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Abstract—This paper addresses the sparsity and

stochasticity properties of wavelet transforms of speck-

led data, when these data are considered either with or

without log-transform. The case where a log-transform

is applied on multiplicative speckled data prior to

wavelet transform is first associated with a frame-

work of multiplicative (or geometric) wavelets. Then,

through wavelet cumulant analysis, those multiplica-

tive wavelets are shown to highlight both sparsity and

stochasticity intrinsic to speckled data due to geometric

differencing. In contrast, standard wavelet implemen-

tation (without log-transform) of speckled data yields

intricate correlation structures which makes a clear

separation between sparsity and stochasticity difficult,

in particular for highly resolved data. The paper then

derives that, for high resolution synthetic aperture

radar data issued from airborne or new generation

satellites, multiplicative wavelets represent a more rel-

evant framework for the analysis of smooth earth fields

observed in the presence of speckle. From this analy-

sis, the paper derives a fast-and-concise multiplicative

wavelet based method for joint change detection and

regularization of synthetic aperture radar image time

series. In this method, multiplicative wavelet details

are first computed with respect to the temporal axis in

order to derive change-images from the time series. The

changes are then enhanced and speckle is attenuated

by using sigmoid shrinkage functions. Finally, a reg-

ularized time series is reconstructed from the sigmoid

shrunken change-images. An application to the analysis

of RADARSAT-2 quad-polarimetric and SENTINEL-

1A dual-polarimetric image time series over Chamonix-

Mont-Blanc test site is proposed to show the relevancy

and straightforwardness of the method.

Index Terms—Wavelets ; Geometric convolution ; Ge-
ometric approximations ; Geometric differencing ; Change

detection, Regularization ; Synthetic Aperture Radar.
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I. Introduction - Motivation

H IGHLY resolved data such as Synthetic Aperture

Radar (SAR) image time series issued from new

generation sensors show minute details. Indeed, the evo-

lution of SAR imaging systems is such that in less than 2

decades:

• high resolution sensors can achieve metric resolution,

providing much richer spatial information than the

decametric data issued from ERS or ENVISAT mis-

sions.

• the earth coverage has increased: recent satellites such

as TerraSAR-X and Sentinel-1A have a dozen of days

for repeating their cycle.

The increase of those spatial and temporal resolutions

makes information extraction intricate in highly resolved

SAR image time series. This compels us to re-consider

data features and representations in order to simplify data

storage and processing.

The paper presents a parsimonious framework on

the analysis of huge data associated with multiplica-

tive type interactions. These data are observed in many

situations, for instance when acquiring signals from

radar/sonar/ultrasonic waves [1]/[2]/[3],[4], when analyz-

ing seasonality from meteorology data [5] or when focus-

ing on proportionality in economy data [6] and political

sciences [7]. From now on, we focus on SAR systems, a

challenging imagery domain with huge amount of data

a�ected by multiplicative type interaction.

From the literature, analysis of SAR image time series

have been mainly performed on short-length image se-

quences. This is the consequence of SAR data cost (very

high), long satellite revisit time and short satellite lifetime,

among other issues. Literature concerns both theoretical

and application guided methods for:

• identifying appropriate statistics/similarity measures

[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], etc.;

• detecting and analyzing speci�c features, for instance

urban areas expansion [8], [18], [19], glaciers dynamics

[13], [20], [21], snow cover mapping [22], sea clutter
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analysis [23], forest mapping [24], earthquake mon-

itoring [8], sea ice motion analysis [25], coastline

detection [26], soil erosion [27], etc.;

• regularizing SAR data for speckle reduction and fea-

ture enhancement [19], [24], [26], [28], [29].

Most of these methods yield computationally complex

algorithms because they have been built for the sole sake

of performance over short-length image sequences.

For long-time sequences such as those expected with the

future Sentinel constellation, a direct application of these

methods is not an option: this direct application may be

unthinkable due to computational cost and unnecessary

for performance/robustness. Indeed, dense/long temporal

sampling results in redundant information on the time axis

so that a purely temporal analysis may be su�cient for

monitoring of most large scale earth structures.

The issue raised by new generation SAR sensors is thus

revisiting these methods with the sake of adapting them

to long and dense temporal image samples. Among the

references provided above, we consider hereafter wavelet

based approaches derived in [8], [13] for change detection

and in [29],[30] for image regularization.

For change detection, [8] computes a log-ratio change

image and applies a wavelet transform to this log-ratio

image in order to emphasize di�erent levels of changes. In

contrast, [13] computes the wavelet transform of images

prior to change detection by using probabilistic pixel

features.

For image regularization, [29] and [30] propose wavelet

shrinkages by using a parametric Bayesian approach [29]

and a non-parametric sigmoid based approach [30]. The

wavelet transform applies on the spatial axes for both

parametric and non-parametric methods, so as to be more

robust to speckle. Despite the somewhat di�erent strategy,

parametric and non-parametric approaches can be shown

equivalent up to a probabilistic prior speci�cation.

The present paper revisit [8], [13], [29] and [30] for deriv-

ing a joint change detection and regularization framework.

This framework assumes that several temporal observa-

tions of the pixel at stable states are available so that

one can focus one the time axis for the wavelet transform

(avoid a huge computational cost, suits for dense/long

time series). This framework is based on generalized log-

wavelet ratios so as to handle multiplicative type interac-

tions.

A multiplicative observation model involving

strictly positive interactions of a piecewise regular

deterministic function f and a random process X can be

written as:

y = fX = f+ f(X− 1) (1)

In the model given by Eq. (1), function f is observed in a

multiplicative signal-independent-noiseX or, equivalently,

in an additive signal-dependent-noise f(X− 1).

Given a transform W for analyzing y, the issue ad-

dressed in this paper is analyzing multiplicative and ad-

ditive frameworks for the representation of y. We assume

that the properties desired for W are both i) sparsity of

representation of f and ii) simpli�cation of the statistical

properties of the noise involved in the model (stationariza-

tion and decorrelation properties, among others). In this

respect, the transform W will be associated to wavelet

operators.

In the following, Wy refer to

• the (standard) additive wavelet transform, with (lin-

earity with respect to `+' operation):

Wy =Wf+Wf(X− 1), (♣)

• the multiplicative (or geometric) wavelet transform,

with (multiplicative linearity where W distributes

over `×' operation):

Wy = (Wf)× (WX) . (♠)

The term geometric wavelet is used because approxima-

tions based on multiplicative operations are referred to

in the literature as geometric statistics: for instance, the

mean statistics applying over `×' operators is known as

the geometric mean [15].

Note that performing a geometric wavelet decomposi-

tion as presented in model (♠) amounts to apply a log-

transform on the input data, perform a standard wavelet

transform and apply an exponential transform on the

wavelet coe�cients of this standard transform. However,

wavelet operators can be `embedded' in a multiplicative al-

gebra, so that their coe�cients, called geometric approx-

imations and geometric di�erences, involve speci�cally

the × operator used in (♠). This embedding considers

changing the algebra by using binary internal multiplica-

tion and external power operation. In this respect, this

geometric approach contrasts signi�cantly with `curvature'

based approaches (curvelets, bandlets, etc, see [31] [32],

[33], [34] for instance). Note that the same approach can

be used to de�ne geometric curvelets, bandlets, etc., on

multiplicative algebras.

The paper is organized as follows: Section II provides

statistical properties of additive wavelet based transforms

on model (♣). The geometric wavelet inference is de-

scribed in Section III. Its statistical properties (sparsity

and stochasticiy) on model (♠) are discussed in the same

section. Section IV then exploits these statistical proper-

ties to provide a joint �ltering and change detection of high

resolution SAR image time series. Section V concludes

the work. From now on, we assume that X = (X[k])k∈Z
denotes a stationary sequence of strictly positive real

random variables.
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II. Wavelet transform and multiplicative models

A. Basics of wavelet based transforms

In the following, we are interested in multi-scale decom-

position schemes involving paraunitary �lters (H0,H1)

associated with a wavelet decomposition, see [35], among

other references.

A one-level wavelet decomposition involves splitting

[36] a given functional space Wj,n ⊂ L2(R), de�ned as

the closure of the space spanned {τ2jkWj,n : k ∈ Z} into
direct sums of subspaces (Wj+1,2n+ε)ε∈{0,1}, spanned

respectively by {τ2j+1kWj+1,2n+ε : k ∈ Z}ε∈{0,1}, where

τkf : t 7−→ f(t − k). The splitting of Wj,n follows from

decimated arithmetic convolution operations:

Wj+1,2n+ε(t) =
∑
`∈Z

hε[`]Wj,n(t− 2`). (2)

for ε ∈ {0, 1}, where hε denotes the impulse response of

the scaling �lter (when ε = 0) or the wavelet �lter (when

ε = 1).

The consequence of Eq. (2) is that a function g having

coe�cients c = (c[`])`∈Z ∈ `2(Z) on {τ2jkWj,n : k ∈ Z}:

g =
∑
`∈Z

c[`]τ2j`Wj,n ∈Wj,n

can be expanded1 [35] in terms of

g =
∑
`∈Z

c0[`]τ2j+1`Wj+1,2n︸ ︷︷ ︸
∈Wj+1,2n

+
∑
`∈Z

c1[`]τ2j+1`Wj+1,2n+1︸ ︷︷ ︸
∈Wj+1,2n+1

where its coe�cients cε = (cε[`])`∈Z on

{τ2j+1kWj+1,2n+ε : k ∈ Z}ε∈{0,1}, for ε ∈ {0, 1},

where

cε[k] =
∑
`∈Z

hε[`]c[`− 2k]. (3)

Starting the decomposition from a function f ∈W0,0,

f =
∑
`∈Z

c[`]τ`W0,0,

the subband Wj,n coe�cients of f follow from

cj,n[k] =
∑
`∈Z

hj,n[`]c[`− 2
jk]. (4)

where the Fourier transform Hj,n of hj,n is (see [37, Eq.

(26)]):

Hj,n(ω) = 2j/2

[
j∏
`=1

Hε`(2
`−1ω)

]
. (5)

Eq. (4) can be used in practice for computing discrete

wavelet transforms from sample observations (terminolo-

gies of `discrete wavelet transform' when n ∈ {0, 1}, `dis-

crete wavelet packet transform' when n ∈ {0, 1, . . . , 2j−1},

1Equalities hold in L2(R) sense in these expansions.

`adapted discrete wavelet packets' for a suitable selec-

tion of n-indices). Some splitting schemes involving non-

decimation (factor 2j in Eq. (4)) are also available and

yield the concept of frames and the notion of stationary

wavelet transforms [38]. The reader can refer to the abun-

dant literature on wavelets for more details on wavelet

transforms.

B. Additive wavelet transform and multiplicative ob-

servation model - Sparsity checking

Sparsity plays a major role for simplifying image storage

and processing. For piecewise smooth signals, sparsity

follows from the di�erencing operated by wavelet func-

tions and the corresponding di�erences are called details

(scaling functions operate as approximation functions).

SAR images are used hereafter for illustrating the be-

havior of additive/multiplicative wavelets on real data

a�ected by multiplicative noise. For SAR imaging systems,

interactions between coherent radar waves and ground

surface result in the so-called fully developed speckle

phenomenon, once the resolution cell (pixel) includes

randomly distributed scatterers. The literature commonly

assumes that SAR images are a�ected by a multiplica-

tive (speckle) noise with unit mean and distributed - in

amplitude as Rayleigh/exponential (single-look imaging)

and Nakagami (multi-look imaging) - or - in intensity

as Gamma (both single and multi look imaging). This

literature also used to con�rm that acquired data are

not very sparse in the wavelet domain. In this respect,

adaptive lifting wavelets [39] or redundant wavelet frames

[40] are more often used for analysis purposes, in order to

encompass this lack of strong sparsity.

Figures 1 and 2 present polarimetric SAR images

acquired respectively by the DLR F-SAR and the

RADASAT-2 sensors. Acquisitions have been performed

by using coherent and polarized waves: Horizontal

(H)/Vertical(V) for wave emission and Horizontal/Vertical

for wave reception. Those polarimetric data are usually

represented as a matrix of complex numbers composed of

the 4 channels HH, HV, VH and VV. We have focused on

the magnitudes of these complex data for image displays.

The displays given by Figures 1 and 2 are color compo-

sitions where channels HH, HV and VV are associated

with the colors blue, green and red respectively. These

images illustrate multiplicative scattering phenomenon in

the di�erent polarimetric channels.

Figures 3 and 4 provide standard (additive) detail

wavelet coe�cients of polarimetric data given in Figures

1 and 2, respectively. The wavelet decomposition used

is separable with respect to the di�erent polarimetric

channels and the Haar wavelet has been used for this

decomposition.
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Fig. 1. Polarimetric FSAR X-band image with size 5000 × 5000
pixels over Kaufbeuren site, Germany. The sensor used for this
acquisition operates in the spectral X-band, has an altitude of 3045
meters and o�ers a pixel spacing of 15 centimeters in range and 17
centimeters in azimuth.

Fig. 2. Polarimetric RADARSAT-2 �ne quad polarized image over
the Tal�efre glacier, Chamonix-Mont-Blanc test site, France.

In these detail coe�cients, issued from additive wavelets

on a multiplicative observation model, we observe many

structures of the scene under consideration. In particular,

we can even observe regular structures, which obviously

might not be present in detail wavelet coe�cients: regular

structures are the domain of the scaling function and

details must not contain varied regular structural infor-

mation in the case of strong sparsity.

Note that sparsity is a property applied on f. However,

in a noisy environment, the useful sparsity is strongly

linked to the noise properties since noise a�ects the non-

zero coe�cients, and thus a�ects the quality of the ap-

proximation that can be obtained by considering those

non-zero coe�cients. In order to explain this non-sparse

behavior, the following addresses the properties of wavelet

functions of the noise involved in (♣).

C. Stochasticity and the additive wavelet decomposi-

tion

In model (♣), the additive noise contribution is associ-

ated with a random sequence having the form

Y[k] = f[k](X[k] − 1). (6)

Since we have assumed that (X[k])k∈Z are stationary with

EX[k] = µ0 and autocorrelation function RX[k, `] =

E [X[k]X[`]] , RX[k− `], then:

• The mean of Y[k] is

EY[k] = f[k](µ0 − 1). (7)

• The autocorrelation function of Y, RY[k, `] =

E [Y[k]Y[`]] satis�es, by taking into account Eq. (6):

RY[k, `] = f[k]f[`] (RX[k− `] − 1) . (8)

Remark 1: Eqs. (7) and (8) above highlights that the

additive signal-dependent noise Y is non-stationary in

general, except some few cases, for instance when f is

constant.

Let us now analyze the wavelet coe�cients of Y. Denote

by C+
j,n the coe�cients of Y on subband Wj,n. We have

C+
j,n[k] =

∑
`∈Z

hj,n[`]f[`− 2
jk](X[`− 2jk] − 1). (9)

It follows that

EC+
j,n[k] = (µ0 − 1)

∑
`∈Z

hj,n[`]f[`− 2
jk] (10)

and the autocorrelation function R+
j,n[k, `] =

E
[
C+
j,n[k]C

+
j,n[`]

]
of C+

j,n is:

R+
j,n[k, `] =

∑
p∈Z

∑
q∈Z

hj,n[p]hj,n[q]×

f[p− 2jk]f[q− 2j`]×(
RX[p− q− 2j(k− `)] − 1

)
(11)

From Eq. (11), we derive that C+
j,n is non-stationary in

general due to the presence of the term f[p−2jk]f[q−2j`]

in Eq. (11) and this, even if µ0 = 1 in Eq. (10).

Remark 2 (Non-stationarity of C+
j,n for exponential

type function f): Assume that µ0 = 1 and function f
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Level 1 \+" details Level 3 \+" details

Fig. 3. Detail wavelet coe�cients of the image given in Figure 1 when the Haar wavelet is used in an additive wavelet decomposition.

Level 1 \+" details Level 3 \+" details

Fig. 4. Detail wavelet coe�cients of the image given in Figure 2 when the Haar wavelet is used in an additive wavelet decomposition.

satis�es f[k]f[`] = f[k + `] (exponential type functions),

where f does not reduce to the constant 1. In this case,

we derive

R+
j,n[k,`]=

f[−2j(k+ `)]

2π

∫π
−π

γX0(ω)|Gj,n(ω)|
2
ei2

j(k−`)ωdω(12)

where Gj,n = F ∗Hj,n and F is the Fourier transform of

f. The non-stationarity of C+
j,n is then due to the term

f[−2j(k+ `)] in Eq. (12) above.

More generally, even when assuming that µ0 = 1, it

is easy to check that most standard functions f lead to

the non-stationarity of C+
j,n. In particular, linear func-

tions of type f[k] = f0 × k (for certain k in a �nite

set) have a term in k` which cannot be simpli�ed in

R+
j,n[k, `]. High order polynomial functions have bivariate

monomial terms involving kλ`η in R+
j,n[k, `]. Functions of

type sin, cos satisfy f[k]f[`] = g1[k+`]+g2[k−`] and in this

case, the contribution of g1 implies non-stationarity as in

the exponential case given above, etc. From a practical
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viewpoint, this non-stationarity is simply emphasized by

Figures 3 and 4: in the areas where f is not constant,

many f-structures (buildings)/f-texture (forest, glacier)

are present in detail wavelet coe�cients.

An appealing case of stationarity sequence C+
j,n corre-

sponds to a constant function f associated with a random

sequence X with unit mean:

Remark 3 (Stationarity): When µ0 = 1 and f is a

constant function: f[k] = f0, then EC+
j,n[k] = 0 and

furthermore, we derive R+
j,n[k, `] = R+

j,n[k − `] = R+
j,n[m]

with:

R+
j,n[m] =

f20
2π

∫π
−π

γX0(ω) |Hj,n(ω)|
2
ei2

jmω dω (13)

where γX0 denotes the spectrum of the random sequence

X0 = X− 1.

γX0(ω) =
∑
m∈Z

(RX[m] − 1) e−imω.

This case of a constant function f observed in a multi-

plicative noise represents homogeneous area observation in

practical SAR applications. This case is the sole favorable

scenario for standard additive wavelets when the challenge

is to simplify the multiplicative model fX.

Due to the non-stationarity of C+
j,n in general (except

few cases such as that of Remark 3), modeling or es-

timating additive wavelet coe�cients of a multiplicative

model is not an easy task. The following shows that mul-

tiplicative implementations of wavelets highlight desirable

sparsity and stochasticity properties in model fX.

III. Embedding wavelets in a multiplicative

algebra

A. Geometric convolution

The binary operation considered in the following is

the multiplication (× symbol) over positive real numbers

R+ (\0" has no sign and is not considered as a positive

number).

Consider a data sequence x = (x[`])`∈Z, with x[`] ∈ R+

for every ` ∈ Z. Since this sequence represents a multi-

plicative phenomenon, then

• \zero" or \nothing" or \no change" corresponds to

the identity element \1"

• a \small" value is a value close to 1 (10−3 and

103 have the same signi�cance in terms of absolute

proportion,

• a missing value must be replaced by 1,

• shrinkage forces to 1, the coe�cients that are close to

1.

The multiplicative algebra implies de�ning the support

of the sequence x as the sub-sequence composed with

elements that are di�erent from 1. We will thus use

the standard terminologies of �nite/in�nite supports with

respect to the above remark. When such a sequence x is

in�nite, we will assume that log(x) = ((logx[k])k∈Z) ∈
`2(Z).
When considering a scalar sequence (impulse response

of a �lter for instance) h = (h[`])`∈Z where h[`] ∈ R for

every ` ∈ Z, then we will keep the standard terminology

related to support de�nition from non-zero elements (non-

null real numbers).

The geometric convolution de�ned below is based on

this binary operation (notation x× y , xy for x, y ∈ R+)

and real scalar power operations (notation a∧ x , xa for

x ∈ R+ and a ∈ R).

De�nition 1 (Geometric convolution): Let h =

(h[`])`∈Z denote the impulse response of a digital �lter.

We de�ne the geometric convolution of x and h on the

vector space (R+,×,∧) as:

y[k] = x> h[k] ,
∏
`∈Z

(x[`])
h[k−`]

=
∏
`∈Z

(x[k− `])
h[`] , h> x[k], (14)

One can remark that, in contrast to the standard con-

volution operation on the sequences of the �eld (R,+,×),
sequence h plays a non-commutative scalar role with

respect to x since the external operation `power' used in

Eq. (14) is not commutative. This justi�es the second , in

Eq. (14): the equality x>h = h>x applies index-wise on

the geometric convolution, given that the scalar sequence

h operates to the power of elements of x, by de�nition.

If h ∈ `2(Z), then x>h[k] exists and is �nite for almost

every k since we have assumed that log(x) ∈ `2(Z).
Depending on the �lter h used, Eq. (14) makes the

computation of geometric approximations and di�erences

of the input data x possible. The standard geometric ap-

proximation (called geometric mean) of a �nite sequence

{x1, x2, . . . , xN} is given by:

y = N
√
x1x2 · · · xN =

N∏
`=1

x
1/N
` . (15)

This geometric mean (see Eq. (15)) is associated with an

N-length Haar-like scaling �lter

h0[k] = ν for k = 1, 2, . . . , N. (16)

Filter h0 (low pass �lter) performs geometric approxima-

tions and can be associated with a Haar-like wavelet �lter

h1[k] = (−1)k−1ν for every k = 1, 2, . . . , N. (17)

which performs geometric di�erencing (high pass or de-

tails), where constant ν > 0 is �xed so as to impose pa-

raunitarity for the corresponding pair of �lters (ν =
√
2/2

for standard Haar wavelet �lters when N = 2).
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B. Geometric wavelet decomposition

In the following, we consider the same paraunitary

wavelet �lters (h0,h1) ∈ `2(Z) × `2(Z) as in Section II.

Let

h[k] = h[−k].

De�ne the wavelet decomposition of x with respect to

the geometric convolution (geometric wavelet decompo-

sition) by:

c1,0[k] = x> h0[2k], (18)

c1,1[k] = x> h1[2k], (19)

and, recursively, for ε ∈ {0, 1} (wavelet packet splitting

formalism described in [36]):

cj+1,2n+ε[k] = cj,n > hε[2k]. (20)

In the decomposition given by Eq. (20) above, sequence

cj+1,2n+ε represents:

• geometric approximations of cj,n when ε = 0,

• geometric di�erences (details) of cj,n when ε = 1.

The level j = 0 coe�cients represent the input sequence

x. The above wavelet packet splitting is associated to a

wavelet decomposition when the splitting concerns only

(cj,0)j>1

Proposition 1 (Geometric wavelet reconstruction):

We have:

cj,n[k] = (�cj+1,2n > h0[k])× (�cj+1,2n+1 > h1[k]) . (21)

where

�u[2k+ ε] =

{
u[k] if ε = 0,

1 if ε = 1.
(22)

Proof: The proof is a direct consequence of the

expansion of the right hand side of Eq. (21), by taking

into account Eq. (20) and the paraunitary condition which

imposes
∑
`∈Z hε[`]hε[`− 2k] = δ[k].

Proposition 1 represents the reconstruction of the level-

j-wavelet-coe�cients from the coe�cients located at level

j + 1. As in the standard additive formulation given

in Section II (see Eq. (3)), di�erent wavelet decompo-

sition schemes (orthogonal wavelets, stationary wavelets,

adapted wavelet packets, etc.) and perfect reconstructions

can be obtained from Eqs. (20) and (21) respectively.

This geometric transform is the formalization of di�er-

ent operations performed by SAR community in process-

ing SAR images. Indeed, its implementation derives from

from standard additive wavelet transform since it consists

in:

• replacing the standard convolution by the geometric

convolution given in De�nition 1 and,

• noticing that decimation corresponds to replacing one

coe�cient out of two by the number 1.

This implementation is exactly what one gets with stan-

dard wavelet transform by using log transform before

transforming data and exp transform after data trans-

forming. In the following, we will address the statistical

properties of the coe�cients issued from Eq. (20).

C. Multiplicative wavelet transform and multiplicative

observation model - Sparsity checking

Section II-B has emphasized the lack of sparsity of the

additive wavelet details when dealing with a multiplicative

observation model (see Figures 3 and 4 for instance). In

order to seek sparse detail representations for the multi-

plicative model, changing wavelet functions by considering

other types of functional bases is not necessary: we just

need to apply a convolution operation adapted to our

sampling process. Indeed, since a given natural scene (such

as those involved in Figures 1, 2) can be coarsely described

as a piecewise smooth function, then wavelets are expected

to capture the intrinsic redundancy of such a scene in a

sparse way, independently of the intrinsic properties of the

acquisition device.

For the SAR images, this operation is described by a

multiplicative type interaction between signal and speckle

noise. In this respect, wavelet based decompositions

should also be multiplicative for sparsity to holds true in

the wavelet detail domain.

Figures 5 and 6 provide geometric (multiplicative) de-

tail wavelet coe�cients of polarimetric images given by

Figures 1 and 2 respectively. When analyzing these detail

coe�cients, we observe only very few structures of the

noise-free signal. Multiplicative wavelet details are thus

more convenient for sparse based analysis than additive

wavelet coe�cients for this observation model. Note that

for the multiplicative model (♠), sparsity denotes a large

number of `ones' and detail wavelet images of Figures 5

and 6 have been displayed in a logarithmic scale so as to

make comparison with Figures 3 - 4 possible.

D. Stochasticity and the geometric wavelet decomposi-

tion

In model (♠), noise contribution is multiplicative and

associated with a unit-mean stationary random sequence

X = (X[k])k∈Z. Note that the geometric wavelet de-

composition of Eq. (20), say W×, distributes over the

product fX: W×[fX] = (W×f) (W×X). In this respect,

the focus of this Section are the statistical properties of

W×X. The subband Wj,n geometric wavelet coe�cients

of the decomposition of X will be denoted (C×j,n)j,n (we

assume that this stochastic sequence is well de�ned in the

following).

Note that if Cj+1,2n+ε[k] = Cj,n>hε[2k] where Cj,n is

a stationary sequence, then Cj+1,2n+ε is also stationary.

Since C0,0 = X is assumed to be stationary, we derive
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Level 1 \×" details Level 3 \×" details

Fig. 5. Diagonal detail wavelet coe�cients of the image given in Figure 1 when the Haar wavelet is used in a multiplicative wavelet
decomposition.

Level 1 \×" details Level 3 \×" details

Fig. 6. Diagonal detail wavelet coe�cients of the image given in Figure 2 when the Haar wavelet is used in a multiplicative wavelet
decomposition.

that all geometric wavelet sequences Cj,n are stationary

for j > 0 and n ∈ {0, 1, . . . , 2j − 1}.

Let Y = logX. We assume hereafter that Y is a second-

order random process, continuous in quadratic mean. Let

Dj,n = logC×j,n. Note that Y and Dj,n are stationary

sequences. Assume that EY[k] = 0 for every k ∈ Z. Then
EDj,n[k] = 0 for every k ∈ Z.
Let RY[m] = RY[k−`] = E [Y[k]Y[`]] be the autocorre-

lation function of Y, where the �rst equality above holds

true for any pair (k, `) ∈ Z × Z such that m = ±|k − `|.

Proposition 2 below derives the autocorrelation function

RDj,n of the log-scaled geometric wavelet coe�cient Dj,n.

We assume that
∑
q∈Z hε[p − 2k]hε[q − 2`]RDj,n [p, q]

exists for every j > 0 and n ∈ {0, 1, . . . , 2j − 1}.

Proposition 2 (Autocorrelation Function of Dj,n):
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Assume that RY has a spectrum (power spectral density)

γY(ω) =
∑
m∈Z

RY[m]e−imω

and that γY is bounded. Denote by γDj,n , the spectrum

of Dj,n:

γDj,n(ω) =
∑
m∈Z

RDj,n [m]e−imω (23)

We have, for j > 0, n ∈ {0, 1, . . . , 2j−1} and ε ∈ {0, 1}:

RDj+1,2n+ε
[m]=

1

2π

∫π
−π

∣∣∣Ĥε(ω)
∣∣∣2γDj,n(ω)e2imωdω (24)

where γD0,0 = γY.

Proof: See Appendix A.

By taking into account that sequence Dj,n issues from a

�lter bank (Hε`)`=1,2,...,j (low-pass when ε` = 0 and high-

pass when ε` = 1) and has the equivalent representation

given by Eq. (5), we derive recursively from Eq. (24):

RDj,n [m] =
1

2π

∫π
−π

|Hj,n(ω)|
2
γY(ω)e2

jimω dω (25)

Eq. (25) governs the behavior of the autocorrelation of

Dj,n. From this equation, decorrelating geometric wavelet

coe�cients involves selecting wavelet �lters such that

1

2π

∫π
−π

|Hj,n(ω)|
2
γY(ω) cos 2jmωdω (26)

behaves approximately as δ[m]. This is strongly linked to

the shape of γY and can be achieved by

(i) choosing a sequence of wavelet �lters such that func-

tion |Hj,n(ω)|
2
γY(ω) can be seen as approximately

constant or

(ii) seek asymptotic decorrelation with j, when it applies.

Item (i) is parametric in the sense that it relates to

adapted wavelet selection for decorrelating Y. Item (ii)

(non-parametric) exploits properties of recursive convolu-

tions. For instance, if we consider the Haar wavelet �lters

(used below for illustrations), we can derive :

Proposition 3 (Haar equivalent wavelet �lter se-

quence HHaar

j,n ): A sequence (hε`)`=1,2,...,j has equivalent

�lter:∣∣HHaar

j,n (ω)
∣∣2 = 2j j∏

`=1

cos2
(
2`−2ω+ ε`

π

2

)
. (27)

Proof: See Appendix B.

In the usual wavelet splitting scheme, only approxima-

tion coe�cients are decomposed again (the shift parameter

n ∈ {0, 1}). This implies �ltering sequences with the formh0,h0, . . . ,h0︸ ︷︷ ︸
j times

,hεj+1


εj+1∈{0,1}

at decomposition level j+ 1. Consider a j-length approxi-

mation sequence
(
hHaar

0

)
`=1,2,...,j

of Haar type. Then from

Eq. (27), the equivalent �lter of this sequence can be

rewritten in the form:∣∣HHaar

j,0 (ω)
∣∣2 = 2j( sinc(2j−1ω)

sinc(2−1ω)

)2
(28)

where sinc denotes the cardinal sine function, sincω =

sinω/ω. The autocorrelation RHaar

Dj,0
of the corresponding

geometric wavelet coe�cients is then:

RHaar

Dj,0
[m] =

2j

π

∫π
0

(
sinc(2j−1ω)

sinc(2−1ω)

)2
γY(ω) cos 2jmωdω

(29)

Proposition 4 (Limit Autocorrelation Function):

lim
j→+∞RHaar

Dj,0
[m] = γY(0)δ[m] (30)

Proof: See Appendix C.

Proposition 4 highlights an asymptotic decorrelation

property with j. This property can be extended by con-

sidering di�erent paraunitary �lters. For instance, when

considering the N-length Haar type paraunitary approx-

imation �lter h0 and detail �lter h1 given by Eqs. (16)

and (17), the equivalent wavelet �lter is

|Hj,n(ω)|
2
= 2j

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω+ ε`π))

)2
(31)

It follows that the corresponding autocorrelation RDj,n is

RDj,n [m]

=
2j

π

∫π
0

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω+ ε`π))

)2
γY(ω) cos 2jmωdω,

=
1

π

∫π
0

j∏
`=1

(
sin(2−j+`−2Nω)

sin(2−j−1ω+ ε`
π
2
)

)2
γY

(ω
2j

)
cosmωdω

which tends to γY(0)δ[m] when j tends to ininity, for the

approximation path (n = 0).

This decorrelation property can also be extended by

considering di�erent paths, �lters and wavelet packet

splitting schemes, as done in [37] for additive noise and

arithmetic wavelet transforms.

From the stationarity and decorrelation properties

shown in this section, it follows that Model (♠) is suitable
for statistical analysis of observation fX since multiplica-

tive wavelet coe�cients de�ne a stationary sequence C×j,n
(validation of the stationary behavior observed in Figures

5 - 6) and the form of the autocorrelation of this sequence

can be speci�ed for decorrelation purposes through a

selection of adapted �lter Hj,n in Eq. (25).

In the rest of the paper, we consider the multiplicative

wavelet transform for and easy detection of changes on

the time axis (sparsity of the temporal details) and a joint

change detection + regularization framework.
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IV. Multiplicative wavelets for joint change

detection and regularization of SAR image time

series

A. Principle for joint change detection and regulariza-

tion

We consider a PolSAR scattering/covariance image time

series C = (Cuvm,n(k)), where (u, v) ∈ {H,V} × {H,V},

H/V stands for Horizontal / Vertical respectively, (m,n)

refers to spatial domain and k denotes time axis. We

have Cuvm,n(k) = Iuvm,n(k)Θuvm,n(k) where I denotes moduli

and Θ stands for unit-norm complex exponential phase

terms. The temporal multiplicative wavelet transform is

chosen to apply on Iuvm,n(•): the transform is performed

to decompose series Iuvm,n(k) with respect to the time

variable k solely. Terms Θuvm,n(k) are stored and added

after processing of I.
The spatio-temporal multiscale wavelet change informa-

tion is concentrated in multiplicative detail subbands here-

after called change-images. The change analysis involves

using a spatio-temporal block shrinkage for the retrieval

of multi-temporal multi-scale multiplicative wavelet coef-

�cients associated with change information. The shrunken

multiplicative wavelet change-images are then used to

reconstruct a regularized time series with sharp change

transitions. The shrinkage thus makes both retrieval of

temporal changes and obtaining a regularized image time

series possible.

The shrinkage addressed below will apply through sig-

moid shrinkage functions [30]. These functions have the

following form:

δt,θ,λ(x) =
sgn(x)(|x|− t)+(
1+ e−ζ(θ)(

|x|
λ

−1)
) (32)

where

ζ(θ) =
10 sin θ

2 cos θ− sin θ
(33)

and sgn(x) = 1 (resp. -1) if x > 0 (resp. x < 0), and

(x)+ = x (resp. 0) if x > 0 (resp. x < 0).
Note that since the wavelet transform is performed with

respect to the time axis, a wavelet based change image

(temporal detail image) contains:

• either a bidate change information (level j = 1 detail

coe�cients when using a �lter h with 2 non-zero

coe�cients, such as Haar �lters)

• or a multidate change information when:

– j > 2, whatever the �lter used, provided that the

�lter has at least 2 non-zero coe�cients,

– j > 1, when the �lter used has more than 2 non-

zero coe�cients.

For highlighting the multitemporal changes in their spati-

temporal context, the above sigmoid shrinkage function

will be applied hereafter in a spatio-temporal framework

(spatial blocks on wavelet based temporally di�erenced

data). For a pixel moduli Zuvm,n(k) pertaining to a log-

scaled change-image, the shrinkage proposed is de�ned as:

δt,θ,λ(Z
uv
m,n(k)) =

sgn(Zuvm,n(k))(|Z
uv
m,n(k)|− t)+

1+ e
−ζ(θ)

(
||VZuvm,n(k)||

2
λ

−1

) (34)

where VZuvm,n(k) is a vector with the form VZuvm,n(k) =

{Zuvm,n(k),m = m−ε0, . . . ,m+ε0, n = n−ν0, . . . , n+n0}

and ε0, ν0 are natural numbers chosen su�ciently small

(spatial neighborhood of the detail pixel (Zuvm,n(k)), with

|| · ||2 denoting the `2 norm. This penalized shrinkage then

consists in

• forcing to zero all temporal log-scaled geometric

wavelet change-image pixel with spatial neighborhood

norm smaller than the �rst threshold t,

• attenuating temporal log-scaled geometric wavelet

change-image pixel with large spatial neighborhood

norm thanks to an attenuation degre θ and a second

threshold λ.

Note that when 2J PolSAR image samples are available,

then, by restricting the wavelet transform to apply on the

time axis and by performing a level J decomposition, we

have to take into account:

• the level J subband of this sequence, which reduces

to a single PolSAR image called hereafter PolSAR

geometric approximation image or mean-image,

• the levels j = 1, 2, . . . , J change-images, with 2J−j

change-images at decomposition level j 6 J (decima-

tion in order to reject redundant change information).

B. Application to RADARSAT-2 quad-polarimetric

SAR image time series (short sequence)

The test site considered in this example is an area

covering the glaciers Mer de Glace and Argenti�ere, in

the mountainous Chamonix-Mont-Blanc site, in France.

Figure 7-left presents a 4-length SAR image time series

denoted P of this test site (RADARSAT-2 satellite �ne

quad polarization). The scene displayed (50 km2 approx-

imately) is an RGB color composition from polarimetric

scattering vectors.

The geometric wavelet coe�cients of P are given in

Figure 7-right. Since J = 2 (P is a 4 = 2J=2-length

PolSAR image time series) for this example, we have

3 multiscale change-images for an orthogonal geometric

wavelet decomposition scheme (2 change-images at the

�rst scale and 1 change-image at the second scale). In

addition, because we have considered the Haar wavelets,

then:

• level-1 change-images (�ner details) are geometric

di�erences (ratios) between consecutive acquisitions

(P(k) versus P(k− 1)), in addition with a decima-

tion step (case of the orthogonal decimated wavelet

transform),
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P1 = P(t1)
t1 =

2009− 02− 22

P2 = P(t2)
t2 =

2009− 03− 18

P3 = P(t3)
t3 =

2009− 04− 11

P4 = P(t4)
t4 =

2009− 05− 05

C1,1[P](t1)

C1,1[P](t2)

C2,1[P](t1)

C2,0[P](t1)

Fig. 7. Left: RADARSAT-2 quad PolSAR image time series over 2 glaciers (Mer de Glace and Argenti�ere) of the Mont-Blanc mountain.
Right: geometric wavelet coe�cients of this image time series by using Haar wavelets.
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CS
λ1

1,1 [P](t1)

CS
λ1

1,1 [P](t2)

CS
λ1

2,1 [P](t1)

CS
λ2

1,1 [P](t1)

CS
λ2

1,1 [P](t2)

CS
λ2

2,1 [P](t1)

Fig. 8. Sigmoid shrinkage with λ = λ1 (left) and λ = λ2 (right) of the detail coe�cients given in Figure 7. Images provide multilevel change
maps.
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• level-2 coe�cients provide coarser change-

images in terms of ratios (P(k),P(k− 1) versus

P(k− 2),P(k− 3)) (4 dates involved in the two

pairs).

The geometric change-images given in Figure 7-right

show both sparsity of change information (changes are

rare and and signi�cant when present) and stationarity

in homogeneous areas with no temporal change (speckle

noise). These results are consequences of the multiplica-

tive wavelet transform accuracy for a sparse+stochastic

representation of a multiplicative observation model (see

Sections II and III).

The multitemporal change information present in these

geometric change-images can thus be highlighted and de-

tected with high performance by using shrinkage functions

in the geometric wavelet domain.

We then apply the block sigmoid shrinkage given by

Eq. (34) to the change-images of Figure 7-right with

parameters t0 chosen as the universal threshold of [41],

θ = π/5 and λ ∈ {λ1, λ2}, where λ1 = t0, λ2 = 2t0.

This sigmoid shrinkage, denoted by an operator Sλ yields

change-images of Figure 8.

As it can be seen in Figure 8, shrinkage Sλ1 highlights

many small change structures (compare details of Figure

7-right with those of Figure 8-left) and the detection is

made highly selective by using Sλ2 (compare Figure 8-

right with Figures 7-right and 8-left).

C. Application to Sentinel-1A dual-polarimetric SAR

image time series

The geometric temporal wavelet shrinkage for both

change detection and regularization aims at simplifying

the analysis of long time series of SAR images. Indeed,

the challenge in exploiting such huge data is in dimen-

sionality handling and requires methods that have very

low computational load.

Sentinel constellation of the European Space Agency

(ESA) is a source of highly resolved spatio-temporal data.

Since the launch of Sentinel-1A in April 2014, a time

series of PolSAR data over the Chamonix-Mont-Blanc

test site has been collected and co-registered thanks to a

�xed corner re
ector, see Figure 9 (images are available

free of charge from ESA repository). This time series

is composed of 11 dual PolSAR IW level-1 Single Look

Complex (SLC) SAR images acquired in descending pass

from November 15, 2014 to March 15, 2015 with 12 days

sampling period. The resolution is about 3.5 × 20 squared

meters for SLC images. Images are here displayed in a

Pauli color rendering in order to enhance dual-polarimetry

information.

Di�erent types of changes can occur on this glacier

site due to the long period of observation: for instance

snow fall, snow accumulation in speci�c areas, serac falls,

avalanches, human activities, etc. It is worth noticing

that a pixel-per-pixel and date-per-date search is possible,

see for instance [42]. However, this is with very high

computational cost, in comparison with the geometric

temporal wavelet shrinkage proposed below. Speci�cally,

we consider both scalar sigmoid shrinkage (polarimetry

channels are considered independently for building VZ in

Eq. (34)) and vector sigmoid shrinkage (VZ is a sequence

of `p-norms of PolSAR channels) for comparison purpose.

If we assume that parameter t of sigmoid shrinkage equals

0 (no zero forcing), then the shrinkage of PolSAR vector

coe�cient Zm,n(k) = (Zuvm,n(k))(u,v)∈{H,V}2 reduces to

δt,θ,λ(Zm,n(k))=
Zm,n(k)

1+ e
−ζ(θ)


∣∣∣∣∣∣∣∣V||Zm,n(k)||p

∣∣∣∣∣∣∣∣
2

λ
−1

 (35)

where ζ(θ) is given by Eq. (33) and V is constructed as

done in Section IV-A.

Some geometric wavelet change-images are given by

Figure 10 (we restrict to level j = 2 temporal changes

due to the limited size of the paper). As expected, these

details looks stochastic, excepted in few areas. Scalar

sigmoid shrinkage (polarimetry channels are considered

independently) yields change-images of Figure 11 whereas

vector sigmoid shrinkage leads to change-images of Figure

12. One can notice that the latter better enhances po-

larimetry change information than the former. An analysis

of the areas a�ected by changes highlights that these are

urban areas and the Argenti�ere glacier serac fall area.

In addition to changes in these dynamic areas, one can

note some speci�c very localized changes, for instance the

one near Argenti�ere glacier accumulation area (see Figure

13 for localizing the most important changes and the

corresponding areas). The borders of Mer de glace glacier

also tend to yield change responses both in RADARSAT-2

data (see Figure 8) and in Sentinel-1 data (see Figure 12).

This can be due to co-registration errors. However, since

Argenti�ere glacier borders do not respond equivalently,

this suspect behavior needs to be confront with ground

truth because these change responses can reveal other

phenomena such as glacier constriction.

By applying inverse geometric wavelet transform on

shrunken change-images, we derive regularized time series

given by Figures 14 (scalar sigmoid case) and 15 (vector

polarimetry case). The comparison with Figures 9, 14

and 15 emphasizes nice properties in both regularization

and change preservation for the vector sigmoid geometric

wavelet shrinkage.

V. Conclusion

This paper has derived statistical properties of wavelets

in additive and multiplicative implementation frame-

works. Multiplicative wavelets are explained in terms of
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P1 = P(t1)
t1 =

2014− 11− 15

P3 = P(t3)
t3 =

2014− 12− 09

P5 = P(t5)
t5 =

2015− 01− 02

P7 = P(t7)
t7 =

2015− 01− 26

P9 = P(t9)
t9 =

2015− 02− 19

P2 = P(t2)
t2 =

2014− 11− 27

P4 = P(t4)
t4 =

2014− 12− 21

P6 = P(t6)
t6 =

2015− 01− 14

P8 = P(t8)
t8 =

2015− 02− 07

P10 = P(t10)
t10 =

2015− 03− 03

Fig. 9. Sentinel-1A dual PolSAR image time series P over 2 glaciers (Mer de Glace and Argenti�ere) of the Mont-Blanc mountain.
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D2,1/

D2,2/

D2,3/

Fig. 10. Level 2 geometric wavelet change-images of the Sentinel-1A dual PolSAR image time series P of Figure 9.
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DSs2,1/

DSs2,2/

DSs2,3/

Fig. 11. Scalar sigmoid shrinkage DSs of geometric wavelet change-images given in Figure 10.



17

DSv2,1/

DSv2,2/

DSv2,3/

Fig. 12. Vector sigmoid shrinkage DSv of geometric wavelet change-images given in Figure 10.
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Fig. 13. Localization of level-2 geometric changes over Chamonix-Mont Blanc test site. Most important changes concern 2 zones that are
known to be dynamic: the urban area (Chamonix valley, in red-dotted) and a serac fall area (in yellow-dashed). Changes also occur on a
speci�c zone near the Argenti�ere glacier accumulation area (magenta-square-box, probably a change due to an avalanche). See Figure 12 for
identifying the dates and the amplitudes of the changes.

geometric approximation and di�erencing operators. Spar-

sity and stochasticity properties of additive (arithmetic)

and multiplicative (geometric) wavelet transforms have

been provided and illustrated on a multiplicative obser-

vation models.

In the multiplicative noise model, the paper has shown

that:

• concerning sparsity, additive detail wavelet coe�-

cients are impacted by the presence of signals (large

amounts of signal contribution in detail coe�cients),

whereas few signal contributions occur in multiplica-

tive detail coe�cients.

• concerning stochasticity, geometric wavelets inherit

stationary properties of the input noise whereas ad-

ditive stationary noise becomes non-stationary in the

additive wavelet domain, due to the impact of noise-

free signals in detail coe�cients.

Moreover, the paper has shown that the statistical prop-

erties of geometric wavelets makes them good candidates

for the analysis of SAR image time series: in contrast to

additive wavelets change-images, geometric wavelet ones

are not a�ected by the presence of trends in the noise-

free signal. Change analysis in time series can thus be

performed by using block shrinkage on geometric wavelet

coe�cients, resulting in fast and accurate spatio-temporal

change detection and joint regularization.
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Fig. 14. Scalar sigmoid geometric wavelet regularization of Sentinel-1A dual PolSAR image time series of Figure 9.
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Fig. 15. Vector sigmoid geometric wavelet regularization of Sentinel-1A dual PolSAR image time series of Figure 9.
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Appendix A

Proof of Proposition 2

By considering the log of C×j+1,2n+ε denoted by

Dj+1,2n+ε, we are concerned by an additive combinations

of Dj,n = logC×j,n.

The autocorrelation functions

RDj+1,2n+ε
[k, `] = EDj+1,2n+ε[k]Dj+1,2n+ε[`]

and

RDj,n [k, `] = EDj,n[k]Dj,n[`]

of Dj+1,2n+ε and Dj,n satisfy the relation:

RDj+1,2n+ε
[k, `] =

∑
p∈Z

∑
q∈Z

hε[p− 2k]hε[q− 2`]×

RDj,n [p, q] (36)

Since Dj,n is stationary: RDj,n [p, q] , RDj,n [p− q], then

Eq. (36) can be rewritten in the form

RDj+1,2n+ε
[k, `] =

∑
p∈Z

RDj,n [p]×∑
q∈Z

hε[p+ q− 2k]hε[q− 2`]. (37)

By taking into account that (Parseval's theorem):∑
q∈Z

hε[p+q− 2k]hε[q− 2`] =∑
q∈Z

τ2k−2`−phε[q]hε[q]

=
1

2π

∫π
−π

∣∣∣Ĥε(ω)
∣∣∣2 ei(2k−2`−p)ω dω, (38)

we obtain from Eq. (37):

RDj+1,2n+ε
[k, `] =

1

2π

∫π
−π

ei(2k−2`)ω
∣∣∣Ĥε(ω)

∣∣∣2×∑
p∈Z

RDj,n [p]e
−ipω

 (39)

The proof follows from Eq. (23) and Eq. (39), by iden-

tifying the Fourier expansion of γDj,n in Eq. (39) and

by noting that RDj+1,2n+ε
[p, q] , RDj+1,2n+ε

[p − q] =

RDj+1,2n+ε
[m] where m = k− `.

Appendix B

Proof of Proposition 3

Let ε ∈ {0, 1}. The Haar scaling �lter HHaar

0 and wavelet

�lter HHaar

1 satis�es

HHaar

ε (ω) =
1

2

(
1+ (1− 2ε)e−iω

)
(40)

By taking into account Eqs. (5) and (40), we have

HHaar

j,n (ω) = 2−j/2
j∏
`=1

(
1+ (1− 2ε`)e

−iω
)
. (41)

Thus,

∣∣HHaar

j,n (ω)
∣∣2 = j∏

`=1

(
1+ (1− 2ε`) cos(2

`−1ω)
)
. (42)

The proof follows by noting that (1 − 2ε`) cos(2
`−1ω) =

cos(2`−1ω + ε`π) after some straightforward simpli�ca-

tions by using trigonometry double angle properties.

Appendix C

Proof of Proposition 4

From a change of variable in Eq. (29), we obtain

RHaar

Dj,0
[m] =

1

π

∫2jπ
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
γY(

ω

2j
) cosmωdω.

First, we observe that:∣∣∣RHaar

Dj,0
[m]
∣∣∣ 6 ||γY ||∞ ×

(
1

π

∫2jπ
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
dω

)
.

and, furthermore, we have

1

π

∫+∞
0

(
sinc(ω/2)

sinc(ω/2j+1)

)2
dω = 1.

In this respect, we derive∣∣∣RHaar

Dj,0
[m]
∣∣∣ 6 ||γY ||∞

so that, from the Lebesgue dominated convergence theo-

rem,

lim
j→+∞RHaar

Dj,0
[m] = γY(0)

1

π

∫+∞
0

(sinc(ω/2))
2
cosmωdω

Proposition 4 then follows by noting that∫+∞
0

(sinc(ω/2))
2
cosmωdω = πδ[m]


