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Abstract

This paper deals with issues concerning the core as a solution concept for games in

coalitional form as well as the use of these games in representing economies of a certain formal

type. Side-payment games are imbedded in the more general class of no-side-payment games.

It is shown that to a given side-payment game having an empty core one may associate two

different no-side payment games with the same (nonempty) core: the “envelope” and the

“geometrical cover”. The discrepancy is explained in terms of market games.
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Introduction

The purpose of this paper is to clarify some issues concerning the core as a solution concept for

games in coalitional form, as well as the representation of these games by economies of a certain

formal type. Our main interest is in games with side-payments in coalitional form. However,

we shall imbed their study in the more general theory of games without side-payments.

It is well known that some games with side-payments may have an empty core. Following

Shapley and Shubik [9] one associates to such a game its totally balanced cover, which is a

game of the same type having a nonempty core. On the other hand, one may also look at the

original side-payment game from a geometrical point of view and consider it as some particular

(hyperplane) game without side-payments. This in turn allows one to use the notion of totally

balanced cover of a game without side-payments as introduced by Billera and Bixby [4]. Hence

one is actually lead to contrast two types of “covering” for a side-payment game: namely the

totally balanced cover of its geometrical representation as a game without side-payments – we

call it the envelope – and the geometrical no-side-payment representation of its totally balanced

side-payment cover, called the geometrical cover (§1). Although these two no-side-payment

totally balanced games associated to the same side-payment game may differ, their cores always

coincide (§2).

There is an “economic interpretation” for such a discrepancy. We consider a modification of

the notion of “direct market” of Shapley-Shubik [9] that we call “restricted direct market”. We

show that the envelope of a side-payment game is the game without side-payments associated

to a restricted market, while the geometrical cover is associated to a direct market (§3). The

essential difference between these two markets is whether or not a player can obtain utility from

a coalition without being a member. Finally (in §4), we compare this new type of market (which

is still a pure exchange economy) to the production representation of Billera [3]. In fact we show

that an “input net trade equivalent” of this production representation is the same (up to a trivial

identification) as the Rader net trade equivalent of the restricted direct market (see [6]).
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1 A no-side-payment viewpoint to games with side-payments

In this section we give the basic definitions and notation. For a set N = {1, 2, · · · , i, · · · , n} of

“players” we consider games with side-payments in coalitional form as real-valued functions v

defined on P (N), the set of all nonempty subsets of N , called “coalitions”. To simplify and unify

their economic representation we shall consider only 0-normalized games, i.e. games v such that

∀ i ∈ N, v({i}) = 0, and impose the weak monotonicity condition that: ∀S ∈ P (N), v(S) ≥ 0.

For any game v the core of v is the set

Core(v)
def
= {u ∈ R

N ; 〈u; 1IN 〉 = v(N),∀S ∈ P (N), 〈u, 1IS〉 ≥ v(S)}

where 1IS ∈ {0, 1}N is the characteristic function1 of S ∈ P (N). This can be interpreted as the

set of payoff vectors feasible for the grand coalition which cannot be objected against by other

coalitions.

Define for T ∈ P (N), the set BT of balanced families of coefficients on T by:

BT
def
=







β ∈ R
P (T )
+ ;

∑

S∈P (T )

β(S)1IS = 1IT







. (1.1)

To a game v, we associate, as in Shapley-Shubik [9], the game v, called the totally balanced cover

of v which is:

v(T )
def
= sup

γ∈BT

∑

S∈P (T )

γ(S)v(S), T ∈ P (N). (1.2)

The game v is said to be balanced if and only if v(N) = v(N), and totally balanced if and only

if v = v.

Define the sets A
def
= {u ∈ R

N ;∀S ∈ P (N), 〈u, 1IS〉 ≥ v(S)}, and B
def
= {u ∈ R

N ;∀S ∈

P (N), 〈u, 1IS〉 ≥ v(S)}. We have A = B. The result follows from the inequality v ≥ v (see (1.2))

and from the fact that for each T ∈ P (N) and δ ∈ BT such that v(T ) =
∑

S∈P (T ) δ(S)v(S),

we clearly have (see (1.1)): 〈u, 1IT 〉 =
∑

S∈P (T ) δ(S)〈u, 1IS〉. Consider now the two following

1For any S ∈ P (N), we have 1IS(i) = 1, if i ∈ S, and 1IS(i) = 0 otherwise. Vectors in R
N are called “payoff

vectors” and 〈u, 1IS〉 =
P

i∈S
ui may be interpreted as the “total amount obtained by the coalition” S.
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programs:

min
u∈A

〈u, 1IN 〉 and (1.3)

min
u∈B

〈u, 1IN 〉. (1.4)

By looking at the dual of (1.3), one finds that each optimal solution u of (1.3) fulfills 〈u, 1IN 〉 =

v(N). Therefore the optimal solutions of (1.4), as well as the optimal solutions of (1.3), are

exactly the elements2 of Core(v). Moreover, we have Core(v) 6= ∅ if and only if v is balanced,

which is the well-known Bondareva-Shapley Theorem (see [8]).

A more general class of games in coalitional form for a set N of players is the class of games

without side-payments. Let R
S def

= {u ∈ R
N ;∀ i /∈ S, ui = 0} and R

S
+

def
= {u ∈ R

S ;∀ i ∈ S, ui ≥

0}. A game without side-payments is a correspondence V from P (N) to R
N such that, for each

S ∈ P (N), V (S) is nonempty, comprehensive (i.e. V (S) = V (S)−R
S
+) and, for each aS ∈ V (S),

V (S) ∩ ({aS} + R
S
+) is compact. In connection to the market representation of games without

side-payments we shall only consider games which are compactly generated3 namely games V

such that, ∀S ∈ P (N), V (S) = CS − R
S
+, where CS is a nonempty compact subset of R

S .

The Core of a game V without side-payments is the set:

Core(V )
def
= {u ∈ V (N) : ∀S ∈ P (N), 6 ∃u′ ∈ V (S) | ∀ i ∈ S, u′

i > ui}.

Billera [3] defines (see his definition (3.1))4 the totally balanced cover V of a game without

side-payments V by:

V (T )
def
=

⋃

δ∈BT

∑

S∈P (T )

δ(S)V (S), T ∈ P (N). (1.5)

A game V is said to be totally balanced if and only if V = V . Such a game has a nonempty core

(see [7]).

2To each game v, one may associate the game v∗, called the balanced cover of v and defined by: v∗(N) = v(N),

and ∀S 6= N , v∗(S) = v(S). Clearly by the same argument we have Core(v∗) = Core(v).
3This terminology is due to Billera [3].
4The notion was also discussed in Baudier [2] and originally used by Scarf in the prepublication version of

[7]. As mentioned in Billera and Bixby [4] it is stronger than the notion of Scarf [7], which makes no use of the

summation operator. Since we will be dealing exclusively with games without side-payments derived from games

with side-payments, it seems that most objections against using such an operator vanish.
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We define the geometrical representation of a game with side-payments v as the game without

side-payments H+(v) given by5

H+(v)(T )
def
= {u ∈ R

T
+; 〈u, 1IT 〉 ≤ v(T )} − R

T
+, T ∈ P (N). (1.6)

For any side-payment game v, the totally balanced cover H+(v)
def
= H+(v) of the geomet-

rical representation H+(v) of v is called, for short, the envelope of v. On the other hand, the

geometrical representation H+(v) of the totally balanced cover v of v is called, for short, the

geometrical cover of v. It is quite natural to compare, for a given game with side-payments v,

the two alternative ways to compose the geometrical representation operator with the totally

balanced cover operator, giving respectively H+(v) and H+(v). We first have:

for each game v, H+(v) ⊂ H+(v). (1.7)

This first result follows from two easy observations, namely: H+(v) ⊂ H+(v) and H+(v) =

H+(v).

2 Envelopes and geometrical covers of side-payment games: a

comparison

The purpose of this section is to push further the comparison between the two different types

of games without side-payments having a nonempty core – envelopes and geometrical covers –

which we have associated to games with side-payments. The first result demonstrates that for

any side-payment game v, satisfying an additional monotonicity condition but being not totally

balanced, the envelope H+(v) effectively differs from the geometrical cover H+(v).

5An alternative representation of v is its hyperplane representation defined by

H(v)(S) = {u ∈ R
S ; 〈u, 1IS〉 ≤ v(S)}, S ∈ P (N).

This definition results in a game without side-payments but is not compactly generated.
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Theorem 2.1
6 For a game with side-payments v, if, for some T ⊂ N , supS∈P (T ) v(S) =

v(T ) < v(T ) then H+(v)(T )⊂6=H+(v)(T ).

Proof. It is enough to prove the result for T = N . We already know (see (1.7)) that H+(v)(N) ⊂

H+(v)(N). Take a payoff vector v(N)1I{i} which clearly belongs to H+(v)(N). Assume

supS∈P (N) v(S) = v(N) < v(N): we have v(N)1I{i} /∈ H+(v)(N). Otherwise we could find

δ ∈ BN and xS ∈ H+(v)(S) ∩ R
S
+, S ∈ P (N), such that:

v(N) =
∑

δ(S)>0
S∋i

δ(S)xS
i ≤

∑

δ(S)>0
S∋i

δ(S)v(S) ≤ v(N).

This is a contradiction.

Although Theorem (2.1) requires a monotonicity assumption, it shows that the geometrical

cover and the envelope are different for a very large class of games with side-payments. On the

other hand, we shall now prove that the core concept does not discriminate between geometrical

covers and envelopes.

Theorem 2.2
7 Core(H+(v)) = Core(H+(v)) = Core(v).

Proof.

1. For each u ∈ R
n and γ ∈ BN , we have u =

∑

S∈P (N) γ(S)uS , (where uS is the projection

of u on R
S). If we assume that u ∈ Core(H+(v)), and v(N) =

∑

S∈P (N) γ(S)v(S), we find

that u is an optimal solution of the problems (1.4) and (1.3), while γ is an optimal solution

of the dual of (1.3). Therefore, whenever γ(S) > 0, we have 〈uS , 1IS〉 = v(S), which means

that u =
∑

S∈P (N) γ(S)uS is a feasible payoff vector in the game H+(v). Moreover, for any

T ⊂ N , the inequality 〈u, 1IT 〉 ≥ v(T ) implies that, for any x ∈ H+(v)(T ) ⊂ H+(v)(T ),

one cannot have: ∀ i ∈ T, xi > ui. Hence Core(H+(v)) ⊂ Core(H+(v)).

6An analogous result holds for hyperplane representations. Formally, if v satisfies supS∈P (T ) v(S) = v(T ) <

v(T ), for some T ⊂ N , then H(v)(t)⊂

6=
H(v)(T ).

7Here also an analogous result holds for hyperplane representations: Core(H(v)) = Core(H(v)) = Core(v).
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2. Conversely, we suppose u ∈ Core(H+(v)). We already know that u ∈ H+(v)(N) and so

〈u, 1IN 〉 ≤ v(N). If, for some T , we had 〈u, 1IT 〉 < v(T ), the vector: x = v(T )uT /〈u, 1IT 〉

(or v(T )1IT /|T | if 〈u, 1IT 〉 = 0) would be feasible in H+(v)(T ). Moreover, we would have:

∀ i ∈ T, xi > ui. This is a contradiction. Therefore, u is an optimal solution of the program

(1.3), hence of (1.4): u ∈ Core H+(v).

From this second result we see that, as far as the Core solution concept is concerned, envelopes

and geometrical covers cannot be differentiated. To enhance this difference we shall now compare

them from another point of view, the one provided by market games representations.

3 Envelopes of side-payment games and their restricted market

representations

Since Shapley and Shubik [9], the literature on market games has provided various represen-

tations of totally balanced games, with or without side-payments, as “market games” – games

that are derived from some type of economy.

In the preceding sections we associated to any game v two different totally balanced games

without side-payments, namely the geometrical cover H+(v) and the envelope H+(v). We shall

look in this section for two simple types of economies from which these two totally balanced

games can be respectively derived. These must be in general distinct (Theorem 2.1), but should

be as related as possible (Theorem 2.2), in order to capture the nature of the discrepancy between

H+(v) and H+(v). The direct markets in the sense of Shapley and Shubik [9] and a modification

of them, the restricted direct markets, will provide the desired result.

Let us first recall some notions about market games. An n-agent, m-commodity simple market

is an exchange economy of a special kind denoted: E = {(Zi, wi, U i); i ∈ N}, where each agent

i ∈ N has a consumption set Zi = [0, 1]m, a continuous, concave, monotone increasing utility

function U i : [0, 1]m → R+, and initial endowments wi ∈ [0, 1]m, with
∑

i∈N wi ≤ (1, 1, · · · , 1).
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The set of feasible allocations8 for a coalition S ∈ P (N) is

ZS def
=

{

zS = (zi)i∈S ; zi ∈ Zi,
∑

i∈S

zi =
∑

i∈S

wi

}

.

The associated market game with side-payments is denoted vE and defined by:

vE(S)
def
= sup

zS∈Zs

∑

i∈S

U i(zi), S ∈ P (N). (3.1)

Since the utility functions U i are nonnegative, the game vE is nonnegative valued. One may also

associate to the simple market E a game without side-payments which will be denoted VE:

VE(S)
def
= {u ∈ R

S
+;∃ zS ∈ ZS | ∀ i ∈ S, U i(zi) ≥ ui}, S ∈ P (N). (3.2)

In the case where all U i are equal to the same concave positively homogeneous of degree 1

utility function U , Shapley and Shubik [9, (3.3)] prove9 that vE(S) = U(1IS). Since VE(S) ∩ R
S
+

is convex, contained in H+(vE)(S) and contains all vectors U(1IS)1I{i} = vE(S)1I{i}, we have:

VE = H+(vE). (3.3)

Define now for τ ∈ [0, 1]N the set Bτ
def
= {β ∈ R

P (N)
+ ;

∑

S∈P (N) β(S)1IS = τ}. Following

Shapley and Shubik [9] associate to a game with side-payments v an n-agent, m-commodity

simple market, called the direct market generated by v, which we denote Dv:

Dv = {(Zi, wi, U)i ∈ N}, (3.4)

8The justification for using an equality constraint for feasibility comes from the assumption that the utility

functions are monotone increasing. In Shapley and Shubik [9] the utility functions are only assumed to be

continuous and concave real-valued functions. Hence in some cases the equality constraint for feasibility (which

is needed for their results) seems to be less justified from an economic viewpoint.
9Because of the equality constraint in the feasible set the only assumptions needed are the ones stated. However

see the discussion in footnote 8.
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where, for every i ∈ N , Zi = [0, 1]N , wi = 1I{i}, and10

U(τ) = sup
γ∈Bτ

∑

S∈P (N)

γ(S)v(S).

Shapley and Shubik [9] show that, for any side-payment game v,

vDv
= v (3.5)

and that for a totally balanced game v : v = vDv
.

Looking at the direct market Dv from a non-side-payment point of view, and combining (3.3)

and (3.5), we get:

VDv
= H+(v). (3.6)

Hence, from a non-side payment point of view, the direct market does provide us with a repre-

sentation of the geometrical cover.

To obtain a representation of the envelope H+(v), let us reconsider the classical interpretation

of goods and utilities in Dv. In a direct market, each individual initial endowment wi = 1I{i}

may be interpreted as the “total available time of agent i”. Given any allocation (τ1, · · · , τn)

feasible for the grand coalition, that is, for every i ∈ N , τ i ∈ [0, 1]N and
∑

i∈N τ i = 1IN , we may

also interpret every τ i
j as the “amount of time agent j is at the disposal of agent i”. Finally,

considering some γi ∈ Bτ i , γi(S) may be interpreted as the “time coalition S meets for agent i”

and γi(S)v(S) as the return which agent i receives in the game v for the assembly of S. Thus,

the utility of agent i, which is given by

U(τ i) =
∑

S∈P (N)

γi(S)v(S), for some γi ∈ Bτ i ,

measures the “total return” obtained by player i in the game, assuming that he is allowed to

benefit also from meetings in which he does not participate.

10This function U is positively homogeneous of degree one and super-additive (hence concave) on [0, 1]N . A

separation theorem ensures that the super-differential ∂(U)(1IN ) of U , extended to R
N
+ and taken as 1IN , is

nonempty. With B1IS
being identified to BS , the restriction of U to {0, 1}N is v and we have ∂(U)(1IN ) =

Core(v). See Aubin [1].
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Let us now assume that the meeting programs for agent i are restricted only to those assem-

blies (coalitions) of which he is a member, i.e. {S ∈ P (N); i ∈ S}. This restriction will prove to

be sufficient to get a market representation of H+(v). We call restricted direct market associated

to the game v the n-agent, n-good simple market denoted Rv and defined as:

Rv = {(Zi, wi, U i); i ∈ N} (3.7)

where, for every i ∈ N , Zi = [0, 1]N , wi = 1I{i},

U i(τ) = sup
γ∈Bτ







∑

S∈P (N)
S∋i

γ(S)v(S)






.

Since v ≥ 0, we note that U ≥ U i, for every i ∈ N .

As wished, the economy Rv is very similar to Dv, while providing a representation of H+(v).

Theorem 3.3 The game without side-payments VRv
, associated to the restricted direct market

of the game v, is the envelope H+(v) of v.

Proof.

1. Consider, for some T ∈ P (N), some x ∈ H+(v)(T ) ∩ R
T
+. We have x =

∑

S∈P (T ) γ(S)xS ,

with γ ∈ BT and xS ∈ H+(v)(S) (or 〈xS , 1IS〉 ≤ v(S)). Letting xS = v(S)1IS/|S| if xS = 0

and xS = v(S)xS/〈xS , 1IS〉 otherwise, it is easy to see that x ≤ x
def
=

∑

S∈P (T ) γ(S)xS .

Let us then define, for i ∈ T , γi(S) ≥ 0 by:

γi(S) = 0 if i /∈ S,

γi(S) = 1
|S|

γ(S) if i ∈ S and v(S) = 0,

γi(S) =
γ(S)
v(S)

xS
i if i ∈ S and v(S) 6= 0.

Then, for each S,
∑

i∈S γi(S) = γ(S), and for each j ∈ T ,
∑

S⊂T ;S∋j(
∑

i∈S γi(S)) = 1

since γ ∈ BT .
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Defining also τ i =
∑

S⊂T γi(S)1IS for i ∈ T , we find that

∑

i∈T

τ i =
∑

i∈T

∑

S⊂T

γi(S)1IS

=
∑

i∈T

∑

S⊂T
S∋i

γi(S)
∑

j∈S

1I{j}

=
∑

i∈T

∑

j∈T

∑

S⊂T
S∋i
S∋j

γi(S)1I{j}

=
∑

j∈T

1I{j}
∑

i∈T

∑

S⊂T
S∋i
S∋j

γi(S)

=
∑

j∈T

1I{j}
∑

S⊂T
S∋j

∑

i∈S

γi(S)

= 1IT

which means that (τ i)i∈T is an allocation in the restriction of T of Rv. The decomposition

defining τ i shows that:

U i(τ i) ≥
∑

S⊂T
S∋i

γi(S)v(S) =
∑

S⊂T
S∋i

v(S)>0

γi(S)v(S)

while:

xi =
∑

S⊂T
S∋i

γ(S)xS
i =

∑

S⊂T
S∋i

v(S)>0

γ(S)xS
i =

∑

S⊂T
S∋i

v(S)>0

γi(S)v(S).

We have proved that xi ≤ xi ≤ U i(τ i), i ∈ T , that is H+(v)(T ) ⊂ VRv
(T ), for each

T ∈ P (N).

2. To prove the inclusion VRv
⊂ H+(v), it is sufficient to prove, for each decomposition

1IT =
∑

i∈T τ i, τ i ∈ [0, 1]n, and each decomposition τ i =
∑

S⊂T γi(S)1IS , that the vector u

of all ui =
∑

S∋i γ
i(S)v(S), for i ∈ T , ui = 0 for i /∈ T , is equal to or dominated by some
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vector of H+(v)(T ). For S ⊂ T we define xS as 0 if
∑

k∈T γk(S) = 0, and otherwise by:

xS
i = 0 for i /∈ S,

xS
i =

γi(S)v(S)
∑

k∈T

γk(S)
for i ∈ S.

We find that xS = (xS
i )i belongs to H+(v)(S). Then, defining γ(S)

def
=

∑

k∈T γk(S), we

find that γ ∈ BT ,

u =
∑

S⊂T
γ(S)>0

∑

i∈S

γi(S)v(S)1I{i} =
∑

S⊂T

γ(S)xS ∈ H+(v)(T ).

Hence Theorem 3.3 establishes, for a game with side-payments v, the same relationship be-

tween the restricted direct market Rv and the envelope H+(v) as the one that can be established

(from Shapley and Shubik [9]) between the direct market Dv and the geometrical cover H+(v).

Finally, the analogy can be pushed a step further and the relationship between the core of the

game H+(v) and the competitive payoff in the restricted market Rv can be examined. There is,

for the restricted direct market Rv, a result similar to Theorem 1 in Shapley-Shubik [10] which

states: “every payoff vector in the Core of a totally balanced game is competitive in the direct

market of that game”. To be more precise, given a Core allocation τ = (τ1, · · · , τ2, · · · , τn) in

the economy Rv, define p = (ui(τ i))i∈N ∈ R
N
+ ; it may be verified that the Core allocation τ is

competitive both in Rv and in Dv with respect to the “price vector” p. Since p ∈ Core H+(v),

we must have 〈p, 1IS〉 ≥ v(S), for each S ⊂ N . For each t ∈ [0, 1]N and each decomposition

τ =
∑

S∈P (N) γ(S)1IS , we therefore find that 〈p, τ〉 ≥
∑

S∈P (N) γ(S)v(S). That is we get the

inequality 〈p, ·〉 ≥ U(·), between functions on [0, 1]N . The inequalities U ≥ U i, together with the

equality
∑

i∈N 〈p, τ i〉 = 〈p, 1IN 〉, finally proves that, for every i ∈ N , 〈p, τ i〉 = U i(τ i) = U(τ i).

As a corollary, we get the inclusion CoreH+(v) ⊂ Core H+(v) in Theorem 2.2. But, we

also have from part (1) in the proof of Theorem 3.3, that, for each x ∈ Core H+(v), x is

dominated by some vector (U i(τ i))i∈N (since x ∈ H+(v)(N)). The inequalities U ≥ U i ensure
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that xi = U i(τ i) = U(τ i), which proves the inclusion CoreH+(v) ⊂ Core H+(v). Therefore, an

alternative proof of Theorem 2.2 may be obtained via the representations Dv and Rv of H+(v)

and H+(v).

4 The production representation of the envelope and its net

trade equivalent

We defined in (3.7) the restricted direct market Rv, which was shown to provide a representation

of the envelope H+(v), and an explanation of the discrepancy between the envelope and the

geometrical cover H+(v).

The paper by Billera [3] provides, for a game V without side-payments, a representation of

its totally balanced cover V (see (1.5)) as the market game of some n-agent, 2n-good economy

PV , with production. The author also mentions that by taking the “net trade Rader equivalent”

of PV one obtains an n-agent, 2n-good net trade economy with the same market game, that is

V . In this section we define an input net trade equivalent of PV and prove that, in the special

case of V = H+(v), it is the same as the net trade equivalent of the restricted direct market Rv.

This provides a second view of the envelope H+(v).

Let us start with a general game V , where, for every S ∈ P (N), V (S) = CS −R
S
+, with each

CS a compact convex subset of R
S contained in some cube C = [0, M ]N of R

N
+ . Notice that

in the special case V = H+(v) we simply let M = supS∈P (N) v(S). We consider the n-agent,

2n-good economy with production denoted11 Pv = {(Z
i
, wi, U

i
, Y i), i ∈ N} which is built as

follows. Agent’s i ∈ N initial endowment is wi = (0, 1I{i}) ∈ R
2n (later on interpreted as “his

time”), his consumption set is Z
i
= C × {0} ⊂ R

2n, and his utility U
i
is defined by taking the

projection on the ith factor in R
2n, i.e. for zi = (c, 0) ∈ Z

i
, U

i
(zi) = Proji(c, 0) = ci. Every

i ∈ N has also a production possibility set which is the set Y i ⊂ R
2n of convex combinations of

2n vectors, namely the vector (0, 0) and the vectors of the form (cS ,−1IS), where fore S ∈ P (N),

11See Billera [3, p. 130].
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cS ∈ CS ⊂ C; that is yi ∈ Y i if and only if

yi =
∑

S∈P (N)

αi
S(cS ,−1IS),

where, for every S ∈ P (N), αi
S ≥ 0,

∑

S∈P (n) αi
S ≤ 1, and cS ∈ CS ⊂ C. A feasible state of the

economy Pv is a family (yi, zi)i∈N , with yi ∈ Y i, zi ∈ Z
i
and

∑

i∈N

(zi − yi) = (0, 1IN ) =
∑

i∈N

wi.

Intuitively speaking we consider the last n goods, the people times, as inputs out of which

agent i can produce the first n goods which are the outputs. Agent i only cares about the ith

good which can be obtained by using time of people in some coalition S such that S ∋ i, i.e.,

to which he belongs. Notice here a striking similarity with the definition of the utility U i in

the restricted market Rv (see (3.7)). The restriction on the αi
S is related to the fact that in any

case agent i can use at most one unit of time of agent j. We also see that agent i has no initial

endowment of the first n goods (the outputs).

The economy PV generates a game without side-payments VPV
in a manner similar to (3.2)

(see Billera [3], p. 131). We have:

VPV
(S) =

{

u ∈ R
S ,∀ i ∈ S, ui ≤ U

i
(zi), zi ∈ Z

i

∑

i∈S

(zi − wi) ∈
∑

i∈S

Y i

}

, S ∈ P (N).
(4.1)

By the argument of Theorem 3.3 in Billera [3] it can be checked that VPV
is the totally balanced

cover V of V . In particular, for V = H+(v), VPH+(v)
is the envelope H+(v) and, by (3.8), we

get:

VPH+(v)
= H+(v) = VRv

. (4.2)

Now, while PH+(v) and R differ essentially, we shall see how they can be compared by

modifying the notion of “net trade equivalent”, introduced in Rader [6], and used by Billera [3]

and Billera-Bixby [5]. For an economy with production PV we may define its input net trade

equivalent as the set

Eq[PV ] = {(Z
i
∗, U

i
∗); i ∈ N},
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where Z
i
∗ is agent i′s set of admissible net trades, that is Z

i
∗ = {0} × ([0, 1]N − 1I{i}) and where

U
i
∗, his utility, is defined by letting, for zi

∗ = (0, ti) ∈ Z
i
∗,

U
i
∗(z

i
∗) = U

i
∗(0, ti) = supU

i
(yi + (0, ti) + (0, 1I{i})),

the Sup being taken over the set {yi ∈ Y i; (yi + (0, ti) + (0, 1I{i})) ∈ Z
i
}. To make things clear,

denote by t
ij
k the net amount of good k, 1 ≤ k ≤ 2n, received by agent i ∈ N from agent j ∈ N

in such an economy. We have by definition:

• t
ij
k = 0 if k = 1, 2, · · · , n, and t

ii
k = 0,

• t
ij
n+h = 0 if h 6= i and h 6= j,

• −1 ≤ t
ij
n+i ≤ 0, with for each i,

∑

j 6=i t
ij
n+i ∈ [−1, 0],

• 0 ≤ t
ij
n+j ≤ 1, with for each i,

∑

j 6=i t
ij
n+j ∈ [0, 1].

Defining t
i
k ∈ R as the total net amount of good k, 1 ≤ k ≤ 2n, received by agent i from all

other agents, we get:

• t
i
k = 0 for k = 1, 2, · · · , n, tin+i ∈ [−1, 0] and

• t
i
n+j ∈ [0, 1] for i 6= j.

Therefore we see that the net trade vector t
i

= (t
i
1, t

i
2, · · · , t

i
2n) is of the form (0, ti), where

ti ∈ ([0, 1]N − 1I{i}) is the net trade vector of the last n goods, and the feasibility constraint is

simply
∑

i∈N ti = 0 (in [6] all goods are traded).

The net trade equivalent Eq[PV ] generates a game without side-payments, analogously to

(3.2) and (4.1), as follows:

VEq[PV ](S) =

{

u ∈ R
S : ∀ i ∈ S, ui ≤ U

i
∗(z

i
∗), z

i
∗ ∈ Z

i
∗,

∑

i∈S

zi
∗ = 0

}

.

On the other hand, an n-agent m-commodity simple market E = {(Zi, wi, U i), i ∈ N} (as

defined in §3) is clearly a special case of a production economy where for every i ∈ N , Y i = {0}.
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One can therefore consider the net trade Rader equivalent of E. In particular, given a restricted

direct market Rv, one obtains the n-agent net trade Rader equivalent:

Req[Rv] = {(T i, U i
∗), i ∈ N},

where T i, i’s set of admissible net trades, is simply T i = [0, 1]n − 1I{i} and U i
∗ is defined by

letting, for ti ∈ T i:

U i
∗(t

i) = U i(ti + 1I{i}).

It is trivial to check that: VEq[Rv ] = VRv
.

Starting from a game with side-payments v, consider the two net trade economies Eq[PH+(v)]

and Req[Rv]. Let ℓ : R
2n → R

n be the projection onto the last n coordinates. We have, for

every i ∈ N , ℓ(Z
i
∗) = T i, where Z

i
∗ and T i are i’s admissible set of net trades in Eq[PH+(v)] and

Req[Rv] respectively. The relationship between the net trade equivalent of PH+(v) and the net

trade Rader equivalent of Rv results from the following statement:

Theorem 4.1 For every i ∈ N , and every ti ∈ [0, 1]N − 1I{i}, U
i
∗(0, ti) = U i

∗(t
i).

Proof. Consider any i ∈ N and any ti ∈ [0, 1]N − 1I{i} = T i. We have (0, ti) = zi
∗ ∈ Z

i
∗. Let us

show first: U
i
∗(0, ti) ≤ U i

∗(t
i). Take yi ∈ Y i, (yi + (0, ti) + (0, 1I{i})) ∈ Z

i
such that:

U
i
∗(0, ti) = U

i
(yi + (0, ti) + (0, 1I{i})).

We have: yi =
∑

S∈P (N) αi
S(CS ,−1IS), αi

S ≥ 0,
∑

S∈P (N) αi
S ≤ 1, and cS ∈ H+(v)(S) ∩ R

S
+. We

find:

yi + (0, ti) + (0, 1I{i}) =





∑

S∈P (N)

αi
ScS , 0



 .

Thus:

U
i
∗(0, ti) = Projj





∑

S∈P (N)

αi
ScS , 0



 =
∑

S∈P (N)

αi
Sci

S

and
∑

S∈P (N)

αi
S1IS = ti + 1I{i} = τ i ∈ [0, 1]N .
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Since we have:
∑

S∈P (N)

αi
Sci

S ≤
∑

S∈P (N)
S∋i

αi
Sv(S),

we conclude:

U
∗
i (0, ti) ≤ U i

∗(t
i) = sup

γ∈B
τi

∑

S∈P (N)
S∋i

γ(S)v(S), τ i = ti + 1I{i}.

Conversely, let τ i = ti + 1I{i} ∈ [0, 1]N . Given any decomposition

τ i =
∑

S∈P (N)

γ(S)1IS , γS ≥ 0,

such that

U i
∗(t

i) = U i(ti + 1I{i}) =
∑

S∈P (N)
S∋i

γ(S)v(S).

Let us define:

• αi
S = 0 if S 6∋ i, αi

S = γS if S ∋ i,

• cS = 0 if S 6∋, cS = v(S)1I{i} if S ∋ i.

Then we get:

U i
∗(t

i) = Pri





∑

S∈P (N)

αi
ScS , 0



 .

Let zi = (
∑

S∈P (N) αi
ScS , 0) ∈ Z

i
and yi =

∑

S∈P (N) αi
S(cS ,−1IS) ∈ Y i. We have: zi =

yi + (0, ti) + (0, 1I{i}). Thus, we obtain: U i
∗(t

i) = U
i
(zi) ≤ U

i
∗(0, ti).

Finally using 3.1 in Billera-Bixby [5], (4.2) and (4.3) we get

H+(v) = VEq[PH+(v)]
= VRv

= VPH+(v)
= VReq[PH+(v)]

.
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