all partitions P of [−1, 1] into a finite number
of disjoint measurable subsets. Consider a modified version of the convex pro-
gram BLASSO [1] given by:

(1.3) x̂ ∈ arg min
µ∈Cd(x)

1

2
‖c(µ)− y‖2

2+λ‖µ‖TV ,

where Cd(x) := {µ ∈ M ; ∀ k = 0, . . . , d , ck(µ) = ck(x)} and λ > 0 is a tuning
parameter. Questions immediately arise:

• How close is the recovered spike train from the target x?
• How accurate is the localization of (1.3) in terms of the noise and the am-

plitude of the recovered/original spike?

To the best of our knowledge, this paper is the first to quantitatively address these
questions in the frame of algebraic polynomials.
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1.6. Contribution.

Definition 1.1 (Minimum separation). Let T ⊂ [−1, 1]. We define ∆(T), the mini-
mum separation of T, by

∆(T) = inf
(t,t′)∈T2;t 6=t′

min {d(t, t′), π − d(t, t′)} ,

that is the minimum modulus between two points of arccos(T) + πZ.

Let ǫ(T) denote the distance from T\{−1, 1} to the edges of [−1, 1]:

ǫ(T) = inf {min(d(t, 1), d(t, −1)); t ∈ T\{−1, 1}} .

Theorem 1. Assume m ≥ 128. Letα > 0 and set:

λ0 := 2σ [2(1 +α)(m − d) log(5(m + d + 1))]1/2 ,

then with probability greater than 1 −
[

1
5(m+d)

]α
the following holds. If λ ≥ λ0 and

(1.4) min{∆(T), 2ǫ(T)} ≥ 5π

m
.

then there exists a solution x̂ to (1.3) with finite support x̂ =
ŝ

∑
k=1

âkδt̂k
satisfying:

(1) Global control:

ŝ

∑
k=1

|âk| min
{

m2 min
t∈T

d(t, t̂k)
2; c2

0

}

≤ c1λ ,

(2) Local control:

∀i = 1, . . . , s,
∣

∣

∣
ai − x̂

({

t | d(ti, t) ≤ c0

m

}) ∣

∣

∣
≤ c2λ ,

(3) Large spike localization:

∀i = 1, . . . , s, s.t. |ai| > c2λ , ∃ t̂ ∈ Supp(x̂) s.t. d(ti, t̂) ≤
[ c1λ

|ai| − c2λ

]1/2 1

m
,

where c0 = 1.0361, c1 = 235.85, and c2 = 220.72.

A proof can be found in Appendix C.

1.7. Non-uniform spline reconstruction. In this subsection, we assume d ≥ 0.
Observe that the frame investigated in this paper covers the recovery problem of
non-uniform splines of order d from projections onto spaces Rm−d−1[X] of alge-
braic polynomials of given degree at most m − d − 1. Indeed, consider an univari-
ate spline f of degree d over the knot sequence T = {−1, t1, t2, . . . , ts, 1} that is a
continuously differentiable function f of order d − 1 piecewise-defined by:

f = 11[−1,t1)
P0 + 11[t1,t2)

P1 + . . . + 11[ts−1,ts) Ps−1 + 11[ts,1] Ps ,

where Pk belongs to Rd[X], and for all subset E ⊆ [−1, 1], 11E(t) equals 1 if t

belongs to E and 0 otherwise. Consider f(d+1), the (d + 1)-th distributional deriv-
ative of f. Note it can be written as :

f(d+1) =
s

∑
k=1

(P
(d)
k − P

(d)
k−1) δtk

,

where P
(d)
k ∈ R is the d-th derivative of Pk. Using matrix notation, Appendix E

shows that:

(1.5) c(f(d+1)) =

[

0 W1

(−1)d+1 Idm−d W2

] (

p(f)
b

)

,
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where:

• p(f) = (〈f,ϕ
(d+1)
d+1 〉, 〈f,ϕ

(d+1)
d+2 〉, . . . , 〈f,ϕ

(d+1)
m 〉),

• b = (P0(−1), . . . , P
(d−1)
0 (−1), P

(d)
0 , Ps(1), . . . , P

(d−1)
s (1), P

(d)
s ),

• and W1, W2 are known matrices, see (E.1), (E.2) and (E.3), whose entries
belong to the set {−1, 1,

√
2 (−1)awb,c ; a ∈ {0, 1} and b, c ∈ N}.

Let L denote the Lebesgue measure and observe that p(f) is entirely determined

by the orthogonal projection in L2(L) of f onto Rm−d−1[X], and b describes the

boundary conditions on f. Note c(f(d+1)) can be obtained from the projection p(f)
and b. Then, our model considers a gaussian perturbation of the projection p(f).

Assumption 1 (Approximate projection of non-uniform splines). We say that a ran-
dom polynomial P with values in Rm−d−1[X] satisfies Assumption 1 if and only if:

(1.6) Θ(P) = p(f) + n ,

where n ∼ N (0,σ2 Idm−d) and Θ : P 7→ (〈P,ϕ
(d+1)
d+1 〉, 〈P,ϕ

(d+1)
d+2 〉, . . . , 〈P,ϕ

(d+1)
m 〉).

Remark. For the sake of simplicity, we choose a Gaussian approximation error but
our analysis can be extended to other types of noise. This extension can be done
by bounding the ℓ∞-norm of the polynomial whose coefficients are given by the
random vector e = (0, n) , as done in Lemma 8.

Remark. Observe the mapping Θ defines an isomorphism from Rm−d−1[X] onto

Rm−d. Moreover, note the inverse image of n ∼ N (0,σ2 Idm−d) under Θ is a
random polynomial whose entries are Gaussian random variables in any basis of
Rm−d−1[X]. Therefore, Assumption (1.6) can be equivalently formulated as the
knowledge of some Gaussian perturbation in any given basis of Rm−d−1[X].

Let b = (P0(−1), . . . , P
(d−1)
0 (−1), P

(d)
0 , Ps(1), . . . , P

(d−1)
s (1), P

(d)
s ) and P be a ran-

dom vector with values in Rm−d−1[X]. Set:

(1.7) x̂ ∈ arg min
µ∈Cd(f(d+1))

1

2
‖c(µ)− y‖2

2+λ‖µ‖TV .

Recall Cd(f
(d+1)) := {µ ∈ M ; ∀ k = 0, . . . , d , ck(µ) = ck(f

(d+1))}, λ > 0 is a
tuning parameter and

y :=

[

0 W1

(−1)d+1 Idm−d W2

](

Θ(P)
b

)

.

Note that if a discrete measure x̂ enjoys

(1.8) ∀k = 0, . . . , d, ck(x̂) = ck(f
(d+1))

then one can explicitly construct the unique non-uniform spline f̂ with (d + 1)-th
derivative x̂ and boundary conditions b. Indeed, observe that we can uniquely

construct a non-uniform spline f̂ from the knowledge of the (d + 1) boundary
conditions at point −1 and its (d + 1)-th derivative. Moreover, Eq.’s (1.8), (E.2)

and (E.3) show that f̂ satisfies the (d + 1) boundary conditions at point 1 and so
the boundary conditions b. Eventually, we consider the algorithm described in
Table 1.

Theorem 2. Let m > d ≥ 0. Let f be a non-uniform spline of degree d that can be
written as:

f = 11[−1,t1)
P0 + 11[t1,t2)

P1 + . . . + 11[ts−1,ts) Ps−1 + 11[ts,1] Ps ,
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Inputs: Boundary conditions b, a polynomial approximation P,
an upper bound σ on the noise standard deviation andα > 0.

1. Set d = Size(b)/2 − 1 and m = deg(P) + d + 1,

2. Compute Θ(P) = (〈P,ϕ
(d+1)
d+1 〉, 〈P,ϕ

(d+1)
d+2 〉, . . . , 〈P,ϕ

(d+1)
m 〉) ,

3. Compute y =

[

0 W1

(−1)d+1 Idm−d W2

] (

Θ(P)
b

)

,

where W1 and W2 are described in Appendix E.

4. Set λ = 4σ [2(1 +α)(m − d) log(5(m + d + 1))]1/2,

5. Find a discrete solution x̂ =
ŝ

∑
k=1

âkδt̂k
to (1.7),

6. Find the unique spline f̂ of order d − 1 such that f̂(d+1) = x̂ and

(f̂, . . . , f̂
(d−1)
0 (−1), f̂

(d)
0 , f̂s(1), . . . , f̂

(d−1)
s (1), f̂

(d)
s ) = b.

Output: A non-uniform spline f̂.

TABLE 1. Non-uniform spline recovery algorithm.

where Pk ∈ Rd[X] and T = {−1, t1, t2, . . . , ts, 1} enjoys:

min{∆(T), 2ǫ(T)} ≥ 5π

m
.

Set b = (P0(−1), . . . , P
(d−1)
0 (−1), P

(d)
0 , Ps(1), . . . , P

(d−1)
s (1), P

(d)
s ) and let P be such

that Assumption 1 holds. Letα > 0 then, with probability greater than 1 − [ 1
5(m+d)

]α
,

any output f̂ of the aforementioned algorithm enjoys:

(1) Global control:

ŝ

∑
k=1

|P̂(d)
k − P̂

(d)
k−1| min

{

m2 min
t∈T

d(t, t̂k)
2; c2

0

}

≤ c1λ ,

(2) Large discontinuity localization: ∀i = 1, . . . , s, s.t. |P(d)
i − P

(d)
i−1| > c2λ,

∃ t̂ ∈ {t̂1, . . . , t̂ŝ} s.t. d(ti, t̂) ≤
[ c1λ

|P(d)
i − P

(d)
i−1| − c2λ

]1/2 1

m
,

where c0 = 1.0361, c1 = 235.85, c2 = 220.72, λ = 4σ [2(1 +α)(m − d) log(5(m +

d + 1))]1/2 and f̂ is written as:

f̂ = 11[−1,t̂1)
P̂0 + 11[t̂1,t̂2)

P̂1 + . . . + 11[t̂ŝ−1 ,t̂ŝ)
Ps−1 + 11[t̂ŝ,1] Pŝ ,

with P̂k ∈ Rd[X].

A proof can be found in Appendix F.

2. QUANTITATIVE LOCALIZATION

2.1. Zero-noise problem. In the noiseless case, observe that n = 0. Exact recovery
from moment samples has been investigated in [1, 3] where one considers the
program:

(2.1) x0 ∈ arg min
µ∈M

‖µ‖TV s.t.
∫

Φ dµ =
∫

Φ dx ,
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whith Φ = (ϕ0, . . . ,ϕm) is the Chebyshev moment curve. The optimality condi-
tion of (2.1) shows that the sub-gradient of the ℓ1-norm vanishes at any solution

point x0. Therefore a sufficient condition for exact recovery is that x satisfies the
optimality condition. This is covered by the notion of “dual certificate” [8, 7] or
equivalently the notion of “source condition” [5].

Definition 2.1 (Dual certificate). We say that a polynomial P = ∑
m
k=0αkϕk is a dual

certificate for the measure x defined by (1.1) if and only if it satisfies the following proper-
ties:

• phase interpolation: ∀k ∈ {1, . . . , S} , P(tk) = ak/|ak|,
• ℓ∞-constraint: ‖P‖∞≤ 1.

One can prove [8] that x is a solution to (2.1) if and only if x has a dual certificate.

2.2. Semi-noisy moment sample model. In our model, we deal with an obser-
vation y described by (1.2). In this case, the existence of a dual certificate is not
sufficient to derive support localization, see [1]. One needs to strengthen this no-
tion using the Quadratic Isolation Condition [1].

Definition 2.2 (Quadratic isolation condition). We say that a finite set T =
{t1, . . . , ts} ⊂ [−1, 1] satisfies the quadratic isolation condition with parameters Ca > 0

and 0 < Cb < 1, denoted by QIC(Ca, Cb), if and only if for all (θk)
S
k=1 ∈ Rs, there exists

P ∈ Span(F ) such that for all k = 1, . . . , s, P(tk) = exp(−iθk), and

∀x ∈ [−1, 1] , 1 − |P(x)|≥ min
t∈T

{Cam2d(x, t)2, Cb} .

As showed by Lemma 6, if the support T satisfy a minimal separation condition
described in (1.4) then T satisfies QIC(Ca, Cb) with constants Ca = 0.00848 and
Cb = 0.00879. Using Bernstein’s inequality for algebraic polynomials and the
dual certificate construction of [7], we prove Theorem 1, see Appendix C.

3. SEMI-DEFINITE PROGRAMMING

Observe that the Fenchel-Legendre dual program of (1.3) is given by:

(3.1) α̂ ∈ arg min

‖
m

∑
k=0

αkϕk‖∞≤ λ

{ 1

2
‖α‖2

2+
m

∑
k=d+1

αk yk

}

,

and strong duality holds, see Lemma 9. This dual program can be seen as the
orthogonal projection of the vector (0, . . . , 0, yd+1, . . . , ym) onto the convex set:

{

α ∈ R
m+1 , ‖

m

∑
k=0

αkϕk‖∞≤ λ
}

.

Therefore, there is a unique solution to (3.1). Moreover, observe that the constraint
‖∑

m
k=0αkϕk‖∞≤ λ can be re-cast as imposing that the algebraic polynomials:

(3.2) P1 := λ+
m

∑
k=0

αkϕk ≥ 0 and P2 := λ−
m

∑
k=0

αkϕk ≥ 0 .

Considering the change of variables θ = arccos(t), the aforementioned inequali-
ties can be equivalently drawn for some trigonometric polynomials. Using Riesz-
Fejér theorem, one can show that non-negative trigonometric polynomials are
sums of squares polynomials (SOS). A standard result, see for instance [10], en-
sures that the convex set of sum of square polynomials (SOS) can be described as
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the intersection between the set of positive hermitian semi-definite (SDP) matrices
and an affine constraint.

Lemma 3. The constraint (3.2) can be re-casted into a semi-definite constraint.

Hence, we can compute α̂ using a SDP program. Moreover, Fenchel’s duality
theorem shows that the dual polynomial:

P̂ =
1

λ

m

∑
k=0

α̂kϕk ,

is a sub-gradient of the TV-norm at point x̂. In particular, the support T̂ of x̂ is
included in:

{

t ∈ [−1, 1] , |P̂|= 1
}

.

If P̂ is not constant, this level set has at most m + 1 points and it defines the sup-
port of the solution. Hence, we can find the weights of x̂ using a least-square-type
estimator subject to the affine constraint given by the intersection between Cd(x)
and discrete measures with support included in T̂. In this case, the solution to
(1.3) is unique and can be computed using the aforementioned SDP program. If

P̂ is constant then there always exists a solution to (1.3) with finite support. In-
deed, using the fact that there is no duality gap, one can check that the solution

has non-negative (resp. non-positive) weights if P̂ = 1 (resp. P̂ = −1). Therefore,
Carathéodory’s theorem shows that there always exists a solution with finite sup-

port1. However, one can not use the dual program (3.1) to compute the solution to
the primal program (1.3). We deduce the following lemma.

Lemma 4. There always exists a solution to the primal problem (1.3) with a support of

size at most m + 2. Moreover, if P̂ is not constant, the solution to (1.3) is unique, its

support is included in the level set {t ∈ [−1, 1] , |P̂|= 1} and has size at most m + 1.

APPENDIX A. DUAL CERTIFICATES

This section capitalizes on the recent breakthrough presented in [7] and builds
an explicit dual certificate in the frame of algebraic polynomials. More precisely,
we explicitly upper bound the dual certificates by a quadratic function near the
support points, as done in [7].

Lemma 5. Assume (1.4) holds. Then for all t j ∈ T, there exists a polynomial qt j
of degree

m such that:

(1) qt j
(t j) = 1,

(2) ∀tl ∈ T\{t j} , qt j
(tl) = 0,

(3) if d(t, t j) ≤ c0/m then:

1 − C2 m2d(t, t j)
2 ≤ qt j

(t) ≤ 1 − C1 m2d(t, t j)
2 ,

(4) if d(t, tl) ≤ c0/m and tl ∈ T\{t j} then:

C1 m2d(t, t j)
2 ≤ qt j

(t) ≤ C2 m2d(t, t j)
2 ,

(5) if d(t, tl) > c0/m for all tl ∈ T then:

c2
0C1 ≤ qt j

(t) ≤ 1 − c2
0C1 ,

where c0 = 2π · 0.1649, C1 = 0.00424, and C2 = 0.25.

1The interested reader may find a valuable reference on the geometry of the cone of non-negative

measures in [16].
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Proof. By symetrizing the support, we can use existing results for real trigonomet-

ric polynomials. Let X = 1
2π (arccos(T)

⋃

[− arccos(T)])+ 1
2 . Note that X ⊂ [0, 1].

It is easy to check that (1.4) implies:

(A.1) min
(x,x′)∈X ; x 6=x′

|x − x′| ≥ 2.5/m

Thus, according to Proposition 2.1 and Lemma 2.5 of [7], for all x j ∈ X, there exists

a real trigonometric polynomial of degree m, q̃x j
: x 7→ ∑

m
k=−m cke2iπkx, such that:

• q̃x j
(x j) = q̃x j

(−x j) = 1,

• |q̃x j
(x)| < 1, x ∈ [0, 1]\X,

• q̃x j
(xl) = −1, xl ∈ X\{x j, −x j},

• ∀(x, xl) ∈ [0, 1]× X , |x − xl | ≤ 0.1649/m,

|q̃x j
(x)| ≤ 1 − 0.3353 m2(x − xl)

2 ,

• ∀x ∈ [0, 1] , ∀xl ∈ X, |x − xl | > 0.1649/m,

|q̃x j
(x)| ≤ 1 − 0.3353 · 0.16492 .

By construction [7] the trigonometric polynomial function px j
: x ∈ [−π , π ] 7→

q̃x j

(

1
2π x + 1

2

)

is real and even, so we have the expansion:

px j
(x) =

m

∑
k=0

ak cos(kx) .

Moreover, since sup
x∈[0,2π ]

|px j
(x)| = 1, Bernstein’s inequality [4] implies:

(A.2) sup
x∈[0,1]

|p′′x j
(x)| ≤ m2 .

Let t j ∈ T and x j = arccos(t j). We define:

qt j
(t) =

1

2
px j

(arccos t) +
1

2
=

1

2

m

∑
k=0

akTk(t) +
1

2
,

where Tk is the k-th Chebyshev polynomial of the first kind. Lemma 5 is a direct
consequence of the properties verfied by q̃x j

and (A.2). �

Lemma 6. Assume (1.4) holds. Then for all (v1, . . . , vS) such that ∀ j ∈ [1, S], |v j| = 1,
there exists a polynomial q of degree m such that:

(1) ∀ j ∈ [1, S], q(t j) = v j,

(2) if d(t, t j) ≤ c0/m then:

1 − |q(t)| ≥ 2C1 m2d(t, t j)
2 ,

(3) if d(t, tl) > 2π · 0.1649/m for all tl ∈ T then:

1 − |q(t)| ≥ 2c2
0C1 ,

where c0 = 2π · 0.1649 and C1 = 0.00424.

Proof. Similarly as previous lemma, if X = 1
2π (arccos(T)

⋃

[− arccos(T)]) + 1
2 ,

then we can construct a trigonometric polynomial q̃ : x 7→ ∑
m
k=−m cke2iπkx, such

that:

• q̃(x j) = q̃(−x j) = v j, ∀ j ∈ [1, S],
• |q̃x j

(x)| < 1, ∀x ∈ [0, 1]\X,
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• ∀(x, xl) ∈ [0, 1]× X , |x − xl | ≤ 0.1649/m,

|q̃x j
(x)| ≤ 1 − 0.3353 m2(x − xl)

2 ,

• ∀x ∈ [0, 1] , ∀xl ∈ X, |x − xl | > 0.1649/m,

|q̃x j
(x)| ≤ 1 − 0.3353 · 0.16492 .

Then p : x ∈ [−π , π ] 7→ q̃
(

1
2π x + 1

2

)

is even, so we have the expansion p(x) =

∑
m
k=0 ak cos(kx) where ak ∈ R. Putting

q : t 7→
m

∑
k=0

ak cos(k arccos t) =
m

∑
k=0

akTk(t) ,

we can show q verifies the needed properties. �

APPENDIX B. RICE METHOD

Define the Gaussian process {Xm,d(t), t ∈ [−1, 1]} by:

∀t ∈ [−1, 1], Xm,d(t) = ξd+1ϕd+1(t) +ξd+2ϕd+2(t) + . . . +ξmϕm(t) ,

where ξd+1, . . . ,ξm are i.i.d. standard normal. Its covariance function is:

r(s, t) =ϕd+1(t)ϕd+1(s) +ϕd+2(t)ϕd+2(s) + . . . +ϕm(t)ϕm(s) ,

where the dependence in m and d has been omitted. Observe its maximal variance

is attained at point 1 and is given byσ2
m,d = 2(m − d), and its variance function is

σ2
m,d(t) =ϕd+1(t)

2 +ϕd+2(t)
2 + . . . +ϕm(t)2.

Lemma 7. Let M = max
t∈[−1,1]

|Xm,d(t)|, then:

∀u >
√

2(m − d), P{M > u} ≤ 5(m + d + 1) exp
[

− u2

8(m − d)

]

.

Proof. By the change of variables t = cosθ, for all t ∈ [−1, 1]:

Xm,d(t) = Xm,d(cosθ) =
√

2ξd+1 cos((d + 1)θ) + . . . +
√

2ξm cos(mθ).

Set T(θ) := Xm,d(t). We recall that its variance function is given by:

σ2
m,d(θ) = 2 cos2((d + 1)θ) + . . . + 2 cos2(mθ) = m − d +

Dm(2θ)− Dd(2θ)

2
,

where Dk denotes the Dirichlet kernel of order k. Observe that:

∀θ ∈ R , σ2
m,d(θ) ≤ σ2

m,d(0) = 2(m − d) ,

By the Rice method [2], for u > 0:

P{M > u} ≤ 2P{ max
θ∈[0,π ]

T(θ) > u} ,

≤ 2P{T(0) > u}+ 2E[Uu([0, π ])] ,

= 2[1 − Ψ
( u
√

2(m − d)

)

] + 2
∫ π

0
E
(

(T′(θ))+
∣

∣T(θ) = u)ψσm,d(θ)
(u)dt

where Uu is the number of crossings of the level u, Ψ is the standard normal dis-
tribution, andψσ is the density of the centered normal distribution with standard

error σ . First, observe that for v > 0, (1 − Ψ(v)) ≤ (1/2) exp(−v2/2). Hence,

1 − Ψ
( u
√

2(m − d)

)

≤ (1/2) exp
(− u2

2(m − d)

)

.
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Moreover, regression formulas implies that:

E
(

T′(θ)
∣

∣T(θ) = u
)

=
r0,1(θ,θ)

r(θ,θ)
u ,

Var
(

T′(θ)
∣

∣T(θ) = u
) ≤ Var

(

T′(θ)
)

= r1,1(θ,θ) ,

where, for instance, r1,1(ν,θ) = ∂2r(ν,θ)
∂ν∂θ

. We recall that the covariance function is
given by:

r(ν,θ) = 2 cos((d + 1)ν) cos((d + 1)θ) + . . . + 2 cos(mν) cos(mθ) ,

=
1

2

[

Dm(ν −θ) + Dm(ν +θ)− Dd(ν −θ)− Dd(ν+θ)
]

.

Observe that:

r0,1(θ,θ) =
1

2
[D′

m(2θ)− D′
d(2θ)] = −

m

∑
k=d+1

k sin(2kθ) ,

r1,1(θ,θ) =
m

∑
k=d+1

k2(1 − cos(2kθ)) .

On the other hand, if Z ∼ N (µ,σ2) then

E(Z+) = µ Ψ
(µ

σ

)

+σ ψ
(µ

σ

) ≤ µ+ +
σ√
2π

,

whereψ is the standard normal density. We get that:
∫ π

0
E
(

(T′(θ))+
∣

∣T(θ) = u)ψσm,d(θ)
(u)dt

≤
∫ π

0

[D′
m(2θ)− D′

d(2θ)]
+

2σ2
m,d(θ)

uψσm,d(θ)
(u)dθ

+
1√
2π

∫ π

0

[

m

∑
k=d+1

k2(1 − cos(2kθ))
]1/2

ψσm,d(θ)
(u)dθ ,

= A + B .

We use the following straightforward relations:

• ∀ 0 < σ1 < σ2 < u , ψσ1(u) ≤ ψσ2(u),

• ∀θ , [D′
m(2θ)− D′

d(2θ)]
+ ≤ ∑

m
k=d+1 k = (m+d+1)(m−d)

2 ,

• ∀θ ∈ [0, π ],

u

2σ2
m,d(θ)

ψσm,d(θ)
(u) ≤ 1

2
√

2πu2

u3

σ3
m,d(θ)

e
− u2

4σ2
m,d

(θ)
e
− u2

4σ2
m,d

(θ) ≤ 2

3u2
e
− u2

8(m−d) .

Eventually, we get, for u >
√

2(m − d):

A ≤ π

3

(m + d + 1)(m − d)

u2
exp(− u2

8(m − d)
) ,

B ≤
[ π

12
((2m + 1)(m + 1)m − (2d + 1)(d + 1)d)

]1/2
ψ√

2(m−d)
(u) .

and the result follows. �

Lemma 8. Set λR := σ [8(m − d) log(5(m + d + 1))]1/2 and λ > λR, then:

P

(

∥

∥

∥

∥

m

∑
k=0

εkϕk

∥

∥

∥

∥

∞

> λ

)

≤ exp[− λ2 − λ2
R

8σ2(m − d)
] .
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In particular, for all t > 0, if

λ0(t) := σ [8(1 + t)(m − d) log(5(m + d + 1))]1/2 ,

then

(B.1) P

(

∥

∥

∥

∥

m

∑
k=0

εkϕk

∥

∥

∥

∥

∞

> λ0(t)

)

≤ 1

[5(m + d + 1)]t
.

APPENDIX C. PROOF OF THEOREM 1

Assume that λ ≥ λ0 where λ0 is described in Lemma 8 (the dependence in t has
been omitted). Observe that the condition in Lemma 11 is met. One can prove that
there exists a solution x̂ to (1.3) with finite support, see Lemma 4. Set:

x̂ =
ŝ

∑
k=1

âkδt̂k
.

Set v j = a j/|a j| for j = 1, . . . , s and consider q = ∑
m
k=0βkϕk the algebraic polyno-

mial described in Lemma 6. Set:

D := ‖x̂‖TV−‖x‖TV−
∫ 1

−1
qd(x̂ − x) .

Note that D ≥ 0. Since x is feasible, it holds:

1

2
‖c(x̂)− y‖2

2+λD + λ
∫ 1

−1
qd(x̂ − x) ≤ 1

2
‖e‖2

2+λ‖x‖TV .

Hence,

1

2
‖c(x̂)− y + λβ‖2

2+λD ≤ 1

2
‖e‖2

2+
1

2
‖λβ‖2

2−λ〈e, a〉 ,

where β := (βk)
m
k=0 denotes the coefficients of q in the basis F . Eventually,

D ≤ λ

2
‖β− e

λ
‖2

2 .

Observe that:

‖
m

∑
k=0

(βk −εk/λ)ϕk‖∞≤ 2 ,

so that:

(C.1) D ≤ 2λ .

Moreover, note that:

D = ‖x̂‖TV−
∫ 1

−1
qdx̂ ,

≥
ŝ

∑
k=1

|âk|(1 − |q|)(t̂k) ,

≥
ŝ

∑
k=1

|âk| min{2C1m2 min
t∈T

d(t, t̂k)
2; 2c2

0C1} ,(C.2)



NON-UNIFORM SPLINE RECOVERY FROM SMALL DEGREE POLYNOMIAL APPROXIMATION 13

where c0 = 2π · 0.1649 and C1 = 0.00424. Now, let t ∈ T and consider the
polynomial qt described in Lemma 5. Using (C.2) we get that:

| ∑
{k | d(t,t̂k)>

c0
m }

âkqt(t̂k) + ∑
{k | d(t,t̂k)≤

c0
m }

âk(qt(t̂k)− 1)|

≤ ∑
{k | d(t,t̂k)>

c0
m }

|âk||qt|(t̂k) + ∑
{k | d(t,t̂k)≤

c0
m }

|âk||qt − 1|(t̂k) ,

≤
ŝ

∑
k=1

|âk| min{C2m2 min
t∈T

d(t, t̂k)
2; 1 − c2

0C1} ,

≤ C′ ×
ŝ

∑
k=1

|âk| min{2C1m2 min
t∈T

d(t, t̂k)
2; 2c2

0C1} ,

≤ 2C′λ .(C.3)

where C2 = 0.25 and C′ = max{ C2
2C1

;
1−c2

0C1

2c2
0C1

} = 109.36. Invoking (D.9), we deduce

that for all i = 1, . . . , s,

|ai − x̂(ti +B(c0/m))| ≤|
∫

qti
dx −

∫

qti
dx̂

+ ∑
{k | d(ti,t̂k)>

c0
m }

âkqti
(t̂k) + ∑

{k | d(ti,t̂k)≤
c0
m }

âk(qti
(t̂k)− 1)| ,

≤2(C′ + 1)λ ,

where ti + B(c0/m) = {t | d(ti, t) ≤ c0/m}. Finally, observe that (2) is a conse-
quence of the aforementioned inequalities.

APPENDIX D. FENCHEL-LEGENDRE CONJUGATE AND FIRST ORDER CONDITIONS

Lemma 9. The program:

(D.1) min
µ∈Cd(x)

1

2
‖c(µ)− y‖2

2+λ‖µ‖TV ,

has dual Fenchel-Legendre dual program:

(D.2) κ− min

‖
m

∑
k=0

αkϕk‖∞≤ λ

{1

2
‖α‖2

2+
m

∑
k=d+1

αk yk

}

,

where κ is a constant. Moreover, there is no duality gap.

Proof. The case d = −1 has been treated in [1]. Assume that d ≥ 0. Program (D.1)
can be viewed as:

min
µ∈M

h(c(µ)) +ψ(µ) ,

where the function h(c) = (1/2)‖c − y‖2
2 has Legendre conjugate:

∀α ∈ R
m+1 , h⋆(α) = 〈α, y〉+ 1

2
‖α‖2

2 ,

and:

ψ(µ) = λ‖µ‖TV+ııCd(x)(µ) ,

with ııCd(x)(µ) = 0 if µ ∈ Cd(x) and ∞ otherwise. We can compute the Legendre

conjugate of ψ as follows. Let f ∈ C ([−1, 1]). The convex conjugate ψ⋆ at point f
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is defined by:

(D.3) ψ⋆( f ) = sup
µ∈M

∫

f dµ − λ‖µ‖TV−ııCd(x)(µ) = sup
µ∈Cd(x)

∫

f dµ− λ‖µ‖TV .

Observe that [−1, 1] is compact. Therefore there exists a point t ∈ [−1, 1] such that
| f (t)|= ‖ f‖∞. Since ψ⋆ is symmetric, we can assume that f (t) is non-negative.
Set:

µρ(du) = ρδt(u)− ρ
[

d

∑
k=0

(ck(δt)−
ck(x)

ρ
)ϕk(u)L(du)

]

:= ρδt(u)− ρθρ(u)L(du) .

Notice that µρ ∈ Cd(x) and so:

(D.4) ψ⋆( f ) ≥ ρ( f (t)− λ) + ρ(
∫

f (u)θρ(u)du − λ‖θρ‖1) .

Set:

θ =
d

∑
k=0

ck(δt)ϕk ,

which can be viewed as the convolution of δt with the idempotent ∑
d
k=0ϕk. This

last kernel can be seen as a Dirichlet-type kernel and we claim that, if d ≥ 1, it
takes positive and negative values on [−1, 1]. Since f is continuous and θ has at
least a change of sign, Hölder’s inequality can be written as:

(D.5)
∫

fθ < ‖ f‖∞‖θ‖1 .

Moreover, remark that θρ converges toward θ uniformly. Henceforth, if ‖ f‖∞> λ,
we deduce from (D.4) and (D.5) that ψ⋆( f ) = ∞, letting ρ go to infinity. If d = 0
then θ = 1. In this case, Eq. (D.4) shows that ψ⋆( f ) = ∞ if ‖ f‖∞> λ. Moreover,
remark that:

C ([−1, 1]) ⊂ L2(Π) = Span{ϕ0, . . . ,ϕd} ⊕ Span{ϕ0 , . . . ,ϕd}⊥ := V ⊕ V⊥ .

Using this decomposition it holds that for all µ ∈ Cd(x),

∫

f dµ =
d

∑
k=0

ck(x)〈 f ,ϕk〉+
∫

ΠV⊥( f )dµ ,

where ΠV⊥ is the orthogonal projection onto V⊥. In particular, it holds

(D.6) ∀ f ∈ V , ψ⋆( f ) = ıı{‖ f ‖∞≤λ}( f ) +
d

∑
k=0

ck(x)〈 f ,ϕk〉+κd(x) ,

where κd(x) = −λ infµ∈Cd(x)‖µ‖TV is a constant. Observe that the dual operator

c⋆ of c is given by:

∀α ∈ R
m+1 , c⋆(α) =

m

∑
k=0

αkϕk .

Using the definition of conjugate h(c(µ)) = supα〈α, c(µ)〉 − h⋆(α), notice that:

min
µ∈M

h(c(µ)) +ψ(µ) = − inf
α∈Rm+1

h⋆(α) +ψ⋆(−c⋆(α)) .

It follows that the program (D.1) has Fenchel-Legendre dual:

− inf
α∈Rm+1

h⋆(α) +ψ⋆(−c⋆(α)) = κd(x)− inf
‖∑

m
k=0αkϕk‖∞≤λ

{1

2
‖α‖2

2+
m

∑
k=d+1

αkyk

}

.

Since Cd(x) is an affine space, Slater’s condition shows that strong duality holds.
�
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Lemma 10. The first order conditions read :

(D.7) ‖P̂‖∞≤ λ and λ‖x̂‖TV≤
∫ 1

−1
P̂d(x̂) + λ inf

µ∈Cd(x)
‖µ‖TV ,

where:

P̂ =
m

∑
k=0

(yk − ck(x̂))ϕk .

Proof. Let µ ∈ Cd(x) and γ ∈ (0, 1). Set ν = x̂ + γ(µ − x̂) then, by convexity:

‖µ‖TV−‖x̂‖TV≥
1

γ
(‖ν‖TV−‖x̂‖TV) .

Observe that ν ∈ Cd(x), by optimality:

λ(‖ν‖TV−‖x̂‖TV) ≥
1

2
(‖c(x̂)− y‖2

2−‖c(ν)− y‖2
2) ,

= γ〈y − c(x̂), c(µ)− c(x̂)〉 − γ2

2
‖c(µ)− c(x̂)‖2

2 .

Letting γ go to 0, we deduce:

(D.8) ∀µ ∈ Cd(x) , λ(‖µ‖TV−‖x̂‖TV) ≥ 〈y − c(x̂), c(µ)− c(x̂)〉 .

Conversely, if (D.8) holds then, for all µ ∈ Cd(x):

1

2
‖c(µ)− y‖2

2+λ‖µ‖TV≥
1

2
‖c(x̂)− y + c(µ)− c(x̂)‖2

2

+ 〈y − c(x̂), c(µ)− c(x̂)〉+ λ‖x̂‖TV ,

=
1

2
‖c(x̂)− y‖2

2+λ‖x̂‖TV+
1

2
‖c(µ)− c(x̂)‖2

2 ,

≥1

2
‖c(x̂)− y‖2

2+λ‖x̂‖TV .

Therefore, Eq. (D.8) is a necessary and sufficient condition for the measure x̂ to be
a solution to (1.3). In particular, it follows:

λ‖x̂‖TV−〈y − c(x̂), c(x̂)〉 ≤ inf
µ∈Cd(x)

{λ‖µ‖TV−〈y − c(x̂), c(µ)〉} = −ψ⋆(P̂) ,

where ψ⋆ is defined by (D.3) and P̂ = ∑
m
k=d+1(yk − ck(x̂))ϕk. The optimality con-

ditions can be deduced from (D.6). �

Lemma 11. Let x̂ be the solution to (1.3), then the following holds:

(D.9) ∀P ∈ Span(F ) , |
∫ 1

−1
Pd(x̂ − x)| ≤ (λ+ λ0)‖P‖∞ ,

where λ0 ≥ ‖
m

∑
k=0

εkϕk‖∞.

Proof. Let (ak)
m
k=0 be the coefficients of P, namely:

P =
m

∑
k=0

akϕk .

It holds:
∫ 1

−1
Pd(x̂ − x) =

m

∑
k=0

ak

∫ 1

−1
ϕkd(x̂ − x) =

m

∑
k=0

ak(ck(x̂)− ck(x)) ,

=
∫ 1

−1
(

m

∑
k=0

akϕk)(
m

∑
k=0

(ck(x̂)− ck(x))ϕk)dΠ ,
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since F is an orthonormal family with respect to the probability measure Π. By
Hölder’s inequality, we get:

|
∫ 1

−1
Pd(x̂ − x)| ≤ ‖

m

∑
k=0

(ck(x̂)− ck(x))ϕk‖∞
∫ 1

−1
|P|dΠ .

The triangular inequality gives:

‖
m

∑
k=0

(ck(x̂)− ck(x))ϕk‖∞≤ ‖
m

∑
k=0

(ck(x̂)− yk)ϕk‖∞+‖
m

∑
k=0

(yk − ck(x))ϕk‖∞ .

The result follows from (D.7). �

APPENDIX E. MATRIX FORMULATION OF THE SPLINE RECOVERY PROBLEM

By induction, for k = 0, 1, . . . , m,

ck(f
(d+1)) = 〈f(d+1),ϕk〉 =

d

∑
l=0

(−1)l
[

f(d−l)ϕ
(l)
k

]1

−1
+ (−1)d+1〈f,ϕ

(d+1)
k 〉 .

Moreover, it is known that for k ≥ l, T
(l)
k (−1) = (−1)k+lwk,l and T

(l)
k (1) = wk,l

where:

wk,l :=
l−1

∏
j=0

k2 − j2

2 j + 1
.

Therefore, for m ≥ k > d,

ck(f
(d+1)) =

√
2

d

∑
l=0

(−1)lwk,l P
(d−l)
s (1)(E.1)

+ (−1)k+1
√

2
d

∑
l=0

wk,l P
(d−l)
0 (−1) + (−1)d+1〈f,ϕ

(d+1)
k 〉 ,

for d ≥ k ≥ 1,

ck(f
(d+1)) =

√
2

k

∑
l=0

(−1)lwk,l P
(d−l)
s (1)

+ (−1)k+1
√

2
k

∑
l=0

wk,l P
(d−l)
0 (−1) ,(E.2)

and

(E.3) c0(f
(d+1)) = P

(d)
s − P

(d)
0 .

APPENDIX F. PROOF OF THEOREM 2

From (1.5) deduce that if P satisfies Assumption 1 then:

y :=

[

0 W1

(−1)d+1 Idm−d W2

](

Θ(P)
b

)

= c(f(d+1)) + (−1)d+1

(

0
n

)

,

where W1 and W2 are described in Appendix E. Observe the result follows from
Theorem 1.
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