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Introduction

Anisotropic and heterogeneous diffusion equations have different fields of
application such as image processing [38] and computer vision [1],[32], mod-
eling of tumors growth [35],[14], flows in heterogeneous media [31],[9], plasma
physics [27], option pricing in finance [18], biological processes [4],[13], medi-
cine [2] and ecology [24]. Beside typical regularizing effects, the most im-
portant feature of such models is that inconstant diffusion coefficients could
produce strikingly nontrivial patterns [15]. Therefore, the numerical solution
often requires very long computational time, for the large amount of data to
be traded in order to accurately capture the details of physical phenomena,
and the numerical methods used for solving these models should be chosen
with great care. Under specific hypotheses, those equations exhibit the no-
table properties of maximum principle and comparison principle [29],[11].
Indeed, the maximum principle, closely related to the non-negativity prop-
erty, is one of the basic characteristics of classical solutions of second order
PDEs of parabolic type. The preservation of this property for solutions to
corresponding discretized problems is very important and is a natural re-
quirement in reliable and meaningful numerical modeling of various real-life
phenomena. In all the cases, it is indispensable for a physical meaning that
the solution methods do not produce negative values, otherwise the results
of the equations which correspond to density or concentration of a certain
substance no longer make sense. Consequently, suitable numerical solvers for
simulating anisotropic and heterogeneous diffusion equations must exhibit
characteristics analogous to the theoretical properties of the mathematical
models (issuing from physical considerations) : mass conservation, positiv-
ity preserving, discrete maximum/comparison principle. All such properties
are, in fact, stability properties for the numerical methods.

In some literature (see [30],[10] for instance), the parabolic equations are
typically treated with the finite element method, which provides a power-
ful tool to determine the validity of the maximum principle and the non-
negativity property also in presence of non-structured grids, under certain
conditions [23]. But, sometimes, it might be useful to simulate the parabolic
equations with other simple numerical schemes, such as the finite differences
or rather the finite volume methods.
These are far from being faster than finite element schems, but they have
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the advantage of being easily parallelizable. Indeed, the ultimate purpose of
future works is to put the schemes presented in this report into a parallel
computing platform, for example CUDA GPU [17], to have several processes
that perform at the same time to greatly decrease the computational costs.
Even if the resolution of linear systems is not generally efficient in this type
of architecture, for the type of computational domains we take into account
is particularly suitable to employ them. In particular, we will refer to rectan-
gular domains with Cartesian meshes, approximating the solution at mesh
points, to have a numerical grid which is as consistent as possible with the
GPU virtual mesh. In this sense, a tread in the CUDA machine corresponds
to an iteration in the numerical scheme.

Therefore, we restrict to Finite Difference schemes on Cartesian grids
for the ease of implementation in parallel computing systems, and especially
CUDA GPUs, but we will always consider the Finite Volume formulation
for recovering the numerical fluxes in more advanced applications (for the
analogy with the integral formulation of conservation laws), thus leading to
the relevant class of finite differences/volumes on staggered grids. The aim of
this report is to give a uniform introduction to the finite difference and finite
volume methods for approaching the anisotropic and heterogeneous diffusion
equations, for which the validity of the discrete maximum principle, with the
related non-negativity property, is satisfied.

The report is organized as follows. In Chapter 1, we give a mathematical
statement of the problem : we introduce the anisotropic and heterogeneous
diffusion equations, by situating them in the wider context of parabolic
problems, we briefly discuss the physical derivation [6], and we present the
main theoretical results on the maximum/minimum principle, also quoting
few other related models. In Chapter 2, we describe Finite Difference and
Finite Volume schemes, by trying to underline their analogies and recast
them inside a common framework (this becomes especially relevant for fu-
ture extensions to nonuniform meshes, for the question of consistency and
super-convergence as only some formulations are really appropriate).
We present general techniques to approximate the partial derivatives, which
are used to combine several numerical methods. In particular, the existence
of the Nonnegative Scheme for two-dimensional problems is carefully proven,
according to [38], where applications to image processing are considered.
In Chapter 3 and Chapter 4, we provide details about the stability analysis
of numerical scheme for one-dimensional and two-dimensional problems, re-
spectively. The issue of discrete maximum principle, and then the question
of the L∞-stability, is treated through the algebraic theory of positive ma-
trices following [28], to determine the range of numerical parameters under
which that important property is satisfied. On the other hand, the analysis
of L2-stability is confined to linear problems to apply the Fourier analysis,
and we will discuss the peculiar phenomenon of the Ultraviolet Catastrophe.
Finally, an extensive series of numerical tests is proposed in Chapter 5.
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Chapter 1

Linear Diffusion Equations and
Qualitative Properties

The diffusion equations, that are generally stated in the form

∂tu = ∇ · (A · ∇u) , (1.1)

have multiple historical origins, each building upon a unique physical inter-
pretation. For the most common applications, u is interpreted as a concen-
tration or density and A is the diffusion tensor. In general, we will consider
u(t;x, y), where (x, y) ∈ R

2, because in many practical situations the density
spreads in a two-dimensional domain, for example the diffusion of diseases
in a given geographic region or applications for population dynamics.

Doubtless, the maximum principle is one of the main properties of second
order PDEs of parabolic type, as mentioned in most of the literature about
this argument [29],[12]). It is a powerful feature because it is related to
other properties, in particular the non-negativity property. Both of them
are a natural requirement in reliable and meaningful real-life phenomena, so
the importance of studying these properties in details.

1.1 Physical background

The diffusion is a physical process that equilibrates concentration differences
without creating or destroying mass, thus resulting in a conservative process.

From a mathematical point of view, let Ω ⊂ R
2 be a specific region and

u the density of a certain substance that varies over time t > 0. We want to
study how the density moves (spreads) around this domain over the time.
The law describing the diffusion process is the Fick’s law, which postulates
that the flux j goes from regions of high concentration to regions of low
concentration, with a magnitude that is proportional to the concentration
gradient ∇u, namely

j = −A · ∇u ,
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where the diffusion tensor A is a positive definite symmetric matrix. This
last has dimensions length2/time and represents how the diffusion takes
place. So, it is physically unreal for it to be negative. The sign minus is
because the diffusion operates from higher to lower densities. The observa-
tion that diffusion is only a transportation phenomenon without destroying
or creating mass is expressed by the continuity equation, that reads

∂tu = −∇ · j .

Replacing the flux in the last equation, we obtain the diffusion equation (1.1).
In particular, the solution function u will be of the type

u = u(t;x, y) : R+× Ω −→ R
+.

We note that this conservation law holds for the special linear flux j when
the entries of the diffusion matrix do not depend explicitly on the solution.

We focus our attention on the heterogeneous and anisotropic case, which
includes some properties for the diffusion tensor A, that is :

• heterogeneous , i.e. the diffusion tensor A is not constant, indeed it is
a matrix whose entries are functions of the space variables. In general,
they can also be functions of the time and density itself, but we will
limit to consider the time-independent linear case. So, A will be of the
type

A =

[

a(x, y) c1(x, y)
c2(x, y) b(x, y)

]

. (1.2)

• anisotropic , i.e. the flux j and the gradient ∇u are not parallel, so
that the diffusion will happen in all the directions of domain Ω in a
different manner. The diffusion mechanism depends on the particular
direction in space : in terms of the matrix A, we can have several
cases, going from the simpler case in which c1 = c2 = 0, and so we
have diffusion only along the directions of the Cartesian axes, to more
complicate cases in which all the entries are different from zero.
In general, we focus on symmetric matrices, that is c1 = c2 .

1.2 Parabolic Operators

The diffusion equation (1.1) lies in the class of the parabolic equations,
according to the following definition.

Definition 1. The partial differential operator

L(u) =

n
∑

i,j=1

aij(t, z)
∂2u

∂zi∂zj
+

n
∑

i=1

bi(t, z)
∂u

∂zi
− ∂u

∂t
(1.3)
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is said to be parabolic at (t, z) = (t, z1, z2, . . . , zn) ∈ R
+× R

n if for fixed
t > 0 the second order operator consisting of the first sum is elliptic at (t, z),
that is if there exists a constant µ > 0 such that

n
∑

i,j=1

aij(t, z)ξiξj ≥ µ
n
∑

i=1

ξ2i (1.4)

for all n-tuples of real numbers (ξ1, ξ2, . . . , ξn). The operator L is uniformly

parabolic in a region ΩT ⊂ R
+× R

n if (1.4) holds with the same constant
µ > 0 for all (t, z) in ΩT .

In this report, we focus on parabolic equations in two space dimensions,
for n = 2, that are computed as

L(u) = a11(t;x, y)
∂2u

∂x2
+ a12(t;x, y)

∂2u

∂x∂y
+ a21(t;x, y)

∂2u

∂x∂y
+

+ a22(t;x, y)
∂2u

∂y2
+ b1(t;x, y)

∂u

∂x
+ b2(t;x, y)

∂u

∂y
− ∂u

∂t
.

For comparing this parabolic operator to equation (1.1), we expand on the
diffusion term using (1.2) and we rewrite it with a lighter notation,

∇ · (A · ∇u) = ∇ ·
[[

a c1
c2 b

]

·
[

ux
uy

]]

= ∇ ·
[

a ux + c1 uy
c2 ux + b uy

]

=
(

a ux + c1 uy
)

x
+
(

c2 ux + b uy
)

y
=
(

a ux
)

x
+
(

c1 uy
)

x
+
(

c2 ux
)

y
+
(

b uy
)

y

= a uxx + (c1 + c2)uxy + b uyy +
(

ax + (c2)y
)

ux +
(

(c1)x + by
)

uy ,

(1.5)

also imposing the Schwartz’s theorem (for regular solutions), so that the
expression (1.3) is obtained by identifying the coefficients

a11 = a , a12 = c1 , a21 = c2 , a22 = b ,

b1 = ax + (c2)y , b2 = (c1)x + by .
(1.6)

Remark 1. The presence of first order terms in (1.5) is essentially due to
the heterogeneity of the diffusion tensor, otherwise only second order terms
would be included. In terms of numerical approximations, this fact implies
the necessity of some upwinding in the construction of the numerical fluxes
(refer to Section 4.2.2).

We want to see under which conditions the inequality (1.4) holds, and
we start by giving the definition of positive definite matrices.

9



1.2.1 Properties of the diffusion tensor

For modeling reasons coming from the physical interpretation, the real-
valued diffusion matrix A : Ω −→ R

2×2 is typically chosen to be symmetric
and positive definite, according to the following definition.

Definition 2. Let A be a real-valued n × n symmetric matrix, then A is
said to be positive definite if and only if, for all ~ξ ∈ R

n/{~0}, it holds
~ξ TA ~ξ > 0 , and positive semidefinite if and only if ~ξ TA ~ξ ≥ 0 .
This intuitively extends to the definition of negative definite.

We list some characteristic properties of the positive definite matrices [33],[16].

Proposition 1. If A is a real-valued symmetric positive definite matrix, then

• its eigenvalues are all real and positive, i.e. spec(A) ⊂ R
+;

• its leading principal minors are all positive (Sylvester’s criterion);

• the associated symmetric bilinear form is an inner product in R
n;

• its inverse, A−1, exists and is also positive definite;

• the determinant of A is bounded by the product of its diagonal elements;

• there exists µ positive real number, such that A > µI, where I is the
identity matrix.

For the matrix (1.2) with c1 = c2 = c , the Definition 2 implies a > 0 , b > 0
and c < (a+ b)/2 , and the eigenvalues are given by

λ1,2 =
(a+ b)±

√

(a+ b)2 − 4(ab− c2)

2
,

so that, to satisfy the properties listed in Proposition 1, we have

a+ b > 0 and 0 <
√

(a+ b)2 − 4(ab− c2) < a+ b ,

and we finally obtain optimal conditions for the entries of the matrix,

a > 0 , b > 0 , c2 < ab . (1.7)

We remark that a more general (weaker) notion of positive-definiteness
is given by the first statement of Proposition 1, which does not require
the condition for a real-valued matrix of being symmetric. In that case,
however, an equivalent requirement is that the corresponding symmetric
part

(

A+AT
)

/2 is positive definite in the narrower sense of Definition 2.
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1.2.2 Relationship between parabolic operators and positive

definite matrices

The definitions of parabolic equations and positive definite diffusion tensors
are strictly related, as stated through the following result.

Lemma 1. The equation (1.1) with A positive definite is parabolic.

Proof. We consider the extended form (1.5) in Ω ⊂ R
2 and, recalling (1.6),

we can rewrite the inequality (1.4) as

a ξ21 + (c1 + c2) ξ1ξ2 + b ξ22 > µ(ξ21 + ξ22) ,

for some µ > 0 , or rather in matrix-form as

[

ξ1 ξ2
]

[

a c1
c2 b

] [

ξ1
ξ2

]

− µ(ξ21 + ξ22) > 0 ,

that is
~ξ T (A− µI) ~ξ > 0 , ~ξ = (ξ1, ξ2) 6= ~0 ,

where I is the identity matrix.
This last statement is certainly verified if A is a symmetric positive definite
matrix, according to Proposition 1, thus L for (1.1) is a parabolic operator.
Conversely, the same inequality directly implies that the matrix A−µI is def-
inite positive, therefore a > µ > 0, b > µ > 0, and c2 < (a− µ)(b− µ) < ab,
which guarantees that also A is positive definite (as sum of positive definite
matrices). ✷

As a consequence of Lemma 1, positive definite matrices play an impor-
tant role in optimization problems : as a matter of fact, any real quadratic
form Q : Rn −→ R can be written as ~ξ TA ~ξ + ~ξ TB + C, where A is a sym-
metric n× n matrix, B is a n−vector and C is a scalar function; moreover,
this functional is strictly convex (and hence it has a unique finite global
minimum) if and only if A is positive definite. The analogy with (1.3) sug-
gests that the parabolicity of the operator L is equivalent to the convexity
of its associated quadratic form, that holds if and only if A is symmetric and
positive definite.

Under broad regularity assumptions on the diffusion coefficients, linear
parabolic PDEs in conservation/divergence form as given in (1.1) have so-
lutions for all t > 0, which should be understood as weak solutions : in par-
ticular, we refer to [3][Chapter 10] for an existence theory in the case of L∞-
bounded coefficients, whereas stronger regularity assumptions are needed
to treat the extended form (1.21) below. We remark that the symmetry
of the diffusion tensor is not explicitly required to show most theoretical
properties, but this becomes mandatory to establish a variational formula-
tion of the solution as the global minimum of some convex entropy/energy
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functional (as already seen above). Besides, the symmetry is justified for
the L2-contraction property to hold, or rather to provide a supplementary
(weighted) inner product inside the specific functional framework [19],[5].

1.3 Maximum Principle for linear operators

We consider the parabolic operator (1.3) with all coefficients bounded inside
Ω a bounded domain in R

n and ∂Ω its boundary. We introduce the sets

ΩT = Ω× (0, T ) , ΓT =
(

∂Ω× [0, T ]
)

∪
(

Ω× {0}
)

, (1.8)

the last one being the so-called parabolic boundary, for any arbitrary positive
time T . We will prove that, under specific conditions, the maximum of the
solution to the equation L(u) = 0 for (1.3) is attained at a point of the
parabolic boundary ΓT , and never in the interior of ΩT .

The result holds immediately for the simplest isotropic heat equation,
thanks to an explicit expression for the self-similar solutions, which exhibit
the typical Gaussian shape (see [20][Chapter 8]), but clearly this technique
cannot be extended to more general cases. On the other hand, the results
reproduced in this report extend also to nonlinear operators (refer to [29]
[Chapter 3, Section 7]), although we do not pursue explicitly that issue.

1.3.1 The one-dimensional case

We focus on the one-dimensional parabolic equation

L(u) = a(t, x)
∂2u

∂x2
+ b(t, x)

∂u

∂x
− ∂u

∂t
= 0 , ∀ (t, x) ∈ ΩT , (1.9)

where ΩT is a rectangular region of R+ × R, for example

ΩT = {(t, x) | t ∈ (0, T ) , x ∈ Ω = (0,Λ)} , (1.10)

which is also appropriate for the discretization through finite difference
schemes. We will see later on that we can extend the same results to the
general case of parabolic equations in Ω ⊂ R

n.
We remark that the definition of parabolic operators leads to state that

a(t, x) > 0 for the one-dimensional case.
The strategy for proving the results is the following : we will prove a

sort of maximum principle for the strict inequality L(u) > 0 and, then, we
will extend the result for the inequality L(u) ≥ 0, which allows us to state
the validity of the maximum principle for the equation L(u) = 0.

So, we proceed with the following results. For more details in the proof
of these statements one can refer to [29].
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Proposition 2. If the parabolic operator L(u) is strictly positive in ΩT ,
namely L(u) > 0, then the maximum cannot occur neither in the interior of
the domain ΩT nor along the open segment forming the upper boundary of
ΩT , that is in a point (T, x), where 0 < x < Λ.

Proof. Suppose that there is an interior maximum point, so the following
relations hold for regular solutions,

∂u

∂t
=
∂u

∂x
= 0 ,

∂2u

∂x2
≤ 0 .

In this case, L(u) = a(x, t)∂
2u

∂x2 ≤ 0 , which violates the hypothesis.
Moreover, the maximum cannot be at t = T because, if so, we would have

∂u

∂t
≥ 0 ,

∂u

∂x
= 0 ,

∂2u

∂x2
≤ 0 ,

and the positivity of the operator L is still contradicted. ✷

The maximum principle for the operator (1.3) is now extended to so-
lutions to the differential inequality L(u) ≥ 0. In [29], there is also a
generalization for domains ΩT of the (t, x)-plane which are not necessar-
ily rectangular. From now on, to avoid mistakes with the notation, we also
denote by Ωt ⊂ R

+ × R the generic domain where the index t simply indi-
cates that we consider the time variable and the space variable together (see
Figure 1.1).

We proceed with three lemmas. Through these we will see that, if the
maximum of the solution to the parabolic equation is attained at an interior
point of the domain ΩT , then the solution is constant and its value is just the
maximum, otherwise this value is attained on the boundary of the domain.

Lemma 2. Let u satisfy the differential inequality

L(u) = a(t, x)
∂2u

∂x2
+ b(t, x)

∂u

∂x
− ∂u

∂t
≥ 0

in Ωt, where a and b are bounded functions and L is uniformly parabolic.
Let K be a disk such that it and its boundary ∂K are contained in Ωt.
Suppose the maximum of u in Ωt is M , that u < M in the interior of K,
and that u =M at the point P on the boundary of K. Then, the tangent to
K at P is parallel to the x-axis. That is, P is either the point at the top or
the point at the bottom of the disk K.

Proof. We consider (t̄, x̄) the center of the disk K, and R its radius. We
suppose that the point P on ∂K is not at the top or bottom of the disk,
and we prove that we reach a contradiction.
We also assume, without loss of generality, that P is the only boundary
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(a) domain in R
+
×R

2 as
defined in (1.8)

(b) rectangular domain in R
+
× R

(c) general domain in R
+
× R

Figure 1.1: example of computational domains

point where u = M . We can always do this because, if there are other
points on the boundary ∂K which attain the maximum, we can replace K
by a slightly smaller disk K ′ whose boundary is interior to K except at the
one point P where ∂K ′ and ∂K are tangent.
Suppose P has coordinates (t1, x1) with x1 6= x̄, and we construct a disk K1

with center at P and radius R1 so small that

R1 < R = |x1 − x̄| ,

and also such that K1 lies completely in Ωt (see Figure 1.2).
We note that ∂K1 consists of two arcs,

∂K1 = C ′ ∪ C ′′,

where C ′ is the intersection of ∂K1 with the closed disk K̄, so in this part
there are also its endpoints, and C ′′ is the remaining part.

14



Figure 1.2: geometric construction for Lemma 2

Since u < M on the closed arc C ′, we can find a constant η such that

u ≤M − η on C ′. (1.11)

Moreover, since u ≤M throughout Ωt, it holds

u ≤M on C ′′.

We define the following auxiliary function,

v(t, x) = e−α
[

(t−t̄)2+(x−x̄)2
]

− e−αR2

,

and we choose α > 0, so that the function v is positive in K, zero on ∂K
and negative in the exterior of K.
Now, we apply the partial differential operator L to v and we obtain

L(v) = 2α e−α
[

(t−t̄)2+(x−x̄)2
]

[

2αa (x− x̄)2 − a− b (x− x̄) + (t− t̄)
]

.

We observe that

|x− x̄| ≥ |x1 − x̄| −R1 > 0 on K̄1 ,

so we can choose α large enough such that

L(v) > 0 on K̄1 .

We also define a function w such that

w(t, x) = u(t, x) + εv(t, x) , (1.12)

15



with ε > 0 , and we observe that

L(w) > 0 in K1 . (1.13)

We can choose ε so small that

w = u+ εv < M on C ′,

w = u+ εv < M on C ′′,

because (1.11) holds and v < 0 on C ′′ and u ≤ M . Thus w < M on the
entire boundary ∂K1 but w(t1, x1) =M , because v vanishes on ∂K.
So, we have proven that the maximum of w is attained at the interior point
of K1. This fact contradicts the Proposition 2 because we have that (1.13)
holds. ✷

Remark 2. We note that the proof of Lemma 2 fails if P is located at the
top or the bottom of K because, in this case, we have x1 = x̄ and we cannot
choose R1 < |x1 − x̄| .

Lemma 3. Suppose that u satisfies the inequality L(u) ≥ 0 in Ωt, with L
as in Lemma 2. Suppose that u < M at some interior point (t0, x0) of Ωt

and that u ≤M throughout Ωt. If L is any horizontal line in the interior of
Ωt which contains (t0, x0), then u < M on L.

Proof. We proceed by contradiction : we suppose that u = M at some
interior point (t0, x1) on L and that u < M at (t0, x0).
Without loss of generality, we suppose that x1 < x0 , so we have

u(t0, x) < M ∀ x | x1 < x ≤ x0 .

We define the positive value d0 as either x0 − x1 or the minimum of the
distances from any point of the line segment (t = t0, x1 ≤ x ≤ x0) to ∂Ωt,
whichever is smaller, namely

d0 = min
{

|x0 − x1| , min
x∈L |x1≤x≤x0

dist(x, ∂Ωt)
}

.

For x1 ≤ x ≤ x1 + d0 , let the positive function d(x) be the distance from
(t0, x) to the nearest point in Ωt where u =M . We have that

d(x) ≤ x− x1 , (1.14)

because u(t0, x1) = M . By Lemma 2, this point is directly above or below
(t0, x), that is (see Figure 1.3)

u(t0 + d(x), x) =M or u(t0 − d(x), x) =M . (1.15)
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Figure 1.3: geometric construction for Lemma 3

We choose an arbitrary δ such that 0 < δ < d(x) , and we note that the
distance from a point (t0, x+δ) to (t0±d(x), x) is

√

d(x)2 + δ2. We compute
a Taylor’s expansion of that distance and we see that

d(x+ δ) < d(x) +
δ2

2d(x)
. (1.16)

Replacing x by x+ δ and δ by −δ we also observe that

d(x+ δ) >
√

d(x)2 − δ2 . (1.17)

For the choice of δ, we have that
√

d(x)2 − δ2 > 0 .
Now, we divide the interval (x, x+ δ) into N equal parts,

xj = x+
j

N
δ , j = 0, . . . , N ,

we apply the previous inequalities (1.16)-(1.17) and sum on j to find

d(x+δ)−d(x) =
N−1
∑

j=0

d(xj+1)−d(xj) ≤
δ2

2N2d(x+ j
N δ)

≤ δ2

2N2
√

d(x)2 − δ2
.

For the arbitrary of N , we see that

d(x+ δ) ≤ d(x) for N −→ ∞ .

Therefore d(x) is a non-increasing function of x. Since (1.14) holds also for
x→ x1, we can deduce that

d(x) ≡ 0 for x1 < x < x1 + d0 .
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In other words, by (1.15) we have that

u(t0, x) =M for x1 < x < x1 + d0 ,

and this statement clearly contradicts the hypothesis that u < M , for all
points such that x1 < x ≤ x0 . ✷

Remark 3. Lemma 3 states that, if there is a single interior point where
u = M , then u remains constant, i.e. u ≡ M , along the largest horizontal
segment containing this point whose interior lies in Ωt.

Lemma 4. Suppose that in the lower half

Kt1 =
{

(t, x) | t ≤ t1 , (t− t1)
2 + (x− x1)

2 < R2
}

of a disk K centered at P = (t1, x1), the solution u satisfies the differential
inequality L(u) ≥ 0 , with L as in Lemma 2. Suppose that u < M in the
portion of K where t < t1. Then u(P ) < M .

Proof. We define the auxiliary function v as

v(x, t) = e−
[

α(t−t1)2+(x−x1)2
]

− 1

and we apply the partial differential operator,

L(v) = e−
[

α(t−t1)2+(x−x1)2
]

[

4a (x− x1)
2 − 2a− 2b (x− x1) + α

]

,

with α > 0 and large enough so that

L(v) ≥ 0 in Kt1 .

We introduce the parabola

Π = α(t− t1)
2 + (x− x1)

2,

which is tangent to the line t = t1 at the point P . We denote by C ′ the
portion of ∂K which is below the parabola, with the endpoints, by C ′′ the
portion of Π located within the disk K, and by D the region enclosed by C ′

and C ′′ (see Figure 1.4).
By hypothesis, there exists a value η > 0 such that

u ≤M − η on C ′.

We define the function w as in (1.12), such that

L(w) = L(u) + εL(v) > 0 in D ,

w = u+ εv < M on C ′,

w = u+ εv ≤M on C ′′.
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Figure 1.4: geometric construction for Lemma 4

The first condition above shows that w cannot attain its maximum in D, by
the Proposition 2, so the maximum M occurs at the point P , and therefore

∂w

∂t
≥ 0 ,

∂v

∂t
= −α < 0 ,

∂u

∂x
= 0 ,

∂2u

∂x2
≤ 0 ,

implies that the hypothesis L(u) ≥ 0 is contradicted, so the Lemma is
demonstrated. ✷

In what follows, the region

ΩT = {(t, x) ∈ Ωt | t ≤ T}

is a portion of the domain Ωt, which can be defined for all T > 0 .
Moreover, we assume that u is continuously differentiable in both of its
variables, and twice differentiable in x throughout ΩT , with

∂u
∂t |t=T defined

as a one-sided derivative. On the basis of the previous lemmas, we can now
establish the following result.

Theorem 1. Assume that the differential inequality

L(u) = a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
− ∂u

∂t
≥ 0

holds in ΩT , with a and b bounded functions, and that L is uniformly
parabolic. If u ≤ M in ΩT , and u(T, x1) = M , then u ≡ M at every
point (t, x) ∈ ΩT which can be connected with (T, x1) by a horizontal and
vertical line segment, both of which lie in ΩT (see Figure 1.5).
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Figure 1.5: horizontal and vertical paths between two points

Proof. Let (t0, x1) be an arbitrary point in ΩT such that u(t0, x1) < M
and the line segment L = {(t, x) | t0 ≤ t ≤ T, x = x1} lies in Ωt.
Let τ be the least upper bound of values of u on L such that u(t, x1) < M .
By continuity, u(τ, x1) =M while Lemma 3 shows that there is R > 0 such
that u < M for t0 ≤ t < τ , |x− x1| < R , as we see in Figure 1.6.
This leads to a contradiction of Lemma 4, because we have found a disk K
where in its lower half Kτ , it holds L(u) ≥ 0 and u < M where t < τ , but
we also have that u(τ, x1) =M . ✷

Figure 1.6: geometric construction for the theorem in dimension n = 1

Remark 4. Theorem 1 can be further combined with Lemma 3 to identify
the entire region where the solution is constant and its value is equal to the
maximum, if this is attained at an interior point. Indeed, once obtained a
point Q at which u =M , the maximum, so u ≡M on the largest horizontal
segment in Ωt containing Q. Moreover, if P is a point of Ωt which can be
connected with Q by a path in Ωt consisting only of horizontal and vertical
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segments, then u(P ) =M . So, in general, if we have a domain Ωt connected
and the maximum M is at an interior point, then u ≡M in all the domain.
Obviously, this is no longer true if the computational domain is the union
of connected components.

1.3.2 The n-dimensional case

We can extend the previous results to the n-dimensional case in a completely
straightforward way for the general parabolic operatorgiven by (1.3).
In this section, we provide only the adaptation of the last theorem, by
keeping the notations coherent with (1.8).

Theorem 2. Let u satisfy the uniformly parabolic differential inequality

L(u) =

n
∑

i,j=1

aij(t, z)
∂2u

∂zi∂zj
+

n
∑

i=1

bi(t, z)
∂u

∂zi
− ∂u

∂t
≥ 0

in a region ΩT ⊂ R
+×R

n, and suppose that the coefficients of L are bounded
functions. Let Ωt̄ be a section of the domain, such that

Ωt̄ = {(t, z) | 0 < t ≤ t̄ < T, z ∈ Ω}.

Suppose that the maximum of u in Ωt̄ is M and that it is attained at a point
P = (t, z) of Ωt̄. Thus if Q is a point of ΩT which can be connected to
P through a path in ΩT consisting only of horizontal segments and upward
vertical segments, then u(Q) =M (see Figure 1.7).

Figure 1.7: geometric construction for the theorem in dimension n > 1
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Proof. The proof is derived in exactly the same way as for Theorem 1,
by replacing the auxiliary function v in the proof of Lemma 2 by

v(x, t) = e−α
[

(t−T )2+
∑n

i=1(xi−x̄i)
2
]

− e−αR2

,

while the auxiliary function corresponding to Lemma 4 is given by

v(x, t) = e−
[

α(t−T )2+
∑n

i=1(xi−x̄i)
2
]

− 1 .

We replace disks by (n+1)- dimensional balls, and the parabola in the proof
of Lemma 4 by the hyper-paraboloid

α(t− T )2 +

n
∑

i=1

(xi − x̄i)
2) = 0 .

The same arguments as in Section 1.3.1 allows to conclude the proof. ✷

We can recast the maximum principle in a more general framework, ac-
cording to [11] and [10]. The following definition will be useful later on,
in order to prove the non-negativity property, which in turn can be used
to check the maximum principle in practical situations, because they are
closely related : if the parabolic operator satisfies the maximum principle,
then it satisfies the non-negativity property, and vice versa.

We denote by DL the domain of the operator L in (1.3), defined as the
space of functions u such that

DL := {u ∈ C(ΩT ∪ ΓT ) | ∂ζu , ut exist and are bounded},

where ζ = (ζ1, . . . , ζn) is a multi-index, with 0 < |ζ| < n for |ζ| = ζ1+. . .+ζn.
With this notation, the operator L(u) is bounded on ΩT for each u ∈ DL

and 0 < t < T . Therefore, infΩT
L(u) and supΩT

L(u) are finite.
According to the previous results, if u attains its maximum at an interior
point of the connected domain ΩT , so the solution is necessarily constant in
all the domain; thus, the maximum is attained at the parabolic boundary.

Definition 3 (maximum/minimum principle). We say that the parabolic
operator defined by (1.3) satisfies the maximum/minimum principle if, for
any function u ∈ DL, the inequality

min
Γt̄

u+ t̄ ·min{0, inf
Ωt̄

L(u)} ≤ u(t̄, z) ≤ max
Γt̄

u+ t̄ ·max{0, sup
Ωt̄

L(u)}

is satisfied for all 0 < t̄ < T and z ∈ Ω.
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We remark that, if the operator L is identically zero, i.e. L(u) = 0 as for the
diffusion equations (1.1) treated in this report, the solution u must satisfy

min
Γt̄

u ≤ u(t̄, z) ≤ max
Γt̄

u for all 0 < t̄ < T, z ∈ Ω , (1.18)

so, either the solution is constant or it has a maximum/minimum value at
a point of the (local in time) parabolic boundary Γt̄ , 0 < t̄ < T . That is
precisely equivalent to the results of the previous theorems and, therefore,
the parabolic operator satisfies the maximum/minimum principle above.
Moreover, the solution can be estimated from above and below.

1.4 Applications of the maximum principle

The importance of the maximum/minimum principle for parabolic opera-
tors lies in the fact that it implies other important properties, such as the
uniqueness of the solution, the comparison principle, and the non-negative
property. All these statements are also important for the numerical aspects.

1.4.1 Uniqueness

We show that it is possible to establish the uniqueness of a solution by means
of the maximum principle alone. That is, there can be at most one solution
to the equation L(u) = 0 which satisfies certain boundary conditions, that
will be defined from time to time.

First, we study the one-dimensional case in a rectangular domain (1.10)
with the operator L defined by (1.9). We also consider the following initial
data and Dirichlet boundary conditions,

u(0, x) = u0(x) for x ∈ [0,Λ]

u(t, 0) = g1(t) for t ∈ [0, T )

u(t,Λ) = g2(t) for t ∈ [0, T )

(1.19)

where the functions g1 and g2 are bounded and continuous, and the initial
data u0 is positive and bounded.

Theorem 3. Let u be a solution in ΩT to the uniformly parabolic equation

L(u) = a(t, x)
∂2u

∂x2
+ b(t, x)

∂u

∂x
− ∂u

∂t
= 0 , (1.20)

satisfying the initial and boundary conditions (1.19). If v is another solution
to (1.20) with the same initial and boundary conditions, then u ≡ v in ΩT .

Proof. We define the function w = u− v and observe that

L(w) = a(t, x)
∂2w

∂x2
+ b(t, x)

∂w

∂x
− ∂w

∂t
= 0 ,
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by the linearity of the operator L, and w satisfies the following conditions,

w(0, x) = 0 for x ∈ [0,Λ]

u(t, 0) = 0 for t ∈ [0, T )

u(t,Λ) = 0 for t ∈ [0, T )

According to the maximum/minimum principle, the function w cannot have
a positive maximum in ΩT , and so w ≤ 0 everywhere. Applying the same
reasoning to −w, we obtain the w ≥ 0 in ΩT . Hence the only possibility is
w ≡ 0, so the two solutions u and v coincide. ✷

The result just established in the one-dimensional framework extends to
solutions of parabolic operators in the n−dimensional case. We refer to the
domains defined in (1.8) and the parabolic operator (1.3). In particular, we
consider the Neumann boundary conditions but, obviously, the result holds
also in the case of Dirichlet boundary conditions u|ΓT

= g(t, z), because the
function w defined in the previous proof is such that w|ΓT

= 0 .

Theorem 4. Let u be a solution in ΩT to the uniformly parabolic equation

L(u) =
n
∑

i,j=1

aij(t, z)
∂2u

∂zi∂zj
+

n
∑

i=1

bi(t, z)
∂u

∂zi
− ∂u

∂t
= 0 , (1.21)

satisfying the initial and Neumann boundary conditions

u(0, z) = u0(z) for z ∈ Ω

∇u · ~ν|ΓT
= g(t, z) for (t, z) ∈ ΓT

(1.22)

where ~ν is the normal outward vector on ΓT , and g is bounded and suffi-
ciently regular in ΓT . If v is another solution to (1.21) with the same initial
and boundary conditions, then u ≡ v in ΩT .

Proof. The result is derived in exactly the same way as in the previous
case. ✷

1.4.2 Monotonicity and comparison principle

Another important application of the maximum/minimum principle for para-
bolic equations is the comparison principle. The idea behind it is that if u
and v are both solutions to the problem (1.21), and the initial data are such
that u0(z) ≥ v0(z), then u(t, z) ≥ v(t, z) for all t > 0 .

Theorem 5. Suppose that u is a solution to the parabolic equation (1.21)
in ΩT , with the initial and Dirichlet boundary conditions

u(0, z) = u0(z) for z ∈ Ω

u(t, z) = g(t, z) for (t, z) ∈ ΓT
(1.23)
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where g is bounded and sufficiently regular in ΓT . We assume that v1 and
v2 are sub- and super-solutions, respectively, i.e. they satisfy

L(v1) ≤ L(u) ≤ L(v2) in ΩT ,

and, moreover, it holds that

v1(0, z) ≤ u0(z) ≤ v2(0, z) for z ∈ Ω

v1(t, z) ≤ g(t, z) ≤ v2(t, z) for (t, z) ∈ ΓT

Then
v1(t, z) ≤ u(t, z) ≤ v2(t, z) for all (t, z) ∈ ΩT .

We remark that a similar result is still valid, under appropriate supple-
mentary hypotheses, for the more general case L(u) = f(t, z), with some ex-
ternal source term function, and also for nonlinear parabolic operators [29].

The previous theorem shows that the initial-boundary value problem for
the parabolic operator (1.21) is stable under small perturbations, and this
is an important concept for the well-posedness of the problem.

Definition 4. A mathematical problem is said to be well-posed if it presents
a unique solution that is stable under small perturbations. Otherwise, it is
said to be ill-posed.

The results stated above guarantee that, if we take a solution to (1.21),
together with (1.22) or (1.23), for some initial data u0, and we perturb this,
that is we study the problem with an initial data like ū0 = u0 + ε, for a
parameter ε > 0 small enough, we have that the solutions u and ū remain
close over the time. Moreover, according to the comparison principle, if we
consider a special case in which the initial data ū0 = 0, then the solution
ū(t, z) is identically equal to zero, and therefore any other solution u, with
initial data u0 > 0, is such that u(t, z) ≥ 0. This last statement is better
explained in the following section.

1.4.3 Non-negativity property

Now we can present the strict connection between the maximum principle
(MP) and the non-negativity (NP) for the partial differential operator (1.21),
namely

MP ⇐⇒ NP (1.24)

Before demonstrating this statement, we give the following definition from [11].

Definition 5 (Non-negativity preservation). The differential operator L is
said to be non-negativity preserving if the following implication is satisfied,

min
Γt̄

u ≥ 0 and L(u) ≥ 0 on Ωt̄ =⇒ u ≥ 0 on Ωt̄ for all 0 < t̄ < T .
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This means that, if the initial data u0 ≥ 0 and the operator L(u) is nonneg-
ative, so the solution u remains nonnegative over the all domain.

Theorem 6. The operator L defined in (1.3) satisfies the maximum/minimum
principle if and only if it preserves the non-negativity.

Proof. The necessity of the condition is trivial because derived directly
from the above inequality. Then, we show the sufficiency. We choose an
arbitrary function u ∈ DL and we define

ū = u−min
Γt̄

u− t̄ ·min{0, inf
Ωt̄

L(u)}.

It follows immediately that ū ≥ 0 on Γt̄. Now we apply the operator L to
the function ū, obtaining L(ū) = L(u)−min{0, infΩt̄

L(u)} by the definition
of L, which implies that L(ū) ≥ 0 on Ωt̄. By virtue of the non-negativity
preservation assumption, we have that ū ≥ 0 on Ωt̄. Thus, the lower esti-
mation minΓt̄

u + t̄ ·min{0, infΩt̄
L(u)} ≤ u(t̄, z) is satisfied. For the upper

estimation, we choose the function

ū = max
Γt̄

u− u+ t̄ ·min{0, inf
Ωt̄

L(u)}

and the steps of the proof are similar. ✷
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Chapter 2

Numerical Schemes for Parabolic
Conservation Laws

In this chapter we describe how to solve numerically the two-dimensional
diffusion equation (1.1) with time variable t > 0 and (x, y) ∈ R

2.
According to [30],[22],[21], the goal is to approximate the exact solution
to (1.1) by finding some discrete function that satisfies a given relationship
between various of its derivatives, on some region of space and time, along
with boundary conditions.

Typically, to treat this kind of second order problems, one can use the
finite element method because, especially in the case of anisotropic and het-
erogeneous diffusion, this approach allows to have a mesh that may follow
the behaviour of the diffusion to catch the nature of the diffusion coefficients,
thus as consistent as possible with the exact solution. Nevertheless, in some
situations, we would have not only a good approximation but also to enable
such schemes to properly perform on CUDA GPU applications [17]. So, we
need particular schemes, that are easy to handle to make them parallelizable,
and discretizations on fixed rectangular grids which are compatible with the
pixel structure of the digital grids. We refer to such discrete domains as
Cartesian grids, i.e. rectangular domains with a Cartesian meshing.
At a discrete time tn, n = 1, 2, ..., and at any point (xi, yj), i, j = 1, 2, ..., we
calculate the approximate solution u(tn;xi, yj) using the values at previous
times. Most of the schemes we take into account are time-explicit schemes,
but sometimes we operate also with semi-implicit or fully-implicit schemes.
Explicit schemes are the simplest to code and, therefore, they are used in
combination with GPU architectures almost exclusively. Due to their local
structure, they are well-suited for parallel applications. Unfortunately, they
suffer from the fact that fairly small time-step sizes are needed in order to
ensure stability [30]. Semi-implicit schemes, or the purely implicit schemes,
are considered in the case of the one-dimensional equations, as they possess
better stability properties, but for other situations they exhibit too much
computational costs.
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2.1 Discretization of the spatial domain

For two-dimensional numerical simulations, we consider the computational
domain ΩT = Ω× [t0, T ], where Ω is a rectangular subset of R2 located from
ax to bx along the x-direction and from ay to by along the y-direction (see
Figure 2.1). We apologize for the misleading notation, as the above symbols
could be confused with the entries of the diffusion matrix, but we guarantee
that no confusion is possible in the following.
For the time, we discretize the interval [t0, T ] by means of

tn = t0 + n∆t , n = 0, 1, 2, ... ,

so that we have

t0 = t0 , tNt = T, ∆t =
T − t0
Nt

= tn+1 − tn, n = 0, 1, ..., Nt − 1 .

Typically, the parameter ∆t will be chosen to satisfy the stability condition,
according to the equation and the specific numerical scheme under consid-
eration; usually, the time-step ∆t must be less than some given value, this
being determined through the so-called CFL stability condition [25],[34],[22].

For the set Ω, we can decide among two types of discrete domains.

1. The first one as in Figure 2.1, where the nodes of the spatial grid are
the points (xi, yj) located at the boundaries of the grid cells.

Figure 2.1: spatial grid for the Finite Difference method
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We have divided the one-dimensional intervals [ax, bx] and [ay, by] in
Nx and Ny sub-intervals, respectively, such that

∆x =
bx − ax
Nx

, ∆y =
by − ay
Ny

,

and with this notation we have that

xi = ax + i∆x , i = 0, 1, . . . , Nx

yj = ay + j∆y , j = 0, 1, . . . , Ny

x0 = ax , xNx = bx , y0 = ay , yNy = by .

In this framework, we will use finite difference schemes based on
Taylor’s expansions at the grid points (xi, yj), in order to calculate the
approximate solution at the generic points of the grid.

2. The second one as in Figure 2.2, where we have introduced the inter-
facial points given by xi+ 1

2

and yj+ 1

2

with

xi =
xi+ 1

2

+ xi− 1

2

2
, i = 0, 1, . . . , Nx ,

yj =
yj+ 1

2

+ yj− 1

2

2
, j = 0, 1, . . . , Ny .

Figure 2.2: spatial grid for the Finite Volume method

The grid nodes are still the points (xi, yj) but now they are located at
the center of the cells, the so-called finite volumes denoted by

Cij = [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

] (2.1)
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and the length of the intervals is computed as

∆x = xi+ 1

2

− xi− 1

2

, ∆y = yj+ 1

2

− yj− 1

2

. (2.2)

According to these definitions, the boundaries of the domain are

ax = x0 = x 1

2

− ∆x

2
, bx = xNx = xNx−

1

2

+
∆x

2
,

ay = y0 = y 1

2

− ∆y

2
, by = yNy = yNy−

1

2

+
∆y

2
.

The numerical approach in this case is that of finite volume schemes :
at fixed time tn the approximate solution Un is defined by the values
calculated at points (xi, yj) and extended to the whole cell Cij , namely

Un(x, y) =

Nx
∑

i=0

Ny
∑

j=0

unij χCij
(x, y) , (2.3)

where χCij
is the characteristic function of the cell Cij . We make the

assumption that we approximate the solution u(tn;xi, yj) through the
integral average on the grid cells,

unij ≃
1

∆t

∫ tn+1

tn

[

1

∆x∆y

∫

Cij

u(t;x, y) dx dy

]

dt , (2.4)

where Cij is defined in (2.1) with volume’s size mes(Cij) = ∆x∆y .

In the definitions (2.2), we have considered that ∆x and ∆y have fixed
length for all the grid cells, but we could also use a nonuniform mesh. For
the purpose of this report, there is no stringent reason to use nonuniform
grids, because when performing the simulations in CUDA GPU, an appro-
priately small ∆x can be chosen, thanks to the computational power of GPU
architectures. For a general analysis, we can simply impose

∆xi = xi+ 1

2

− xi− 1

2

, ∆yj = yj+ 1

2

− yj− 1

2

,

where the length of the intervals can vary according to the cell in which we
operate. This type of spatial discretization is useful if we want to adjust the
grid of the domain to the initial data for a given problem : if the function
u0(x, y) has rapid variations in the (x, y)-domain, we can choose to use a
nonuniform grid to catch the exact behaviour of this function.

As we will see, there are some cases in which we will use the second
type of grid also in the context of finite difference schemes, and therefore we
refer to this approach as staggered grid, where the derivatives of the solution
are calculated by Taylor’s expansions at the grid points (xi, yj) through the
values at the interfacial points.
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2.2 The Finite Difference method

We focus on the first case presented above. The finite difference scheme
proceeds by replacing the derivatives of functions by the incremental ratios,
that is the finite difference between values at the grid points (we refer to [25]
and [22], for instance).

For the mathematical derivation of the method, we consider a function u
of one variable x in the given interval I, that is assumed to be smooth, mean-
ing that we can differentiate the function several times and each derivative
is a well-defined bounded function over the interval. As said before, let u(xi)
be the value of the function at grid point xi , and ui its approximate value.
We begin by approximating the first order derivatives u′(xi) by means of
finite differences based on the given set of points. So, we start from

u′(xi) = lim
∆x→0+

u(xi +∆x)− u(xi)

∆x

and we approximate it through the incremental ratio

u′i =
u(xi+1)− u(xi)

∆x
, 0 ≤ i ≤ Nx − 1 . (2.5)

The right-hand side of this expression is called forward finite difference.
Instead of (2.5), we can choose other approximations, for example we could
employ a centered incremental ratio and obtain the centered finite difference

u′i =
u(xi+1)− u(xi−1)

2∆x
, 1 ≤ i ≤ Nx − 1 . (2.6)

Finally, with a similar procedure, we can derive the backward finite difference

u′i =
u(xi)− u(xi−1)

∆x
, 1 ≤ i ≤ Nx .

Now, let us approximate the second order derivatives of u. We use Taylor’s
expansions again, with the space-step ∆x. We suppose that u ∈ C4([ax, bx])
and we sum the following results for u(xi+1) and u(xi−1), that is

u(xi+1) = u(xi) + ∆xu′(xi) +
∆x2

2
u′′(xi) +

∆x3

6
u′′′(xi) +O(∆x4),

u(xi−1) = u(xi)−∆xu′(xi) +
∆x2

2
u′′(xi)−

∆x3

6
u′′′(xi) +O(∆x4),

(2.7)

thus obtaining

u′′i =
u(xi+1)− 2u(xi) + u(xi−1)

∆x2
. (2.8)

This is a centered approximation and it is said to be O(∆x2) according to
the order of the incremental ratio (2.8) for the exact function u from (2.7).
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We remark that one could have chosen to approximate second order deriva-
tives using compositions of the centered first order discretization (2.6), i.e.

u′′i =
ux(xi+1)− ux(xi−1)

2∆x
=
u(xi+2)− 2u(xi) + ux(xi−2)

4∆x2
, (2.9)

but, in addition to producing a larger stencil and, therefore, requiring to
set more boundary data, the last approximation is more diffusive since its
consistency error behaves like ∆x2

3 uxxxx whereas we have ∆x2

12 uxxxx for (2.8).

2.2.1 Approximation of parabolic equations

Within the framework introduced above, we can attempt at approximating
the equation (1.1). For the sake of readability, we adopt a slight abuse of
notation, by identifying numerical and exact values of the function u on the
grid points, whereas the correct notation should be unij ≃ u(tn;xi, xj).

For the time variable, we use the forward finite difference scheme,

un+1
ij = unij +∆t

∂unij
∂t

+
∆t2

2

∂2unij
∂t2

+O(∆t3),

and we approximate the time derivative as

∂u

∂t
(tn;xi, yj) ≃

un+1
ij − unij

∆t
, (2.10)

with the following truncation error

τij =
∆t

2

∂2unij
∂t2

+O(∆t2) = O(∆t).

If ||τij || → 0 as ∆t→ 0 for some appropriate norm to be made explicit later,
we say that the approximation is consistent ; moreover, if ||τij || = O(∆tp) for
some integer p > 0, we also say that the scheme has p as order of accuracy.
So, the scheme (2.10) has an order of accuracy of 1 and it is consistent.

For the space variable, we have to calculate second order derivatives.
Referring to Figure 2.3, let us begin with the second order centered scheme (2.6)
for first order derivatives on a staggered grid. We denote by ui+ 1

2
,j and ui,j+ 1

2

the numerical solution evaluated at the half points (xi+ 1

2

, yj) = (xi+
∆x
2 , yj)

and (xi, yj+ 1

2

) = (xi, yj +
∆y
2 ), respectively, so that

ui+ 1

2
,j ≃ uij +

∆x

2

∂uij
∂x

+
∆x2

4

∂2uij
∂x2

+O(∆x3),

ui− 1

2
,j ≃ uij −

∆x

2

∂uij
∂x

+
∆x2

4

∂2uij
∂x2

+O(∆x3).

(2.11)

Subtracting the second from the first above, we get

ui+ 1

2
,j − ui− 1

2
,j ≃ ∆x

∂uij
∂x

+O(∆x3) =⇒ ∂uij
∂x

≃
ui+ 1

2
,j − ui− 1

2
,j

∆x
+O(∆x2).
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Figure 2.3: staggered grid for first order derivatives

Intuitively, with the same procedure for the y-direction, this leads to obtain

∂u

∂x
(tn;xi, yj) ≃

un
i+ 1

2
,j
− un

i− 1

2
,j

∆x
,

∂u

∂y
(tn;xi, yj) ≃

un
i,j+ 1

2

− un
i,j− 1

2

∆y
.

(2.12)

As before, the schemes (2.12) are consistent and with order of accuracy 2
with respect to ∆x and ∆y. Alternatively, we can consider the schemes

∂u

∂x
(tn;xi, yj) ≃

uni+1,j − uni−1,j

2∆x
,

∂u

∂y
(tn;xi, yj) ≃

uni,j+1 − uni,j−1

2∆y
,

(2.13)

which are also consistent approximations, but are valid only for the case of
uniform grids (refer to Figure 2.4).

Figure 2.4: finite difference grid for first order derivatives
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Remark 5. An easy calculation shows that the truncation error for (2.13)
is bigger with respect to the one derived for (2.12) from (2.11), and this
would be relevant for the diffusive character of the scheme.

We proceed with the second order derivatives. We detail the computation
only for the x variable because it will be the same also for the y variable.
We begin to sum the Taylor’s expansions for ui+1 and ui−1 as given in (2.7),
with the same abuse of notation observed above,

uni+1,j + uni−1,j = 2unij +∆x2
∂2unij
∂x2

+O(∆x4) ,

from which we obtain

∂2unij
∂x2

=
uni+1,j − 2unij + uni−1,j

∆x2
+O(∆x2).

Finally, the approximation for the second order derivatives are as follows,

∂2unij
∂x2

(tn;xi, yj) ≃
uni+1,j − 2unij + uni−1,j

∆x2
,

∂2unij
∂y2

(tn;xi, yj) ≃
uni,j+1 − 2unij + uni,j−1

∆y2
,

(2.14)

which are consistent with order of accuracy 2 with respect to both variables.

2.2.2 Mixed derivatives and the θ-scheme for time

In order to discretize the whole diffusion equation (1.1), we have to calculate
the approximations for the mixed derivatives. We expand the right-hand
side as in (1.5) and we note that mixed derivatives appear only with the
coefficients c1 = c2 = c (we consider the symmetric case).
First, we choose a composition of centered finite differences (2.13), that gives

∂

∂y

∂u

∂x
(tn;xi, yj) ≃

(

∂u
∂x

)n

i,j+1
−
(

∂u
∂x

)n

i,j−1

2∆y

≃ 1

2∆y

(

uni+1,j+1 − uni−1,j+1

2∆x
−
uni+1,j−1 − uni−1,j−1

2∆x

)

=
1

4∆x∆y

(

uni+1,j+1 − uni−1,j+1 − uni+1,j−1 + uni−1,j−1

)

.

(2.15)

A different approach consists in performing finite difference approximations
using the staggered grid, so that we have

∂

∂y

∂u

∂x
(tn;xi, yj) ≃

(

∂u
∂x

)n

i,j+ 1

2

−
(

∂u
∂x

)n

i,j− 1

2

∆y

≃ 1

∆x∆y

(

un
i+ 1

2
,j+ 1

2

− un
i− 1

2
,j+ 1

2

− un
i+ 1

2
,j− 1

2

+ un
i− 1

2
,j− 1

2

)

.

(2.16)
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Recalling that the numerical solution of first order schemes is usually defined
as a piecewise constant function on the spatial grid, for the staggered grid in
Figure 2.2 we have the expression (2.3). Then, to derive a coherent formula
for the derivatives at the interfacial points in (2.16), we can use the Dirac
functions δi+ 1

2
,j+ 1

2

(x, y) at the mesh interfaces as follows,

∂u

∂x
(tn;x, yj+ 1

2

) ≃
∑

i+ 1

2

1

∆x

(

un
i+1,j+ 1

2

− un
i,j+ 1

2

)

δi+ 1

2
,j+ 1

2

(x, y)

=⇒ ∂u

∂x
(tn;xi+ 1

2

, yj+ 1

2

) ≃ 1

∆x

(

un
i+1,j+ 1

2

− un
i,j+ 1

2

)

,

∂u

∂y
(tn;xi+ 1

2

, y) ≃
∑

j+ 1

2

1

∆y

(

un
i+ 1

2
,j+1

− un
i+ 1

2
,j

)

δi+ 1

2
,j+ 1

2

(x, y)

=⇒ ∂u

∂y
(tn;xi+ 1

2

, yj+ 1

2

) ≃ 1

∆y

(

un
i+ 1

2
,j+1

− un
i+ 1

2
,j

)

,

which will be useful in constructing finite volume schemes through integral
averages on the grid cells. To pass from interfacial to point derivatives in
case of uniform meshes, we simply make an arithmetic average, for example

(

∂u

∂x

)n

i,j+ 1

2

≃ 1

2

∂u

∂x
(tn;xi− 1

2

, yj+ 1

2

) +
1

2

∂u

∂x
(tn;xi+ 1

2

, yj+ 1

2

)

≃ 1

2∆x

(

un
i+1,j+ 1

2

− un
i−1,j+ 1

2

)

,

so that from (2.16) we will finally recover the centered discretization (2.15).
We remark that the same expressions (2.15) and (2.16) are obtained starting
from ∂ u

∂x∂y = ∂
∂x

∂u
∂y , so the requirement of symmetric diffusion tensor is co-

herent also within the discrete framework (at least for constant coefficients).

As an example for introducing a general class of discrete time-operators,
we apply the above formulas to derive a discretization for the one-dimensional
homogeneous heat equation, with the diffusion coefficient a > 0 and constant.

Figure 2.5: stencil of the explicit forward Euler scheme

Three schemes can be taken into account : the explicit solver leads to

un+1
i − uni

∆t
= a

uni+1 − 2uni + uni−1

∆x2
, (2.17)
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which is the well-known forward Euler method, whose stencil is represented
in Figure 2.5; the implicit solver leads to

un+1
i − uni

∆t
= a

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
, (2.18)

where the time-discretization comes from a Taylor’s expansion at point tn

instead of tn+1, which is known as the backward Euler method, with the
stencil represented in Figure 2.6; finally, the semi-implicit solver leads to

un+1
i − uni

∆t
= a(1− θ)u

n
i+1 − 2uni + uni−1

∆x2
+ a θ

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
, (2.19)

where θ ∈ [0, 1], whose stencil is represented in Figure 2.7, and this type of
operator is generally called a θ-method. If θ = 1/2 we have the well-known
Crank-Nicolson scheme.

Figure 2.6: stencil of the implicit backward Euler scheme

Figure 2.7: stencil of the semi-implicit θ-method

We will consider these three methods in combination with space-discretizations
in the next chapters, and we will examine their properties in details depend-
ing on the specific applications.

2.3 The Finite Volume method

The finite volume schemes are an alternative approach for the approxima-
tion of PDEs [25],[30]. Similarly to the finite difference method, the values
of the numerical solution are calculated at discrete locations on a meshed
geometry, and finite volume refers to the small volume surrounding each
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node on the grids (see Figure 2.2). In the finite volume method, volume in-
tegrals of partial differential operators which contain a divergence term are
converted into surface integrals, through the extensive use of the divergence
theorem. These terms are then evaluated as fluxes at the surfaces of each
finite volume [21].

To give an example of derivation of these schemes, we focus on a simple
case of heterogeneous one-dimensional diffusion equation

ut −
(

a(x)ux
)

x
= 0 , (2.20)

for t > 0 and x ∈ [x1, x2] ⊂ R. According to the theory of conservation laws,
we denote by F (t, x) = a(x)ux the parabolic flux (eventually depending also
explicitly on time), so the above equation can be rewritten in conservative
form as

ut −
(

F (t, x)
)

x
= 0 . (2.21)

Typically, the conservation law (2.21) concerns the (local) dynamics of the
mass of a physical quantity, that is related to the density/concentration by

m(t) =

∫ x2

x1

u(t, x) dx ,

which provides a connection between global/macroscopical and local/micro-
scopical quantities. We write the integral form of the equation (2.20) as

d

dt

∫ x2

x1

u(t, x) dx =

∫ x2

x1

(

a(x)ux
)

x
dx = F (t, x2)− F (t, x1) , (2.22)

and this actually holds for any arbitrary interval.
The above equality states that the variation of mass over time inside the re-
gion [x1, x2] ⊂ R is equal to the difference of the flux at the initial and final
points (the boundary of a one-dimensional domain). This represents a con-
servation law for the mass because the mass is conserved if the value of the
flux at the boundary points is constant, namely the entering flux equals the
outgoing flux. That property is satisfied for any physical situation which is
not creating or destroying mass, like the diffusion processes considered in this
report, and the only way to locally variate the mass is through the behavior
of the flux (we refer to [6] for a remarkable presentation of that subject).

We aim at deriving a finite volume scheme for the equation (2.20).
We adapt to the one-dimensional framework the definition (2.4) and the
discretization of the spatial domain as in Figure 2.2, then we compute the
cell-averages of the equation as follows,

1

∆t

∫ tn+1

tn

{

1

∆x

∫

Ci

[

ut −
(

a(x)ux
)

x

]

dx

}

dt = 0 . (2.23)
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We assume that u has all the regularity properties necessary to exchange
derivatives with integrals, and for the first term we obtain

1

∆t

[

1

∆x

∫

Ci

u(tn+1, x) dx− 1

∆x

∫

Ci

u(tn, x) dx

]

=
ūn+1
i − ūni

∆t
, (2.24)

where the cell-averages of the exact solution are defined as

ūni =
1

∆x

∫

Ci

u(tn, x) dx =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(tn, x) dx ,

recalling that ūni ≃ u(tn, xi) to the order O(∆x2) for the choice to locate the
nodes at the center of the finite volumes. We recover the integral form (2.22)
with Ci = [xi− 1

2

, xi+ 1

2

] for the second term in (2.23) and we have

1

∆t

∫ tn+1

tn

1

∆x

[

F (t, xi+ 1

2

)− F (t, xi− 1

2

)
]

dt

=
1

∆t

∫ tn+1

tn

1

∆x

[

a(xi+ 1

2

)ux(t, xi+ 1

2

)− a(xi− 1

2

)ux(t, xi− 1

2

)
]

dt .

(2.25)

Therefore, the time variation (2.24) is given by the difference of flux values
at the interfacial points, which are the boundary of a grid cell, and this has
a physical sense for the conservation law (2.22).
We still need to approximate the time-average in (2.25). In general, for a
function g ∈ C1(R), we can write

1

∆t

∫ tn+1

tn
g(t) dt = g(tn) +R1 = g(tn+1) +R2 ,

with
|Rk| ≤ max

tn≤t≤tn+1
|g′(t)| ·∆t , k = 1, 2 ,

so that we can choose an explicit scheme (with tn) or an implicit one (with
tn+1) or also a combination of both. For example, we substitute tn in (2.25),
committing an error of order ∆t, and we consider the discrete fluxes

1

∆x

[

a(xi+ 1

2

)ux(t
n, xi+ 1

2

)− a(xi− 1

2

)ux(t
n, xi− 1

2

)
]

.

Finally, we have to approximate the diffusion coefficient a and ux at the cell-
interfaces by using the values at the nodes, because only these last data are
available at the discrete level. As usual, we set ai =

1
∆x

∫

Ci
a(x) dx ≃ a(xi)

and we can exploit the arithmetic averages, namely

a(xi+ 1

2

) ≃ ai + ai+1

2
, a(xi− 1

2

) ≃ ai−1 + ai
2

, (2.26)
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while for the first order derivatives at the interfaces we have

ux(t
n, xi+ 1

2

) ≃ uni+1 − uni
∆x

, ux(t
n, xi− 1

2

) ≃ uni − uni−1

∆x
. (2.27)

So, the fully-discrete scheme for the equation (2.20) reads

un+1
i − uni

∆t
=

1

∆x

(

ai + ai+1

2
· u

n
i+1 − uni
∆x

− ai−1 + ai
2

· u
n
i − uni−1

∆x

)

=
ai
2

· u
n
i+1 − 2uni + uni−1

∆x2
+
ai+1

2∆x
· u

n
i+1 − uni
∆x

− ai−1

2∆x
· u

n
i − uni−1

∆x

= uni+1

(

ai + ai+1

2∆x2

)

+ uni

(−ai+1 − 2ai − ai−1

2∆x2

)

+ uni−1

(

ai−1 + ai
2∆x2

)

,

or rather

un+1
i =

∆t

2∆x2
(ai + ai+1)u

n
i+1 +

(

1− ∆t

2∆x2
(ai+1 + 2ai + ai−1)

)

uni

+
∆t

2∆x2
(ai−1 + ai)u

n
i−1 .

(2.28)

One easily recognizes in the second line above the two terms of the hetero-
geneous diffusion equation (2.20), after rearranging the terms as follows,

(ai
2

+
ai−1

2

)

· u
n
i+1 − 2uni + uni−1

∆x2
+
ai+1 − ai−1

2∆x
· u

n
i+1 − uni
∆x

,

and, moreover, we recover the finite difference explicit scheme (2.17) for the
one-dimensional heat equation if a is constant.

Remark 6. In the case of nonuniform spatial grids, the approximations (2.26)
and (2.27) must be computed taking into account the size of the cells explic-
itly into the formulation, thus introducing a lack of symmetry in the schemes.
We will address that delicate issue in a forthcoming work.

Despite, in some easy cases, finite difference and finite volume schemes
are formally the same, the interpretation in the spirit of the finite volume
method is very useful to catch the physical sense of the parabolic equations,
as clearly expressed through the weak/integral formulation (2.22).

2.4 Finite difference schemes for two-dimensional
heterogeneous equations

With the tools introduced in Section 2.2, we analyze three different schemes,
following the presentation in [26].
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2.4.1 The Chain Rule method

The simplest way of discretizing second order operators like (1.1) is by apply-
ing the product rule to expand the derivatives and, then, use centered finite
difference schemes (2.13) and (2.14). From the second line of (1.5), it holds

(

a ux
)

x
≃ ai+1,j − ai−1,j

2∆x
· ui+1,j − ui−1,j

2∆x
+ aij

ui+1,j − 2uij + ui−1,j

∆x2

= ui+1,j

(ai+1,j − ai−1,j

4∆x2
+

aij
∆x2

)

+ uij

(

− 2
aij
∆x2

)

+ ui−1,j

(

− ai+1,j − ai−1,j

4∆x2
+

aij
∆x2

)

.

(2.29)

where we have omitted the time-dependence, for simplicity, and also

(

c uy
)

x
≃ ci+1,j − ci−1,j

2∆x
· ui,j+1 − ui,j−1

2∆y

+
cij
2∆x

(

uni+1,j+1 − uni+1,j−1

2∆y
−
uni−1,j+1 − uni−1,j−1

2∆y

) (2.30)

where we used the same approach as in (2.15). Analogous calculations hold
for the other terms

(

c ux
)

y
and

(

b uy
)

y
in (1.5).

To make the notation more compact, we rewrite the stencil of the scheme
as reported in Table 2.1, where the central entry is the coefficient correspond-
ing to the term uij , the right one corresponds to the coefficient of ui+1,j , the
left one to the coefficient of ui−1,j , and similarly for all the others.

− cij
2∆x∆y

bi,j+1−bi,j−1

4∆y2
+

bij
∆y2

cij
2∆x∆y

+
ci+1,j−ci−1,j

4∆x∆y

−ai+1,j−ai−1,j

4∆x2 +
aij
∆x2 −2

aij
∆x2 − 2

bij
∆y2

ai+1,j−ai−1,j

4∆x2 +
aij
∆x2

− ci,j+1−ci,j−1

4∆x∆y +
ci,j+1−ci,j−1

4∆x∆y
cij

2∆x∆y − bi,j+1−bi,j−1

4∆y2
+

bij
∆y2

− cij
2∆x∆y

− ci+1,j−ci−1,j

4∆x∆y

Table 2.1: stencil of the two-dimensional Chain Rule scheme

We recall that the above stencil refers only to the space-discretization.
We will see later on that this method is inappropriate for the validity of the
discrete maximum principle, and then useless for practical applications.
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2.4.2 The Standard Discretization method

Another possible approach is based mainly on the approximation on stag-
gered grids (2.12), so the double derivatives (2.29) are treated as follows,

(

a ux
)

x
≃

(a ux)i+ 1

2
,j − (a ux)i− 1

2
,j

∆x

≃ 1

∆x

(

ai+ 1

2
,j

ui+1,j − uij
∆x

− ai− 1

2
,j

uij − ui−1,j

∆x

)

≃ aij + ai+1,j

2
· ui+1,j − uij

∆x2
+
ai−1,j + aij

2
· ui−1,j − uij

∆x2

= ui+1,j
aij + ai+1,j

2∆x2
+ uij

−ai+1,j − 2aij − ai−1,j

2∆x2

+ ui−1,j
ai−1,j + aij

2∆x2
,

(2.31)

where the unknown interfacial values ai+ 1

2
,j and ai− 1

2
,j are calculated by the

arithmetic averages, and we recover precisely the finite volume scheme (2.28).
The formula (2.30) for the mixed derivatives is modified according to (2.16),
and we have several choices for interpolating the interfacial values : by using
standard arithmetic averages, for example, we end up with some weighted
modification of (2.15) which is also more compact than (2.30), namely

(

c uy
)

x
≃

(c uy)i+ 1

2
,j − (c uy)i− 1

2
,j

∆x

≃ (c uy)ij + (c uy)i+1,j − (c uy)i−1,j − (c uy)ij
2∆x

=
(c uy)i+1,j − (c uy)i−1,j

2∆x

≃ 1

2∆x

(

ci+1,j

ui+1,j+ 1

2

− ui+1,j− 1

2

∆y
− ci−1,j

ui−1,j+ 1

2

− ui−1,j− 1

2

∆y

)

≃ 1

2∆x

(

ci+1,j
ui+1,j+1 − ui+1,j−1

2∆y
− ci−1,j

ui−1,j+1 − ui−1,j−1

2∆y

)

,

(2.32)

therefore, in this case, the extra-diagonal coefficient c appears only with the
terms at the vertices of Table 2.2, where we have reported the whole stencil.

− ci−1,j+ci,j+1

4∆x∆y
bij+bi,j+1

2∆y2
ci+1,j+ci,j+1

4∆x∆y
ai−1,j+aij

2∆x2 −ai+1,j+2aij+ai−1,j

2∆x2

aij+ai+1,j

2∆x2

− bi,j+1+2bij+bi,j−1

2∆y2
ci−1,j+ci,j−1

4∆x∆y
bi,j−1+bij

2∆y2
− ci+1,j+ci,j−1

4∆x∆y

Table 2.2: stencil of the two-dimensional Standard Discretization

We remark that, in the case of homogeneous diffusion tensors, with con-
stant diffusion coefficients, the scheme represented in Table 2.2 is the same
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as the one in Table 2.1. Moreover, also according to [7], the above scheme is
conditionally stable but does not satisfy the discrete maximum principle. In
Section 4.3, we will derive another proof of stability, giving a less restrictive
condition for c = 0, and under which also the discrete maximum principle
holds. Nevertheless, in the general case of c 6= 0 or c is a space-dependent
function, this method fails to satisfy the discrete maximum principle and
for this reason we must resort to other schemes.

We conclude this section by introducing another approach for the mixed
derivatives, which makes use of the approximation (2.16) on staggered grids,

(

c uy
)

x
≃

(c uy)i+ 1

2
,j − (c uy)i− 1

2
,j

∆x

≃
ci+ 1

2
,j

∆x∆y

(

ui+ 1

2
,j+ 1

2

− ui+ 1

2
,j− 1

2

)

−
ci− 1

2
,j

∆x∆y

(

ui− 1

2
,j+ 1

2

− ui− 1

2
,j− 1

2

)

,

(

c ux
)

y
≃

(c ux)i,j+ 1

2

− (c ux)i,j− 1

2

∆y

≃
ci,j+ 1

2

∆x∆y

(

ui+ 1

2
,j+ 1

2

− ui− 1

2
,j+ 1

2

)

−
ci,j− 1

2

∆x∆y

(

ui+ 1

2
,j− 1

2

− ui− 1

2
,j− 1

2

)

,

which is recovered through a finite volume approach like in Section 2.3,
and coincide with the scheme (2.31)-(2.32) for c constant if using arithmetic
averages to pass from interfacial values to grid points. But this is actually a
more rigorous way of derivation, because we use the same approach for the
second order derivatives and the mixed ones.

2.4.3 The Nonnegative method

As we will discuss later, the main property that efficient numerical methods
for diffusion equations have to satisfy is the non-negativity of extra-diagonal
stencil entries, in order to guarantee the discrete maximum principle. If we
look at the two previous tables (2.1) and (2.2), we cannot be sure that these
coefficients are nonnegative. The existence of a third method that solves this
problem is demonstrated in [38], where applications to image processing are
considered, leading to the so-called nonnegative method as its name suggests.

The proof in [38] is constructive : the strategy is based on calculating
numerical derivatives in new directions, in addition to the (x, y)-directions,
and the two-dimensional framework uses the diagonal directions of the spa-
cial grid, as shown in Figure 2.8. Therefore, the diffusion terms are modified
including an angle β = arctan(∆y

∆x) and the mixed derivatives are replaced
by the new directional ones. To obtain a nonnegative stencil, it is enough to
find the conditions under which the stencil weights of the new directions are
nonnegative. We reproduce the complete derivation of the two-dimensional
numerical scheme as given in [38], through the following theorem.

42



Figure 2.8: diagonal directions for numerical mixed derivatives

Theorem 7. Let A =

[

a c
c b

]

∈ R
2×2 be a symmetric positive definite

matrix, with bounded spectral condition number κ = max|λl|/min|λl|, for
λl, l = 1, 2 eigenvalues. Then, there exists some m(κ) ∈ N such that the
parabolic differential operator ∇ · (A · ∇u) reveals a second-order nonnega-
tive finite difference discretization with a (2m+ 1)× (2m+ 1)-stencil.

Proof. We start by fixing arbitrarily m ∈ N and consider the correspond-
ing (2m+1)×(2m+1)-stencil. We call boundary pixels the grid points at the
boundary of the stencil, which induce 4m principal orientations βi ∈ (−π

2 ,
π
2 ],

i = −2m+ 1, . . . , 2m , according to

βi =



















arctan
(

i∆y
m∆x

)

|i| ≤ m

arccot
(

(2m−i)∆x
m∆y

)

m < i ≤ 2m

arccot
(

(i−2m)∆x
m∆y

)

−2m+ 1 ≤ i < −m
(2.33)

We refer to Figure 2.9, for example. Let Jm = {1, . . . , 2m− 1} and define a
partition of (−π

2 ,
π
2 ] into 4m− 2 subintervals Ii, |i| ∈ Jm as

(

−π
2
,
π

2

]

=
−1
⋃

i=−2m+1

Ii ∪
2m−1
⋃

i=1

Ii =
−1
⋃

i=−2m+1

(θi, θi+1] ∪
2m−1
⋃

i=1

(θi−1, θi] ,

where

θi =































0 i = 0
1
2 arctan

(

2
cotβi−tanβi+1

)

i ∈ {1, . . . , 2m− 2} and βi + βi+1 <
π
2

π
4 i ∈ {1, . . . , 2m− 2} and βi + βi+1 =

π
2

π
2 + 1

2 arctan
(

2
cotβi−tanβi+1

)

i ∈ {1, . . . , 2m− 2} and βi + βi+1 >
π
2

π
2 i = 2m− 1
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(a) m = 1 (b) m = 2

Figure 2.9: examples of two-dimensional stencils

By definition, θi = −θ−i for i ∈ {−2m+ 1, . . . ,−1} and βi ∈ Ii for |i| ∈ Jm.
Let us focus on the eigenvalues of A : we know that they are real and

positive, so let λ1 ≥ λ2 > 0, with the corresponding normal eigenvectors
(cosψ, sinψ)T and (− sinψ, cosψ)T, where ψ ∈ (−π

2 ,
π
2 ].

We want to show that there exists a stencil direction with respect to the
first eigenvector, based on βk with |k| ∈ Jm, such that the splitting

∇ · (A · ∇u) = ∂eβ0

(

α0 ∂eβ0u
)

+ ∂eβk

(

αk ∂eβku
)

+ ∂eβ2m

(

α2m ∂eβ2mu
)

, (2.34)

where eβi
= (cosψ, sinψ)T, reveals nonnegative directional diffusivity coeffi-

cients α0, αk and α2m along the stencil orientations β0, βk and β2m.
To prove the statement (2.34), we demonstrate the following properties :

(a) with ψ ∈ Ik and A =

[

a c
c b

]

, a nonnegative spitting is possible if

min
(

a− c cotanβk , b− c tanβk
)

≥ 0 ; (2.35)

(b) the previous inequality (2.35) is satisfied for

λ1
λ2

≤ min
(

cot(ρk − βk) tan ρk , cot(βk − ηk) cot ηk
)

= κk,m (2.36)

with

ρk =

{

θk |k| ∈ {1, . . . , 2m− 2}
1
2(θk + βk) |k| = 2m− 1

and

ηk =

{

1
2βk |k| = 1

θk−1 |k| ∈ {1, . . . , 2m− 2}

(c) limm→∞

(

min|i|∈Jm κi,m
)

= ∞ .
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Once these assertions are proven, we will find an explicit formula for the co-
efficient αk through which a nonnegative second-order discretization arises.
We assume that the point (c) is proven (refer to [38] for details), because
we want to concentrate on the two others, for which we have the tools to
construct nonnegative discretizations.

(a) Let ϕ0 = 0, ϕ1 = βk where ψ ∈ Ik, and ϕ2 = π
2 . Moreover, let

γ0 = α0, γ1 = αk and γ2m = α2m. With this notation we rewrite the
equality (2.34) as a type of change of representation, that is

∇ ·
([

a c
c b

]

· ∇u
)

=
2
∑

i=0

∂

∂eϕi

(

γi
∂u

∂eϕi

)

=

2
∑

i=0

(

∂

∂x

∂x

∂eϕi

+
∂

∂y

∂y

∂eϕi

)

γi

(

∂

∂x

∂x

∂eϕi

+
∂

∂y

∂y

∂eϕi

)

u

=
∂

∂x

2
∑

i=0

cosϕi

[

γi(ux cosϕi + uy sinϕi)
]

+
∂

∂y

2
∑

i=0

sinϕi

[

γi(ux cosϕi + uy sinϕi)
]

= ∇ ·
([ ∑2

i=0 γi cos
2 ϕi

∑2
i=0 γi sinϕi cosϕi

∑2
i=0 γi sinϕi cosϕi

∑2
i=0 γi sin

2 ϕi

]

· ∇u
)

Comparing the coefficients and developing the sums, we obtain

a = γ0 cos
2 ϕ0 + γ1 cos

2 ϕ1 = γ0 + γ1 cos
2 βk ,

c = γ1 sinϕ1 cosϕ1 = γ1 sinβk cosβk ,

b = γ1 sin
2 ϕ1 + γ2 sin

2 ϕ2 = γ1 sin
2 βk + γ2 .

We can solve directly the second equation above as γ1 = c
sinβk cosβk

,
and then we can substitute into the two others. Recalling that tanβk =
sinβk

cosβk
and cotβk = cosβk

sinβk
, we easily deduce

γ0 = a−c cotβk , γ1 =
c

sinβk cosβk
, γ2 = b−c tanβk . (2.37)

We need to study the sign of these three coefficients, aiming at having
them always nonnegative because we are searching a discretization
with this property. By definition of eigenvalue/eigenvector, it holds

A

[

cosψ
sinψ

]

= λ1

[

cosψ
sinψ

]

, A

[

− sinψ
cosψ

]

= λ2

[

− sinψ
cosψ

]

,

therefore, developing the products, we have

a cosψ + c sinψ = λ1 cosψ , c cosψ + b sinψ = λ1 sinψ ,

−a sinψ + c cosψ = −λ2 sinψ , −c sinψ + b cosψ = λ2 cosψ .
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Now, multiplying the first by sinψ and the third by cosψ, and sum-
ming these two equivalences, we obtain

c = (λ1 − λ2) cosψ sinψ ,

so γ1 in (2.37) is always nonnegative, since λ1 − λ2 ≥ 0 by hypothesis
and ψ, βk ∈ Ik belong to the same quadrant. In order to verify the
non-negativity of γ0 and γ2, we must impose that

min
(

a− c cotβk , b− c tanβk
)

≥ 0 ,

which is the inequality (2.35) we wanted to prove.

(b) To prove the second assertion, we suppose that the inequality (2.35)
is satisfied under the assumption (2.36).
Let λ1

λ2
≤ κk,m and consider the case 0 < βk <

π
2 . Let us define

B(ϕ) = cos2 ϕ− sinϕ cosϕ cotβk ,

C(ϕ) = sin2 ϕ+ sinϕ cosϕ cotβk ,

with the properties

B(ϕ) < 0 for ϕ ∈ (βk,
π

2
) , B(ϕ) ≥ 0 for ϕ ∈ [−π

2
, βk] ,

C(ϕ) < 0 for ϕ ∈ [−π
2
, 0) , C(ϕ) ≥ 0 for ϕ ∈ [0,

π

2
] .

(2.38)

By the definition of κk,m , we have that

λ1
λ2

≤ cot(ρk −βk) tan ρk = −C(ρk)
B(ρk)

= min
ϕ∈(βk,θk)

(

− C(ϕ)

B(ϕ)

)

≤ −C(ϕ)
B(ϕ)

.

In particular, the equality cot(ρk − βk) tan ρk = −C(ρk)
B(ρk)

comes from
the following trigonometrical formula,

cot(a− b) =
cot(a) cot(b) + 1

cot(b)− cot(a)

when applied to the case above, namely

cot(ρk − βk) tan ρk =
cot ρk cotβk + 1

cotβk − cot ρk
· sin ρk
cos ρk

=
1 + cos ρk

sin ρk
cotβk

cotβk − cos ρk
sin ρk

· sin ρk
cos ρk

=
sin ρk(sin ρk + cos ρk cotβk)

cos ρk(− cos ρk + sin ρk)

= − sin2 ρk + sin ρk cos ρk cotβk
cos2 ρk − sin ρk cos ρk cotβk

= −C(ρk)
B(ρk)

.
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Due to the properties in (2.38), we have that ∀ϕ ∈ (βk, θk) it holds

λ1
λ2

≤ −C(ϕ)
B(ϕ)

and B(ϕ) < 0 ,
λ1
λ2
B(ϕ) ≥ −C(ϕ) and C(ϕ) > 0 ,

and also λ1B(ϕ) + λ2C(ϕ) ≥ 0 , and by the continuity of B(ϕ) and
C(ϕ) we may extend this relation to the entire interval Ik = (θk−1, θk].
In particular, since ψ ∈ Ik, we have

0 ≤ λ1B(ϕ)+λ2C(ϕ) = (λ1 cos
2 ψ+λ2 sin

2 ψ)−(λ1−λ2) sinψ cosψ cotβk .

By the representation through eigenvalues and eigenvectors,

[

a c
c b

]

=

[

cosψ − sinψ
sinψ cosψ

] [

λ1 0
0 λ2

] [

cosψ sinψ
− sinψ cosψ

]

=

[

λ1 cos
2 ψ + λ2 sin

2 ψ (λ1 − λ2) sinψ cosψ
(λ1 − λ2) sinψ cosψ λ1 cos

2 ψ + λ2 sin
2 ψ

]

,

we obtain that

a− c cotβk = (λ1 cos
2 ψ+λ2 sin

2 ψ)− (λ1−λ2) sinψ cosψ cotβk ≥ 0 ,

which is one of the two terms of inequality (2.35) we wanted to prove.
For the second, with the same technique, we can conclude that

λ1
λ2

≤ cot(βk − ηk) cot ηk =⇒ b− c tanβk ≥ 0 ,

which is the other term of inequality (2.35), so also the minimum
between those terms is greater than zero, and the point (b) is proven.

This construction finally provides a nonnegative discretization. ✷

In order to better illustrate the ideas for the proof of Theorem 7, we
proceed by applying these results to the case considered in this report.
We want to find a nonnegative spatial discretization of the differential op-

erator ∇ · (A · ∇u) on a (3× 3)-stencil, with A =

[

a c
c b

]

for the simple case

of constant entries satisfying the parabolicity constraint (1.7).
Since m = 1, we have 4 principal directions βi ∈ (−π

2 ,
π
2 ], i = −1, 0, 1, 2

from (2.33), as shown in Figure 2.9(a), which are given by

β−1 = arctan
(

− ∆y

∆x

)

, β0 = 0 , β1 = arctan
(∆y

∆x

)

, β2 =
π

2
.

Now J1 = {1} defines a partition of (−π
2 ,

π
2 ] into 2 subintervals Ii, |i| ∈ Jm

such that
(

− π

2
,
π

2

]

=
(

− π

2
, 0
]

∪
(

0,
π

2

]

= I−1 ∪ I1 ,
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where I−1 and I1 belongs to the grid angles β−1 and β1. First, we focus on
the case ψ ∈ I1, with k = 1. We have that a nonnegative splitting is possible
if (2.35) is satisfied, from point (a), and this is true if (2.36) is valid, from
point (b). So, we have to calculate cot(ρ1−β1) tan ρ1 and cot(β1−η1) cot η1 .
With the notation of Theorem 7, we obtain

θ1 =
π

2
because i = 2m− 1 ,

ρ1 =
θ1 + β1

2
=
π

4
+
β1
2

because |k| = 1 ,

η1 =
β1
2

because |k| = 1 ,

and, therefore, we have that

cot(ρ1 − β1) tan ρ1 = cot
(π

4
+
β1
2

− β1
)

tan
(π

4
+
β1
2

)

=
1 + tan π

4 tan
β1

2

tan π
4 − tan β1

2

· tan π
4 + tan β1

2

1− tan π
4 tan

β1

2

=
1 + tan β1

2

1− tan β1

2

· 1 + tan β1

2

1− tan β1

2

=
(cos β1

2 + sin β1

2 )
2

(cos β1

2 − sin β1

2 )
2

=
1 + 2 cos β1

2 sin β1

2

1− 2 cos β1

2 sin β1

2

=
1 + sinβ1
1− sinβ1

and also

cot(β1 − η1) cot η1 = cot(β1 −
β1
2
) cot

β1
2

= cot2
β1
2

=
1

tan2 β1

2

=
1 + cosβ1
1− cosβ1

,

where we have used the following trigonometrical formulas,

tan(a− b) =
tan(a)− tan(b)

1 + tan(a) tan(b)
, tan(a+ b) =

tan(a) + tan(b)

1− tan(a) tan(b)
,

2 cos(a) sin(a) = sin(2a) , tan
(a

2

)

=

√

1− cos(a)

1 + cos(a)
.

Then, we have that κ1,1 = min
(

1+sinβ1

1−sinβ1
, 1+cosβ1

1−cosβ1

)

and, thanks to the sym-

metry, we obtain the same condition for κ−1,1, with ψ ∈ I−1. Therefore, if
(2.36) is satisfied, with the value of κ given above, a nonnegative discretiza-
tion occurs. In particular, the inequality (2.35) is true and so

a ≥ c cotβk = c
∆x

∆y
, b ≥ c tanβk = c

∆y

∆x
. (2.39)

To find the nonnegative discretization, we have to calculate the coefficients
αi , i = −1, 0, 1 through γ0, γ1 and γ2. Since sinβk = sin(arctan(∆y

∆x)) = ∆y
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and cosβk = cos(arctan(∆y
∆x)) = ∆x, we can calculate γi through (2.37).

For k = 1 we have

γ0 = a− c cotβ1 = a− c
∆x

∆y
,

γ1 =
c

sinβ1 cosβ1
=

c

∆x∆y
,

γ2 = b− c tanβ1 = b− c
∆y

∆x
,

and for k = −1 we have

γ0 = a− c cotβ−1 = a+ c
∆x

∆y
,

γ1 =
c

sinβ−1 cosβ−1
= − c

∆x∆y
,

γ2 = b+ c tanβ−1 = b+ c
∆y

∆x
.

We recall that the γi’s are all positive values, and we obtain the correspond-
ing values αi as follows,

α−1 =
|c| − c

2∆x∆y
, α0 = a− |c|∆x

∆y
, α1 =

|c|+ c

2∆x∆y
, α2 = b− |c|∆y

∆x
,

which induce a second-order spatial discretization through the splitting (2.34).

|c|−c
2∆x∆y

b
∆y2

− |c|
∆x∆y

|c|+c
2∆x∆y

a
∆x2 − |c|

∆x∆y − 2a
∆x2 − 2b

∆y2
+ 2|c|

∆x∆y
a

∆x2 − |c|
∆x∆y

|c|+c
2∆x∆y

b
∆y2

− |c|
∆x∆y

|c|−c
2∆x∆y

Table 2.3: stencil of the homogeneous Nonnegative Discretization

We report the whole stencil in Table (2.3), where the central entry is

−2
α0

∆x2
− 2

α2

∆y2
− 2 (α−1 + α1) = − 2a

∆x2
− 2b

∆y2
+

2|c|
∆x∆y

,

while the upper and the right-hand entries are

α2

∆y2
=

b

∆y2
− |c|

∆x∆y
,

α0

∆x2
=

a

∆x2
− |c|

∆x∆y
.

We refer to [38] for the expression of the stencil of the nonnegative scheme
for general heterogeneous diffusion tensors (1.2), as given in Table 2.4.

We observe that only three directions are sufficient to guarantee a non-
negative directional splitting. Thus, unless m is very small as in the above
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|ci−1,j+1|−ci−1,j+1

4∆x∆y
bij+bi,j+1

2∆y2
− |cij |+|ci,j+1|

2∆x∆y
|ci+1,j+1|+ci+1,j+1

4∆x∆y

+
|cij |−cij
4∆x∆y +

|cij |+cij
4∆x∆y

−ai−1,j+2aij+ai+1,j

2∆x2

ai−1,j+aij
2∆x2 − |ci−1,j+1|−ci−1,j+1+|ci+1,j+1|+ci+1,j+1

4∆x∆y
aij+ai+1,j

2∆x2

− |ci−1,j |+|cij |
2∆x∆y − |ci−1,j−1|+ci−1,j−1+|ci+1,j−1|−ci+1,j−1

4∆x∆y − |cij |+|ci+1,j |
2∆x∆y

+
|ci−1,j |+|ci+1,j |+2|cij |+|ci,j−1|+|ci,j+1|

2∆x∆y

− bi,j−1+2bij+bi,j+1

2∆y2

|ci−1,j−1|+ci−1,j−1

4∆x∆y
bi,j−1+bij

2∆y2
− |ci,j−1|+|cij |

2∆x∆y
|ci+1,j−1|−ci+1,j−1

4∆x∆y

+
|cij |+cij
4∆x∆y +

|cij |−cij
4∆x∆y

Table 2.4: stencil of the heterogeneous Nonnegative Discretization

application, most of the stencil coefficients can be set to zero. Especially for
large m values, a (2m+ 1)× (2m+ 1)-stencil reveals much more directions
than those 4m that are induced by the boundary pixels (the cases shown in
Figure (2.9) are optimal for the respective dimensions). Therefore, even if
we use only 3 directions, we may expect to find stricter estimates than those
given in the proof of Theorem 7, and these estimates might be improved
further by admitting more than 3 directions.

2.5 Discrete Maximum Principle

In the previous sections, we have seen how to develop numerical schemes for
the diffusion equation (1.1) based on finite difference/volume methods.
It is often desirable to have a genuinely discrete theory which guarantees
that an algorithm exactly reproduces the qualitative properties of its con-
tinuous counterpart. For the discrete operators introduced in this report,
the main property we ask to benefit from is some analogue of (1.18), and
Table (2.5) summerizes the suitable properties needed for the well-posedness
of continuous or discrete diffusion processes [38].
These criteria are easy to check for many discretizations. More particularly,
for the numerical schemes presented in this report, if the above properties
are valid for the semi-discrete formulation, they are also valid for the fully
discrete one. Indeed, because of the choice of one-step time-discretizations,
these schemes generally admit the representation

un+1
ij = unij +∆t {space-discretization at time n or/and n+ 1} .

Consequently, the property of conservation becomes that the sum of columns
is equal to 1, which simply comes from the supplementary diagonal term unij ,
and the non-negativity of the entries extends also to the diagonal elements
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continuous problem semi-discrete fully discrete
ut = ∇ · (A · ∇u) formulation formulation
+ initial/boundary ut =Ms u un+1 =Md u

n

conditions

symmetry A symmetric Ms symmetric Md symmetric

conservation divergence form columns sum to 0 column sums to 1

nonnegativity A positive nonnegative nonnegative
semidefinite off-diagonals entries

connectivity A uniformly Ms irreducible Md irreducible,
positive definite positive diagonal

Table 2.5: requirements of well-posed problems for diffusion equations

(under a suitable CFL-condition to be calculated explicitly for each numer-
ical scheme). As a matter of fact, we will always consider matrices whose
diagonal entries are strictly positive, otherwise it could be pathological cases
of singular matrices.

Remark 7. For the requirement of irreducibility for numerical matrices, we
refer to [28][Chapter 2, Theorem 1.3], and we admit that the set of nonneg-
ative irreducible matrices includes the positive matrices (so, if we have a
positive matrix, automatically we have that it is irreducible).

2.5.1 Theoretical results for semi-discrete problems

To show why the properties listed in Table 2.5 are important for numerical
discretizations, we focus on semi-discrete problems, where only the spacial
approximation is considered. The class of semi-discrete problems we are con-
cerned with is characterized by the following definition. We remark that the
theory is well-established even for the case of nonlinear operators, whereas
in this report we deal only with linear PDEs.

Definition 6. Let u0 ∈ R
n and u ∈ C1([0,+∞);Rn) a solution to the initial

value problem for a first order differential operator, namely

∂u

∂t
= A(u)u , u(0) = u0 , (2.40)

where A =
(

aij(u)
)

, i, j = 1, 2, ..., n, has the following properties, ∀u ∈ R
n,

P1) A ∈ C(Rn;Rn×n) for every bounded subset of Rn (Lipschitz-continuity);

P2) symmetry : aij(u) = aji(u) , ∀ i, j = 1, 2, ..., n ;

P3) vanishing row sums :
∑

j aij(u) = 0 , ∀ i = 1, 2, ..., n ;

P4) nonnegative off-diagonal entries : aij ≥ 0 , ∀ i 6= j ;
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P5) irreducibility for all u ∈ R
n.

For linear applications, where the diffusion tensor A does not depend on the
function u, the property of Lipschitz-continuity is always satisfied because
A is constant with respect to u. The properties (P2) and (P3) correspond
to the specific structure of parabolic conservation laws, usually expressed
in the so-called divergence form , while properties (P4) and (P5) play a
similar role as the non-negativity of the eigenvalues of A and its uniform
positive definiteness, respectively. We observe an immediate consequence of
(P3) and (P4), that is the diagonal entries are strictly non-positive, also in
view of (P5). The proof of the discrete maximum principle mainly involves
properties (P3) and (P4), as we will see in the following theorem, and we
refer to [38][Chapter 3, Theorem 4] for the other theoretical results (global
existence, regularity, conservation, energy contraction, large time behaviour)
invoking in particular properties (P2) and (P5).

Theorem 8. For every T > 0, the problem (2.40) admits a unique solution
u(t) ∈ C1([0, T ];Rn). This solution depends continuously on the initial data
and it satisfies the maximum/minimum principle

umin ≤ ui(t) ≤ umax , ∀ i = 1, . . . , n , ∀ t ∈ [0, T ] , (2.41)

where umin = mini=1,...,n u
i
0 and umax = maxi=1,...,n u

i
0 , with u

i
0 = ui(0).

Proof. We demonstrate only the upper bound of the above inequality,
but the proof is analogous for the left-hand side of (2.41).
We assume that the problem (2.40) has a unique solution on [0, T ], T > 0 .

First, we show that the derivative of the largest component of u(t) is
nonpositive for every t inside the interval. Let uk(t̄) = maxi=1,...,n ui(t̄) for
some t̄ ∈ [0, T ]. We fix k and, for t = t̄, we obtain

∂uk
∂t

=
∑

j

akj uj = akk uk +
∑

j 6=k

akj uj ≤ uk
∑

j

akj = 0 , (2.42)

the inequality being justified through the property (P4), while the last step
is derived from (P3). From now on, the implications are purely analytical.
Let ε > 0 and set

uε(t) = u(t)−







εt
...
εt






∈ R

n,

together with P := {p = 1, . . . , n | uεp(0) = maxi=1,...,n u
ε
i (0) = maxi=1,...,n u

i
0}.

Then, from 2.42 we have that

∂uεp
∂t

(0) =
∂up
∂t

(0)− ε < 0 , ∀ p ∈ P . (2.43)
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Since maxi/∈P u
ε
i (0) < maxi=1,...,n u

ε
i (0), for the continuity of u , there exists

some t1 ∈ (0, T ) such that

max
i/∈P

uεi (t) < max
i=1,...,n

uεi (t) , ∀ t ∈ [0, t1) . (2.44)

Let us consider some fixed p ∈ P . Due to (2.43) and the smoothness of the
solution, we may find t̄p ∈ (0, T ) such that

∂uεp
∂t

(t) < 0 , ∀ t ∈ [0, t̄p) .

Thus, we have uεp(t) < uεp(0) , ∀ t ∈ (0, t̄p) . We define t2 = minp∈P t̄p , and
we obtain

max
p∈P

uεp(t) < max
i=1,...,n

uεi (0) , ∀ t ∈ (0, t2) . (2.45)

At this point, taking t0 = min{t1, t2} and using (2.44) and (2.45), we have

max
i=1,...,n

uεi (t) < max
i=1,...,n

uεi (0) , ∀ t ∈ (0, t0) . (2.46)

Now, we extend the estimate (2.46) to the whole interval (0, T ). We proceed
by contradiction, assuming that the opposite is true. By means of the mean
value theorem, there exists t3 the smallest time in the interval such that

max
i=1,...,n

uεi (t3) = max
i=1,...,n

uεi (0) .

Let uεk = maxi=1,...,n u
ε
i (t3). For the minimality of t3 we have that

uεk(t) < uεk(t3) , ∀ t ∈ (0, t3) . (2.47)

By the inequality (2.42), we deduce that

∂uεk
∂t

(t3) =
∂uk
∂t

(t3)− ε < 0 ,

and, by continuity of the derivative, there exists some t4 ∈ (0, t3) with

∂uεk
∂t

(t) < 0 , ∀ t ∈ (t4, t3] . (2.48)

The mean value theorem, combined with (2.47), implies that we have found
t5 ∈ (t4, t3) with

∂uεk
∂t

(t5) > 0 .

This clearly contradicts (2.48). Hence the inequality (2.46) has to be valid
on the whole interval (0, T ). Finally, together with u = limε→0 uε and the
continuity of the solution, we have that the maximum principle holds. ✷
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2.5.2 Application to the finite difference schemes

For the sake of readability, we restrict to the one-dimensional equation (2.20),
although the results of Theorem 8 apply to numerical schemes in any spatial
dimension, as we will see in the next chapter, and we adopt the notation
introduced in Section 2.1.

For the Chain Rule method described in Section 2.4.1, there is no way
to impose the non-negativity of all stencil entries. Indeed, if we discretize
the one-dimensional domain with points {xi}0≤i≤Nx , where ∆x = |xi+1−xi|
for a uniform mesh, and we consider the explicit Euler method for the time-
discretization, also setting ai = a(xi) > 0 , ∀ i = 0, 1, ..., we have

un+1
i − uni

∆t
=
ai+1 − ai−1

2∆x
· u

n
i+1 − uni−1

2∆x
+ ai

uni+1 − 2uni + uni−1

∆x2
, (2.49)

so that the scheme in Table 2.1 reduces to

un+1
i =

∆t

∆x2

(ai+1 − ai−1

4
+ ai

)

uni+1 +
(

1− 2
∆t

∆x2
ai

)

uni

+
∆t

∆x2

(

− ai+1 − ai−1

4
+ ai

)

uni−1 .

In order to satisfy the non-negativity of the coefficients, we have to impose

∆t

∆x2

(ai+1 − ai−1

4
+ ai

)

> 0 ,
∆t

∆x2

(

− ai+1 − ai−1

4
+ ai

)

> 0 , (2.50)

independently from the choice of the diffusion function a(x), because we can
always assume 1−2 ∆t

∆x2ai > 0 by modifying appropriately the ratio between
time-step and space-step to fulfill the so-called parabolic CFL-condition

∆t <
∆x2

2 amax
, amax := max

0≤i≤Nx

ai . (2.51)

For the second condition in (2.50), we would have

ai −
ai+1 − ai−1

4
> 0 , ∀ i = 0, 1, . . . , Nx .

We deduce from a Taylor’s expansion that ai+1−ai−1

4 = ∆x
2 a′i+O(∆x3), with

abuse of notation if we denote by a′i the value of the derivative at point xi.
Finally, the diffusion coefficients should satisfy the following constraint,

ai >
∆x

2
a′i , ∀ i = 0, 1, . . . , Nx ,

which alternatively gives an extra-restriction on the space-step ∆x (that is
practically viable only for linear problems, i.e. in case of diffusion functions
solely depending on space, and eventually time). We remark that a similar
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constraint is deduced from the first condition in (2.50) and this concerns all
possible signs for the derivatives. Therefore, if we approximate the parabolic
operator on a coarse grid (as motivated by computational cost) and the dif-
fusion function a attains low values over the domain but with rapid growth,
i.e. ai is very small but its derivative is very high, the Chain Rule method
fails to be nonnegative, and the maximum principle can be violated.

Remark 8. For the one-dimensional parabolic equation in non-conservative
form with constant coefficients, i.e. ut = b ux + a uxx, b ∈ R, a ∈ R

+, we
can consider the finite difference centered scheme

un+1
i − uni

∆t
= b

uni+1 − uni−1

2∆x
+ a

uni+1 − 2uni + uni−1

∆x2
,

which is structurally similar to (2.49) since based on the same principle of
separating the terms of different order, and we can rewrite it as

un+1
i =

∆t

∆x

( b

2
+

a

∆x

)

uni+1 +
(

1− 2
∆t

∆x2
a
)

uni +
∆t

∆x

(

− b

2
+

a

∆x

)

uni−1 .

Under the parabolic CFL-condition ∆t < ∆x2

2 a , also corresponding to (2.51),
the central coefficient above is positive and less than 1, moreover the sum of
the coefficients is equal to 1 and they can be made all positive (independently
from the sign of b) providing that the space-step ∆x is sufficiently small.
Nevertheless, there is no reason why those coefficients should be less than
1 , thus preventing an L∞-stability of the scheme. Indeed, that scheme turns
out to be a weakly-parabolic correction of the centered scheme for hyperbolic
problems, which is well-known to exhibit oscillations [22], because the maxi-
mum principle is not fulfilled. The L2-stability is guaranteed, however, as we
can easily check by performing an analysis of its modified equation (obtained
by Taylor’s expansions and manipulating the exact equation)

ut − b ux − a uxx −
( a

12
∆x2 − a2

2
∆t
)

uxxxx

+
b2

2
∆t ux +

(

a b∆t− b

6
∆x2

)

uxxx +O(∆t2,∆x5) = 0 ,

under some quite restrictive CFL-type condition, namely ∆t < ∆x2

6 a , which
is the same predicted for the fully-parabolic problem in Section 3.1.4.

The limits of the Chain Rule method become insurmountable when pass-
ing to two-dimensional problems : unless one deals with diagonal matrices,
for which the issue discussed above is however relevant, the off-diagonal
elements of the stencil in Table 2.1 cannot always be positive for fully
anisotropic diffusion tensors, as the coefficients c may have any sign.
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The discussion becomes more interesting for the Standard Discretiza-

tion introduced in Section 2.4.2, which equals the finite volume scheme (2.28)
in the one-dimensional setting, as given by (2.31), thus resulting in a positive
approximation. For two-dimensional problems, we can see in Table 2.2 that
horizontal and vertical off-diagonal elements of the stencil are nonnegative,
since a and b must be nonnegative from (1.7), but the non-negativity of the
whole stencil cannot be guaranteed since c has undefined sign.
Nevertheless, the scheme in Table 2.2 enjoys certain stability properties, as
reported in [7], because the approximate solution at any arbitrary fixed time
remains bounded for some suitable norm defined on Ω . Typically, we con-
sider the maximum norm and we say that the scheme is stable in (Ω, || · ||∞)
if there exists a constant CT > 0 such that ||un||∞ ≤ CT ||u0||∞ , ∀ n > 0 .
Explicit methods are often conditionally stable, i.e. if the time-step ∆t is
chosen under certain CFL-conditions, as we will discuss in the next chapter.

The Nonnegative method derived in Section 2.4.3 reduces to the stan-
dard discretization, i.e. the finite difference scheme on staggered grids, in
the one-dimensional case : this comes from the fact that the only modifica-
tion needed to achieve non-negativity concerns the mixed derivatives, whose
effect cannot be appreciated when no dimensional interaction is present.
Then, it seems that the failure of the non-negativity property can actually
occur whenever the scheme involves terms with mixed derivatives, and a
nonnegative correction has to be introduced to control the coefficients at
the vertices of Table 2.2, which are the only ones produced by the mixed
derivatives. We will see in the next chapter that the nonnegative method in
Table 2.4 satisfies all the properties listed in Table (2.5).
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Chapter 3

Stability Analysis of
one-dimensional methods

In this chapter, we revisit details of classical methods in the one-dimensional
setting, focusing on several finite difference/volume schemes, essentially in
order to illustrate the main tools and strategies we will later apply to the
study of two-dimensional problems.
We remark that most schemes introduced in the previous chapter coincide
for one-dimensional equations, because the finite difference method on stag-
gered grids can be reinterpreted as the finite volume approach, and for those
schemes we check the validity of the properties listed in Table 2.5.

3.1 The simplest homogeneous case

We start by considering the homogeneous one-dimensional heat equation

ut − a uxx = 0 , (t, x) ∈ ΩT = [ax, bx]× [0, T ] , (3.1)

with scalar constant diffusion a > 0 , so that the density u feels the effect
of diffusion uniformly and independently from its position, together with
initial data and homogenous Dirichlet boundary conditions

u(0, x) = u0(x) for x ∈ [ax, bx] ,

u(t, ax) = g1(t) = 0 for t ∈ (0, T ) ,

u(t, bx) = g2(t) = 0 for t ∈ (0, T ) .

(3.2)

We divide the computational domain in Nt and Nx intervals, for [0, T ] and
[ax, bx] respectively, according to the following notation

tn = n∆t , n = 0, 1, . . . , Nt ,

xi = ax + i∆x , i = 0, 1, . . . , Nx ,
(3.3)
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where t0 = 0 and ∆x = bx−ax
Nx

, so that x0 = ax and xNx = bx , while ∆t will
be determined by means of the CFL-condition introduced later.
We approximate the initial data in (3.2) as a vector u0 ∈ R

Nx+1, with

ui0 ≃ u0(xi) = u(0, xi) , i = 0, 1, . . . , Nx . (3.4)

We denote by xi+ 1

2

, i = 1, . . . , Nx − 1 , the interfacial points which charac-

terize cell-centered nodes through xi =
x
i− 1

2
+x

i+1
2

2 , and we observe that this
definition holds also for nonuniform meshes, although we do not treat that
case explicitly in this report. Therefore, since xi+ 1

2

− xi+ 1

2

= ∆x , we have

the following property for the cell-averages,

1

∆x

∫ x
i+1

2

x
i− 1

2

u0(x) dx = u0(xi) +O(∆x2) , (3.5)

which allows using indifferently (3.4) and (3.5) as discretization for the initial
data at least for second order schemes (the first approximation being easier
to compute in some practical applications).

3.1.1 Numerical schemes for one-dimensional heat equation

For the derivation of the numerical schemes reviewed in this section, we refer
to the formulas in Section 2.2. For the general study of the heat equation
in the one-dimensional case, one can refer to [20], for instance.

We recall the formulation of the explicit scheme from (2.17), that reads

un+1
i = uni + a

∆t

∆x2
(

uni+1 − 2uni + uni−1

)

, i = 1, 2, . . . , Nx − 1 , (3.6)

for which the numerical solution at time tn+1 is computed entirely in terms
of the values at previous time tn . We introduce the parameter λ = ∆t

∆x2 and
we rewrite (3.6) in compact matrix-form, for any fixed n = 0, 1, . . .,

Un+1 =Mexp · Un ,

where Un = (un1 , u
n
2 , . . . , u

n
Nx−1) is the (Nx − 1)-vector of discrete unknowns

and the matrix of the numerical scheme Mexp ∈ R
(Nx−1)×(Nx−1) is given by

Mexp =











1− 2aλ aλ 0 · · ·
aλ 1− 2aλ aλ · · ·
0 aλ 1− 2aλ · · ·
...

...
...

. . .











(3.7)

It is worthwhile observing that (3.7) is meaningful only for homogeneous
Dirichlet boundary conditions (3.2), namely for un0 = unNx

= 0 , ∀n ≥ 0 ,
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otherwise the computation of the first and last component of Un should be
adapted, also modifying consequently the expression (3.7).

More generally, the matrix-form of a numerical scheme looks like

Un+1 =M · Un + gn, Un =
(

un0 , u
n
1 , . . . , u

n
Nx

)

∈ R
Nx+1,

where M ∈ R
(Nx+1)×(Nx+1) and gn ∈ R

Nx+1 is the vector including initial
data and boundary conditions in some appropriate way.

The implicit scheme given by (2.18) is based on the approximation of
the second order derivatives at time tn+1, and it directly results in

un+1
i = uni + a

∆t

∆x2
(

un+1
i+1 − 2un+1

i + un+1
i−1

)

, i = 1, 2, . . . , Nx − 1 . (3.8)

The matrix-form is the following system of linear algebraic equations,

Mimp · Un+1 = Un ,

where

Mimp =











1 + 2aλ −aλ 0 · · ·
−aλ 1 + 2aλ −aλ · · ·
0 −aλ 1 + 2aλ · · ·
...

...
...

. . .











(3.9)

so that it can be rewritten as

Un+1 =M−1
imp · Un , (3.10)

under the hypothesis that Mimp is not singular, and with the same remark
for the numerical boundary conditions.

The Crank-Nicolson scheme is a combination of the explicit and the
implicit schemes, whose formulation for i = 1, 2, . . . , Nx − 1 is given by

un+1
i = uni +

a

2

∆t

∆x2
(

un+1
i+1 −2un+1

i +un+1
i−1

)

+
a

2

∆t

∆x2
(

uni+1−2uni +u
n
i−1

)

, (3.11)

and the corresponding matrix-form reads

M1 · Un+1 =M2 · Un , (3.12)

with

M1 =











1 + aλ −a
2λ 0 · · ·

−a
2λ 1 + aλ −a

2λ · · ·
0 −a

2λ 1 + aλ · · ·
...

...
...

. . .











,
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and

M2 =











1− aλ a
2λ 0 · · ·

a
2λ 1− aλ a

2λ · · ·
0 a

2λ 1− aλ · · ·
...

...
...

. . .











The three schemes presented before are particular cases of θ-methods,
for 0 ≤ θ ≤ 1 , introduced in (2.19), with the alternative representation

un+1
i = uni + a(1− θ)λ

(

uni+1 − 2uni + uni−1

)

+ aθλ
(

un+1
i+1 − 2un+1

i + un+1
i−1

)

,
(3.13)

so that for θ = 0 we have the explicit method, for θ = 1 we have the implicit
method, and for θ = 1

2 we have the Crank-Nicolson method.
This compact formulation has the advantage to allow the theory of stability
to be established uniquely for the general class, as well as the discussion of
the validity of the maximum principle.

In the next sections, we will first address the issue of stability of the
θ-methods through the Von Neumann analysis and, then, we will enunciate
and demonstrate the discrete maximum principle, also providing precise
comments about the necessary conditions on the numerical parameters.

3.1.2 L
2-stability of the θ-methods

The Von Neumann stability analysis, also known as Fourier stability analy-
sis, is a standard procedure to check the stability of finite difference schemes
applied to linear PDEs, which is based on the study of the propagation of
numerical errors. A numerical scheme is stable if the error made after one
time-step of the calculation is limited by a constant which does not depend
on time : if the errors decay and eventually damp out, the numerical scheme
is said to be stable; if, on the contrary, the errors grow with time, the nu-
merical scheme is said to be unstable. The stability of numerical schemes for
a large class of PDEs of hyperbolic and parabolic type can be successfully
investigated by performing the Von Neumann analysis [25],[34],[12],[22],[20].

The Von Neumann analysis refers to the stability of the L2-norm of the
solution, which is motivated by the functional properties of the continuous
model (3.1)-(3.2). Indeed, assuming that u enjoys all the regularity needed
to work with derivatives and integrals, we multiply equation (3.1) by its
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solution and we integrate over the spatial domain Ω, thus obtaining

∫

Ω
uut dx =

1

2

∂

∂t

∫

Ω
|u|2dx =

1

2

∂

∂t
||u||2L2

= a

∫

Ω
uuxx dx = a

∫

Ω
(uux)x dx− a

∫

Ω
|ux|2dx

= a

∫

∂Ω
uux · ~ν ds− a ||ux||2L2 ,

where we have applied the divergence theorem to Ω = [ax, bx] and, according
to the boundary conditions (3.2) we have

∫

∂Ω uux · ~ν ds = 0 . Therefore,

1

2

∂

∂t
||u||2L2 = −a ||ux||2L2 ≤ 0 ,

from which we infer that the L2-norm of the analytical solution decreases as
time evolves. In particular, we would recover similar results for the numerical
solution, so we have to designate some discrete L2-norm, denoted by || · ||l2 ,
that is appropriate for functions defined only at discrete points (tn, xi) of
the computational grid. Referring to the staggered grid 2.3, for example,

∫ bx

ax

|u(tn, x)|2 dx

=

∫ x 1
2

ax

|u(tn, x)|2 dx+

∫ x
Nx−

1
2

x 1
2

|u(tn, x)|2 dx+

∫ bx

x
Nx−

1
2

|u(tn, x)|2 dx

≃ ∆x0
2

|un0 |2 +
Nx−1
∑

i=1

∆xi|uni |2 +
∆xNx

2
|unNx

|2 =
Nx
∑

i=0

δxi|uni |2 =: ||un||2l2 ,

where in the last equality we have set the length of the cells as following,

δx0 =
∆x0
2

, δxNx =
∆xNx

2
, δxi = ∆xi , i = 1, 2, . . . , Nx − 1 ,

and we have ∆xi = ∆x , ∀ i = 0, 1, . . . , Nx , if the mesh is uniform.
The above definition of discrete L2-norm is coherent with the assump-
tion that the numerical solution is a piecewise constant function recon-
structed through the values uni on the cells, i.e. Un =

∑Nx

i=0 χCi
uni , with

Ci = [xi− 1

2

, xi+ 1

2

] , as the one-dimensional counterpart of (2.1).

As an example, for simplicity, we refer to the explicit scheme (3.6).
Let vni be the truncated solution u at some order p > 0 in time and q > 0
in space, such that

vn+1
i − vni

∆t
− a

vni+1 − 2vni + vni−1

∆x2
= R(∆tp,∆xq) .
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We note that this is equivalent to imposing that the scheme in consistent.
We define the local truncation error as En

i := vni −uni and, since the numer-
ical scheme is linear, we can deduce an equation of the same type, i.e.

En+1
i − En

i

∆t
− a

En
i+1 − 2En

i + En
i−1

∆x2
= R(∆tp,∆xq) ,

or rather

En+1
i = a

∆t

∆x2
En

i+1 +
(

1− 2a
∆t

∆x2
)

En
i + a

∆t

∆x2
En

i−1 +R(∆tp,∆xq) .

The right-hand side of the above equation is actually a convex combination
of the values En

j , j = i−1, i, i+1 , with coefficients that are positive and less

than 1 under the CFL-condition
(

1− 2a ∆t
∆x2

)

> 0 . Finally, for the l2-norm
defined before, we obtain

||En+1||l2 ≤ C ||En||l2 , ∀ n = 0, 1, . . . ,

[

T

∆t

]

,

with C < 1 , so that the numerical scheme is stable.

Remark 9. The basic property allowing to perform the above stability anal-
ysis, and the Von Neumann analysis developed in this section, is the lin-

earity of the numerical scheme, otherwise stronger assumptions must be
considered. To see this, we look at the nonlinear equation

ut −
(

Φ(u)
)

xx
= 0 , t > 0 , x ∈ R , (3.14)

where Φ(u) is some nonlinear function (usually increasing with respect to u).
We discretize the domain through a staggered grid and we make the assump-
tion that the approximate solution is piecewise constant on the mesh, so that
we can choose of treating the nonlinear term like Φ(u)ni = Φ(uni ). Thus, we
compute the numerical scheme as in Section (2.3) and we obtain

un+1
i − uni

∆t
=

Φ(uni+1)− 2Φ(uni ) + Φ(uni−1)

∆x2
. (3.15)

For the truncated solution vni , thanks to Taylor’s expansions, it holds

vn+1
i − vni

∆t
− Φ(vni+1)− 2Φ(vni ) + Φ(vni−1)

∆x2
= R(∆tp,∆xq) ,

and for the error En
i = vni − uni we have the equation

En+1
i − En

i

∆t
− ∆Φi+1 − 2∆Φi +∆Φi−1

∆x2
= R(∆tp,∆xq) ,

where ∆Φi := Φ(vni ) − Φ(uni ) . Now, it is clear that only under structural
hypotheses on the model, for instance Φ is Lipschitz-contractive, namely

|Φ(vni )− Φ(uni )| ≤ CΦ|vni − uni | , (3.16)

for some constant CΦ < 1 , the scheme is stable according to the previous
analysis. Otherwise, specific terms must be added to stabilize the method.
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There is another approach to the L2-stability, using the Fourier analysis,
which is possible in case of linear, autonomous and homogeneous equations
like (3.1). This consists in studying the evolution of the L2-norm in the space
of frequencies, due to the Parseval’s equality ||u||2L2 = ||û||2L2 , where û rep-
resents the Fourier transform of the function u (through this, the properties
of regularity of the solution are transformed into properties of decreasing at
infinity of its Fourier transform). We fix the time tn at which we want to
calculate the solution, so we have un(x) = u(tn, x). We denote by ûn(ξ) the
Fourier transform in the one-dimensional space variable,

ûn(ξ) =
1√
2π

∫

R

e−ιxξ un(x) dx ≃ 1√
2π

+∞
∑

i=−∞

e−ι(i∆x)ξ uni ∆x ,

for ξ ∈ [− π
∆x ,

π
∆x ]. Then, the inverse Fourier transform is given by

un(xi) =
1√
2π

∫ π
∆x

− π
∆x

eι(i∆x)ξ ûn(ξ) dξ . (3.17)

Because of the assumption uni ≃ un(xi), we can substitute the representa-
tion (3.17) into the finite difference schemes, and for the general θ-method (3.13)
we obtain

1√
2π

∫ π
∆x

− π
∆x

eι(i∆x)ξ

[

ûn+1(ξ)− ûn(ξ)

∆t

]

dξ

=
1√
2π

∫ π
∆x

− π
∆x

a(1− θ)

∆x2

[

eι(i+1)∆x ξ ûn(ξ)− 2eι(i∆x)ξ ûn(ξ) + eι(i−1)∆x ξ ûn(ξ)
]

dξ

+
1√
2π

∫ π
∆x

− π
∆x

aθ

∆x2

[

eι(i+1)∆x ξ ûn+1(ξ)− 2eι(i∆x)ξ ûn+1(ξ) + eι(i−1)∆x ξ ûn+1(ξ)
]

dξ .

Neglecting the common multiplication constant and integrals, also collecting
the exponential term eι(i∆x)ξ, we deduce the following sufficient condition :

ûn+1(ξ)− ûn(ξ)

∆t
=
a(1− θ)

∆x2

(

eι∆x ξ − 2 + e−ι∆x ξ
)

ûn(ξ)

+
aθ

∆x2

(

eι∆x ξ − 2 + e−ι∆x ξ
)

ûn+1(ξ) ,

which can be further rewritten as
[

1− aθ
∆t

∆x2

(

eι∆x ξ − 2 + e−ι∆x ξ
)

]

ûn+1

=

[

1 + a(1− θ)
∆t

∆x2

(

eι∆x ξ − 2 + e−ι∆x ξ
)

]

ûn ,

or rather in a more compact form, with the usual notation λ = ∆t
∆x2 ,

ûn+1 = G ûn , G :=
1 + a(1− θ)λ

(

eι∆x ξ − 2 + e−ι∆x ξ
)

1− aθλ (eι∆x ξ − 2 + e−ι∆x ξ)
, (3.18)
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where G = G(a, θ, λ) is the so-called amplification factor of the scheme.
Through the analysis of G we have the stability according to the following
theorem (referring to [30],[25],[22], for the classical proof).

Theorem 9. A one-step finite difference scheme for the equation (3.1) is
stable iff there exists a constant K and fixed values ∆t0 , ∆x0 such that

|G| ≤ 1 +K∆t ,

for all ∆x ξ ∈ C and 0<∆t<∆t0 , 0<∆x<∆x0 .
Moreover, if G is independent from ∆t and ∆x, one can choose K = 0.

We aim at verifying the statement of Theorem 9 for the amplification factor
in (3.18) associated to the θ-methods. First, we focus on the term

eι∆x ξ − 2 + e−ι∆x ξ = 2 cos(∆x ξ)− 2 = −4 sin2
(∆x ξ

2

)

. (3.19)

We put the last expression into (3.18) and we obtain

G =
1− 4 a(1− θ)λ sin2(∆x ξ

2 )

1 + 4 aθλ sin2(∆x ξ
2 )

. (3.20)

We need to check the condition |G| ≤ 1 . Since λ > 0 , we always have that

1− 4 a(1− θ)λ sin2
(∆x ξ

2

)

≤ 1 + 4 aθλ sin2
(∆x ξ

2

)

,

therefore G ≤ 1 and it remains to analyze the case when G ≥ −1 to have
stability, namely from (3.20) this occurs (otherwise we have instability) for

4 a(1− 2θ)λ sin2
(∆x ξ

2

)

≤ 2 . (3.21)

Thanks to 0 ≤ sin2(∆x ξ
2 ) ≤ 1 , the above condition is fulfilled if it holds

4 a(1− 2θ)λ ≤ 2 .

In conclusion, for 0 ≤ θ < 1
2 the method is stable if and only if

λ ≤ 1

2a(1− 2θ)
, (3.22)

and for 1
2 ≤ θ ≤ 1 the method is stable for all λ .

In particular, the explicit scheme is stable if λ ≤ 1
2a , which is the well-known

parabolic CFL condition, while the implicit scheme and the Crank-Nicolson
scheme are unconditionally stable.

Remark 10. The parabolic CFL condition ∆t
∆x2 ≤ 1

2a is actually quite re-
strictive, because if we want to halve the space-step we have to take a quarter
of the time-step, with a relevant cost in terms of computational time. The
semi-implicit methods resolve this problem. Nevertheless, explicit schemes
are much simpler to be implemented, and they produce less numerical viscos-
ity with respect to the implicit ones, thus rehabilitating their use especially
in the context of CUDA GPU applications.
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3.1.3 The question of the Ultraviolet Catastrophe

The Fourier analysis gives also informations about the qualitative behaviour
of the numerical solution with respect to the underlying physical problem.

For simplicity, we consider x ∈ Ω = [0, 1] and we calculate an analytical
solution to (3.1) by separation of variables, i.e. with the special form

ū(t, x) = e−ak2t sin(kx) ,

where k is a real constant, which can be determined imposing the boundary
conditions (3.2), and we have k = mπ , m ∈ N . Any linear combination of
such solutions will satisfy the differential equation (3.1), so that we write

u(t, x) =
∑

m≥1

fm e
−a(mπ)2t sin(mπx) ,

with coefficients fm to be chosen in order to satisfy the initial data at t = 0 ,

u0(x) =
∑

m≥1

fm sin(mπx) .

This shows that fm , m = 1, 2, . . . , are just the coefficients of the expansion
in Fourier series of the given function, that is

fm = 2

∫ 1

0
u0(x) sin(mπx) dx .

Therefore, we have expressed the exact solution to the partial differential
equation as a Fourier series, and this expression is based on the observation
that a particular set of Fourier modes are exact solutions to (3.1).

Following [25], for the numerical solution we can use the expression (3.18),
thus obtaining ûn = [G(∆x ξ)]nû0 by iteration, and putting this back into (3.17)
we get

uni =

∞
∑

−∞

Ame
ιa(mπ)(i∆x)[g(mπ)]n. (3.23)

The low frequency terms in the above expansion give a good approximation
to the exact solution, but for large values of ξ the modes of the exact solution
are rapidly damped by the exponential factor e−ξ2∆t, whilst in the numerical
solution the damping factor G will became greater than 1 when λ > 1

2a(1−2θ) ,

for 0 ≤ θ < 1
2 , thus bringing the scheme into instability regimes.

In particular, from (3.21) we observe that the sharpest condition to be sat-
isfied for stability is when ∆x ξ ≃ π , for that sin2(∆x ξ

2 ) ≃ 1 , otherwise

also bigger values of λ would be possible as the factor sin2(∆x ξ
2 ) << 1 for

small frequencies ξ . Moreover, this explains why the instabilities cannot be
resolved by simply reducing the space-step and, of course, these unstable
Fourier modes grow unboundedly as n increases (see Section 5.2.2).
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This phenomenon is known as the Ultraviolet Catastrophe, referring to
problems typically occurring at high frequencies, and it takes place in a large
class of physical models : for the one-dimensional heat equation, for exam-
ple, all frequencies are dissipated in the analytical model, whereas only low
frequencies are correctly treated by the numerical schemes, whilst high fre-
quencies are responsible for spurious oscillations if the CFL-constraint is vio-
lated. We will see its consequences on the numerical results in Section 5.2.2,
in the sense that the solution is forced to highly oscillate if the condition of
stability is violated.

3.1.4 Modified Equation and Consistency

The stability and accuracy of finite difference/volume approximations to
simple linear PDEs can also be analyzed by studying the so-called modi-
fied equation [37],[25]. Aside from round-off errors, the modified equation
represents the actual partial differential equation solved when a numerical
solution is computed using finite difference/volume methods. The modified
equation is derived by first expanding each term of a difference scheme in
Taylor series, and then eliminating derivatives higher than a certain order
by the algebraic manipulations of the model under study. In addition to
the determination of necessary and sufficient conditions for computational
stability, a truncated version of the modified equation can be used to gain
insight into the nature of both dissipative and dispersive errors.

As we will see in this section, one has to be rather careful in using the
modified equation for the numerical issues of second order equations.
For this purpose, we refer to the finite difference explicit scheme (3.6) for
the one-dimensional homogeneous heat equation, and we substitute into the
discrete equation the truncated Taylor’s expansions of the exact solution at
the grid points (tn, xi) . By identifying uni = u(tn, xi) , with some abuse of
notation for the sake of readability, we obtain

un+1
i − uni

∆t
=
uni +∆t

(

ut
)n

i
+ ∆t2

2

(

utt
)n

i
+O(∆t3)− uni

∆t
,

together with

uni+1 − 2uni + uni−1

∆x2

=
uni +∆x

(

ux
)n

i
+ ∆x2

2

(

uxx
)n

i
+ ∆x3

3!

(

uxxx
)n

i
+ ∆x4

4!

(

uxxxx
)n

i
+O(∆x5)

∆x2

− 2uni
∆x2

+
uni −∆x

(

ux
)n

i
+ ∆x2

2

(

uxx
)n

i
− ∆x3

3!

(

uxxx
)n

i
+ ∆x4

4!

(

uxxxx
)n

i
+O(∆x5)

∆x2
,

so that we deduce, dropping the sub/super-scripts for simplicity,

ut +
∆t

2
utt +O(∆t2)− a

[

uxx +
∆x2

12
uxxxx +O(∆x3)

]

= 0 . (3.24)
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We derive the equation (3.1) once for time and twice for space, to obtain

utt = a uxxt , utxx = a uxxxx =⇒ utt = a2uxxxx ,

through which substituting in (3.24) we have

ut − a uxx +
(

a2
∆t

2
− a

∆x2

12

)

uxxxx +O(∆t2,∆x3) = 0 . (3.25)

It seems reasonable to expect instabilities when the coefficient of the fourth
order derivative becomes positive, so the condition for stability coming from
the analysis of the modified equation would be ∆t ≤ ∆x2

6a , which is by far

more restrictive than the condition ∆t ≤ ∆x2

2a obtained by the Von Neumann
analysis. Then, the modified equation analysis may have no use for parabolic
problems, although it remains relevant for hyperbolic problems [22].
However, it is necessary to perform the above computations in order to char-
acterize the (local) pointwise consistency of the method, therefore from (3.24)
and (3.25) we conclude that the explicit scheme is consistent to the order 1
in time and order 2 in space.

As we have seen in (3.20), the amplification factor G is real and insta-
bility occurs first for the most oscillatory mode ∆x ξ ≃ π, when the ampli-
fication factor becomes less than −1. In [25], the dilemma of the modified
equation is justified by taking ∆x ξ = π − ∆x ξ′ for the Fourier modes in
the range |∆x ξ| ≤ π, where |∆x ξ′| is small for the most oscillatory modes
(the power expansions of this quantity correspond to expansions in spatial
derivatives of the amplitudes of the oscillatory modes). Under this hypoth-
esis, we split the solution u into a smooth part us and an oscillatory part
uo, and then uni = (us)ni + (−1)i+n(uo)ni . We focus only on the oscillatory
modes and we take out the common factor (−1)i+n, obtaining from (3.6)

−(uo)n+1
i = (uo)ni + aλ

[

− (uo)ni+1 − 2(uo)ni − (uo)ni−1

]

.

We compute the modified equation for the right-hand side,

−(uo)n+1
i = (1−2aλ)(uo)ni −2aλ

[

(uo)ni +
∆x2

2
(uoxx)

n
i +

∆x4

4!
(uoxxxx)

n
i +O(∆x5)

]

,

and we estimate the time derivative of the oscillatory term at the grid points
using the last equation,

(uo)t ≃
[

(uo)n+1
i − (uo)ni

]

∆t
=

1

∆t
(4aλ− 2)(uo)ni

+
2aλ

∆t

[∆x2

2
(uoxx)

n
i +

∆x4

4!
(uoxxxx)

n
i +O(∆x5)

]

.

Looking at the coefficient of (uo)ni , we can observe exponential growth when
λ > 1

2a , otherwise the oscillations are damped out exponentially in time,
which is the same condition obtained by the Von Neumann analysis for the
explicit scheme performed in the previous section.
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3.1.5 Discrete Maximum Principle

We enunciate in the following theorem the discrete maximum principle of θ-
methods for the one-dimensional homogeneous heat equation, to determine
conditions on the numerical parameters for which its validity is guaranteed.

Theorem 10. Let uni be the approximate solution generated by the θ-method
under the condition (1 − θ)λ < 1

2a . Let umin = min{ui0 , i = 0, 1, . . . , Nx; 0}
and umax = max{ui0 , i = 0, 1, . . . , Nx; 0}, with ui0 = u0(xi) the approximate
initial data. Then, it holds

umin ≤ uni ≤ umax , ∀ n ≥ 0 , i = 0, 1, . . . , Nx . (3.26)

Proof. We rewrite 3.13 as

(1 + 2aθλ)un+1
i =

[

1− 2a(1− θ)λ
]

uni

+ a(1− θ)λ
(

uni+1 + uni−1

)

+ a θλ
(

un+1
i+1 + un+1

i−1

)

.

Under the hypothesis (1 − θ)λ < 1
2a , all the coefficients of the right-hand

side of this equation are positive and their sum is equal to (1 + 2a θλ).
We suppose that the maximum is attained at the interior point (xi, t

n+1),
and we denote by u∗ = max{uni−1, u

n
i+1, u

n
i , u

n+1
i−1 , u

n+1
i+1 }, then umax ≤ u∗.

But, by definition of the maximum, we have that umax = u∗, so the maxi-
mum must be attained at all the six points (since the coefficients are strictly
positive). We can reiterate this argument until reaching the boundaries at
i = 0 or i = Nx, and coming back in time until the initial data. So, we have
demonstrated the right-hand side of (3.26). For the left-hand inequality, the
procedure is the same. ✷

We can extend the above result to more general cases, for example with
u(t, ax) = g1(t) and u(t, bx) = g2(t), ∀ t ≥ 0. Thus, we would have that

umax = max
{

ui0 , i = 0, 1, . . . , Nx ; g
n
1 , g

n
2 , n = 1, 2, . . . , Nt

}

,

umin = min
{

ui0 , i = 0, 1, . . . , Nx ; g
n
1 , g

n
2 , n = 1, 2, . . . , Nt

}

,

where gn1 and gn2 are numerical approximations of the boundary conditions,
gn1 = g1(t

n) and gn2 = g2(t
n), respectively.

The condition (1− θ)λ < 1
2a is more restrictive than that for the stabil-

ity, except for the explicit scheme (θ = 0) where λ ≤ 1
2a corresponds also

to the condition under which the discrete maximum principle holds. The
implicit scheme (θ = 1) satisfies the discrete maximum principle for all λ,
while the Crank-Nicolson scheme holds if λ ≤ 1

a . Obviously, another impor-
tant concept is the non-singularity of the matrix, because this guarantees
the existence of a unique solution to the algebraic system defining all linear
schemes : for the explicit scheme (3.7) it holds for λ 6= 1

2a , for the implicit
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L2-stability maximum/minimum nonsingular
principle matrix

explicit ∆t ≤ ∆x2

2a ∆t ≤ ∆x2

2a
∆t
∆x2 6= 1

2a

Crank-Nicolson ∀ ∆t,∆x ∆t ≤ ∆x2

a
∆t
∆x2 6= 1

a

implicit ∀ ∆t,∆x ∀ ∆t,∆x ∀ ∆t,∆x

Table 3.1: well-posedness requirements for the discrete heat equation

scheme the matrix (3.9) is always nonsingular, and for the Crank-Nicolson
scheme (3.12) it holds for λ 6= 1

a . We summarize these results in Table (3.1).

Now, we analyze the matrix-form Un+1 =M ·Un, M ∈ R
(Nx−1)×(Nx−1),

of the numerical schemes introduced in Section 3.1.1, to recover the results
previously stated by checking the properties in Table 2.5.

For the explicit three-points scheme, we observe that the matrix (3.7) is
quadratic and tri-diagonal, symmetric, nonsingular if λ 6= 1

2a and positive
if λ < 1

2a (all its entries are strictly positive), which implies that Mexp is
irreducible [28]. Moreover, the sum of elements on the rows is equal to 1,
except for the rows including the boundary conditions, i.e. the first and the
last one. So, all the properties listed in Table 2.5 are satisfied and, according
to the analysis of Theorem 8, this method satisfies the maximum principle
under the CFL-condition λ < 1

2a (because the method is also L2-stable), as
reported in Table 3.1.

For the implicit scheme, we consider the matrix of the formulation (3.10),
which is the inverse of the nonsingular matrix (3.9). Therefore, we have that
M−1

imp is tri-diagonal, symmetric and nonnegative for all λ, thus verifying the
sufficient conditions required in Table 3.1. We observe that the matrixMimpl

in (3.9) verifies the conservation property, but this is not necessarily true for
its inverse. As a matter of fact, for properties of the inverse matrix M−1

imp ,
we have to resort to the theory of M-matrices stated in [28].
Indeed, from (3.9) we obtain

Mimp = (1 + 2aλ)I− aλB ∈ R
(Nx−1)×(Nx−1),

where I denotes the identity matrix and B = diag(d,−1) + diag(d, 1), with
d = ones(Nx − 2), which has spectral radius strictly less than 1 , indepen-
dently from its size. Therefore, Mimp is a nonsingular M-matrix, symmetric
and positive definite, which implies that its inverse M−1

imp exists and it is a
positive matrix (so Mimp is also said to be monotone), i.e. all the entries of
M−1

imp are positive, thus ensuring the positivity of the numerical scheme.
According to [23], since the matrix Mimp has rows with nonnegative sum,
the implicit scheme satisfies the discrete maximum principle.

For the Crank-Nicolson scheme (3.12), the situation is more complicated,
as we have to compute the matrixM−1

1 ·M2 , but it is guaranteed thatM1 is
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invertible (and, moreover, the scheme is contractive). Nevertheless, the anal-
ysis of the matrix does not allow neither checking the results obtained with
the Von Neumann stability analysis nor adding significant observations...

3.2 The heterogeneous linear case

The simplest model of diffusion in heterogeneous media has been introduced
in Section 2.3, which can be effectively generalized to anisotropic operators
in higher dimensions, and it is given by

ut =
(

a(x)ux
)

x
= a′(x)ux + a(x)uxx , (3.27)

with a nonnegative function a(x) for the correct definition of one-dimensional
parabolic equations. The diffusion coefficient depending on x, the density u
feels it in a different way according to the physical position.

Remark 11. The right-hand side of equation (3.27) is meaningful only for
enough regularity of the solution, whereas the conservation form on the left-
hand side has the advantage to be analytically relevant also for discontinuous
data (both the solution and the diffusion coefficient). Indeed, the theory
developed in [3] generally holds for bounded data, in the integral/weak sense.

We consider the following initial data and Neumann boundary conditions,

u(0, x) = u0(x) for x ∈ Ω = [ax, bx] ,

∂u

∂n

∣

∣

∂Ω
= 0 for t ∈ (0, T ) .

We discretize the computational domain as in (3.3), and the Neumann
boundary conditions in the one-dimensional case can be rewritten as

0 = ux(t, x0) ≃
u(t, x0 +∆x)− u(t, x0)

∆x
=⇒ u(t, x0) ≃ u(t, x1) ,

0 = ux(t, xNx) ≃
u(t, xNx)− u(t, xNx −∆x)

∆x
=⇒ u(t, xNx) ≃ u(t, xNx−1) ,

where x0 = ax and xNx = bx are the initial and final points of the grid.
From the numerical point of view, the previous formulas translate into

u(tn, x0) = u(tn, x1) , u(tn, xNx) = u(tn, xNx−1) , (3.28)

for all n = 0, 1, . . . , Nt , also known as no-flux boundary conditions.
To construct an approximation of the solution u to (3.27), we compute

the values at the grid points uni ≃ u(tn, xi) and we consider a discretization
of the diffusion function through ai = a(xi) . We have already seen in Sec-
tion 2.5.2 that the simple finite difference Chain Rule method generally fails
to satisfy the discrete maximum principle, so it is not useful in practice.
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According to (2.31) in Section 2.4.2, the finite difference Standard Discretiza-
tion method built on a staggered grid, and readapted to the one-dimensional
framework, becomes

un+1
i − uni

∆t
=

1

∆x

(

ai + ai+1

2
· u

n
i+1 − uni
∆x

− ai−1 + ai
2

· u
n
i − uni−1

∆x

)

,

or rather

un+1
i = α1

i

∆t

2∆x2
uni−1 +

(

1− α2
i

∆t

2∆x2

)

uni + α3
i

∆t

2∆x2
uni+1 , (3.29)

where, for i = 1, 2, . . . , Nx − 1 , we have set

α1
i = ai−1 + ai , α2

i = ai+1 + 2ai + ai−1 , α3
i = ai + ai+1 , (3.30)

and the boundary values are computed as un0 = un1 and unNx
= unNx−1 , for

all n = 1, 2, . . . , Nt , according to (3.28).
Because of the typical conservation/divergence form of equation (3.27),

we can propose an alternative derivation of the above scheme by applying
the finite volume method, following the arguments in Section 2.3.
Finally, we get precisely (3.29)-(3.30) also with the Nonnegative Method
derived in Section 2.4.3, since the nonnegative modification eventually con-
cerns only the mixed derivatives, which are not present in this case.

Now, we rewrite the numerical scheme (3.29) in compact matrix-form,

Un+1 =M · Un, (3.31)

with Un = (un1 , u
n
2 , . . . , u

n
Nx−1) ∈ R

Nx−1 and M the (Nx − 1) × (Nx − 1)
tri-diagonal matrix with entries (3.30), namely

M =

[

diag
( ∆t

2∆x2
α3
i ,+1

)

1≤i≤Nx−2
;

diag
(

1− ∆t

2∆x2
α2
i

)

1≤i≤Nx−1
;

diag
( ∆t

2∆x2
α1
i ,−1

)

2≤i≤Nx−1

]

,

(3.32)

where diag(·) denotes the principal diagonal of M , while diag(·,−1) and
diag(·,+1) indicate its lower and upper first diagonals, respectively, so that

M =











1− ∆t
∆x2

a0+2a1+a2
2

∆t
∆x2

a1+a2
2 0 · · ·

∆t
∆x2

a1+a2
2 1− ∆t

∆x2
a1+2a2+a3

2
∆t
∆x2

a2+a3
2 · · ·

0 ∆t
∆x2

a2+a3
2 1− ∆t

∆x2
a2+2a3+a4

2 · · ·
...

...
...

. . .
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Let us verify the properties listed in Table (2.5) for the fully discrete
problem (3.31) with matrix M given above : symmetry is obvious from the
definition, and also conservation as the sum of the elements on each row is
equal to 1 (except for the first and the last component); the non-negativity
of the off-diagonal entries is ensured from ai > 0 for all 0 ≤ i ≤ Nx , so that
∆t

2∆x2α
1
i > 0 , 2 ≤ i ≤ Nx − 1 , and ∆t

2∆x2α
3
i > 0 , 1 ≤ i ≤ Nx − 2 , while for

the diagonal elements we ask for (1− ∆t
2∆x2α

2
i ) ≥ 0 , 1 ≤ i ≤ Nx− 1 , namely

∆t

∆x2
· ai−1 + 2ai + ai+1

2
≤ 1 , ∀ i = 1, 2, . . . , Nx − 1 . (3.33)

We define
amax := max

0≤i≤Nx

ai

and we substitute into (3.33) to obtain the following sufficient condition :

∆t

∆x2
ai−1 + 2ai + ai+1

2
≤ ∆t

2∆x2
amax ≤ 1 =⇒ ∆t ≤ ∆x2

2 amax
, (3.34)

which generalizes the CFL-condition of the explicit scheme for homogeneous
heat equation stated in Table 3.1, and it has been already derived in (2.51).
Therefore, all the theoretical hypotheses of Theorem 8 being verified, the
validity of the discrete maximum principle is proven.

We conclude this section by establishing the stability of the scheme pre-
sented above. We recall the matrix-form (3.31) and we want that

||Un+1||∗ ≤ ||M || ||Un||∗ , ∀ n = 1, 2, . . . ,

with ||M || ≤ 1 , for some operator norm defined by

||M || = sup
U∈Rm

||M · U ||∗
||U ||∗

, m = Nx − 1 ,

where || · ||∗ is the underlying vectorial norm.
In particular, when || · ||∗ = || · ||∞ the following identity holds

||M ||∞ = max
1≤j≤m

m
∑

i=1

|mij | ,

where i and j are indicators for the rows and the columns ofM , respectively,
and M is a m×m matrix (refer to [30]).

SinceM in (3.32) is symmetric, with the sum of rows equal to 1 (leading
to a convex combination of the vector elements), and moreover nonnegative
if (3.34) holds, we have that ||M ||∞ ≤ 1, and so ||Un+1||∞ ≤ ||Un||∞ .
This is perfectly consistent with the requirement of the discrete maximum
principle, because at every fixed time tn+1 the numerical solution remains
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bounded in l∞-norm with respect to time tn. Moreover, we have stability
also in the l2-norm, due to the equivalence of the norms in R

m. Indeed,
requiring stability in l∞-norm is a stronger statement than in l2-norm, and
so the validity of the maximum principle implies also the l2-stability. We
thus conclude that the scheme is stable if the condition (3.34) is satisfied.

Remark 12. The type of analysis performed in this section can be extended
to other cases, according to a general protocol : if we have a matrix-form in
whose diagonal elements are less than 1, and it holds the convex combination
of its row elements, this assures the overall stability of the method.

3.3 Other two scalar heterogeneous models

For a positive function varying on the space, we consider the diffusion model

ut = a(x)uxx =
(

a(x)ux
)

x
− a′(x)ux , (3.35)

which is not a conservation law (there is no way to rewrite equation (3.35)
in conservation form). However, it can be interpreted as an approximation
of a diffusion equation (3.27) where a(x) has very weak slope a′(x) ≃ 0 , i.e.
the function a is almost constant.

For the discretization of the time derivative, we use the same explicit
scheme calculated in the previous cases, while for the second order term
the finite difference and the finite volume approach gives exactly the same
discretization : indeed, using (2.8) we have

un+1
i − uni

∆t
= ai

uni+1 − 2uni + uni−1

∆x2
,

which can be rewritten as

un+1
i =

( ∆t

∆x2
ai
)

uni+1 +
(

1− 2
∆t

∆x2
ai
)

uni +
( ∆t

∆x2
ai
)

uni−1 ,

and the same expression is deduced from the discrete integral form

1

∆t

∫ tn+1

tn

(

1

∆x

∫

Ci

a(x)uxx dx

)

dt ≃ ai
∆x

∫ x
i+1

2

x
i− 1

2

uxx(t
n, x) dx

=
ai
∆x

[

ux(t
n, xi+ 1

2

)− ux(t
n, xi− 1

2

)
]

≃ ai
∆x

(

uni+1 − uni
∆x

− uni − uni−1

∆x

)

.

We compute the matrix-form of the scheme, with the tri-diagonal matrix

M =

[

diag
( ∆t

∆x2
ai ,+1

)

1≤i≤Nx−2
;

diag
(

1− 2
∆t

∆x2
ai

)

1≤i≤Nx−1
;

diag
( ∆t

∆x2
ai ,−1

)

2≤i≤Nx−1

]

,
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so that

M =











1− 2 ∆t
∆x2a1

∆t
∆x2a1 0 · · ·

∆t
∆x2a2 1− 2 ∆t

∆x2a2
∆t
∆x2a2 · · ·

0 ∆t
∆x2a3 1− 2 ∆t

∆x2a3 · · ·
...

...
...

. . .











.

Concerning the properties in Table 2.5, we have the conservation (the sum
of the rows is equal to 1) and the non-negativity of all entries if

2
∆t

∆x2
ai < 1 , ∀ i = 1, 2, . . . , Nx − 1 =⇒ ∆t <

∆x2

2 amax
, (3.36)

with amax = max1≤i≤Nx−1 ai , which is the same condition as in (3.34).
Therefore, the validity of the discrete maximum principle is satisfied.
The only missed property is the symmetry and this can explained as we are
not dealing with a proper conservation form.

Finally, we consider the one-dimensional parabolic equation

ut =
(

a(x)u
)

xx
=
(

a′(x)u+ a(x)ux
)

x

= a′′(x)u+ 2a′(x)ux + a(x)uxx ,
(3.37)

which is a conservation law (2.21) with flux F (t, x) =
(

a(x)u
)

x
belonging

to the class of porous media equations [8],[36], then it is the heterogenous
linear version of (3.14) with Φ(x ;u) = a(x)u, so that (3.16) is satisfied.

Many references in the literature are devoted to the two-dimensional
case, also adding a reaction term for describing more general phenomena,

∂tu−∆Φ = f(u) , Φ = Φ(x, y ;u) , (x, y) ∈ Ω ⊂ R
2,

that is common for modeling the diffusion in porous media, under the struc-
tural assumption that Φ : Ω× R

+ → R , so that the above equation can be
rewritten as

∂tu−∇ ·
(

∇Φ+ Φ′∇u
)

= f(u) ,

with the first term in parenthesis corresponding to the contribution of trans-
port and the second term reproducing a nonlinear heterogeneous but purely
isotropic diffusion for Φ′ ∈ R

+. Therefore, there is no way to rewrite the
anisotropic model (1.1) in such form : in comparison with isotropic non-
linear diffusion, anisotropic tensors dare to reproduce the (averaged) choice
of motion of the agents composing the density. Certainly, we could also
include a nonlinearity in the model (1.1) by assuming that A = A(x, y ;u)
with A : Ω × R

+ → R
2×2, for example to describe the effects of crowding

on the spatial domain (higher density values tends to reduce the diffusivity
coefficients).

74



Despite the fact that models like (3.14) are not of interest in this report,
we briefly derive finite difference/volumes schemes for (3.37), using the stag-
gered grid in Figure 2.2 mainly because of the conservation form. Therefore,
from (3.15) we have

un+1
i − uni

∆t
=
ai+1u

n
i+1 − 2aiu

n
i + ai−1u

n
i−1

∆x2
, (3.38)

or rather

un+1
i =

( ∆t

∆x2
ai+1

)

uni+1 +
(

1− 2
∆t

∆x2
ai
)

uni +
( ∆t

∆x2
ai−1

)

uni−1 ,

which again can be reformulated in terms of the finite volume approach,

1

∆t

∫ tn+1

tn

(

1

∆x

∫

Ci

(

F (t, x)
)

x
dx

)

dt ≃ 1

∆x

∫ x
i+1

2

x
i− 1

2

(

F (tn, x)
)

x
dx

=
1

∆x

[

F (tn, x)
∣

∣

∣

x
i+1

2

− F (tn, x)
∣

∣

∣

x
i− 1

2

]

≃ 1

∆x

[

ai+1 u
n
i+1 − ai u

n
i

∆x
− ai u

n
i − ai−1 u

n
i−1

∆x

]

where we have set F (tn, x) =
(

a(x)u(tn, x)
)

x
.

As usual, we compute the matrix-form of the scheme with

M =

[

diag
( ∆t

∆x2
ai+1 ,+1

)

1≤i≤Nx−2
;

diag
(

1− 2
∆t

∆x2
ai

)

1≤i≤Nx−1
;

diag
( ∆t

∆x2
ai−1 ,−1

)

2≤i≤Nx−1

]

,

so that

M =











1− 2 ∆t
∆x2a1

∆t
∆x2a2 0 · · ·

∆t
∆x2a1 1− 2 ∆t

∆x2a2
∆t
∆x2a3 · · ·

0 ∆t
∆x2a2 1− 2 ∆t

∆x2a3 · · ·
...

...
...

. . .











.

We note that this matrix has the same diagonal of the previous one, so we
find the same condition for the non-negativity of the entries,

∆t ≤ ∆x2

2 amax
, amax := max

1≤i≤Nx−1
ai .

Moreover, it is easy to check that the other properties in Table 2.5 are not
satisfied, and thus an l∞-stability cannot be guaranteed.
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Chapter 4

The two-dimensional Anisotropic
and Heterogeneous case

The main target of this report is to present the problems arising when dealing
with higher order anisotropic operators, because the interaction of diffusions
spreading differently along different directions may actually lead to complex
and interesting phenomena (see [32],[35],[14],[31],[27],[15], for instance).
We restrict to the two-dimensional case, that is motivated by several applica-
tions to real systems, and we consider the equation (1.1) with an anisotropic
and heterogeneous diffusion tensor (1.2), which is also symmetric, namely

∂tu = ∇ ·
([

a(x, y) c(x, y)
c(x, y) b(x, y)

]

∇u
)

, t ∈ R
+, (x, y) ∈ R

2, (4.1)

for u(t;x, y) ∈ R
+, under the uniform parabolicity condition given by (1.7).

4.1 Diagonal diffusion tensors

In the simplest case, the directions where the material spreads faster are
parallel to the x and y axes, i.e. c = 0, although most of the times this is
not the case. The model of diagonal diffusion is however a good represen-
tation for several physical situations, for example when the main diffusion
directions are locally orthogonal and rotated by some known angle ϑ from
the x-axis, as Figure 4.1 shows.
Let us denote this direction by ξ and its normal by η , and we express them
with respect to x, y and through ϑ as

ξ = x cosϑ+ y sinϑ , η = −x sinϑ+ y cosϑ ,

so the variables x and y can be derived from

x = ξ cosϑ− η sinϑ , y = ξ sinϑ+ η cosϑ .
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Figure 4.1: example of orthogonal non-Cartesian diffusion directions

Within the (ξ, η)-referential frame, we can write the diffusion term as

∇(ξ,η) ·
[

A(ξ, η) · ∇(ξ,η)u(t; ξ, η)
]

, (4.2)

where A is a 2× 2 diagonal matrix of the form

A =

[

a(ξ, η) 0
0 b(ξ, η)

]

. (4.3)

In order reproduce the diffusion operator (4.2)-(4.3) in Cartesian coordi-
nates, we expand and we substitute the derivatives calculated in terms of x
and y , that are

uξ =
∂u

∂x

∂x

∂ξ
+
∂u

∂y

∂y

∂ξ
= ux cosϑ+ uy sinϑ ,

uη =
∂u

∂x

∂x

∂η
+
∂u

∂y

∂y

∂η
= −ux sinϑ+ uy cosϑ ,

uξξ =
∂

∂ξ
(ux cosϑ+ uy sinϑ)

=
(∂ux
∂x

∂x

∂ξ
+
∂ux
∂y

∂y

∂ξ

)

cosϑ+
(∂uy
∂x

∂x

∂ξ
+
∂uy
∂y

∂y

∂ξ

)

sinϑ

=
(

uxx cosϑ+ uxy sinϑ
)

cosϑ+
(

uxy cosϑ+ uyy sinϑ
)

sinϑ

= uxx cos
2 ϑ+ 2uxy sinϑ cosϑ+ uyy sin

2 ϑ

= uxx cos
2 ϑ+ uxy sin(2ϑ) + uyy sin

2 θ ,

uηη =
∂

∂η
(−ux sinϑ+ uy cosϑ)

= −
(

− uxx sinϑ+ uxy cosϑ
)

sinϑ+
(

− uxy sinϑ+ uyy cosϑ
)

cosϑ

= uxx sin
2 ϑ− uxy sin(2ϑ) + uyy cos

2 ϑ ,
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where we used the classical equality 2 sinϑ cosϑ = sin(2ϑ), so that we obtain

(

a(ξ, η)uξ
)

ξ
+
(

b(ξ, η)uη
)

η
= a uξξ + aξ uξ + bη uη + b uηη

=
(

ax cos
2 ϑ+ bx sin

2 ϑ
)

ux +
ay − by

2
sin(2ϑ)ux

+
(

a cos2 ϑ+ b sin2 ϑ
)

uxx + (a− b) sin(2ϑ)uxy

+
ax − bx

2
sin(2ϑ)uy +

(

ay sin
2 ϑ+ by cos

2 ϑ
)

uy

+
(

b cos2 ϑ+ a sin2 ϑ
)

uyy

= ∇(x,y) ·
([

α(x, y) γ(x, y)
γ(x, y) β(x, y)

]

· ∇(x,y)u

)

,

(4.4)

where identify the entries of the new matrix as following,

α = a cos2 ϑ+ b sin2 ϑ , β = a sin2 ϑ+ b cos2 ϑ , γ =
a− b

2
sin(2ϑ) .

We note that the matrix in the (x, y)-coordinates is symmetric and positive
definite (it is actually the counter-diagonalization of the original matrix, so
with the same eigenvalues) : indeed, we have α, β > 0 and γ2 < αβ since

γ2 − αβ = (a− b)2 sin2 ϑ cos2 ϑ

− (a2 + b2) sin2 ϑ cos2 ϑ− a b (cos4 ϑ+ sin4 ϑ)

= −2 a b cos2 ϑ sin2 ϑ− a b (cos4 ϑ+ sin4 ϑ) < 0 ,

∀ a, b > 0, ∀ϑ, so it is a good candidate for being a diffusion tensor, the
rotation of coordinates preserving the positive definiteness.
For the isotropic case a = b , we obtain a circular diffusion with no preferred
direction, so the rotation of coordinates does not make sense in that context
since the transformed matrix must coincide with the original one.

As an example, suppose that we have a preferential diffusion rotated with
an angle ϑ = 45◦, and another crossing perpendicularly as in Figure 4.1.
To model such a situation we have to correctly choose the diffusion functions
a, b and c. If we fix a constant d > 0 and we choose the data

a(x, y) =

{

d for y = x

0 otherwise
, b(x, y) =

{

d for y = 1− x

0 otherwise
, c(x, y) = 0 ,

as a matter of fact, we state that the direction y = x has faster propagation
along the x-axis, and not along the angle ϑ, and the same holds for y = 1−x.
So we are modelling the situation in Figure 4.2, which is different from the
situation we want to take into account. To solve this problem, the only
consistent approach is that of computing a rotation of coordinates, thus
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getting the new diffusion tensor (4.4) depending on ϑ. In this way, we recover
the case in which the direction of propagation is a combination along the
x-axis and the y-axis. In [39], the authors propose some geometrical remarks
about the case described in this section, and they also explore the issue of the
interaction between Cartesian grids and non-Cartesian diffusion directions
through numerical experiments.

Figure 4.2: wrong diffusion along orthogonal non-Cartesian directions

4.2 Discrete maximum principle for two-dimensional
problems

We will analyze in details three different cases of the model (4.1), according
to the specific form of the diffusion tensor, namely

• the diagonal anisotropic and homogeneous case, involving different
constant diffusions only along the Cartesian axes, with a(x, y) = a ,
b(x, y) = b and c(x, y) = 0 , so that the equation becomes

ut = ∇ ·
(

a ux , b uy
)T

= a uxx + b uyy . (4.5)

• the diagonal anisotropic and heterogeneous case, describing different
diffusions along the Cartesian axes which vary also depending on the
space position, by means of the parabolic equation

ut =
(

a(x, y)ux
)

x
+
(

b(x, y)uy
)

y
. (4.6)

• the fully anisotropic but homogeneous case, with c(x, y) 6= 0 , given by

ut =
(

a ux + c uy
)

x
+
(

c ux + b uy
)

y
, (4.7)

which involves the mixed derivatives with all different constant diffu-
sion coefficients.
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For simplicity, we restrict to rectangular domains as in Figure 2.1 or rather as
in Figure 2.2, and we consider homogeneous Dirichlet boundary conditions,
which translate into the numerical framework as unij = 0 for i ∈ {0, Nx} and
j ∈ {0, Ny} , for all finite difference/volume schemes introduced in the next
sections.

4.2.1 Diagonal anisotropic homogeneous diffusion

We use the notations of Section 2.2 and Section 2.3.
To construct finite difference discretizations, we consider the equation (4.5)

at the grid points (tn;xi, yj) and we apply (2.10) and (2.14), so that we can
assemble the fully discrete scheme as

un+1
ij − unij

∆t
= a

uni+1,j − 2unij + uni−1,j

∆x2
+ b

uni,j+1 − 2unij + uni,j−1

∆y2
, (4.8)

which finally looks like

un+1
ij = a

∆t

∆x2
(

uni+1,j + uni−1,j

)

+
(

1− 2a
∆t

∆x2
− 2b

∆t

∆y2

)

unij

+ b
∆t

∆y2
(

uni,j+1 + uni,j−1

)

,

(4.9)

for i = 1, 2, . . . , Nx − 1 and j = 1, 2, . . . , Ny − 1 .
We recover the same discretization through the finite volume method,

starting from the integral averages of the equation (4.5) on the grid cells (2.1),
according to (2.4). Indeed, we perform the two-dimensional analogue of (2.23)
and we use (2.24) for the time derivative,

1

∆t

∫ tn+1

tn

(

1

∆x∆y

∫

Cij

ut dx dy

)

dt

=
1

∆t
· 1

∆x∆y

∫

Cij

[

u(tn+1;x, y)− u(tn;x, y)
]

dx dy ≃
un+1
ij − unij

∆t
,

(4.10)

while for the term in divergence form, we approximate the time-average with
the values at tn (forward Euler scheme) and then we apply the divergence
theorem to obtain

1

∆x∆y

∫

Cij

∇ ·
([

a 0
0 b

]

·
[

ux(t
n;x, y)

uy(t
n;x, y)

])

dx dy

=
1

∆x∆y

∫

∂Cij

[

a ux(t
n, s) , b uy(t

n, s)
]

· ~ν ds ,
(4.11)

with the functions expressed in local variables s ∈ ∂Cij , where ∂Cij denotes
the boundary of the cell Cij , referring to Figure 4.3,

∂Cij = [A,B]
∣

∣

y
j− 1

2

∪ [B,C]
∣

∣

x
i+1

2

∪ [C,D]
∣

∣

y
j+1

2

∪ [A,D]
∣

∣

x
i− 1

2

(4.12)
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and ~ν = (νk) , k = 1, 2, 3, 4, collects the normal vectors at the intervals
composing ∂Cij . The notation [A,B]

∣

∣

y
j− 1

2

indicates, for example, all the

points (x, y) where y is fixed at yj− 1

2

and x varies in the interval [xi− 1

2

, xi+ 1

2

].

Figure 4.3: boundaries of the grid cell Cij

We proceed with explicit calculations from (4.11), where the boundary inte-
gral can be decomposed into four parts according to the geometrical setting
in Figure 4.3, and we further simplify the notation using fn(·) = f(tn, ·) ,

F1 =
1

∆x∆y

∫ B

A

[

a unx(x, yj− 1

2

) , b uny (x, yj− 1

2

)
]

·
[

0
−1

]

dx

= − b

∆x∆y

∫ x
i+1

2

x
i− 1

2

uny (x, yj− 1

2

) dx ≃ − b

∆y
uny (xi, yj− 1

2

) ≃ − b

∆y
·
unij − uni,j−1

∆y
,

F2 =
1

∆x∆y

∫ C

B

[

a unx(xi+ 1

2

, y) , b uny (xi+ 1

2

, y)
]

·
[

1
0

]

dy

=
a

∆x∆y

∫ y
j+1

2

y
j− 1

2

unx(xi+ 1

2

, y) dy ≃ a

∆x
unx(xi+ 1

2

, yj) ≃
a

∆x
·
uni+1,j − unij

∆x
,

F3 =
1

∆x∆y

∫ D

C

[

a unx(x, yj+ 1

2

) , b uny (x, yj+ 1

2

)
]

·
[

0
1

]

dx

=
b

∆x∆y

∫ x
i+1

2

x
i− 1

2

uny (x, yj+ 1

2

) dx ≃ b

∆y
uny (xi, yj+ 1

2

) ≃ b

∆y
·
uni,j+1 − unij

∆y
,

F4 =
1

∆x∆y

∫ D

A

[

a unx(xi− 1

2

, y) , b uny (xi− 1

2

, y)
]

·
[

−1
0

]

dy

= − a

∆x∆y

∫ y
j+1

2

y
j− 1

2

unx(xi− 1

2

, y) dy ≃ − a

∆x
unx(xi− 1

2

, yj) ≃ − a

∆x
·
unij − uni−1,j

∆x
,
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where we made use of the approximation 1
∆x∆y

∫

x
i+1

2
x
i− 1

2

f(x, yj) dx ≃ 1
∆yf(xi, yj) ,

for example. We sum these terms and we equalize to the time-discretization (4.10),
thus obtaining the same finite difference scheme (4.9).

We rewrite (4.9) in matrix-form Un+1 = M · Un, where Un is now is a
column vector in R

(Nx−1)×(Ny−1) given by

Un = (Un
i1, U

n
i2, . . . , U

n
i,Ny−1)

T , i = 1, 2, . . . , Nx − 1 ,

with entries

Un
ij = (un1j , u

n
2j , . . . , u

n
Nx−1,j)

T , j = 1, 2, . . . , Ny − 1 ,

and the matrix M ∈ R
((Nx−1)×(Ny−1))2 is a block-matrix in the form

M =
[

diag(D2,−1) ; diag(D1) ; diag(D2, 1)
]

,

where the lower-block and the upper-block matrices are diagonal as

D2 =







b ∆t
∆y2

0 0 . . .

0 b ∆t
∆y2

0 . . .
...

...
...

. . .






∈ R

(Nx−1)×(Ny−1),

and the matrices D1 are tri-diagonal in R
(Nx−1)×(Ny−1) as

D1 =













1− 2a ∆t
∆x2 − 2b ∆t

∆y2
a ∆t
∆y2

0 . . .

a ∆t
∆y2

1− 2a ∆t
∆x2 − 2b ∆t

∆y2
a ∆t
∆y2

. . .

0 a ∆t
∆y2

1− 2a ∆t
∆x2 − 2b ∆t

∆y2
. . .

...
...

...
. . .













.

Let us verify the properties listed in Table 2.5 for the fully discrete
problem in this case. Obviously, we do not consider the conservation for
the first and the last rows of the matrix above, although the homogeneous
Dirichlet boundary conditions are compatible with its expression.

We can easily see that M is symmetric. Moreover, the sum of the rows
is equal to 1, since the off-diagonal elements of matrix D1 cancel the term
−2a ∆t

∆x2 inside the diagonal, while the term −2b ∆t
∆x2 is canceled by the two

terms b ∆t
∆x2 of the corresponding upper-block and lower-block matrices D2 .

For the non-negativity property, it is immediately valid for off-diagonal
elements, indeed we have a, b > 0 , while for the diagonal entries we have as
sufficient condition that

2max{a, b}∆t
( 1

∆x2
+

1

∆y2
)

< 1 =⇒ 2a
∆t

∆x2
+ 2b

∆t

∆y2
< 1 . (4.13)
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Now, if we suppose that ∆x2 > ∆y2, the inequality (4.13) becomes

2max{a, b}∆t 2

∆y2
≤ 1 =⇒ ∆t <

∆y2

4max{a, b} ,

conversely, if we suppose that ∆y2 > ∆x2, it becomes

∆t <
∆x2

4max{a, b} ,

so finally we consider the sufficient condition for stability given by

∆t <
min{∆x2,∆y2}
4max{a, b} . (4.14)

This is the theoretical condition under which the discrete maximum principle
holds, also implying the l∞-stability of the numerical scheme (4.9) since all
the coefficients of its stencil are less than 1.
We will further verify the experimental validity of (4.14) in Section 5.4.1.

Remark 13. The classical two-dimensional heat equation ut−a∆u = 0 cor-
responds to isotropic homogeneous diffusion tensors, with a = b and c = 0,

i.e. for A =

[

a 0
0 a

]

, and then the scheme above has its natural adaptation.

4.2.2 Diagonal anisotropic heterogeneous diffusion

Now we focus on the case of equation (4.6), where the entries of the diffusion
tensor A are generic functions of the space variables. This represents the sit-
uation in which the material feels the diffusion in a different way depending
on its position, through the spatial dependence of a and b, and moreover the
diffusion is different along the Cartesian axes. We calculate finite difference
and finite volume discretizations and, again, we will see that are equal.

We start from (4.6) and we apply directly the approximation of deriva-
tives at the grid points (tn;xi, yj) using the staggered grid in Figure 2.3,

(

a(x, y)ux
)

x
≃ 1

∆x

(

a(x, y)unx

∣

∣

∣

x
i+1

2

− a(x, y)unx

∣

∣

∣

x
i− 1

2

)

≃ ai+ 1

2
,j

uni+1,j − unij
∆x2

− ai− 1

2
,j

uni,j − uni−1,j

∆x2

≃ aij + ai+1,j

2
·
uni+1,j − unij

∆x2
− ai−1,j + aij

2
·
uni,j − uni−1,j

∆x2
,
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together with

(

b(x, y)uy
)

y
≃ 1

∆y

(

b(x, y)uny

∣

∣

∣

y
j+1

2

− b(x, y)uny

∣

∣

∣

y
j− 1

2

)

≃ bi,j+ 1

2

uni,j+1 − unij
∆y2

− bi,j− 1

2

uni,j − uni,j−1

∆y2

≃ bij + bi,j+1

2
·
uni,j+1 − unij

∆y2
− bi,j−1 + bij

2
·
uni,j − uni,j−1

∆y2
.

For the time-discretization, we have the same formula (4.10) derived before,
thus the fully discrete scheme reads

un+1
ij =

∆t

∆x2
· aij + ai+1,j

2
uni+1,j +

∆t

∆x2
· ai−1,j + aij

2
uni−1,j

+
(

1− ∆t

∆x2
· ai+1,j + 2aij + ai−1,j

2
− ∆t

∆y2
· bi,j+1 + 2bij + bi,j−1

2

)

unij

+
∆t

∆x2
· bij + bi,j+1

2
uni,j+1 +

∆t

∆x2
· bi,j−1 + bij

2
uni,j−1 .

(4.15)

We remark that this scheme coincides with the Standard Discretization
introduced in Section 2.4.2, which is moreover the nonnegative method de-
scribed in Table 2.4 for cij = 0 , for all 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny , as mixed
derivatives do not play any role in case of diagonal diffusion tensors.

We do not even take the Chain Rule method into account, because we
already know from Section 2.5.2 that it may fail to satisfy the discrete max-
imum principle, neither other centered schemes generalizing (2.9) on finite
difference grids as in Figure 2.1 that will exhibit a too large stencil unsuit-
able for practical applications.

For recovering the above discretization from the finite volume approach,
we start from the divergence form of equation (4.6) and we integrate through
the divergence theorem as done in (4.11), so that

1

∆x∆y

∫

Cij

∇ ·
([

a(x, y) 0
0 b(x, y)

]

·
[

ux(t
n;x, y)

uy(t
n;x, y)

])

dx dy

=
1

∆x∆y

∫

∂Cij

[

a(s)ux(t
n, s) , b(s)uy(t

n, s)
]

· ~ν ds ,
(4.16)

with the same notation in (4.12) and Figure 4.3. Then, we reproduce the
arguments developed in the previous section, with the only difference that
now the diffusion coefficients also depend on the space variables. We treat
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explicitly the first two terms (the same calculation holds for the others)

F1 =
1

∆x∆y

∫ B

A

[

a(x, yj− 1

2

)unx(x, yj− 1

2

) , b(x, yj− 1

2

)uny (x, yj− 1

2

)
]

·
[

0
−1

]

dx

= − 1

∆x∆y

∫ x
i+1

2

x
i− 1

2

b(x, yj− 1

2

)uny (x, yj− 1

2

) dx

≃ − 1

∆y
b(xi, yj− 1

2

)uny (xi, yj− 1

2

) ≃ −bi,j−1 + bij
2

·
unij − uni,j−1

∆y2
,

F2 =
1

∆x∆y

∫ C

B

[

a(xi+ 1

2

, y)unx(xi+ 1

2

, y) , b(xi+ 1

2

, y)uny (xi+ 1

2

, y)
]

·
[

1
0

]

dy

=
1

∆x∆y

∫ y
j+1

2

y
j− 1

2

a(xi+ 1

2

, y)unx(xi+ 1

2

, y) dy

≃ 1

∆x
a(xi+ 1

2

, yj)u
n
x(xi+ 1

2

, yj) ≃
aij + ai+1,j

2
·
uni+1,j − unij

∆x2
.

These two integrals are analogous of the terms in the finite difference scheme (4.15),
that we will recover entirely summing all other terms and equalizing to the
time-discretization (4.10). We introduce the notations

ai+ 1

2
,j =

aij + ai+1,j

2
, ai− 1

2
,j =

ai−1,j + aij
2

,

bi,j+ 1

2

=
bij + bi,j+1

2
, bi,j− 1

2

=
bi,j−1 + bij

2
,

and we write the matrix-form of the scheme (4.15) using the block-matrix

M =
[

diag(D−
2 ,−1) ; diag(D1) ; diag(D

+
2 , 1)

]

,

where the lower-block matrix D−
2 and the upper-block matrix D+

2 are diag-
onal in R

(Nx−1)×(Ny−1) for all i = 1, 2, . . . , Nx − 1 , such that

D−
2 = diag

( ∆t

∆y2
bi,j− 1

2

)

1≤j≤Ny−1
=









∆t
∆y2

bi,1− 1

2

0 0 . . .

0 ∆t
∆y2

bi,2− 1

2

0 . . .
...

...
...

. . .









,

and

D+
2 = diag

( ∆t

∆y2
bi,j+ 1

2

)

1≤j≤Ny−1
=









∆t
∆y2

bi,1+ 1

2

0 0 . . .

0 ∆t
∆y2

bi,2+ 1

2

0 . . .
...

...
...

. . .









,
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while the matrices D1 are tri-diagonal in R
(Nx−1)×(Ny−1) as

D1 =
[

diag(Ai− 1

2
,j ,−1) ; diag(1−Aij −Bij) ; diag(Ai+ 1

2
,j , 1)

]

1≤i≤Nx−1

=













1−A1j −B1j A1+ 1

2
,j 0 0 . . .

A2− 1

2
,j 1−A2j −B2j A2+ 1

2
,j 0 . . .

0 A3− 1

2
,j 1−A3j −B3j A3+ 1

2
,j . . .

...
...

...
...

. . .













for all j = 1, 2, . . . , Ny − 1 , and we fixed

Ai− 1

2
,j =

∆t

∆x2
ai− 1

2
,j , Aij =

∆t

∆x2
· ai+1,j + 2aij + ai−1,j

2
,

Ai+ 1

2
,j =

∆t

∆x2
ai+ 1

2
,j , Bij =

∆t

∆y2
· bi,j+1 + 2bij + bi,j−1

2
.

Concerning the properties in Table 2.5, we immediately observe that the
symmetry and the conservation are satisfied, since the off-diagonal elements
Ai− 1

2
,j and Ai+ 1

2
,j of the matrix D1 cancel the term Aij inside the diagonal,

while the term Bij is canceled by the two terms ∆t
∆y2

bi,j+ 1

2

and ∆t
∆y2

bi,j− 1

2

of

the corresponding rows of the upper-block matrix D+
2 and the lower-block

matrix D−
2 , respectively.

For the non-negativity property, it is valid for the off-diagonal elements
of the whole matrix M , indeed we have that aij , bij > 0 for all i, j , while for
the diagonal entries we have to impose that

∆t

∆x2
· ai+1,j + 2aij + ai−1,j

2
+

∆t

∆y2
· bi,j+1 + 2bij + bi,j−1

2
< 1 .

We consider the maximum for all values of the diffusion coefficients over the
grid points, and we deduce the following sufficient condition

2∆tmax{aij , bij}
( 1

∆x2
+

1

∆y2

)

< 1 ,

so finally we can assert a candidate for the CFL-condition given by

∆t <
min{∆x2,∆y2}
4max{aij , bij}

, (4.17)

which turns out to be the analogue of (4.14) found in the previous case.
Therefore, the numerical scheme (4.15) is also l∞-stable, since the non-
negativity combined with the property of elements to be always less than 1
ensures stability.
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4.2.3 Fully anisotropic homogeneous diffusion

We consider the model (4.7), which describes a diffusion phenomenon spread-
ing in all directions according to the values of the entries of diffusion tensor.

To compute the finite volume discretization, we use the explicit Euler
scheme (4.10) for the time derivative, together with the usual integral aver-
age for the divergence term,

1

∆x∆y

∫

Cij

∇ ·
([

a c
c b

]

·
[

ux(t
n;x, y)

uy(t
n;x, y)

])

dx dy

=
1

∆x∆y

∫

∂Cij

[

a ux(t
n, s) + c uy(t

n, s) , c ux(t
n, s) + b uy(t

n, s)
]

· ~ν ds ,

(4.18)

with the same cell boundaries (4.12) and its normal vectors as in Figure 4.3.
We focus only on the terms including the parameter c for mixed derivatives,
because for the others the calculation already performed in the case (4.11)
still holds. Therefore, we have

− c

∆x∆y

∫ x
i+1

2

x
i− 1

2

unx(x, yj− 1

2

) dx ≃ − c

∆x∆y

(

un
i+ 1

2
,j− 1

2

− un
i− 1

2
,j− 1

2

)

,

c

∆x∆y

∫ y
j+1

2

y
j− 1

2

uny (xi+ 1

2

, y) dy ≃ c

∆x∆y

(

un
i+ 1

2
,j+ 1

2

− un
i+ 1

2
,j− 1

2

)

,

c

∆x∆y

∫ x
i+1

2

x
i− 1

2

unx(x, yj+ 1

2

) dx ≃ c

∆x∆y

(

un
i+ 1

2
,j+ 1

2

− un
i− 1

2
,j+ 1

2

)

,

− c

∆x∆y

∫ y
j+1

2

y
j− 1

2

uny (xi− 1

2

, y) dy ≃ − c

∆x∆y

(

un
i− 1

2
,j+ 1

2

− un
i− 1

2
,j− 1

2

)

.

(4.19)

which corresponds to the finite difference discretization (2.16) on a staggered
grid. We recall that we do not apply the centered formula (2.15) because
this would lead to the Chain Rule method derived in Section 2.4.1 for which
the discrete maximum principle could actually fail (refer to Section 2.5.2).
At this point, if we proceed from (4.19) by substituting with combinations
of arithmetic averages, for example

un
i+ 1

2
,j− 1

2

≃
un
i,j− 1

2

+ un
i+1,j− 1

2

2
≃
uni,j−1 + unij + uni+1,j−1 + uni+1,j

4
,

summing over all the terms in (4.19), we obtain

2
c

∆x∆y

(

un
i+ 1

2
,j+ 1

2

− un
i− 1

2
,j+ 1

2

− un
i+ 1

2
,j− 1

2

+ un
i− 1

2
,j− 1

2

)

≃ c

2∆x∆y

(

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

)

,
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thus coming back to the centered approximation (2.15) which is a special case
of both the Chain Rule scheme from (2.30) and the Standard Discretization
from (2.32) in the case of constant diffusion coefficients, namely

un+1
ij − unij

∆t
= a

uni+1,j − 2unij + uni−1,j

∆x2
+ b

uni,j+1 − 2unij + uni,j−1

∆y2

+
c

2∆x∆y

(

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

)

,

or rather

un+1
ij =

(

1− 2a
∆t

∆x2
− 2b

∆t

∆y2
)

unij

+ a
∆t

∆x2
(

uni+1,j + uni−1,j

)

+ b
∆t

∆y2
(

uni,j+1 + uni,j−1

)

+
c∆t

2∆x∆y

(

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

)

.

(4.20)

The matrix-form the scheme (4.20) uses the block-matrix

M =
[

diag(D−
2 ,−1) ; diag(D1) ; diag(D

+
2 , 1)

]

,

where the matrix D1 is the same as the one calculated in Section 4.2.1,
because it does not involve the coefficient c, while for the lower-block and
the upper-block matrices we have the tri-diagonal modifications

D−
2 =













b ∆t
∆y2

− c
2∆x∆y 0 . . .

c
2∆x∆y b ∆t

∆y2
− c

2∆x∆y . . .

0 c
2∆x∆y b ∆t

∆y2
. . .

...
...

...
. . .













and

D+
2 =













b ∆t
∆y2

c
2∆x∆y 0 . . .

− c
2∆x∆y b ∆t

∆y2
c

2∆x∆y . . .

0 − c
2∆x∆y b ∆t

∆y2
. . .

...
...

...
. . .













.

From these, despite the symmetry and the conservation property, it is clear
that the matrix M cannot be nonnegative, due to the terms ± c

2∆x∆y in

the upper and lower matrices D+
2 and D−

2 . Indeed, we have no information
about the sign of c ∈ R, according to the positive definiteness of the matrix
A which only imposes c2 < ab, and so if one of these two terms is positive its
opposite is certainly negative. Therefore, the discrete maximum principle is
never satisfied for the approximation (4.20) of the anisotropic homogeneous
parabolic equation (4.7).
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For that fundamental reason, we have to consider the Nonnegative Dis-
cretization developed in Section 2.4.3, with the stencil reported in Table (2.3)
for the particular case of constant diffusion coefficients, which induces the
following numerical method,

un+1
ij =

(

1− 2a
∆t

∆x2
− 2b

∆t

∆y2
+ 2|c| ∆t

∆x∆y

)

unij

+
(

a
∆t

∆x2
− |c| ∆t

∆x∆y

)

(

uni+1,j + uni−1,j

)

+
(

b
∆t

∆y2
− |c| ∆t

∆x∆y

)

(

uni,j+1 + uni,j−1

)

+
|c| − c

2
· ∆t

∆x∆y

(

uni+1,j−1 + uni−1,j+1

)

+
|c|+ c

2
· ∆t

∆x∆y

(

uni−1,j−1 + uni+1,j+1

)

,

(4.21)

whose matrix-form is given through the block-matrix

M =
[

diag(D−
2 ,−1) ; diag(D1) ; diag(D

+
2 , 1)

]

,

where D1 is a symmetric tri-diagonal matrix with entries

dkk = 1− 2a
∆t

∆x2
− 2b

∆t

∆y2
+ 2|c| ∆t

∆x∆y
, ∀ k = 1, 2, . . . , Nx − 1 ,

dk,k+1 = dk+1,k = a
∆t

∆x2
− |c| ∆t

∆x∆y
, ∀ k = 1, 2, . . . , Nx − 2 ,

and

D−
2 =













b ∆t
∆y2

− |c| ∆t
∆x∆y

|c|−c
2 · ∆t

∆x∆y 0 0 . . .
|c|+c
2 · ∆t

∆x∆y b ∆t
∆y2

− |c| ∆t
∆x∆y

|c|−c
2 · ∆t

∆x∆y 0 . . .

0 |c|+c
2 · ∆t

∆x∆y b ∆t
∆y2

− |c| ∆t
∆x∆y 0 . . .

...
...

...
...

. . .













,

together with D+
2 =

(

D−
2

)T
. Obviously, the symmetry and the conservation

property are satisfied. Also the non-negativity of the coefficients should be
guaranteed, by construction. Indeed, referring to (4.21) as represented in
Table 2.3, the entries in the outer angles are either zero or always positive,
since |c| ≥ c . For the other elements, because of the relations (2.39) imposed
in the proof of Theorem 7, we have that

a

∆x
≥ c

∆y
,

b

∆y
≥ c

∆x
. (4.22)

for all values of the coefficient c ∈ R, which imply

a

∆x2
≥ |c|

∆x∆y
,

b

∆y2
≥ |c|

∆x∆y
,

89



so we have the non-negativity of the off-diagonal elements inside the stencil
as long as the constraints (4.22) hold. For the central entries, we must verify

2∆t
( a

∆x2
+

b

∆y2
− |c|

∆x∆y

)

< 1 , (4.23)

and a sufficient condition is obtained by developing into the brackets as

2∆t
max{a, b}

min{∆x2,∆y2}S(a, b, c) < 1 ,

where S(a, b, c) :=
[

a
∆x2 · min{∆x2,∆y2}

max{a,b} + b
∆y2

· min{∆x2,∆y2}
max{a,b} − |c| min(∆x2,∆y2)

∆x∆y max(a,b)

]

and, therefore, the condition for the non-negativity of the central entries is

∆t <
min{∆x2,∆y2}
2 max{a, b} S−1(a, b, c) . (4.24)

Moreover, the matrix M is symmetric and the sum its rows (except the first
and the last one) is equal to 1, as easily seen from the stencil in Table 2.3,
since all the horizontal and vertical entries around the central one exactly
cancel it, and adding the time-discretization the total sum is equal to 1.
Additionally, we have proven that all coefficients are less than 1, thanks
again to (4.22), and this leads to the l∞-stability of the scheme through the
discrete maximum principle.

We conclude this section by remarking that the same properties above
are also satisfied for the Nonnegative Discretization of fully anisotropic and
heterogeneous diffusion equations, as we can deduce from a careful analysis
of the stencil given in Table 2.4.

4.3 L
2-stability analysis of numerical schemes

In particular, for the case analyzed in Section (4.2.1), because the model (4.5)
is linear, autonomous and homogeneous, we can apply the Fourier analysis
as we have done for the one-dimensional case in Section 3.1.1.
We denote by û the Fourier transform of the function u, with ûn(·) = û(tn; ·)
for tn fixed, such that

ûn(ξx, ξy) =
1√
2π

∫

R2

e−ιxξxe−ιyξyu(tn;x, y) dx dy ,

and the inverse Fourier transform reads

u(tn;x, y) =
1√
2π

∫

R2

eιxξxeιyξy ûn(ξx, ξy) dξx dξy .

Let us calculate at the grid points xi = i∆x , i = 0, 1, . . . , Nx , and yj = j∆y ,
j = 0, 1, . . . , Ny , making the hypothesis that the computational domain is
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Ω = [0, 1]× [0, 1] , so for the values of the numerical solution we have

unij ≃ u(tn;xi, yj) =
1√
2π

∫

R2

eι(i∆x)ξxeι(j∆y)ξy ûn(ξx, ξy) dξx dξy .

We substitute into the scheme in form (4.8) and, after reducing the integrals
and common exponential factors (also neglecting the dependence upon the
variables, for simplicity), we obtain

ûn+1 − ûn

∆t
=

a

∆x2
(

eι∆xξx − 2+ e−ι∆xξx
)

ûn +
b

∆y2
(

eι∆yξy − 2+ e−ι∆yξy
)

ûn ,

which gives directly the formula ûn+1 = G ûn, where we can recognize the
amplification factor

G := 1 + a
∆t

∆x2
(

eι∆xξx − 2 + e−ι∆xξx
)

+ b
∆t

∆y2
(

eι∆yξy − 2 + e−ι∆yξy
)

.

We use the standard relation (3.19) in order to rewrite

G = 1− 4 a
∆t

∆x2
sin2

(∆x ξx
2

)

− 4 b
∆t

∆y2
sin2

(∆y ξy
2

)

. (4.25)

To ensure the L2-stability we must have |G| ≤ 1. Since all the coefficients
in front of sin2(·) are positive, the inequality G ≤ 1 always holds, so let us
analyze the case G ≥ −1 , namely

∆t

[

a

∆x2
sin2

(∆x ξx
2

)

+
b

∆y2
sin2

(∆y ξy
2

)

]

≤ 1

2
.

As usual, we consider a sufficient condition given by

∆t
max{a, b}

min{∆x2,∆y2}

[

sin2
(∆x ξx

2

)

+ sin2
(∆y ξy

2

)

]

≤ 1

2
,

and so the worst case is satisfied when we have that

∆t
max{a, b}

min{∆x2,∆y2} ≤ 1

4
,

which is the same condition found in (4.14) for the validity of the discrete
maximum principle, and thus ensuring the L∞-stability of the method (ob-
tained through the analysis of the matrix-form of the scheme).

We remark that a more restrictive stability condition is derived in [7], at
least when applied to the case of diagonal anisotropic homogeneous diffusion

tensors like (4.5), which reads ∆t ≤ 1
8
min{∆x2,∆y2}

max{a,b} . The result established

in [7][Section 5, Theorem 5.1] shows that the maximum principle can be vio-
lated for the Standard Discretization in Table 2.2, but we still have stability :
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at each time-iteration, the numerical solution is bounded by the maximum
value of the initial data multiplied by a positive factor, and this guarantees
it does not blow up in finite time and ensures its stability, but the maximum
principle can be violated by the positivity of the multiplicative factor.
The reason of discrepancy between continuous and numerical solution is that
the second order Standard Discretization is not a nonnegative approxima-
tion, as we already discussed in the previous section.

To improve the result in [7], we rewrite the scheme (4.8) using its original
structure (2.31),

un+1
ij = unij + a

∆t

∆x2

[

(

uni+1,j − unij
)

−
(

unij − uni−1,j

)

]

+ b
∆t

∆y2

[

(

uni,j+1 − unij
)

−
(

unij − uni,j−1

)

]

and we split the first term into two parts unij =
1
2u

n
ij+

1
2u

n
ij , then reorganizing

the previous equation as

un+1
ij =

(

1− 2a
∆t

∆x2
− 2b

∆t

∆y2
)

unij

+ a
∆t

∆x2
(

uni+1,j + uni−1,j

)

+ b
∆t

∆y2
(

uni,j+1 + uni,j−1

)

.

As usual, we have to impose 0 < 1− 2a ∆t
∆x2 − 2b ∆t

∆y2
< 1 , the upper bound

being always satisfied, and for the lower bound we manipulate like

2∆t
max{a, b}

min{∆x2,∆y2}

[

a

∆x2
· min{∆x2,∆y2}

max{a, b} +
b

∆y2
· min{∆x2,∆y2}

max{a, b}

]

,

thus finding a better CFL-condition, i.e.

∆t <
1

2

min{∆x2,∆y2}
max{a, b} S−1, (4.26)

where S := a
∆x2 · min{∆x2,∆y2}

max{a,b} + b
∆y2

· min{∆x2,∆y2}
max{a,b} , and 0 < S ≤ 2 as desired.

4.4 Other two isotropic heterogeneous models

For completeness, we take into account other two cases of parabolic equation,
that are the two-dimensional version of those illustrated in Section 3.3.

First, we consider the heterogeneous two-dimensional heat equation, i.e.

ut = a(x, y)∆u = a(x, y)
(

uxx + uyy
)

. (4.27)
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The numerical scheme computed through finite difference and finite volume
methods is the same, just repeating the calculations performed for the pre-
vious cases, and it looks like

un+1
ij = unij + aij

[

∆t

∆x2
(

uni+1,j − 2unij + uni−1,j

)

+
∆t

∆y2
(

uni,j+1 − 2unij + uni,j−1

)

]

= aij
∆t

∆x2
(

uni+1,j + uni−1,j

)

+

[

1− 2 aij

( ∆t

∆x2
+

∆t

∆y2

)

]

unij

+ aij
∆t

∆y2
(

uni,j+1 + uni,j−1

)

,

(4.28)

which can be rewritten in matrix-form with a block-matrix whose entries
are now index-dependent matrices, namely

M =
[

diag(E−
j ,−1)1≤j≤Ny−2 ; diag(Dj)1≤j≤Ny−1 ; diag(E

+
j , 1)2≤j≤Ny−1

]

,

where the lower-block and the upper-block matrices are diagonal as

E−
j =

[

diag
(

aij
∆t

∆y2
)

]

1≤i≤Nx−2
for all j = 1, 2, . . . , Ny − 2 ,

E+
j =

[

diag
(

aij
∆t

∆y2
)

]

2≤i≤Nx−1
for all j = 2, 3, . . . , Ny − 1 ,

and the central blocks are tri-diagonal matrices

Dj =
[

diag
(

aij
∆t

∆x2
,−1

)

; diag
(

1−2aij
( ∆t

∆x2
+

∆t

∆y2
))

; diag
(

aij
∆t

∆x2
, 1
)

]

1≤i≤Nx−1

for all j = 1, 2, . . . , Ny − 1 .
About the properties listed in Table 2.5, although it may be harder to check
using the matrices above, the conservation is actually valid because the sum
of the coefficients in (4.28) is clearly equal to 1. This fact, together with the
positiveness property below, guarantees the L∞-stability of the method.

Remark 14. There existes a direct correspondence between the rows of the
matrix of a numerical scheme and its stencil, as one can easily see for non-
homogeneous three points schemes like (4.28), for instance.

Nevertheless, the symmetry is not satisfied, that is coherent with the one-
dimensional case in Section 3.3, since we are dealing with a parabolic equa-
tion (4.27) which is not in conservation form.
For the non-negativity of all entries, it is satisfied if

2 aij ∆t
( 1

∆x2
+

1

∆y2

)

< 1 ,
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from which a sufficient condition for the stability is given by

∆t <
min{∆x2,∆y2}

4 amax
, amax = max

0≤i≤Nx, 0≤j≤Ny

aij , (4.29)

that is the analogous condition to (3.34).
We remark that, under the above constraint, the numerical scheme (4.28)
exhibit all coefficients positive and less than 1 , thus providing a convex
combination for the stability.

The second case is the two-dimensional version of equation (3.37), i.e.

ut = ∆
(

a(x, y)u
)

=
(

a(x, y)u
)

xx
+
(

a(x, y)u
)

yy
,

which is a conservation law with flux F (t;x, y) = ∇(x,y)

(

a(x, y)u
)

.
Therefore, we can directly apply the finite difference/volume scheme (3.38)
to both components of the Laplacian operator, to obtain

un+1
ij − unij

∆t
=

ai+1,j u
n
i+1,j − 2aij u

n
ij + ai−1,j u

n
i−1,j

∆x2

+
ai,j+1 u

n
i,j+1 − 2 aij u

n
ij + ai,j−1 u

n
i,j−1

∆y2
,

that can be rewritten as

un+1
ij = ai+1,j

∆t

∆x2
uni+1,j + ai−1,j

∆t

∆x2
uni−1,j

+

[

1− 2 aij

( ∆t

∆x2
+

∆t

∆y2

)

]

unij

+ ai,j+1
∆t

∆y2
uni,j+1 + ai,j−1

∆t

∆y2
uni,j−1 ,

(4.30)

with matrix-form given by means of the block-matrix

M =
[

diag(E−
j ,−1)1≤j≤Ny−2 ; diag(Dj)1≤j≤Ny−1 ; diag(E

+
j , 1)2≤j≤Ny−1

]

,

where the lower-block and the upper-block matrices are diagonal as

E−
j =

[

diag
(

ai,j+1
∆t

∆y2
)

]

1≤i≤Nx−2
for all j = 1, 2, . . . , Ny − 2 ,

E+
j =

[

diag
(

ai,j−1
∆t

∆y2
)
]

2≤i≤Nx−1
for all j = 2, 3, . . . , Ny − 1 ,

and the central blocks are tri-diagonal matrices

Dj =
[

diag
(

ai−1,j
∆t

∆x2
,−1

)

; diag
(

1−2 aij
( ∆t

∆x2
+

∆t

∆y2
))

; diag
(

ai+1,j
∆t

∆x2
, 1
)

]

1≤i≤Nx−1
,
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for all with j = 1, 2, . . . , Ny − 1 .
Concerning the properties listed in Table 2.5, the conservation is not valid
because if we fix any row of the above matrices, the value of the entries varies
according to the column’s index and the sum of the elements is typically
different from 1 , that can also be easily seen from the coefficients in (4.30).
For the same reason, the symmetry is not satisfied, that is also coherent with
the one-dimensional case in Section 3.3. Solely, the non-negativity property
holds if the inequality (4.29) is satisfied.

95



Chapter 5

Experimental validation and
numerical results

In this chapter, we present several cases of parabolic/diffusion equation (4.1)
that have been previously treated theoretically, to verify through coherent
numerical results the conclusions formulated above. All the codes have been
implemented in the framework of Scilab – http://www.scilab.org
We start with the simplest one-dimensional heat equation, and we progres-
sively introduce complications like heterogenous coefficients and anisotropic
diffusion tensors, to finally show the necessity of nonnegative discretizations
to ensure the fundamental property of discrete maximum principle.

5.1 Definition of initial data, boundary conditions
and numerical parameters

For all experimental tests, we consider the region where we would study the
effects of the diffusion as the computational domain ΩT = Ω× [0, T ] , where
the two-dimensional spatial domain is given by

Ω = [−10, 10]× [−10, 10] , (5.1)

which is discretized as in Figure 2.1, with the grid points (xi, yj) such that
i = 0, 1, . . . , Nx and j = 0, 1, . . . , Ny , while for the time-discretization we
have

tn = n∆t , n = 0, 1, . . . , Nt ,

and ∆t is typically calculated according to some CFL-condition, depending
on the analytical model and the numerical scheme under consideration.
The parameter T > 0 will be modified following the specific solution to be
observed, but generally it is chosen small enough to avoid the solution to
flatten too much, as this phenomenon would not allow to clearly see the
behaviour of the numerical solution.
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Since the well-posedness of time-dependent PDEs depends on both the
characteristics of the equation and the type of supplementary conditions for
the initial and boundary values problem, for second-order parabolic equa-
tions we have to carefully fix boundary conditions with respect to space and
initial conditions with respect to time. For the initial data, we consider

u(0;x, y) = u0(x, y) , ∀ (x, y) ∈ Ω ,

which defines the solution at time t = 0. From the physical point of view, we
choose u0 a positive function, because negative densities do not have sense.
Then, we will take into account two types of boundary conditions, as evoked
in the previous chapters,

• Dirichlet conditions : u|∂Ω = g1(t;x, y) , ∀ t ∈ [0, T ] , (x, y) ∈ ∂Ω ,

• Neumann conditions : ∂u
∂n

∣

∣

∂Ω
= g2(t;x, y) , ∀ t ∈ [0, T ] , (x, y) ∈ ∂Ω .

In the first case, we simply assert that the density at the boundary of the
domain has to be equal to a given function g1, which may vary on time. For
the numerical tests, if we put g1 = 0, we force the solution to be equal to
zero at the boundary, and physically we are describing a situation in which
the density vanishes approaching the boundary.
The second case states that the gradient of u at the boundary of Ω is equal to
a given function g2, which may vary on time. The particular case in which
the function g2 = 0 suggests that inner and outer flows of the substance
through ∂Ω are not allowed, and in this way we have that the domain Ω
represents the whole physical space where the substance can diffuse. For
any rectangular domain like (5.1), this translates into the two-dimensional
analogue of (3.28), namely

0 = ux(t;x0, y) ≃
u(t;x0 +∆x, y)− u(t;x0, y)

∆x
,

0 = ux(t;xNx , y) ≃
u(t;xNx , y)− u(t;xNx −∆x, y)

∆x
,

0 = uy(t;x, y0) ≃
u(t;x, y0 +∆y)− u(t;x, y0)

∆y
,

0 = uy(t;x, yNy) ≃
u(t;x, yNy)− u(t;x, yNy −∆y)

∆y
,

and for the numerical issues we represent that situation as

u(tn;x0, yj) = u(tn;x1, yj) ∀ j = 0, 1, . . . , Ny , ∀ n ≥ 0

u(tn;xNx , yj) = u(tn;xNx−1, yj) ∀ j = 0, 1, . . . , Ny , ∀ n ≥ 0

u(tn;xi, y0) = u(tn;xi, y1) ∀ i = 0, 1, . . . , Nx , ∀ n ≥ 0

u(tn;xi, yNy) = u(tn;xi, yNy−1) ∀ i = 0, 1, . . . , Nx , ∀ n ≥ 0

(5.2)
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Some considerations about the violation of the Discrete Maximum Prin-
ciple are in order. The theoretical results on the maximum/minimum prin-
ciple established in the first chapter of this report assert that the solution
u(t;x, y) has to be bounded by the maximum and the minimum values of the
initial data u0(x, y) , at least in the case of homogeneous Dirichlet bound-
ary conditions. Due to the characteristics of the problem under analysis,
especially the fact that (4.1) is autonomous, this also means that the max-
imum of the solution at fixed time t has to be less than the maximum of
the solution at the previous time t − ∆t (thus suggesting a monotonicity
property already mentioned in Section 1.4, since the solution at time t can
be interpreted as the initial data for future times and, therefore, the maxi-
mum/minimum bounds should hold step by step).
Considering the dependence of the problem from the initial data, inside the
areas of the physical domain Ω where there is an initial high concentration,
the solution must decrease in time at any point, otherwise the solution must
rise where the density is low at the initial time. This is indeed the descrip-
tion of the diffusivity phenomenon, when the density spreads through the
domain from areas with higher concentrations to areas with lower ones.
Figure 5.1 shows a solution correctly decreasing from the top of the initial
data towards the bottom, whilst Figure 5.2 shows a case of violation of the
discrete maximum principle.

Figure 5.1: example of fulfillment of the discrete maximum principle
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Figure 5.2: example of violation of the discrete maximum principle

5.2 Numerical tests for the one-dimensional heat
equation

We refer to Section 3.1, and we consider the following initial data

u0(x) =

{

1 |x| ≤ 1

0 otherwise
(5.3)

and homogeneous Dirichlet boundary conditions

u(tn, x0) = 0 , u(tn, xNx) = 0 , ∀ n ≥ 0 .

This is the so-called double Riemann problem and we can calculate an exact
solution, for comparison with the numerical solution at the final time T ,
according to [34][Chapter 6] given by

u(t, x) =
1

2

[

erf
(1− x√

4at

)

+ erf
(1 + x√

4at

)

]

, (5.4)

where erf denotes the error function defined as

erf(x) =
2√
π

∫ x

0
e−s2 ds .
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The analytical solution becomes successively more spread out as the time
increases. When t gets very large, the argument of the error functions in (5.4)
are progressively smaller, for any x fixed. Thus, the corresponding value of
the solution u(t, x) tends to zero asymptotically in time.

Let us analyze the three numerical schemes proposed in Section 3.1, with
the parameters varying as follows. The CFL-condition defines the length of
the time-intervals as

∆t = CFL
∆x2

2 a
, (5.5)

which not only describes the regime of stability by the Von Neumann analy-
sis, but also the range of fulfillment of the discrete maximum principle. We
recall that, theoretically from (3.22), for the explicit method the condition
CLF < 1 provides both the l2-stability and the maximum/minimum prin-
ciple, for the implicit method these two properties are satisfied for all values
of CFL, while for the Crank-Nicolson method we have that the stability is
always satisfied but the maximum/minimum principle holds if CFL < 2, so
we can introduce another parameter such that

CFL′ =
CFL

2
< 1 . (5.6)

Obviously, the space-step ∆x being computed as ∆x =
xNx−x0

Nx
, increasing

the parameter Nx leads to refine the grid points and the time intervals
through (5.5). We will see in the numerical tests that this parameter also
characterizes the numerical instability.

5.2.1 The time-implicit method

Several numerical tests have been performed, which confirm the theoretical
results that this method is unconditionally stable and satisfies the discrete
maximum principle. However, an important practical observation is the
decreasing of the numerical diffusion as the CFL number decreases : this is
due to the coefficient accompanying the term uxxxx in the modified equation,
that is derived by calculating the Taylor’s expansion of u(xi, t

n+1) to get

(ut)
n+1
i − a (uxx)

n+1
i =

(

a2
∆t

2
+ a

∆x2

12

)

(uxxxx)
n+1
i +H.O.T.

= a
(

CFL
∆x2

4
+

∆x2

12

)

(uxxxx)
n+1
i +H.O.T.

= a
∆x2

4

(

CFL+
1

3

)

(uxxxx)
n+1
i +H.O.T. ,

where H.O.T. = O(∆t2,∆x4) for smooth analytical solutions, and therefore
the numerical viscosity grows up with the value of CFL . We can see this
phenomenon of artificially enlarging the diffusion in Figure 5.3, which makes
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(a) CFL = 0.7

(b) CFL = 1.5

Figure 5.3: effects of artificial viscosity for the implicit method

the choice of time-step not really arbitrary even for the implicit scheme to
have an accurate numerical solution.

Consequently, for numerical reasons, we can decide to use explicit schemes
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which require less computational costs than the implicit ones to give good
approximations of the exact solution. However, the implicit method remains
very important for the particular case of stiff problems.
A typical example in this class is the ordinary differential equation, for ǫ > 0 ,

y′ = −1

ǫ
y , y(0) = y0 ,

for which the classical forward Euler method produces the explicit scheme

yn+1 − yn

∆t
= −1

ǫ
yn =⇒ yn+1 =

(

1− ∆t

ǫ

)

yn.

By iterating over n , and then choosing T = 1 , ∆t = T
n , we have

yn =
(

1− ∆t

ǫ

)n
y0 =

(

1− 1

n ǫ

)n
y0 −→n→∞ y(1) = y0 e

− 1

ǫ .

On the other hand, the backward Euler method gives the implicit scheme

yn+1 − yn

∆t
= −1

ǫ
yn+1 =⇒

(

1 +
∆t

ǫ

)

yn+1 = yn,

which can be rewritten as

yn =

[

(

1 +
∆t

ǫ

)n
]−1

y0 ,

and again this converges to the exact solution above, at time T = 1 , iterating
over n → ∞. Now, if we consider two different initial data y0 and w0, by
linearity the error between the corresponding numerical solutions y and w
satisfies the same equation, so that

En
exp =

(

1− 1

n ǫ

)n
E0 , En

imp =

[

(

1 +
1

n ǫ

)n
]−1

E0 .

Finally, the standard stability analysis for discrete equations ensures that
the implicit scheme is unconditionally stable, because

0 <

[

(

1 +
1

n ǫ

)n
]−1

< 1 , ∀ n ≥ 0 ,

whilst the explicit scheme needs some constraint on the numerical parame-
ters, the so-called condition for error contraction , i.e.

0 <
(

1− 1

n ǫ

)n
< 1 =⇒ n >

1

ǫ
,

So, if the physical problem describes a situation with ǫ becoming very small,
a lot of time steps are necessary to make the scheme stable and catch the
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exact behaviour of the solution, and in this sense an explicit scheme fails
the approximation of stiff problems, making the implicit schemes preferable
because they are unconditionally stable.

In the simplest case of one-dimensional heat equation, we have performed
numerical tests with all the three schemes presented in Section 3.1, but we
will consider only the explicit method when dealing with other general cases.

5.2.2 The time-explicit method

We focus on four experimental cases :

1. CFL number fixed by the stability condition, and different values for
the grid parameter Nx ;

2. different values of CFL under the stability condition CFL < 1 ;

3. CFL ≃ 1 ;

4. violation of the theoretical stability condition, namely CFL > 1.

First case. We fix CFL = 0.95 < 1 in (5.5), so that increasing Nx induces
∆x, and then ∆t, to decrease. We observe an improvement of the numerical
solution in Figure 5.4, which is due to the numerical accuracy. This prop-
erty of the algorithm reflects into the accuracy of the results, it depends only
on the numerical parameters and not on the problem itself, and typically
the refinement of grid points through ∆x leads the spurious modes to vanish.

Second case. We want to check the theoretical condition CFL < 1 for the
discrete maximum principle through coherent numerical results.
The main question reads : is the maximum principle satisfied whenever the
condition CFL < 1 holds? Unfortunately, the answer is not. The range for
which the discrete maximum principle is actually satisfied looks like

CFL ≤ 0.85 , (5.7)

that is considerably lower than the theoretical one.
Referring to Figure 5.5(a), we can see in all subintervals of the domain where
the solution decreases with time, it exhibits a maximum value below that
at previous times, which is a sign that the maximum principle is satisfied.
In Figure 5.5(b), for a bigger CFL number, the solution changes its convex-
ity, and clearly there is violation of the maximum principle. To emphasize
this phenomenon, we consider CFL = 0.98 >> 0.85 and Nx = 50 , and we
perform the numerical tests reproduced in Figure 5.6. For T = 0.3 , three
iterations are achieved; for T = 0.3 + ∆t , the method executes another it-
eration, but the maximum of the numerical solution at the last iteration is
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(a) ∆x = 0.4

(b) ∆x = 0.2

Figure 5.4: reducing the numerical instability with grid refinement

higher than the previous one, thus violating the maximum principle.

104



(a) CFL = 0.85

(b) CFL = 0.86

Figure 5.5: reducing the numerical instability with CFL constraints
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(a) numerical solution at time T = 0.3

(b) numerical solution at time T = 0.3 + ∆t

Figure 5.6: violation of discrete maximum principle for the explicit scheme
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The fact that the experimental limit CFL = 0.85 for the discrete max-
imum/minimum principle is less than the theoretical prediction CFL = 1
can be explained through the analysis of the computational errors carried
out by the computer’s software when approximating arithmetical operations,
and this question comes together with the floating point representation of
the real numbers [30]. Whenever we use computer programs, we must take
into account that any real number x actually has its machine representation

fl(x) = (1± ǫM )x , (5.8)

where ǫM depends on the computer characteristics, and it measures the
relative error made in replacing x with its floating point representation,

∣

∣x− fl(x)
∣

∣

|x| = ǫM .

We remark that (5.8) is better than the alternative definition fl(x) = x±ǫM ,
because the latter expresses the truncation error in percent.
We return to the explicit scheme (3.6), and we assume that solely the values
of the numerical solution are affected by representation errors, so that

(1± ǫ1)u
n+1
i =

[

1− 2 a fl
( ∆t

∆x2

)]

(1± ǫ2)u
n
i + a fl

( ∆t

∆x2

)

(1± ǫ3)u
n
i+1

+ a fl
( ∆t

∆x2

)

(1± ǫ4)u
n
i−1 ,

with the hypothesis that integer numbers satisfy 2 = fl(2) and a = fl(a) .
For simplicity, we impose the same error for all the values uni , because we
can always estimate with the maximum of the ǫk , k = 1, 2, 3, 4 . In order to
have a convex combination of coefficients, the theoretical stability condition
reads 0 ≤ 2a ∆t

∆x2 ≤ 1 , and the floating point representation implies

2 a fl
( ∆t

∆x2

)

= 2 a

[

(1± ǫ∆t)∆t

(1± ǫ∆x)2∆x2

]

= 2 a
∆t

∆x2
ErrM , (5.9)

where ErrM = (1±ǫ∆t)
(1±ǫ∆x)2

and, typically, it holds ErrM >> 1 . The positivity

is still satisfied because the floating point representation preserves the sign,
instead the contractivity condition for (5.9) is fulfilled if

2 a
∆t

∆x2
ErrM ≤ 1 =⇒ 2 a

∆t

∆x2
≤ 1

ErrM
,

therefore the numerical errors influence the theoretical results by straitening
the CFL-condition and, obviously, the experimental requirement (5.7) turns
out to be more restrictive.
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Third case. Now, we study more carefully the behaviour of the numerical
solution when CFL ≃ 1. We start by remarking another interesting phe-
nomenon in Figure 5.6 : we focus on the monotone branches and we see
that, although exhibiting small artificial steps, the solution does not change
its convexity. If we increase the CFL number, the convexity is unaltered,
as shown in Figure 5.7(a), until CFL = 1 is reached and some parts of the
vertical branches clearly flatten in Figure 5.7(b). If we further increase the
value of CFL, the convexity changes drastically and a stronger instability
occurs, resulting in uncontrolled oscillations (refer to Figure 5.8), thus show-
ing that the l2-stability persists more that the l∞-stability encoded into the
discrete maximum/minimum principle.

For CFL = 1 , the explicit scheme (3.6) reduces to the arithmetic average
between the values uni−1 and uni+1 , namely

un+1
i =

1

2
uni−1 +

1

2
uni+1 ,

so that, to calculate the numerical solution at the same point xi at time tn+1,
we take the values at previous time tn and we make the average of the left and
right neighborhoods. In this way, for the components uni on the monotone
branches, the convexity does not change because the neighboring values are
one above and one below uni , respectively. But, if u

n
i is the maximum value

at time tn, very likely uni−1 and uni+1 are equal, and the convexity changes,
as we have already seen in Figure 5.6. More precisely, the maximum value
u(t3, 0) at the third iteration is below the maximum value u(t2, 0) at the
previous one, but for the fourth iteration the value u(t4, 0) is greater than
u(t3, 0) as it is just equal to

u(t4, 0) =
u(t3,−∆x) + u(t3,∆x)

2
= u(t3,−∆x) = u(t3,∆x) > u(t3, 0)

and this is clearly a violation of the maximum principle.

In conclusion, in case of change of convexity in the numerical solution,
the maximum/minimum principle is no longer satisfied. Moreover, we have
seen in the second case how the validity of the maximum principle deterio-
rates if CFL ≥ 0.85 with ∆x fixed, whereas it is satisfied if we fix the CFL
number small enough and increase Nx in the first case. These two comple-
mentary aspects find an explanation in the sensitivity of the problem with
respect to the discrete maximum/minimum principle, in comparison to the
standard numerical instability (which is further analyzed in the next case) :
the stability through the Von Neumann analysis considers the L2-norm, i.e.
the integral norm, which is lighter than the L∞-norm used for the maxi-
mum/minimum principle, so the last one is more sensitive to the change of
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(a) CFL = 0.99

(b) CFL = 1

Figure 5.7: change of convexity due to imminent instability regimes

parameters inside the numerical scheme.
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Figure 5.8: appearance of instabilities for CFL > 1

Fourth case. When the CFL-condition exceeds the theoretically predicted
values for stability, the numerical solution starts oscillating around the exact
solution, as we have seen in Figure 5.8. This phenomenon in known as the
Ultraviolet Catastrophe (borrowing a term from quantum mechanics).
This usually happens in those situations in which one wants to approximate
a model (the one-dimensional heat equation, for example) with another (the
numerical algorithm) which has a similar behaviour on low frequencies, and
we can apply the Fourier analysis, but it is very different on high frequencies,
i.e. short wavelengths and, therefore, ultraviolet electromagnetic spectrum.

Indeed, recalling the arguments developed in Section 3.1.2, the amplifi-
cation factor for the explicit scheme (3.6) is given by (3.20) fixing θ = 0 , so
that using (5.5) and the definition λ = ∆t

∆x2 , we can rewrite it as

G = 1− 4 a λ sin2
(∆x ξ

2

)

= 1− 2CFL · sin2
(∆x ξ

2

)

.

For the stability condition |G| ≤ 1 , the upper bound is always satisfied since
CFL > 0 , while the lower bound holds if

−1 ≤ 1− 2CFL · sin2
(∆x ξ

2

)

=⇒ CFL · sin2
(∆x ξ

2

)

≤ 1 .

It is clear that, if we put CFL ≤ 1, the above inequality is always satisfied
independently from the value of ξ , whereas if we fix CFL > 1, the worst
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value of sin2(∆x ξ
2 ) obviously being 1, the stability condition can be violated.

In this sense, we have a stable numerical approximation for low frequencies
because, as ξ becomes small, the factor sin2(∆x ξ

2 ) < 1 makes the inequal-
ity even stronger; moreover, for moderate frequencies, reducing ∆x would
always improve the stability, regardless the value of CFL, and then the
dissipation mechanism of the numerical scheme appears similar to that of
the continuous model. On the other hand, for the high frequencies, when ξ
becomes large, the amplification factor could actually becomes greater than
1, and we can assist to oscillations inside the numerical solution, although
the continuous model is able to dump out possible oscillations. Therefore, it
is required to control the stability with the CFL number, to limit the ampli-
fication factor, otherwise we witness fluctuations that are not typical of the
model to approximate. That is the essence of the Ultraviolet Catastrophe.

5.2.3 The semi-implicit Crank-Nicolson method

We recall (see Table 3.1) that this scheme is stable for all values of λ = ∆t
∆x2 ,

as established by the Von Neumann analysis, but the theoretical condition
for the validity of the maximum/minimum principle is given by (5.5)-(5.6).
We see in the numerical tests that, actually, the Crank-Nicolson scheme
satisfies that property if CFL ≤ 1.7 and, when this experimental value is
overpassed, the discrete maximum principle fails, as shown in Figure 5.9.
This behaviour is coherent with the condition (5.7) observed for the explicit
scheme, indeed

CFL′ =
CFL

2
≤ 1.7

2
= 0.85 ,

and the explanation is the same described above concerning the characteris-
tics of computations with floating point real numbers. That does not surprise
since the Crank-Nicolson scheme (3.11) is a linear combination of the explicit
and the implicit schemes, thus inheriting (half of) the stability constraints
corresponding to the explicit solver.
Now, if we fix CFL >> 1.7, we observe in Figure 5.10 spurious oscillations
starting in the graph of the numerical solution, which are not completely
resolved even when reducing the space-step, and this clearly depends on the
numerical instability.

5.3 Numerical tests for one-dimensional heteroge-
neous diffusion

For the numerical tests of this section, we introduce a heterogeneous diffusion
coefficient a(x) > 0 to treat the parabolic equation (3.27), together with the
initial data (5.3) and Neumann boundary conditions (3.28), so that

un0 = un1 , unNx
= unNx−1 , ∀ n ≥ 0 .
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(a) CFL = 1.7

(b) CFL = 1.8

Figure 5.9: experimental validity/failure of discrete maximum principle for
the Crank-Nicolson scheme
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(a) ∆x = 0.4

(b) ∆x ≃ 0.286

Figure 5.10: numerical instability of the Crank-Nicolson scheme

We consider a positive diffusion function, which is symmetric with respect
to the vertical axis x = xc and with its maximum equal to τ reached also at
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the point xc , namely

a(x) =
τ

1 + α(x− xc)2
, (5.10)

where the parameter α measures the function’s width (see Figure 5.11).

Figure 5.11: initial data and example of heterogeneous diffusion function

We recall the numerical scheme (3.29)-(3.30) derived in Section 3.2 and
we analyze that method by varying the following numerical parameters :

• the final time of observation T ;

• the CFL number, which regulates the time-step according to (3.34),
i.e.

∆t = CFL
∆x2

2 amax
, (5.11)

where amax = maxi=0,1,...,Nx a(xi) . Theoretically, we have proven that
the condition CLF ≤ 1 should cover both the l2-stability and also the
maximum/minimum principle, so we want to confirm this requirement
with the numerical simulations.

• the amount of grid points Nx, to increase or decrease the space-step;

and the following modelling variables :

• the aspect ratio α , to evaluate how the solution behaves under shallow
(small α) or sharp (big α) diffusion coefficients, respectively;
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• the maximal position xc , to estimate the connection between centered/
non-centered diffusion and the shape of the numerical solution.
We set xc = −10+20/β , so that centered diffusion occurs when β = 2
and then xc = 0, otherwise we have a diffusion function concentrated
on the left (xc < 0) or on the right (xc > 0) of the graph in Figure 5.11.

We remark that modifications of the last two parameters is possible only
for theoretical observations because, when working with mathematical mod-
els which describe real situations, these data are given and not adjustable.

We have observed that symmetric configurations may accidentally confer
more stability to the numerical solution, in the sense that the CFL number
can be greater than 1 and still the discrete maximum principle be satisfied.
Let us consider the case in which xc = 0, so the diffusion function is centered
inside the computational domain. We fix Nx = 50 , α = 1.5 and we start
with CFL = 1.4 , for which the maximum principle is violated as expected,
that is shown in Figure 5.12(a). Nevertheless, the maximum principle is
satisfied with CFL = 1.3 >> 1, as we can see in Figure 5.12(b).
So, the CFL parameter has a weaker upper bound than the one predicted by
the theoretical results. This peculiar fact is due to the particular symmetry
of the problem, where the value amax is attained by the diffusion function
precisely at the center of the computational interval [−10, 10]. From the for-
mulas of the scheme (3.29)-(3.30), the coefficient ai+1+2ai+ai−1

2 corresponding

to the value uni is clearly bigger than the two others, ai−1+ai
2 for uni−1 and

ai+ai+1

2 for uni+1 . So, if ai = amax the symmetry implies that ai−1 = ai+1

and, therefore, the value uni contributes less to the computation of un+1
i ,

which is finally decreased by the average of smaller values.
Thus, the maximum principle is not violated, since the other factors inside
the CFL-condition (5.5) compensate for CFL > 1 (but moderate) and the
stability requirement is still fulfilled.

Now, if we relocate the diffusion function with xc 6= 0, we recover the
same experimental constraint CFL ≤ 0.85 for the numerical stability as in
the previous section, which translates the theoretical condition CFL < 1 in
the presence of systematic truncation errors. The maximum principle begins
to fail in Figure 5.13(a) for CFL = 0.85, whilst for CFL = 0.8 the scheme
perfectly satisfies it as seen in Figure 5.13(b). Moreover, the density diffuses
to the left, because we have fixed xc < 0 and the effects of the diffusion are
felt more on the left-hand side of the computational domain.

For CFL = 1.3 , in the present configuration where the diffusion function
and the initial data are not anymore symmetric with respect to the same
axis, the maximum principle is not satisfied, as reported in Figure (5.14)(a).
This produces a real instability, because the numerical scheme gives worse
results if we increase the grid points Nx, and so ∆x decreases, thus leading
to the Ultraviolet Catastrophe shown in Figure (5.14)(b), and already dis-
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(a) CFL = 1.4

(b) CFL = 1.3

Figure 5.12: persistence of the maximum principle for centered diffusion

cussed in the case of the homogeneous heat equation (refer to Figure (5.8)).

We conclude this section by taking into account the centered diffusion in
order to analyze the effect of decreasing/increasing the parameter α in (5.10).
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(a) CFL = 0.85

(b) CFL = 0.80

Figure 5.13: stable numerical solutions with non-centered diffusion function

We have just seen in Figure 5.12(b) that the discrete maximum principle is
satisfied for α = 1.5 and CFL > 1. We fix CFL = 1.1 and everything works
as expected in Figure 5.15(a), whereas we obtain the Figure (5.15)(b) when
we decrease the width of the diffusion function toward α = 0.5 .
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(a) CFL = 1.3 , ∆x = 0.4

(b) CFL = 1.3 , ∆x ≃ 0.22

Figure 5.14: numerical instabilities with non-centered diffusion function

Therefore, more the diffusion is flatten and stronger the maximum principle
is violated, so that this phenomenon depends on the concavity of the diffu-
sion function a(x). Indeed, considering the numerical scheme (3.29)-(3.30),
the coefficient of uni has to be less than 1 to satisfy the CFL-condition.
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(a) CFL = 1.1 , α = 1.5

(b) CFL = 1.1 , α = 0.5

Figure 5.15: appearance of instabilities for wider diffusion functions

By performing a Taylor’s expansion at the point xi , we obtain

1− ∆t

2∆x2
(

ai+1 + 2 ai + ai−1

)

= 1− ∆t

2∆x2
(

4 ai + a′′i ∆x
2 +O(∆x4)

)

≃ 1− ∆t

∆x2
(

2 ai + a′′i
∆x2

2

)

,
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with ai > 0 and a′′i < 0 by hypothesis, and the maximum/minimum principle

is satisfied if 0 < ∆t
∆x2 (2 ai+a

′′
i
∆x2

2 ) < 1, for ∆x small enough. Consequently,

if 2 ai + a′′i
∆x2

2 ≤ 0, the stability condition would be no longer satisfied, and
this corresponds to the case of very high values for |a′′i |, although the space-
step ∆x moderates that behaviour. On the other hand, while the expression
2 ai+a

′′
i
∆x2

2 remains positive, higher values of |a′′i | contribute to weaken the
stability constraint, thus compensating also for CFL > 1.
Indeed, the actual condition used for the simulations is (5.11), so we have

1− ∆t

∆x2
(

2 ai + a′′i
∆x2

2

)

= 1− CFL

2 amax
· ∆t

∆x2
(

2 ai + a′′i
∆x2

2

)

,

and the scheme needs

0 <
CFL

2 amax
· ∆t

∆x2
(

2 ai + a′′i
∆x2

2

)

< 1 ,

which becomes harder to satisfy when the diffusion function flattens, namely
|a′′i | → 0 . Moreover, once the instability regime has occurred for CFL >> 1,
to decrease ∆x (by increasing Nx) does not lead to better results because
the upper bound in the above inequality is clearly worse. Therefore, since
we cannot modify the parameters inside the parenthesis, the right approach
is to decrease the CFL number, bringing it back to the stability condition,
as shown in Figure 5.16.

Figure 5.16: fulfillment of the discrete maximum principle

In conclusion, one could accidentally observe weaker stability conditions
in case of specific symmetries of the problem, for example centered diffusion

120



with moderately picked shape, otherwise the maximum/minimum principle
of numerical scheme (3.29)-(3.30) is always guaranteed only for CFL < 1 .

5.4 Numerical tests for two-dimensional anisotropic
diffusion

Let us focus on the parabolic equation (4.1) in the case of constant diffusion
coefficients, under the condition (1.7) for the positive definiteness.
We consider the initial data shown in Figure 5.17, i.e.

u0(x, y) =

{

1 |x2 + y2| ≤ 1

0 otherwise

and (homogeneous) Neumann boundary conditions (5.2).

Figure 5.17: initial data for two-dimensional anisotropic diffusion equation

We will treat separately the simpler case c = 0, for which we verify numeri-
cally the theoretical conditions for the fulfillment of the discrete maximum
principle established in Section 4.2.1. Then, we activate the term involving
mixed derivatives, to check that effectively the Standard Discretization fails
the maximum/minimum principle, and we need the Nonnegative Discretiza-
tion to solve such a problem.
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5.4.1 The purely diagonal case (c = 0)

We set a = 3 , b = 1 , and the computational domain is given by (5.1).
The grid points are specified by Nx = Ny = 50 , so that ∆x = ∆y = 0.4 .
The numerical scheme (4.9) has time-step computed according to (4.14) as

∆t = CFL · min{∆x2,∆y2}
4 max{a, b} , (5.12)

which corresponds to the stability constraint for CFL < 1 .
During the numerical simulations, we have observed that the discrete maxi-
mum principle is satisfied even if the CFL number becomes greater than 1 .
We refer to Figure (5.18), where the numerical solution is calculated with
CFL = 1.4 , and plotted at two different times, the black graph at T = 0.5
and the red graph at T = 0.5 + ∆t, respectively. For both components
along the x and y axes, the maximal/minimal value of the solution at time
T = 0.5+∆t is always below/above that at time T = 0.5 , which represents
exactly the validity of the maximum/minimum principle.
However, this behaviour is not preserved in Figure (5.19), where the solution
is calculated with CFL = 1.45, and a violation of the maximum/minimum
principle suddenly occurs.
These facts suggest that other terms are participating in the characterization
of the CFL-condition, which we are possibly neglecting, and an explanation
comes directly from the improved stability condition (4.26). Indeed, if we
replace (5.12) in the numerical codes with the following difinition

∆t = CFL′ · min{∆x2,∆y2}
2 max{a, b} S−1, (5.13)

where S = a
∆x2 · min{∆x2,∆y2}

max{a,b} + b
∆y2

· min{∆x2,∆y2}
max{a,b} , the two parameters CFL

and CFL′ are correlated through

CFL′ = CFL · S
2

≤ CFL . (5.14)

Now, in the present case, we have S = 1+ 1
3 ≃ 1.33 , and therefore CFL ≤ 1.4

implies CFL′ ≤ 0.931 for the experimental setting.
The constraint CFL′ < 1 is totally coherent with the theoretical results :
the discrete maximum principle is not satisfied when performing simulations
with CFL′ = 1.1 , as shown in Figure 5.20, and moreover numerical instabil-
ities clearly pollute the experiments; on the other hand, accurate results are
recovered with CFL′ = 0.95 , and we observe in Figure 5.21 that the max-
imal/minimal value of the numerical solution calculated at T = 0.5 (black
graph) is always below/above that calculated at T = 0.5 + ∆t (red graph),
that corresponds to the fulfillment of the maximum/minimum principle.
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(a) plot of numerical solution with respect to the x-axis

(b) plot of numerical solution with respect to the y-axis

Figure 5.18: CFL=1.4 , T =0.5 (black line) versus T =0.5+∆t (red line)

5.4.2 Taking into account the mixed derivatives (c 6= 0)

Finally, we focus on the fully anisotropic diffusion equation (4.7), with con-
stant coefficients a = 3 , b = 1 , c = 1.45 , so that c2 < a b , which guarantees
the positive definiteness property (1.7).

We have derived in Section 4.2.3 the Standard Discretization method,
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(a) plot of numerical solution with respect to the x-axis

(b) plot of numerical solution with respect to the y-axis

Figure 5.19: CFL=1.45 , T =0.5 (black line) versus T =0.5+∆t (red line)

that produces the numerical scheme (4.20), but unfortunately the discrete
maximum principle may fail for such an approximation, due to the possible
negativity of the elements inside the stencil (refer also to Table 2.2).
We set Nx = Ny = 70 and T = 0.5 , together with the CFL-condition (5.12)
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(a) plot of numerical solution with respect to the x-axis

(b) plot of numerical solution with respect to the y-axis

Figure 5.20: CFL′=1.1 , T =0.5 (black line) versus T =0.5+∆t (red line)

already used for the diagonal case above, which should ensures at least
the l2-stability of the present method. We fix CFL = 0.5 and, indeed, we
observe in Figure 5.22 a failure of the maximum/minimum principle, despite
CFL < 1 and the numerical solution does not exhibit spurious oscillations.
We have reported only the graph of the numerical solution with respect
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(a) plot of numerical solution with respect to the x-axis

(b) plot of numerical solution with respect to the y-axis

Figure 5.21: CFL′=0.95 , T =0.5 (black line) versus T =0.5+∆t (red line)

to the y-axis, fixing x at the center of the interval [−10, 10], to clearly see
how the density becomes artificially negative. This violation of the discrete
maximum principle is manifested by the loss of the non-negativity property,
which is fundamental for the physical meaning of the problem, as discussed
in Section 1.4 through the implication (1.24).
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(a) plot of numerical solution with respect to the y-axis

(b) zoom in the areas where the numerical solution becomes negative

Figure 5.22: failure of non-negativity for the Standard Discretization

According to the theoretical results stated in Section 4.2.3, in order to se-
cure overall stability properties, we must apply the Nonnegative Discretiza-
tion method (4.21), with the same numerical parameters as before.
We compare the two approaches in Figure 5.23, for CFL = 0.99 , and we
have plotted the numerical solution issued from the Standard Discretization
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(red graph) against the one calculated with the Nonnegative Discretization
(blue graph), which remains always greater than 0. Therefore, non-physical
negative values are eliminated when employing a nonnegative approxima-
tion, and the numerical solution satisfies the maximum/minimum principle.

(a) plot of numerical solutions with respect to the y-axis

(b) zoom in the areas where the numerical solution may become negative

Figure 5.23: Standard (red line) versus Nonnegative (blue line) method

Let us concentrate on the CFL-condition for the Nonnegative Discretiza-
tion. In the previous simulations, we put the constraint (5.12) with CFL<1,
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which is actually more restrictive than the theoretical requirement (4.23) for
the case c 6= 0 . This suggests that, again, we are considering larger posi-
tive terms on the parameter CFL, that could brings to numerical solutions
which are stable also for CFL numbers greater than 1 . Effectively, we have
observed that the discrete maximum principle is satisfied until CFL < 1.98 ,
as shown in Figure 5.24.

Figure 5.24: appearance of instabilities for CFL ≥ 1.98

These numerical results are coherent with the theoretical statements in Sec-
tion 4.2.3, since a sharper CFL-condition for the Nonnegative Discretization
is actually given by (4.24), which is connected to (5.12) through a relationship
between the CFL parameters similar to (5.14). From (4.24) we have that
0 < S < 2 , and for the present case S = 1+ 1

3 − 1.45
3 ≃ 0.85, so the stability

constraint gains a factor 0.425 which allows to almost double the original
CFL number, as reported in Figure 5.24.

Remark 15. It is worthwhile stressing that the actual gain in the stability
constraint (4.24) depends very much on the values of the diffusion coeffi-
cients a, b, c, and the space-steps ∆x,∆y, or rather on the ratio between those
values, showing that strong anisotropy stabilizes the nonnegative scheme, as
well as different space-steps (a type of non-uniformity of the spatial grid).

Setting ∆t = CFL′min{∆x2,∆y2}
2 max{a,b} S−1(a, b, c) , with S(a, b, c) defined as in (4.24),

we report in Figure 5.25 the numerical solution evaluated for CFL′ = 0.82 at
time T = 0.5 and then at time T = 0.5+∆t, which satisfies the discrete max-
imum principle. This property starts failing for CFL′ = 0.83 , as observed
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in Figure 5.26, where the violation of the maximum/minimum principle is
imperceptible but however it occurs as the red graph overcomes the blue one.

(a) plot of numerical solutions with respect to the x-axis

(b) plot of numerical solutions with respect to the y-axis

Figure 5.25: nonnegative solution at T =0.5 (blue line) with its maximum
above that at T =0.5+∆t (red line)

We conclude this section about two-dimensional anisotropic diffusion and
the discrete maximum principle by showing the three-dimensional plots of
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Figure 5.26: failure of the discrete maximum principle for CFL ≥ 0.83

the numerical solution at time T = 0.5 , for the diffusion tensor with c = 0
in Figure 5.27, and with c 6= 0 in Figure 5.27. Obviously, the introduction
of the mixed derivatives makes the diffusion front to move also diagonally
toward the axis y = x, unlike the case of purely diagonal diffusion where the
density spreads only along the x and y axes.
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Figure 5.27: numerical solution in the case c = 0 with a > b

Figure 5.28: numerical solution in the case c 6= 0 with a > b
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