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Geometric Wavelet Approximations and
Differencing

Abdourrahmane M. ArTo', Emmanuel TrRoUVE? Jean-Marie NicoLas?
? )

Abstract—The paper introduces the concept of ge-
ometric wavelets defined from multiplicative algebras.
These wavelets perform generalized geometric approx-
imations and differencing. The paper also highlights
the statistical properties of multiplicative observation
models when the analysis is performed by using multi-
plicative wavelet transforms. It shows that multiplica-
tive wavelets are more relevant for the representation
of piecewise smooth signals observed in presence of
multiplicative noise, the sole case where additive and
multiplicative wavelet transforms share the same prop-
erties being the case of constant signals.

Index Terms—Wavelets ; Geometric convolution ;Geo-
metric approximations ; Geometric differencing.

I. INTRODUCTION - MOTIVATION

IGHLY resolved data such as signals and images
Hissued from modern sensors exhibit sharp details.
As a consequence, these data make non-valid, the standard
assumption consisting in liken as constant, the focuses
on tiny signal parts or small image patchs. This compels
us for re-considering data representations and processing
principles.

In this paper, we focus on data associated with mul-
tiplicative type interactions. Those data are observed in
many situations, for instance when acquiring signals from
radar/sonar/ultrasonic waves [1]/[2]/[3],[4], when analyz-
ing seasonality from meteorology data [5] or when focusing
on proportionality in economy data [6] and political sci-
ences [7].

A multiplicative observation model involving strictly
positive interactions of a piecewise regular function f and
a random noise X can be written as:

y=fX=Ff+f(X—-1) (1)

In model given by Eq. (1), function f is observed in a
multiplicative signal-independent-noise X or, equivalently,
in an additive signal-dependent-noise f(X — 1).
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Given a transform W for analyzing y, the issue ad-
dressed in this paper is analyzing multiplicative and addi-
tive frameworks for the representation of y. We assume
that the properties desired for W are both i) sparsity
of representation of f and ii) simplifying the statistical
properties of the noise involved in the model. In this
respect, the transform W will be associated to wavelet
operators.

In the following, W[fX] refer to

o the (standard) additive wavelet transform, with (lin-
earity with respect to ‘+’ operation):

Wy = Wf + WFf(X —1), ()

o the multiplicative (or geometric) wavelet transform,
with (multiplicative linearity where W distributes
over ‘x’ operation):

Wy = (Wf) x (WX]. (W)

The term geometric wavelet is used because approxima-

tions based on multiplicative operations are referred in the

literature as geometric approximations: for instance, the
mean value is known as geometric mean when it applies
over ‘X’ operators.

Wavelets can be ‘embedded’ in a multiplicative algebra
so that their decompositions (geometric approzimation
and geometric differencing) involve exactly the opera-
tions used in (#). This embedding considers changing
the algebra by using binary internal multiplication and
external power operation. In this respect, the geometric
approach involved in the paper contrasts significantly with
‘curvature’ based approaches (curvelets, bandlets, etc, see
[8] [9], [10], [11] for instance). Note that the same approach
can be used to define geometric curvelets, bandlets, etc.,
on multiplicative algebras.

The paper is organized as follows: Section II provides
statistical properties of additive wavelet based transforms
on model (&). The geometric wavelet transform is defined
in Section III. Its statistical properties on model (#) are
discussed in the same section. Section IV concludes the
(XTkl)kez
denotes a stationary sequence of strictly positive real
random variables.

work. From now on, we assume that X =



II. WAVELET TRANSFORM AND MULTIPLICATIVE MODELS
A. Basics on wavelet based transforms

In the following, we are interested in multi-scale decom-
position schemes involving paraunitary filters (Ho, H;),
where

1 .
He(w)=— ) hcllle ™, ec{0,1], (2)
V2ig
and the paraunitarity of pair (Hg,H;) is equivalent to
saying that the matrix

M(w) = ( Hy(w)

Ho(w + 7) (3)

is unitary for every w, see [12], among other references.

A one-level wavelet decomposition involves splitting
[13] a given functional space Wj,, C L*(R), defined as
the closure of the space spanned {1, Wj :k € Z} into
direct sums of subspaces (Wj+132n+6)€6{0,]}’ spanned
respectively by {Ti+1 Wji1,nte k€ Z}EG{O,I}’ where
T f 1t — f(t — k). The splitting of Wj ;, follows from
decimated arithmetic convolution operations:

Wj+1,2n+e(t) = Zhe[e]wj,n(t_ze)- (4)
e

H;(w) )
H;(w +m)

for € € {0,1}, where h. denotes the impulse response of
the scaling filter (when e = 0) or the wavelet filter (when
e=1).

The consequence of Eq. (4) is that a function g having
coefficients ¢ = (c[{]),,, € ¢2(Z) on {t21xWjn 1 ke Z})

g= Z C[ﬁ’rzj(Wj‘n S Wj,n
LEZ

can be expanded! [12] in terms of

g= Z collltaiv1¢Wji1,2n +Z c1llty+1 Wit 2n41

ez ez
EWji1,2n EWji1,2n+1
where its coefficients c = (celll)ge; on
(T2 1 cWji1,2n+e k € Zlecpo,1y, for € € {0,1},
where
celkl =) heltlelt — 2. (5)

LeZ
Starting the decomposition from a function f € Wy o,

f= Z c[llteWo 0,

LeZ
the subband Wj ,, coefficients of f follow from
¢jnlk] = Zhj,n[f]c[e—z"k}. (6)
LEZ

where the Fourier transform Hj » of h; ,, is (see [14, Eq.

(26))): J_
Hj o (w) =272 lHHee(Z“w)] : (7)

=1

1Equalities hold in L?(R) sense in these expansions.

Eq. (6) can be used in practice for computing discrete
wavelet transforms from sample observations (terminolo-
gies of ‘discrete wavelet transform’ when n € {0, 1}, ‘dis-
crete wavelet packet transform’ whenn € {0,1,...,21 —1},
‘adapted discrete wavelet packets’ for a suitable selec-
tion of n-indices). Some splitting schemes involving non-
decimation (factor 2 in Eq. (6)) are also available and
yield to the concept of frames and the notion of stationary
wavelet transforms [15]. The reader can refer to the abun-
dant literature on wavelets for more details on wavelet
transforms.

B. Additive wavelet transform and multiplicative ob-
servation model - Sparsity checking

Sparsity plays a main role for simplifying image storage
and processing. For piecewise smooth signals, sparsity
follows from the differencing operated by wavelet func-
tions and the corresponding differences are called details
(scaling functions operate as approximation functions).

In the rest of the paper, we consider the application
domain of Synthetic Aperture Radar (SAR) imaging.

In SAR imaging systems (characterized by multiplica-
tive interactions between coherent waves and ground sur-
face), the literature used to admit that the acquired SAR
images are not very sparse in the wavelet domain . In this
respect, adaptive lifting wavelets [16] or redundant wavelet
frames [17] are more often used for analysis purpose in
order to encompass this lacks of strong sparsity.

Figure 1 presents a polarimetric Synthetic Aperture
Radar (SAR) image acquired by the DLR F-SAR sensor
over the site of Kaufbeuren, Germany. The acquisition is
performed by using coherent and polarized waves: Hor-
izontal (H)/Vertical(V) for wave emission and Horizon-
tal/Vertical for wave reception. Those polarimetric data
are usually represented as a matrix of complex numbers
composed by the 4 channels HH, HV, VH and VV and we
have focused on the magnitudes of those complex data for
image display. This display, see Figure 1, is a color com-
position where channels HH, HV and VV are associated
with colors blue, green and red respectively. This image
illustrates multiplicative scattering phenomenons in the
different polarimetry channels.

Figure 2 provide standard (additive) detail wavelet
coefficients of polarimetric data used to generate the image
of Figure 1. The decomposition used is separable with
respect to the different polarimetry channels and the Haar
wavelet has been used for this decomposition.

In those detail coefficients (see Figure 2) issued from
additive wavelets on a multiplicative observation model,
we observed many structures of the scene under consid-
eration. In particular, we observe even regular structures,
which, obviously might not be present in detail wavelet



coefficients: regular structures are the domain of the scal-
ing function and details must not contain rich structural
information in case of strong sparsity.

Approximation coefficients are not provided: they look
very similar for additive and multiplicative wavelet imple-
mentations, the few differences of perception are linked
to edges and contours: such transition involve a wide
range of real numbers (transition model) and in this case,
the geometric approximation is known to have a higher
compacity property than the arithmetic approximation (a
small range in the geometric mean corresponds to a wider
range in the arithmetic mean).

Note that sparsity is a property applying on f. However,
in a noisy environment, the useful sparsity is strongly
linked to the noise properties since noise affects the non-
zero coefficients and thus, affects the quality of the approx-
imation that can be obtained by considering those non-
zero coefficients. In this respect, the following addresses
the properties of wavelet functions of the noise involved

in (&).

C. Stochasticity and the additive wavelet decomposi-
tion

In model (&), the additive noise contribution is associ-
ated with a random sequence having the form

Y[kl = flk](X[k] —1). (8)

Since we have assumed that (X[k])xc7z are stationary with
EX[k] = po and autocorrelation function Rx[k,{] =
E [X[KIX[0]] £ Rx[k — £, then:

e The mean of Y[k] is

EY(K] = [k (1o — 1). (9)

o The autocorrelation function of Y, Rylk,l] =
E[Y[k]Y[{]] satisfies, by taking into account Eq. (8):

vk, & = fKIf[l] (Rx[k =€ —1). (10)

Remark 1: Egs. (9) and (10) above highlights that the
additive signal-dependent noise Y is non-stationary in
general, excepted some few cases, for instance when f is

constant.

Let us now analyze the wavelet coefficients of Y. Denote
by C;fn the coefficients of Y on subband Wj . We have

Zh) N (11)

teZ

110 — 2K](X[ — 2K] — 1).

It follows that

EC, [kl = 1[0 — 27K

HO__1 ZZ:}H n

LeZ

(12)

and the autocorrelation function

IEC?Ln [k]C.“Ln [€] of C.’LTL is

=)D hjnlplhynlalx

PEZL qEZL
flp — 2kIflq — 20 x
(Rxlp—q—2(k—01—1) (13)

From Egs. (12) and (13), we derive that CJr
stationary in general, for instance when po # 1 When

1o = 1, non-stationarity is due to the presence of the term
flp — 27klf[q — 27{] in Eq. (13).

Remark 2 (Non-stationarity of ijn for exponential
type function f): Assume that po = 1 and function f
satisfies f[k|f[{] = f[k + {] (exponential type functions),
where f does not reduce to the constant 1. In this case,
we derive

R0 =

non-

f[—2 (k + 0)] y
21

7T .
J Yx0 (W) [Gj,n (W) e =8w g (14)
—7T

R, [k, O =

where Gj , = F*
f. The non-stationarity of C;

H; ,, and F is the Fourier transform of
is then due to the term

) j,m
f[—=2) (k4 ¢)] in Eq. (14) above.
More generally, even when assuming that puy = 1, it

is easy to check that most standard functions f lead to
non-stationarity of ijn
type flk] = fp x k (for certain k in a finite set) have a
term in k{ which cannot be simplified in ijn [k, €]. High
order polynomial functions have bivariate monomial terms
involving kMM in ijn [k,€]. Functions of type sin,cos
satisfy flkIf[l] = gilk + €] + g2[k — £] and in this case,
the contribution of g; implies non-stationarity as in the

. In particular, linear functions of

exponential case given above, etc. For a practical view-
point, this non-stationary is simply emphasized by Figure
2: in the areas where f is not constant, many f-structures
(buildings)/f-texture (forest) are present in detail wavelet
coefficients.

An appealing case of stationarity sequence C:" corre-

j,n
sponds to a constant function f associated with a random

sequence X with unit mean:

Remark 3 (Stationarity): When po = 1 and f is a

constant function: f[k] = fo, then IEC+ (k] = 0 and
furthermore, we derive Rf [k, €] = in [ —{] = R+ (m]
with:
+ f% " 2 i2mw

Rifalm] = 35 | vxo (@) [Hu (@) o2 4o (15)
where yxo denotes the spectrum of the random sequence
X0 =X-1.

yxo(w) =) (Rx[m]—1)e ™,

mez



This case of a constant function f observed in a multi-
plicative noise represents homogeneous area observation in
practical SAR applications. This case is the sole favorable
scenario for standard additive wavelets when the challenge
is simplifying the multiplicative model fX.

Due to the non-stationarity of C].fn in general (excepted
few cases such as that of Remark 3), modeling or estimat-
ing additive wavelet coefficients of a multiplicative model
is not an easy task. The following highlights that multi-
plicative implementations of wavelets is more convenient
for the statistical analysis of model fX.

III. EMBEDDING WAVELETS IN A MULTIPLICATIVE
ALGEBRA

A. Geometric convolution

The binary operation considered in the following is
the multiplication (x symbol) over positive real numbers
R* (“0” has no sign and is not considered as a positive
number).

Consider a data sequence x = (x[{])¢cz, with x[{] € Rt
for every £ € Z. Since this sequence represents a multi-
plicative phenomena, then

o “zero” or “nothing” or “no change” corresponds to
the identity element “1”

e a “small” value is a value close to 1 (1073 and
103 have the same significance in terms of absolute
proportion,

o a missing value must be replaced by 1,

o shrinkage designate forcing to 1, the coefficients that
are close to 1.

The multiplicative algebra implies defining the support
of the sequence x as the sub-sequence composed with
elements that are different from 1. We will thus use
the standard terminologies of finite/infinite supports with
respect to the above remark. When such a sequence x is
infinite, we will assume that log(x) = ((logx[kl)xez) €
*(Z).

When considering a scalar sequence (impulse response
of a filter for instance) h = (h[{])¢cz where h[{] € R for
every { € 7Z, then we will keep the standard terminology
related to support definition from non-zero elements (non-
null real numbers).

The geometric convolution defined below is based on
this binary operation (notation x x y £ xy for x,y € R*)
and real scalar power operations (notation a Ax = x¢ for
x € RT and a € R).

Definition 1 (Geometric convolution): Let h =
(h[€])¢cz denotes the impulse response of a digital filter.
We define the geometric convolution of x and h on the

vectorial space (R", x,/\) as:

y[k] = x x h[k] 4 H (X[e])h[kffl
tez
= T (xlk— )Y 2 h xx[K, (16)

LeZ

One can remark that, in contrast with the standard con-
volution operation on the sequences of the field (R, +, x),
sequence h plays a non-commutative scalar role with
respect to x since the external operation ‘power’ used in
Eq. (16) is not commutative. This justifies the second £ in
Eq. (16): the equality x % h = h % x applies index-wise on
the geometric convolution, given that the scalar sequence
h operates to the power of elements of x, by definition.

If h € {*(Z), then x % h[k] exists and is finite for almost
ever k since we have assumed that log(x) € (*(Z).

Depending on the filter h used, Eq. (16) makes possible
the computation of geometric approximations and differ-
ences of the input data x. The standard geometric ap-
proximation (called geometric mean) of a finite sequence
{x1,%x2,...,xNn} is given by:

N
1/N
y= Vxixz2 XN :er .

=1

(17)

The geometric mean given by Eq. (17) above is associated
with an N-length Haar-like scaling filter

holkl] =v for k=1,2,...,N. (18)

Filter hg (low pass filter) performs geometric approxima-
tions and can be associated with a Haar-like wavelet filter

hik] = (—1)* v for every k=1,2,...,N. (19)

which performs geometric differencing (high pass or de-
tails), where constant v > 0 is fixed so as to impose pa-
raunitarity for the corresponding pair of filters (v = V2/2
for standard Haar filters when N = 2).

B. Geometric wavelet decomposition

In the following, we consider the same paraunitary
wavelet filters (ho,hy) € €2(Z) x €*(Z) as in Section II.
Let

h[k] = h[—K].
Define the wavelet decomposition of x with respect to
the geometric convolution (geometric wavelet decompo-
sition) by:

c1.0lk] = x 3 hol2K], (20)

e[kl = x % hy [2K], (21)

and, recursively, for € € {0,1} (wavelet packet splitting
formalism described in [13]):

Cj+1,2n+e[k] =Cjn X E[Zk] (22)



In the decomposition given by Eq. (22) above, sequence
Cjt1,2n+e represents

o geometric approximations of ¢; , when e =0

o geometric differences (details) of ¢; , when e = 1.
The level j = 0 coefficients represent the input sequence
x. The above wavelet packet splitting is associated to a
wavelet decomposition when the splitting concerns only
(€5,0)51

Proposition 1 (Geometric wavelet reconstruction):
We have:

¢jnlkl = (€541,2n ¥ holkl) X (€41,2n1 x hy[k]). (23)
where
. [ ul i e=0,
u[Zk“]_{ 1 i e=1. (24)

Proof: The proof is a direct consequence of the ex-
pansion of the right hand side of Eq. (23), by taking into
account Eq. (22) and the paraunitary condition of Eq. (3),
the latter imposing ) ,., h.[{lh.[¢ — 2k] = §[K]. [ |

Proposition 1 represents the reconstruction of the level-
j-wavelet-coefficients from the coefficients located at level
j + 1. As in the standard additive formulation given
in Section II (see Eq. (5)), different wavelet decompo-
sition schemes (orthogonal wavelets, stationary wavelets,
adapted wavelet packets, etc.) and perfect reconstructions
can be obtained from Egs. (22) and (23) respectively. For
implementing the geometric transforms from the standard
ones, it suffices to

o replace the standard convolution by the geometric
convolution given in Definition 1 and

o notice that decimation corresponds to replacing one
coefficients over two by the number 1.

In the following, we will address the statistical properties
of the coefficients issued from Eq. (22).

C. Multiplicative wavelet transform and multiplicative
observation model - Sparsity checking

Section II-B has emphasized the lack of sparsity of the
additive wavelet details when dealing with a multiplicative
observation model (see Figure 2 for instance). In order to
seek sparse detail representations for this model, changing
wavelet functions by considering another class of basis
functions is not the issue to address: we just need to
apply a convolution operation adapted to our sampling
process. Indeed, since a given natural scene (such as that
of Figure 1) can be coarsely described as a piecewise
smooth function, then wavelets are expected to capture
the intrinsic redundancy of such a scene in a sparse way,
independently of the intrinsic properties of the acquisition
device.

For the SAR images, this operation is described by a
multiplicative type interaction between signal and speckle
noise. In this respect, wavelet based decompositions
should also be multiplicative for sparsity to holds true in
wavelet detail domain.

Figure 3 provide geometric (multiplicative) detail
wavelet coefficients of polarimetric data used to gener-
ate the image of Figure 1. When analyzing these detail
coefficients, we observe only a very few structures of
input signal. Multiplicative wavelet details are thus more
convenient for sparse based analysis than additive wavelet
coefficients for this observation model. Note that for the
multiplicative model (#), sparsity denotes a large number
of ‘ones’ and detail wavelet images of Figure 3 have been
displayed in a logarithmic scale so as to make comparison
with Figure 2 possible.

D. Stochasticity and the geometric wavelet decomposi-
tion

In model (#), noise contribution is multiplicative and
associated with a unit-mean stationary random sequence
X = (X[k])kez. Note that the geometric wavelet de-
composition of Eq. (22), say W*, distributes over the
product fX: WX[fX] = (W*f) (W*X). In this respect,
the focus of this Section are the statistical properties of
W*X. The subband Wj ,, geometric wavelet coefficients
of the decomposition of X will be denoted (C;n)j,n (we
assume that this stochastic sequence is well defined in the
following).

Note that if Cj 1 anielk] = Cj,n%hieuk] where C; ,, is
a stationary sequence, then Cji1 ne is also stationary.
Since Cy,0 = X is assumed stationary, we derive that all
geometric wavelet sequences C;j ,, are stationary for j > 0
and n €{0,1,...,2) —1}.

Let Y = log X. We assume hereafter that Y is a second-
order random process, continuous in quadratic mean. Let
Dj .. = log C;n. Note that Y and Dj, are stationary
sequences. Assume that EY [k] = O for every k € Z. Then
EDj n[k] = 0 for every k € Z.

Let Ry[m] = Ry k—{] = E[Y[k]Y [£]] be the autocorre-
lation function of Y, where the first equality above holds
true for any pair (k,¢) € Z x Z such that m = £k — {|.
Proposition 2 below derives the autocorrelation function
Rp; ,, of the log-scaled geometric wavelet coefficient Dj ;..
We assume that quz h.[p — 2klh.[q - 2tRp, ,, [p, ql
exists for every j > 0 and n € {0, 1,...,2) —1}.

Proposition 2 (Autocorrelation Function of Djn):
Assume that Ry has a spectrum (power spectral density)

yy(w) =) Rylmle ™

mezZ

and that yy is bounded. Denote by yp, ., the spectrum



of Dj n:
w) = Z RDj‘n[m]e_im“’

meZ

20,nef{0,1,...,

(25)

We have, for j 21} and € € {0, 1}:

T (™ | = 2 :
Ry el = 52 | [ vo, L (@)™ do
T - ’
(26)

where Yp, , = Vv-

Proof: By considering the log of C) H1,2me denoted
by Dj41,2n+¢, We are concerned by an additive combina-
tions of Dj ,, = log CX

The autocorrelatlon functions

R‘D]+1 2n+e [k’) e} =
ED)'JF+1,Zn+s[k]D]++1 Zn+e[€] and R'Dl,n[k 6] =

IE)D;:TL [k]D;:n (0] of Cf satisfy the relation:

Rp k=) » help—2kh

PEL qEL

Rp, .[p,ql

[q — 20 x

j+1, Zn+e
(27)

Since Dj ,, is stationary: RDM[ ,q] £ Rp; . [p — ql, then
Eq. (27) can be rewritten in the form

RD]+1 2n+e g] = Z I{’Dj,n[p}><
pEL
> help +q—2klhe[q —20). (28)
qEZ

By taking into account that (Parseval’s theorem):

Y help+q—2klhelg— 2t =

qez
> Tac-20phelqlhelq]
qez
T (" = 2 i(2k—2¢—p)w
=5 ‘He(w)‘ e dw, (29)

we obtain from Eq. (28):

1
27

(L _— 2
J el(Zk—Z@)w ‘He(w)‘ %
s

D Rp, . [ple

pEL

The proof follows from Eq. (25) and Eq. (30), by iden-
tifying the Fourier expansion of yD in Eq. (30) and
by noting that R‘DjH,Zrue[ )q] - R'DJH ane[p_ q} =
RD)I]Zn{e[ m] where m =k — {. [ |

R‘D;ﬂ 2nte [k l] =

—ipw

(30)

By taking into account that sequence D ;, issues from a
filter bank (He,)¢—1,2,....j (low-pass when €, = 0 and high-
pass when €, = 1) having the equivalent representation
given by Eq. (7), we derive recursively from Eq. (26):

1

R'D]-,n [m] = E

J IH; o (w) P yy (@)e? ™ dw  (31)

Eq. (31) governs the behavior of the autocorrelation of
Dj .. From this equation, decorrelating geometric wavelet
coefficients involves selecting wavelet filters such that

1 (™ )
J |Hj,n(w)|2YY(w)0082]mwdw
7T

| (32)

behaves approximately as 6[m]. This is strongly linked to
the shape of yv and can be achieved by

(i) choosing a sequence of wavelet filters such that func-
. 2 .
tion [Hj »(w)|” vy (w) can be seen as approximately
constant or

(i1) seeking for asymptotic decorrelation with j, when it
applies.

Item (i) is parametric in the sense that it relates to
adapted wavelet selection for decorrelating Y. Item (ii)
(non-parametric) exploits properties of recursive convolu-
tions. For instance, if we consider the Haar wavelet filters
(used below for experimental results), we can derive :

Proposition 8 (Haar egquivalent wavelet filter se-
quence Hf{‘:{"} A sequence (hee)(Z:],Z,...,j
filter:

has equivalent

j
2 2 l_Icos2 <2€_2w + €eg) .

=1

[HE (33)

Proof: Let € € {0,1}. The Haar scaling filter HE
and wavelet filter H!'22" satisfies

HP2r () = 2 (14 (1—2¢)e ) (34)
By taking into account Egs. (7) and (34), we have
j
HI () = 2772 H (1+(1—2e)e ™). (35)
0=1
Thus,
j
[HP2 ()| =[] (1+ (1 —2e0) cos(2 Tw)) . (36)
e=1

The proof follows by noting that (1 — 2e,)cos(2"Tw) =

cos(2*""w + e¢m) and after some straightforward simpli-
fications by using trigonometry double angle properties.
|

In the usual wavelet splitting scheme, only approxima-
tion coefficients are decomposed again (the shift parameter
n € {0,1}). This implies filtering sequences with the form

ho,hy,...,ho,h
—_—

€j+1

j times €;11€{0,1}

at decomposition level j 4+ 1. Consider a j-length approxi-

mation sequence (hgaar)z:1 2] of Haar type. Then from



Eq. (33), the equivalent filter of this sequence can be
rewritten in the form:

. ; 2

2 . (sinc(2Tw)

HE2ar ()" =2 ( ————— 37

[H8 ()] (sinc(21w) (37)

where sinc denotes the cardinal sine function, sincw =

sin w/w. The autocorrelation R%";ag of the corresponding

geometric wavelet coefficients is then:

2 (™ /sinc(2PTw)\ 2 ;
R%?T‘Z["ﬂ:ﬂ (M) Ty{w) cos Pmw dov
0
(38)

Proposition 4 (Limit Autocorrelation Function):

lim RE(m] = yy (0)5[m) (39)

j—+oo
Proof:
From a change of variable in Eq. (38), we obtain
1J’2j" sinc(w/2) \?
7 Jo sinc(w/2i+1)

First, we observe that:

yy(g.)cosmw dw.

Haar _
Rp% (m] = 2j

sinc(w/2) )2 d
)

q 1 ZjT[
ol <yt ([ (20021
Ririml] < vl < (5] (G

0

and, furthermore, we have

1 (" / sinc(w/2) \?
3l (sinc(w/w)) de

In this respect, we derive

=1.

[RE== )] < vy e

so that, from the Lebesgue dominated convergence theo-
rem

1
: Haar _ -
tim REEm = vy (0) |

Proposition 4 then follows by noting that

+oo
(sinc(w/Z))2 cos mw dw

+o0
J (sinc(w/2))? cos mw dw = 7d[m]
0

|

Proposition 4 highlights an asymptotic decorrelation
property with j. This property can be extended by con-
sidering different wavelets and different wavelet packet
splitting schemes, as done in [14] for the standard arith-
metic wavelet transforms (we restrict to the Haar wavelets
in a wavelet decomposition scheme, framework of the
experimental results provided in the following section).
From the stationarity and decorrelation properties shown
in this section, it follows that Model (&) is suitable for
statistical analysis of observation fX since X-wavelet co-
efficients define a stationary sequence C].X’n (confirmation
of the stationarity perception in Figure 3) and the form
of the autocorrelation of this sequence can be specified for
decorrelation purpose through a selection of adapted filter
H; . in Eq. (31).

IV. CONCLUSION

This paper has addressed the derivation of a geometric
wavelet transform from inference between additive and
multiplicative algebras. Sparsity and stochasticity proper-
ties of additive (arithmetic) and multiplicative (geometric)
wavelet transforms have been discussed on a multiplicative
observation model.

In the multiplicative noise model, the paper has shown
that:

e concerning sparsity, additive detail wavelet coeffi-
cients are impacted by the presence of signal (large
amount of signal contribution in detail coefficients),
whereas few signal contributions occur in multiplica-
tive detail coefficients.

o concerning stochasticity, geometric wavelets inherits
stationary property of the input noise whereas addi-
tive stationary noise becomes non-stationary in the
additive wavelet domain, due to the impact of noise-
free signal in detail coefficients.

The paper concludes by noting that the selection of a
suitable framework for analyzing signals/images should be
acquisition-dependent. In particular, when the acquisition
system yields a multiplicative interaction model involv-
ing a non-constant signal, then geometric representation
frameworks such as that presented in this paper are
expected to be more relevant than additive frameworks.
This has been emphasized on SAR images corrupted by
multiplicative speckle noise.
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Level 1 additive diagonal wavelet details Level 3 additive diagonal wavelet details

Fig. 2. Detail wavelet coefficients of the image given in Figure 1 when the Haar wavelet is used in an additive wavelet decomposition.

Level 1 multiplicative diagonal wavelet details Level 3 multiplicative diagonal wavelet details

Fig. 3. Detail wavelet coefficients of the image given in Figure 1 when the Haar wavelet is used in an multiplicative wavelet decomposition.



