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ALGEBRAIC DYNAMICAL SYSTEMS AND
DIRICHLET’S UNIT THEOREM ON ARITHMETIC VARIETIES

HUAYI CHEN AND ATSUSHI MORIWAKI

Abstract. In this paper, we study obstructions to the Dirichlet property by two
approaches : density of non-positive points and functionals on adelic R-divisors.
Applied to the algebraic dynamical systems, these results provide examples of
nef adelic arithmetic R-Cartier divisor which does not have the Dirichlet prop-
erty. We hope the obstructions obtained in the article will give ways toward
criteria of the Dirichlet property.

Introduction

Let X be a projective geometrically integral variety over a number field K and
let D = (D, g) be an adelic arithmetic R-Cartier divisor of C0-type on X (for
details of adelic arithmetic divisors, see [20]). We say that D has the Dirichlet

property if D + (̂ψ) is effective for some ψ ∈ Rat(X)×R(:= Rat(X)× ⊗Z R). It is
clear that, if D has the Dirichlet property, then it is pseudo-effective, namely for
any big adelic arithmetic R-Cartier divisor E, the sum D + E is also big. In [19],
the following question has been proposed:

If D is pseudo-effective, does it follow that D has the Dirichlet
property?

In the case where X = Spec K, the pseudo-effectivity actually implies the Dirich-
let property. It can be considered as an Arakelov geometry interpretation of the
classical Dirichlet unit theorem. Therefore the above problem could be seen as
the study of possible higher dimensional generalizations of the Dirichlet unit
theorem.

It is know that the above question has a positive answer in the following cases:
(1) X = Spec(K) (the classical Dirichlet unit theorem).
(2) D is numerically trivial on X (cf. [19, 20]).
(3) X is a toric variety and D is of toric type (cf. [5]).

The purpose of this paper is to give a negative answer to the above question and
to study the obstructions to the Dirichlet property. We will construct from an
algebraic dynamical system over a number field a nef adelic arithmetic Cartier
divisor D which does not have the Dirichlet property. The obstruction comes
from the denseness of the set of preperiodic points with respect to the analytic
topology. More precisely, let f : X → X be a surjective endomorphism of X over
K. Let D be an ample R-Cartier divisor on X such that f ∗(D) = dD + (ϕ) for
some real number d > 1 and ϕ ∈ Rat(X)×R . Let D = (D, g) be the canonical
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compactification of D, that is, D is an adelic arithmetic R-Cartier divisor of C0-
type with f ∗(D) = dD + (̂ϕ) (cf. Section 3). Note that D is nef (cf. Lemma 3.1).
The main result of this paper is the following:

Theorem 0.1 (cf. Theorem 3.4). If the set of all preperiodic points of f is dense on
some connected component of X(C) with respect to the analytic topology (the topology
as an analytic space), then the Dirichlet property of D does not hold.

The proof of the theorem relies on a necessary condition of the Dirichlet prop-
erty established in Lemma 1.1. We actually prove that the essential support (see
(1.1) for definition) of algebraic points with non-positive heights should not meet
the strictly effective locus of an effective section of the adelic arithmetic R-Cartier
divisor.

The concrete examples to apply the above theorem are discussed in Section 4.
Even for the algebraic dynamical system as treated in Theorem 0.1, it is a very
interesting and challenging problem to find a non-trivial sufficient condition to
ensure the Dirichlet property. Further, in [21], we introduce a geometric ana-
logue of the above question. Namely, if D is a pseudo-effective Q-Cartier divisor
on a normal projective variety defined over a finite field, can we conclude that
D is Q-effective? It actually holds on a certain kind of an abelian scheme over
a curve, so that the situation of the geometric case is slightly different from the
arithmetic case.

Note that the essential support of a family S of algebraic points is not empty
only if the family S is Zariski dense. Therefore, the lemma 1.1 provides non-
trivial necessary conditions for the Dirichlet property only when the set of non-
positive points is Zariski dense. In order to treat general adelic arithmetic R-
Cartier divisors, we propose the functional approach. We introduce the notion
of asymptotic maximal slope for any adelic arithmetic R-Cartier divisor on X
(see §5.2 and §7), which is the threshold of the Dirichlet property where we
consider the twists of the adelic arithmetic R-Cartier divisor by the pull-back of
adelic arithmetic R-Cartier divisors on Spec K. We prove that this arithmetic in-
variant also determines the pseudo-effectivity of the adelic arithmetic R-Cartier
divisor (see Proposition 7.2). Therefore the Dirichlet property and the pseudo-
effectivity are naturally linked by this numerical invariant. We then obtain a
necessary condition of the Dirichlet property in terms of the directional deriva-
tive of the asymptotic maximal slope, which is a functional on the space of all
adelic arithmetic R-Cartier divisors (non-necessarily additive a priori). For this
purpose we establish a general analysis for functionals on the spaces of adelic
arithmetic R-Cartier divisors as in Theorem 5.1.2. This result can be applied to
not only the maximal asymptotic slope (see Corollary 5.2.3) but also other nat-
ural arithmetic invariants such as the arithmetic volume function (see Corollary
5.3.1) and the arithmetic self-intersection number (see Corollary 5.4.1). In §6, we
compare these specifications of Theorem 5.1.2. The comparisons show that the
arithmetic maximal slope is particularly adequate in the study of the Dirichlet
property of pseudo-effective adelic arithmetic R-Cartier divisors.
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We conclude the article by a refined version of the question above (see Ques-
tion 7.4). We hope that our work will provide clues for the further research on
criteria of the Dirichlet property for higher dimension arithmetic variety.

Finally we would like to express thanks to Prof. Burgos i Gil, Prof. Kawaguchi
and Prof. Yuan for their valuable and helpful comments.

Conventions and terminology. In this paper, we frequently use the same nota-
tions as in [18] and [20].

1. Let V be a variety over a field F and F an algebraic closure of F. Let x be an
F-valued point of V, that is, a morphism

x : Spec(F) → V

over F. The residue field of V at the closed point given by the image of x is
denoted by F(x).

In the following, let X be a projective and geometrically integral scheme over
a number field K. Let d be its Krull dimension.

2. Let OK be the ring of integers in K and MK the set of all maximal ideals of
OK. Let K(C) be the set of all embeddings K →֒ C. For each v ∈ MK ∪ K(C), we
define Kv to be

Kv :=

{
K ⊗σ

K C with respect to σ if v = σ ∈ K(C),
the completion of K at p if v = p ∈ MK.

Moreover, let Xv denote the fiber product X ×Spec(K) Spec(Kv). Note that Kσ is
naturally isomorphic to C via a ⊗σ z 7→ σ(a)z and Xσ is nothing more than the
fiber product X ×σ

Spec(K)
Spec(C) with respect to σ.

Let x be a K-valued point of X. Let {φ1, . . . , φn} be the set of all Kv-algebra
homomorphisms K(x)⊗K Kv → Kv, where Kv is an algebraic closure of Kv. Note
that n = [K(x) : K]. For each i = 1, . . . , n, let wi be the Kv-valued point of Xv

given by the composition of morphisms

Spec(Kv)
φa

i−−−→ Spec(K(x) ⊗K Kv)
x×idKv−−−−→ Xv,

where φa
i is the morphism of Kv-schemes induced by φi. We denote {w1, . . . , wn}

by Ov(x).

3. For v ∈ MK ∪ K(C), the analytification Xan
v of Xv is defined by

Xan
v :=

{
Xσ(Kσ) if v = σ ∈ K(C),
Xan
p in the sense of Berkovich [1] if v = p ∈ MK.

As Kσ is naturally identified with C, Xan
σ = Xσ(Kσ) = Xσ(C). We equip the

space Xan
σ (resp. Xan

p ) with the analytic topology, namely the topology as an
analytic space (resp. as a Berkovich space). Let Xan

∞ denote the set of C-valued
points of X over Q. Note that Xan

∞ = ∐σ∈K(C) Xan
σ . We often denote Xan

∞ by X(C).
Note that the complex conjugation induces an involution F∞ : X(C) → X(C).
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4. Let us fix v ∈ MK ∪K(C). For a Kv-valued point w of Xv, we define wan ∈ Xan
v

to be

wan :=

{
w if v = σ ∈ K(C),
the valuation of Kp(w) as an extension of vp if v = p ∈ MK,

where vp is the valuation of Kp defined as vp( f ) = #(OK/p)− ordp( f ). Note that

#{w′ ∈ Xv(Kv) | w′an
= wan} = [Kv(w) : Kv].

5. Let Div(X) be the group of Cartier divisors on X and denote by DivR(X)
the R-vector space Div(X) ⊗Z R. If ϕ is an element in Rat(X)× , we denote
by (ϕ) its divisor, which is an element in Div(X). The Cartier divisors on X
constructed in this way are called principal divisors. The map ϕ 7→ (ϕ) is a
group homomorphism and extends by extension of scalar to an R-linear map
Rat(X)×R → DivR(X), where Rat(X)×R := Rat(X)× ⊗Z R.

By an adelic arithmetic R-Cartier divisor of C0-type on X, we refer to a pair
D = (D, g), where D ∈ DivR(X) and g = (gv)v∈MK∪K(C) is a family of Green
functions, with gv being a D-Green function of C0-type on Xan

v . We also require
that gp comes from an integral model of D for all but a finite number of p ∈ MK,
and that the family (gσ)σ∈K(C) is invariant under the action of F∞. The family
g = (gv)v∈MK∪K(C) is often denoted by

∑
v∈MK∪K(C)

gv[v].

If it is not specified, an adelic arithmetic R-Cartier divisor refers to an adelic
arithmetic R-Cartier divisor of C0-type. We denote the vector space consisting
of adelic arithmetic R-Cartier divisors on X by D̂ivR(X). If ϕ is an element in
Rat(X)× , we define an adelic arithmetic R-Cartier divisor as follows

(̂ϕ) :=
(
(ϕ), ∑

v∈MK∪K(C)

− log |ϕv|2v [v]
)

,

where ϕv is the rational function on Xan
v induced by ϕ. The map Rat(X)× →

D̂ivR(X) extends naturally to Rat(X)×R and defines an R-linear homomorphism
of vector spaces. Any element in the image of this R-linear map is called a
principal adelic arithmetic R-Cartier divisor.

For any v ∈ MK ∪ K(C), one has a natural embedding from the vector space
C0(Xan

v ) into D̂ivR(X) which sends fv ∈ C0(Xan
v ) to





(
0, fv[v]

)
if v ∈ MK,

(
0, 1

2 fv[v] +
1
2 F∗

∞( fv)[v̄]
)

if v ∈ K(C).

We denote by O( fv) this adelic arithmetic R-Cartier divisor.
In the particular case where X = Spec K, an adelic arithmetic R-Cartier divisor

ζ on Spec K is a vector (ζv)v∈MK∪K(C) in RMK∪K(C) := Map(MK ∪K(C), R) which
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we can write into the form of a formal sum

∑
v∈MK∪K(C)

ζv[v],

where ζv = 0 for all but a finite number of indices v. The Arakelov degree of ζ is
then defined as

d̂eg(ζ) =
1
2 ∑

v∈MK∪K(C)

ζv.

For more details of d̂eg(.), see [20, SubSection 4.2]

6. Let D = (D, g) be an adelic arithmetic R-Cartier divisor of C0-type on X. For
any algebraic point x of X outside the support of D, the normalized height hD(x)

of x with respect to D is defined to be

hD(x) :=
d̂eg(D|x)
[K(x) : K]

=
1

[K(x) : K] ∑
v∈MK∪K(C)

∑
w∈Ov(x)

1
2

gv(w
an).

This function can be extended to the set of all points in X(K), see [20, §4.2] for
details. A K-valued point x of X is said to be non-positive with respect to D if
hD(x) ≤ 0. Note that the height function hD(.) does not change if we replace D

by D + (̂φ) with φ ∈ Rat(X)×R . This is a consequence of the product formula for
the number field K.

For any real number λ, we denote by X(K)D
≤λ the set of all K-valued points of

X whose height with respect to D is bounded from above by λ, namely

X(K)D
≤λ := {x ∈ X(K) | hD(x) ≤ λ}.

The essential minimum of the height function hD(·) is defined as

µ̂ess(D) := inf{λ ∈ R | X(K)D
≤λ is Zariski dense}.

The function µ̂ess(.) takes value in R∪{−∞}. Note that if D verifies the Dirichlet
property, then the essential minimum of hD(.) is non-negative.

7. We say that an adelic arithmetic R-Cartier divisor D = (D, g) is relatively nef
if D is a nef R-Cartier divisor and gv is of (C0 ∩ PSH)-type (for details, see [20,
§ 2.1]). To each family (Di)

d+1
i=1 of relatively nef adelic arithmetic R-Cartier di-

visor one can associate a real number d̂eg(D1 · · · Dd+1) as in [20, §4.5]1. The
intersection number function (D1, . . . , Dd+1) 7→ d̂eg(D1, . . . , Dd+1) is symmet-
ric, additive and R+-homogeneous in each coordinate and hence extends to a
(d + 1)-linear form on the vector space of integrable2 adelic arithmetic R-Cartier
divisors. The extended function is continuous in each of its coordinates with
respect to the topology on the vector space of all integrable adelic arithmetic
R-Cartier divisors defined by the usual convergence in each of its finite di-
mensional vector subspaces and the uniform convergence of Green functions.

1The smoothness condition for the scheme X in loc. cit. is actually not necessary.
2Recall that an adelic arithmetic R-Cartier divisor is said to be integrable if it can be written as

the difference of two relatively nef adelic arithmetic R-Cartier divisors.
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Therefore, for fixed integrable adelic arithmetic R-Cartier divisors D1, . . . , Dd,
the function Dd+1 7→ d̂eg(D1, . . . , Dd+1) can be extended by continuity to the
whole vector space of adelic arithmetic R-Cartier divisors on X.

Let D1, . . . , Dd be relatively nef adelic arithmetic R-Cartier divisors. The in-
tersection product defines a (non-negative) Radon measure (D1 · · · Dd)v on Xan

v

for each place v ∈ MK ∪ K(C) such that, for any φ ∈ C0(Xan
v ) one has

(D1 · · · Dd)v(φ) := d̂eg(D1 · · · Dd · O(φ)).

More generally one can define a signed Borel measure (D1 · · · Dd)v on Xan
v for

integrable adelic arithmetic R-Cartier divisors D1, . . . , Dd. Moreover, this signed
measure is multi-linear in D1, . . . , Dd. Note that in the case where D1, . . . , Dd

come from adelic line bundles and v is a non-archimedean place, the above
measure has been constructed in [6] (the archimedean case is more classical
and relies on the theory of Monge-Ampère operators). See §6.2 infra. for the
integrability of Green functions with respect to this measure extending some
results of [17, 7].

Let r be an integer in {0, . . . , d} and D1, . . . , Dr+1 be a family of integrable
adelic arithmetic R-Cartier divisors. If Z is an R-coefficient algebraic cycle of
dimension r in X, written into the linear combination of prime cycles as

Z = λ1Z1 + · · ·+ λnZn.

Then we define the height of Z with respect to D1, . . . , Dr+1 as

h(D1, . . . , Dr+1; Z) :=
n

∑
i=1

λid̂eg(D1|Zi
· · · Dr+1|Zi

).

In the particular case where all Di are equal to the same adelic arithmetic R-
Cartier divisor D, we write h(D0, . . . , Dr; Z) in abbreviation as h(D; Z). Note
that when Z is the algebraic cycle corresponding to a closed point x of X, the
height h(D; Z) equals [K(x) : K]hD(x).

We say that an adelic arithmetic R-Cartier divisor D = (D, g) is nef if it is
relatively nef and if the function hD(·) is non-negative. In the case where D is
nef, the function h(D; ·) is non-negative on effective cycles.

8. Let D be an adelic arithmetic R-Cartier divisor on X. if s ∈ Rat(X)×R and
D + (s) ≥ 0, then |s|gv := |s|v exp(−gv/2) is a continuous function on Xan

v ,

where v ∈ MK ∪ K(C); |s|gv ≤ 1 for all v if and only if D + (̂s) ≥ 0.
We denote by H0(X, D) the K-vector space

{φ ∈ Rat(X)× | D + (φ) ≥ 0} ∪ {0}
Assume that s is an element in H0(X, D). For each v ∈ MK ∪ K(C), the Green
function gv defines a continuous function |s|gv such that

|s|gv = |s|v exp(−gv/2).

This function vanishes on the locus of div(s) + D. We also define

‖s‖v,sup := sup
x∈Xan

v

|s|v(x).
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Denote by Ĥ0(X, D) the set of all s ∈ H0(X, D) such that ‖s‖v,sup ≤ 1 for any
v ∈ MK ∪ K(C). The arithmetic volume of D is defined as

v̂ol(D) := lim sup
n→+∞

log #Ĥ0(X, nD)

nd+1/(d + 1)!
.

1. Density of non-positive points

This section is devoted to a non-denseness result for non-positive points under
the Dirichlet property. This result will be useful in the following sections to
construct counter-examples to the Dirichlet property. We fix a projective and
geometrically integral scheme X defined over a number field K.

Let S be a subset of X(K). For a proper subscheme Y of X and v ∈ MK ∪K(C),
we set

∆(S; Y)an
v :=

⋃
x∈S\Y(K)

{wan | w ∈ Ov(x)}.

The essential support Suppess(S)
an
v of S at v is defined to be

(1.1) Suppess(S)
an
v :=

⋂

Y(X

∆(S; Y)an
v ,

where ∆(S; Y)an
v is the closure of ∆(S; Y)an

v with respect to the analytic topology.
Note that if ∆(S; ∅)an

v is dense with respect to the analytic topology, then

Suppess(S)
an
v = Xan

v .

Moreover, if S is not Zariski dense, then Suppess(S)
an
v = ∅.

Lemma 1.1 (Non-denseness of non-positive points). Let D = (D, g) be an adelic
arithmetic R-Cartier divisor of C0-type on X. If s is an element of Rat(X)×R with

D + (̂s) ≥ 0, then

Suppess

(
X(K)D

≤0
)an
v

∩ {x ∈ Xan
v | |s|gv(x) < 1} = ∅

for all v ∈ MK ∪ K(C). In particular, if Supp(D + (s)) 6= ∅, then ∆
(

X(K)D
≤0; ∅

)an
v

is
not dense with respect to the analytic topology.

Proof. We set S := X(K)D
≤0, Y := Supp(D + (s)) and g′v := − log |s|2gv

. By our
assumption, g′v ≥ 0 for all v ∈ MK ∪ K(C).

Claim 1.1.1. For all y ∈ ∆(S; Y)an
v , we have g′v(y) = 0.

Proof. For y ∈ ∆(S; Y)an
v , we choose x ∈ S \ Y(K) such that y = wan for some

w ∈ Ov(x). Then,

0 ≥ 2[K(x) : K]hD(x) = 2d̂eg(D + (̂s)|x) = ∑
v′∈MK∪K(C)

∑
w′∈Ov′ (x)

g′v′(w
′an

).

As g′v′ ≥ 0 for all v′ ∈ MK ∪ K(C), the assertion follows. �
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We assume that Suppess(S)
an
v ∩ {x ∈ Xan

v | |s|gv(x) < 1} 6= ∅. In particular,

∆(S; Y)an
v ∩ {x ∈ Xan

v | |s|gv(x) < 1} 6= ∅.

We can choose y∞ ∈ Xan
v and a sequence {ym} in Xan

v such that |s|gv(y∞) < 1,
ym ∈ ∆(S; Y)an

v for all m and limm→∞ ym = y∞. By the above claim, |s|gv(ym) = 1
for all m, and hence |s|gv(y∞) = limm→∞ |s|gv(ym) = 1. This is a contradiction.

�

Remark 1.2. Let f : P1
K → P1

K be a surjective endomorphism over K with
deg( f ) ≥ 2. Let S be the set of periodic points in P1(K). Fix σ ∈ K(C). By
Lemma 3.3, ∆(S; ∅)an

σ coincides with the set of periodic points of fσ in (P1
K)

an
σ .

The following are well-known:
(1) The closure of the set of repelling periodic points is the Julia set Jσ of fσ

([22, Theorem 4.2.10]).
(2) The set of non-repelling periodic points is a finite set ([22, Theorem 4.2.9]).
(3) The Julia set Jσ is closed and perfect, that is, Jσ is closed and Jσ has no

isolated points in Jσ ([22, Theorem 2.3.6]).
Therefore, we can see that the essential support Suppess(S)

an
σ of S at σ is equal

to the Julia set Jσ.

For a subset S of X(K) and v ∈ MK ∪ K(C), we set Sv =
⋃

x∈S Ov(x). Let us
consider a way to give the essential support of S at v in terms of Sv and Xv.

Proposition 1.3. Suppess(S)
an
v =

⋂
Yv(Xv

{wan | w ∈ Sv \Yv(Kv)}, where Yv runs
over all proper subschemes of Xv.

Proof. It is sufficient to show that, for a proper subschemes Yv of Xv, there is a
proper subscheme Y of X such that

⋃
x∈S\Y(K)

Ov(x) ⊆ Sv \ Yv(Kv),

that is, Sv ∩ Yv(Kv) ⊆
⋃

x∈S∩Y(K) Ov(x).

Let π : Xv → X be the projection. For x ∈ X(K) and w ∈ Xv(Kv), the natural
induced morphisms

Spec(K) → XK and Spec(Kv) → (Xv)Kv

are denoted by x̃ and w̃, respectively, where

XK = X ×Spec(K) Spec(K) and (Xv)Kv
= Xv ×Spec(Kv) Spec(Kv).

We fix an embedding K →֒ Kv, which yields a morphism π̄ : (Xv)Kv
→ XK. In

the case where w ∈ Ov(x), there is a homomorphism ιw : K → Kv over K such
that the following diagram is commutative:

Spec(Kv)
w̃−−−→ (Xv)Kv

ιa
w

y
yπ̄

Spec(K) x̃−−−→ XK
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Let K̃ be the algebraic closure of K in Kv. Note that ιw(K) = K̃.
Let D be a Cartier divisor on X such that X◦ := X \ Supp(D) is affine. Let A

be a finitely generated K-algebra with X◦ = Spec(A). Note that

Sv ∩ Supp(D)v(Kv) =
⋃

x∈S∩Supp(D)(K)
Ov(x).

If Yv ⊆ Supp(D)v, then the assertion is obvious, so that we may assume that
Yv 6⊆ Supp(D)v. We put T = Sv ∩ (Yv(Kv) \ Supp(D)v(Kv)).

Claim 1.3.1. There is a non-zero h ∈ A ⊗K K such that w̃∗(π̄∗(h)) = 0 for all w ∈ T.

Proof. Let Iv be the ideal of A⊗K Kv defining Yv ∩X◦
v . Choose a non-zero element

h′ of Iv. There are h1, . . . , hr ∈ A ⊗K K and a1, . . . , ar ∈ Kv such that

h′ = a1π̄∗(h1) + · · ·+ arπ̄∗(hr)

and a1, . . . , ar are linearly independent over K̃. For w ∈ T and w ∈ Ov(x), by
using the above diagram,

0 = w̃∗(h′) = a1w̃∗(π̄∗(h1)) + · · ·+ arw̃∗(π̄∗(hr))

= a1ιw(x̃
∗(h1)) + · · ·+ ar ιw(x̃

∗(hr)),

so that x̃∗(h1) = · · · = x̃∗(hr) = 0. Therefore, the assertion follows. �

We set h = c1h1 + · · ·+ clhl for some c1, . . . , cl ∈ K and h1, . . . , hl ∈ A. Let K′

be a finite Galois extension of K such that K(c1, . . . , cl) ⊆ K′. Here we put f =

∏σ∈Gal(K′/K) σ(h). Note that f ∈ A \ {0} and w∗(π∗( f )) = 0 for all w ∈ T, so that
T ⊆ ⋃

S∩Spec(A/ f A)(K) Ov(x). Therefore, if we set Y = Supp(D) ∪ Spec(A/ f A),
then the proposition follows. �

2. Endomorphism and Green function

This section consists of the construction of the canonical Green functions for a
given R-Cartier divisor in the algebraic dynamical system setting, which can be
considered as a generalization of the construction of the canonical metrics in [24].
Here we explain them in terms of Green functions on either Berkovich spaces or
complex varieties. Throughout this section, we fix the following notation. Let X
be a projective and geometrically integral variety over a field K. Let f : X → X
be a surjective endomorphism of X over K. Let D be an R-Cartier divisor on X.
We assume that there are a real number d and ϕ ∈ Rat(X)×R such that d > 1 and
f ∗(D) = dD + (ϕ).

2.1. Non-archimedean case. We assume that K is the quotient field of a com-
plete discrete valuation ring R. Let Xan be the analytification of X in the sense of
Berkovich. Note that f an : Xan → Xan is also surjective by [1, Proposition 3.4.7].
Let us begin with the following proposition:

Proposition 2.1.1. There exists a unique D-Green function g of C0-type on Xan such
that ( f an)∗(g) = dg − log |ϕ|2.
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Proof. Let us fix a D-Green function g0 of C0-type on Xan. As

f ∗(D) = dD + (ϕ),

( f an)∗(g0) is a (dD + (ϕ))-Green function of C0-type, and hence, there is a con-
tinuous function λ0 on Xan such that

( f an)∗(g0) = dg0 − log |ϕ|2 + λ0.

For each n ∈ Z≥1, let us consider a continuous function hn on Xan given by

hn :=
n

∑
i=0

1
di+1 (( f an)i)∗(λ0).

Claim 2.1.1.1. (a) There is a continuous function h on Xan such that the sequence
{hn} converges uniformly to h.

(b) ( f an)∗(h) + λ0 = dh.

Proof. (a) It is sufficient to show that ‖hn − hm‖sup → 0 as n, m → ∞. Indeed, if
n > m, then

‖hn − hm‖sup =

∥∥∥∥∥
n

∑
i=m+1

1
di+1 (( f an)i)∗(λ0)

∥∥∥∥∥
sup

≤
n

∑
i=m+1

1
di+1

∥∥∥(( f an)i)∗(λ0)
∥∥∥

sup

= ‖λ0‖sup

n

∑
i=m+1

1
di+1 ,

as required.
(b) Note that

( f an)∗(hn) + λ0 =
n

∑
i=0

1
di+1 (( f an)i+1)∗(λ0) + λ0 = dhn+1,

and hence the assertion follows. �

If we set g = g0 + h, then g is a D-Green function of C0-type and

( f an)∗(g) = ( f an)∗(g0) + ( f an)∗(h) =
(

dg0 − log |ϕ|2 + λ0

)
+ (dh − λ0)

= dg − log |ϕ|2,

as desired.

Next we consider the uniqueness of g. Let g′ be another D-Green function of
C0-type such that ( f an)∗(g′) = dg′ − log |ϕ|2. Then, as g′ − g is a continuous
function on Xan and ( f an)∗(g′ − g) = d(g′ − g), we have

‖g′ − g‖sup = ‖( f an)∗(g′ − g)‖sup = ‖d(g′ − g)‖sup = d‖g′ − g‖sup,

and hence ‖g′ − g‖sup = 0. Thus g′ = g. �

Proposition 2.1.2. Let X → Spec(R) be a model of X over Spec(R) and D an R-
Cartier divisor on X such that D coincides with D on X. If there is an endomorphism
f̃ : X → X over Spec(R) such that f̃

∣∣
X
= f and f̃ ∗(D) = dD + (ϕ)X , then the

D-Green function g(X ,D) arising from the model (X , D) is equal to g.
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Proof. The relation f̃ ∗(D) = dD + (ϕ)X yields

( f an)∗(g(X ,D)) = dg(X ,D) − log |ϕ|2,

so that, by the uniqueness of g, we have g(X ,D) = g. �

Using the identities

f ∗(D) = dD + (ϕ) and ( f an)∗(g) = g − log |ϕ|2 ,

we can easily see that

( f n)∗(D) = dnD + (ϕn) and (( f an)n)∗(g) = dng − log |ϕn|2

for n ≥ 1, where

ϕn :=
n−1

∏
i=0

(
( f n−1−i)∗(ϕ)

)di

.

Let X → Spec(R) be a model of X over Spec(R) and D an R-Cartier divisor
on X with D |X = D. For each n ≥ 1, we choose a model Xn → Spec(R) of X

over Spec(R) together with a morphism f̃n : Xn → X over Spec(R) such that
f̃n

∣∣
X
= f n. Here we define an R-Cartier divisor Dn on Xn to be

Dn :=
1
dn

(
f̃ ∗n (D)− (ϕn)Xn

)
.

Note that Dn|X = D. Then we have the following:

Proposition 2.1.3. If we set θn = g − g(Xn,Dn), then limn→∞ ‖θn‖sup = 0. In partic-

ular, if D is relatively nef, then g is of (C0 ∩ PSH)-type.

Proof. Since
f̃ ∗n (D) = dn

Dn + (ϕn)Xn
,

we have
(( f an)n)∗(g(X ,D)) = dng(Xn,Dn) − log |ϕn|2 ,

so that if we set θ = g − g(X ,D), then (( f an)n)∗(θ) = dnθn. Therefore,

‖θ‖sup = ‖(( f an)n)∗(θ)‖sup = ‖dnθn‖sup = dn‖θn‖sup,

and hence limn→∞ ‖θn‖sup = 0.
For the last statement, note that if D is relatively nef, then Dn is also relatively

nef for n ≥ 1. �

2.2. Complex case. We assume that K = C.

Proposition 2.2.1. There exists a unique D-Green function g of C0-type on X such that
f ∗(g) = dg − log |ϕ|2. Moreover, if there is a D-Green function of (C0 ∩ PSH)-type,
then g is also of (C0 ∩ PSH)-type.

Proof. We can prove the unique existence of g in the same way as Proposi-
tion 2.1.1. Let g0 be a D-Green function of (C0 ∩ PSH)-type. As in the previous
subsection, we can see

( f n)∗(D) = dnD + (ϕn) and ( f n)∗(g) = dng − log |ϕn|2
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for n ≥ 1, where

ϕn :=
n−1

∏
i=0

(
( f n−1−i)∗(ϕ)

)di

.

Here we define gn to be

gn :=
1
dn

(
( f n)∗(g0) + log |ϕn|2

)
,

that is,
( f n)∗(g0) = dngn − log |ϕn|2 .

Then gn is a D-Green function of (C0 ∩PSH)-type. Moreover, if we set θ = g− g0
and θn = g − gn, then ( f n)∗(θ) = dnθn. Thus

‖θ‖sup = ‖( f n)∗(θ)‖sup = ‖dnθn‖sup = dn‖θn‖sup,

and hence limn→∞ ‖θn‖sup = 0. Therefore, g is of (C0 ∩ PSH)-type by [15, Theo-
rem 2.9.14, (iii)]. �

Let c : Spec(C) → Spec(C) be the morphism given by the complex conjugation
map z 7→ z̄. Let X̃ denote the fiber product X ×c

Spec(C)
Spec(C) in terms of c. Let

F : X̃ → X be the projection morphism and f̃ : X̃ → X̃ the induced morphism
by f . Note that the following diagram is commutative:

X̃
f̃

//

F
��

X̃

F
��

X
f

// X

If we set D̃ = F∗(D) and ϕ̃ = F∗(ϕ), then f̃ ∗(D̃) = dD̃ + (ϕ̃). For x ∈ X̃(C),

the composition Spec(C)
c−→ Spec(C)

x−→ X̃
F−→ X yields a C-valued point of

X, so that we define F∞ : X̃(C) → X(C) to be F∞(x) = F ◦ x ◦ c. The above
commutative diagram gives rise to the following commutative diagram:

X̃(C)
f̃

//

F∞

��

X̃(C)

F∞

��

X(C)
f

// X(C)

Proposition 2.2.2. Let g be a D-Green function of C0-type on X with f ∗(g) = dg −
log |ϕ|2 as in Proposition 2.2.1. Then g̃ := F∗

∞(g) is a D̃-Green function of C0-type on

X̃ with f̃ ∗(g̃) = dg̃ − log |ϕ̃|2. Moreover, if g is of (C0 ∩ PSH)-type, then g̃ is also of
(C0 ∩ PSH)-type.

Proof. It is easy to see that g̃ is a D̃-Green function of C0-type on X̃ because

F∗(ψ)(x) = x∗(F∗(ψ)) = c∗(c∗(x∗(F∗(ψ)))) = (F∞(x))∗(ψ) = ψ(F∞(x))

for x ∈ X̃(C) and ψ ∈ Rat(X)× . In addition,

f̃ ∗(g̃) = F∗
∞( f ∗(g)) = F∗

∞(dg − log |ϕ|2) = dg̃ − log |ϕ̃|2.
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The last assertion follows from the same argument of [18, Lemma 5.1.1]. �

3. Canonical compactification

Let X be a projective and geometrically integral variety over a number field K.
Let f : X → X be a surjective endomorphism of X over K. Let D be an R-Cartier
divisor on X. We assume that there are a real number d and ϕ ∈ Rat(X)×R such
that d > 1 and f ∗(D) = dD + (ϕ). We use the same notation as in Conventions
and terminology 1 ∼ 4. In addition, for each v ∈ MK ∪K(C), let f an

v : Xan
v → Xan

v

be the induced map by f . By Proposition 2.1.1, for p ∈ MK, there is a unique
D-Green function gp of C0-type on Xan

p with

( f an
p )∗(gp) = dgp − log |ϕ|2p.

We can find a model XU of X over a non-empty Zariski open set U of Spec(OK),
an R-Cartier divisor DU on XU and an endomorphism fU : XU → XU over U
such that fU |X = f and f ∗U(D) = dD + (ϕ) on XU, so that, by Proposition 2.1.2,
for P ∈ U, gP comes from the model (XU , DU). Further, by virtue of Propo-
sition 2.2.1 and Proposition 2.2.2, let us take a unique F∞-invariant D-Green
function g∞ of C0-type on Xan

∞ (for the definition of Xan
∞ , see Conventions and

terminology 3) such that

( f an
∞ )∗(g∞) = dg∞ − log |ϕ|2∞,

where f an
∞ := ∐σ∈K(C) f an

σ . Therefore,

D :=

(
D, ∑

P∈MK

gP[P] + g∞[∞]

)

forms an adelic arithmetic Cartier divisor of C0-type on X. By our construction,

f ∗(D) = dD + (̂ϕ).

The adelic arithmetic Cartier divisor D is called the canonical compactification of D
with respect to f .

Lemma 3.1. If D is ample, that is, there are ample Cartier divisors D1, . . . , Dr on X
and a1, . . . , ar ∈ R>0 with D = a1D1 + · · ·+ arDr, then D is nef.

Proof. First let us see the following claim:

Claim 3.1.1. (a) There are a model π : X → Spec(OK) of X over Spec(OK) and
a relatively nef R-Cartier divisor D on X such that D |X = D.

(b) There is an F∞-invariant D-Green function h of C∞-type on Xan
∞ such that

c1(D, h) is positive.

Proof. If D is an ample Cartier divisor, then the assertions (a) and (b) are well-
known. Moreover, in this case, D in (a) can be taken as a Q-Cartier divisor.

(a) For each i = 1, . . . , r, there are a model Xi → Spec(OK) of X over Spec(OK)
and a relatively nef Q-Cartier divisor Di on Xi such that Di|X = Di. Let us take
a model X → Spec(OK) of X over Spec(OK) such that we have a birational
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morphism µi : X → Xi over Spec(OK) for each i = 1, . . . , r. If we set D =
a1µ∗

1(D1) + · · ·+ arµ∗
r (Dr), then D is relatively nef and D |X = D.

(b) For each i = 1, . . . , r, let hi be an F∞-invariant Di-Green function of C∞-
type on Xan

∞ such that c1(Di, hi) is positive. Then a1h1 + · · ·+ arhr is our desired
Green function. �

By the above claim together with Proposition 2.1.3 and Proposition 2.2.1, gP

and g∞ are of (C0 ∩ PSH)-type on Xan
P and Xan

∞ , respectively. Therefore, D is
relatively nef. Let hD be the height function associated with D. Then

hD( f (x)) = dhD(x)

for all x ∈ X(K). Indeed,

hD( f (x)) = h f ∗(D)(x) = h
dD+(̂ϕ)

(x) = hdD(x) = dhD(x).

As D is ample, there is a constant C such that hD ≥ C. In particular,

hD(x) = hD( f n(x))/dn ≥ C/dn

for all n ≥ 1, and hence hD(x) ≥ 0 for x ∈ X(K). Therefore, D is nef. �

For v ∈ MK ∪ K(C), we set
{

Prep( f ) := {x ∈ X(K) | f n(x) = f m(x) for some 0 ≤ n < m},
Prep( fv) := {x ∈ Xv(Kv) | f n

v (x) = f m
v (x) for some 0 ≤ n < m}.

An element of Prep( f ) (resp. Prep( fv)) is called a preperiodic point of f (resp. fv).
Moreover, for a subset T of Xv(Kv), Tan is defined by

Tan := {wan | w ∈ T}
(for the definition of wan, see Conventions and terminology 4). Let us see the
following proposition.

Proposition 3.2.
⋃

x∈Prep( f ) Ov(x) = Prep( fv) (for the definition of Ov(x), see Con-
ventions and terminology 2).

Proof. Clearly
⋃

x∈Prep( f ) Ov(x) ⊆ Prep( fv). Conversely, we suppose that x ∈
Prep( fv), that is, f m

v ◦ x = f n
v ◦ x for some m > n ≥ 0. Let πv : Xv → X be the

projection. Then πv ◦ f m
v ◦ x = πv ◦ f n

v ◦ x. Note that the following diagram is
commutative:

Xv
fv

//

πv

��

Xv

πv

��

X
f

// X,

so that we have f m ◦ πv ◦ x = f n ◦ πv ◦ x. Therefore, Lemma 3.3 below, there
are a closed point ξ of X and a homomorphism K(ξ) → Kv such that πv ◦ x is
given by the composition Spec(Kv) → Spec(K(ξ)) → X, so that the assertion
follows. �
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Lemma 3.3. Let V be a projective variety over a field k. Let f : V → V and g : V → V
be surjective endomorphisms of V and let D be an R-Cartier divisor on V. We assume
the following:

(1) D is ample, that is, there are ample Cartier divisors D1, . . . , Dr on V and
a1, . . . , ar ∈ R>0 with D = a1D1 + · · ·+ arDr.

(2) There are φ, ψ ∈ Rat(V)×R and a, b ∈ R>0 such that f ∗(D) = aD + (φ),
g∗(D) = bD + (ψ) and a 6= b.

If Ω is a field over k, x ∈ V(Ω) and f (x) = g(x), then there are a closed point ξ
of V and a homomorphism k(ξ) → Ω such that x coincides with the composition of
Spec(Ω) → Spec(k(ξ)) → V.

Proof. Let Z denote ( f × g)−1(∆), where f × g : V → V ×V is a morphism given
by x 7→ ( f (x), g(x)) and ∆ is the diagonal in V × V. It is sufficient to show
that dim Z ≤ 0. We assume the contrary, so that we can find a 1-dimensional
subvariety C of V with C ⊆ Z. Then f |C = g|C. In particular, f∗(C) = g∗(C). As

f ∗(D)− g∗(D) = (a − b)D + (φψ−1),

we have

(a − b)(D · C) = (( f ∗(D)− g∗(D)) · C) = (D · f∗(C))− (D · g∗(C)) = 0,

and hence (D · C) = 0. This is a contradiction because D is ample. �

The purpose of this section is to prove the following theorem:

Theorem 3.4. We assume that D is ample. If there are v ∈ MK ∪K(C) and a subvariety
Yv ⊆ Xv such that dim Yv ≥ 1 and Yv ⊆ Suppess(Prep( f ))an

v , then the Dirichlet

property of D does not hold. In particular, if Prep( fv)an is dense in Xan
v with respect to

the analytic topology for some v ∈ MK ∪ K(C), then the Dirichlet property of D does
not hold.

Proof. We assume that D + (̂s) is effective for some s ∈ Rat(X)×R . Here we set
S := X(K)D

≤0 (for the definition of X(K)D
≤0, see Section 5). By Lemma 1.1,

Suppess

(
S
)an

v
∩ {x ∈ Xan

v | |s|gv(x) < 1} = ∅.

Note that if x ∈ Prep( f ) for x ∈ X(K), then hD(x) = 0. Therefore, Prep( f ) ⊆ S,
and hence

Suppess

(
Prep( f )

)an
v

∩ Supp(D + (s))an
v = ∅

because Supp(D + (s))an
v ⊆ {x ∈ Xan

v | |s|gv(x) < 1}. As (D + (s))v is ample, we
can see that Yv ∩ Supp(D + (s))v 6= ∅. In particular,

Yan
v ∩ Supp(D + (s))an

v 6= ∅,

which is a contradiction because Yan
v ⊆ Suppess(Prep( f ))an

v . �
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4. Examples

In this section, we give several examples to apply Theorem 3.4.

Example 4.1 (Abelian variety). Let A be an abelian variety over a number field
K. Let D be an ample and symmetric R-Cartier divisor on A, that is, there are
ample and symmetric Cartier divisors D1, . . . , Dr on A and a1, . . . , ar ∈ R>0 with
D = a1D1 + · · ·+ arDr. Then [2]∗(D) = 4D + (ϕ) for some ϕ ∈ Rat(A)×R . Let D
be the canonical compactification of D with respect to [2]. Note that Prep([2]σ)
is dense in Aσ(C) with respect to the analytic topology for σ ∈ K(C). Thus,
by Lemma 3.1 and Theorem 3.4, D is nef and D does not have the Dirichlet
property.

Example 4.2 (Projective line). Let E be an elliptic curve over a number field K,
X := E/[±1] and ρ : E → X the natural morphism. Note that X ≃ P1

K and the
endomorphism [2] : E → E descends to an endomorphism f : X → X, that is,
the following diagram is commutative:

E
[2]

//

ρ
��

E

ρ
��

X
f

// X

Clearly ρ(Prep([2])) ⊆ Prep( f ). In particular, Prep([ f ]σ) is dense in Xσ(C) with
respect to the analytic topology for σ ∈ K(C). Let D be an ample Cartier divisor
on X. Note that ρ∗(D) is symmetric because ρ ◦ [−1] = ρ, so that there is
ϕ′ ∈ Rat(E)× with [2]∗(ρ∗(D)) = 4ρ∗(D) + (ϕ′), that is, ρ∗( f ∗(D)− 4D) = (ϕ′).
Therefore, if we set ϕ = N(ϕ′)1/2 ∈ Rat(X)×

Q
, then f ∗(D) = 4D + (ϕ), where N :

Rat(E)× → Rat(X)× is the norm map. Let D be the canonical compactification
of D with respect to f . By Lemma 3.1 and Theorem 3.4, D is nef and the Dirichlet
property of D does not hold.

Here let us consider a special elliptic curve E due to Tate, that is,

E := Proj
(

K[X, Y, Z]/(Y2 Z + XYZ + ǫ2YZ2 − X3)
)

where ǫ = (5 +
√

29)/2 and K = Q(ǫ). It has a smooth model

E = Proj
(

OK[X, Y, Z]/(Y2 Z + XYZ + ǫ2YZ2 − X3)
)

over OK := Z[ǫ]. Let E 99K P1
OK

be a rational map induced by the homomor-
phism OK[X, Z] → OK[X, Y, Z]/(Y2 Z+XYZ + ǫ2YZ2 −X3), that is, E 99K P1

OK
is

the projection at (0 : 1 : 0). Note that E 99K P1
OK

actually extends to a morphism
ρ : E → P1

OK
because the tangent line at (0 : 1 : 0) is given by {Z = 0}.



ALGEBRAIC DYNAMICAL SYSTEMS AND DIRICHLET’S UNIT THEOREM 17

Claim 4.2.1. There is a morphism f : P1
OK

→ P1
OK

such that the following diagram is

commutative:

E
[2]

//

ρ
��

E

ρ
��

P1
OK

f
// P1

OK

Proof. The x-coordinate of [2](P) for P = (x : y : 1) ∈ E is given by

x4 − ǫ2x2 − 2ǫ4x

4x3 + x2 + 2ǫ2x + ǫ4 .

Therefore, if we consider a rational map f : P1
OK

99K P1
OK

given by

f (x : z) := (x4 − ǫ2x2z2 − 2ǫ4xz3 : 4x3z + x2z2 + 2ǫ2xz3 + ǫ4z4),

then the diagram

E
[2]

//

ρ
��

E

ρ
��

P1
OK

f
//❴❴❴ P1

OK

is commutative as rational maps, so that we need to see that f extends to a
morphism f : P1

OK
→ P1

OK
. Let F be either Q or Fp, where Fp = Z/pZ for a

prime p. It is sufficient to show that if (x, z) ∈ F2 satisfies a system of equations
{

x4 − ǫ2x2z2 − 2ǫ4xz3 = 0,
4x3z + x2z2 + 2ǫ2xz3 + ǫ4z4 = 0,

then x = z = 0. We assume the contrary, that is, the above has a solution
(x, z) ∈ F2 \ {(0, 0)}. As z 6= 0, we may assume z = 1, so that x 6= 0, and hence

{
x3 − ǫ2x − 2ǫ4 = 0,
4x3 + x2 + 2ǫ2x + ǫ4 = 0.

Therefore, 0 = (4x3 + x2 + 2ǫ2x + ǫ4)− 4(x3 − ǫ2x − 2ǫ4) = (x + 3ǫ2)2, that is,
x = −3ǫ2. Thus, as (−3ǫ2)3 − ǫ2(−3ǫ2)− 2ǫ4 = 0 and ǫ 6= 0, we have 27ǫ2 = 1.
On the other hand, since ǫ2 − 5ǫ − 1 = 0, we obtain 27 · 5ǫ = −26, so that
27 · 25 = 27 · 25 · 27ǫ2 = (27 · 5ǫ)2 = 262 in F. Note that 262 − 27 · 25 = 1, and
hence 1 = 0 in F, which is a contradiction. �

Since the norm map N : Rat(E )× → Rat(P1
OK

)× is a homomorphism, we have
the natural extension

NQ : Rat(E )×
Q

:= Rat(E )× ⊗ Q −→ Rat(P1
OK

)×
Q

:= Rat(P1
OK

)× ⊗ Q.
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Let D be an ample Cartier divisor on P1
OK

. As the following diagram

E
[−1]

//

ρ   ❆
❆❆

❆❆
❆❆

❆ E

ρ~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

P1
OK

is commutative, ρ∗(D) is symmetric, so that [2]∗(ρ∗(D))− 4ρ∗(D)− (ϕ′) is ver-
tical for some ϕ′ ∈ Rat(E )×. As the class group of Q(ǫ) is finite, there is λ ∈ K×

Q

such that
ρ∗( f ∗(D)− 4D) = [2]∗(ρ∗(D))− 4ρ∗(D) = (λϕ′),

and hence, if we set ϕ = NQ(λϕ′)1/2 ∈ Rat(P1
OK

)×
Q

, then f ∗(D) = 4D + (ϕ). Let
g∞ be an F∞-invariant D-Green function of (C0 ∩PSH)-type on P1

OK
(C) such that

f ∗(g) = 4g − log |ϕ|2∞. By Lemma 3.1 and [20, Proposition 2.1.7], an arithmetic
Cartier divisor D := (D , g∞) on P1

OK
is nef and, by Theorem 3.4, D + (̂ψ) is not

effective for all ψ ∈ Rat(P1
OK

)×
R

. Further, ρ∗(D) is nef and ρ∗(D) + (̂φ) is not
effective for all φ ∈ Rat(A )×

R
.

Example 4.3. Here let us give an example due to Burgos i Gil, which shows that
the converse of Theorem 0.1 in the introduction does not hold in general.

Let E be an elliptic curve over Q and P1
Q

:= Proj(Q[x, y]). Let D1 (resp. D2)
be the Cartier divisor on E (resp. P1

Q
) given by the zero point (resp. {x = 0}).

Then there is ϕ ∈ Rat(E)× with [2]∗(D1) = 4D1 + (ϕ). Let h : P1
Q
→ P1

Q
be the

endomorphism given by (x : y) 7→ (x4 : y4). Then h∗(D2) = 4D2. We set

X := E × P1
Q, f := [2]× h : X → X and D := p∗1(D1) + p∗2(D2),

where p1 : X → E and p2 : X → P1
Q are the projections to E and P1

Q, respectively.
As the following diagrams are commutative,

X
f−−−→ X

p1

y
yp1

E −−−→
[2]

E

X
f−−−→ X

p2

y
yp2

P1
Q −−−→

h
P1

Q

we have

f ∗(D) = f ∗(p∗1(D1)) + f ∗(p∗2(D2)) = p∗1([2]
∗(D1)) + p∗2(h

∗(D2))

= p∗1(4D1 + (ϕ)) + p∗2(4D2) = 4D + (p∗1(ϕ)).

Let D be the canonical compactification of D with respect to f .

Claim 4.3.1. (1) D is nef.
(2) Prep( fv)an is not dense in Xan

v with respect to the analytic topology for all
v ∈ MQ ∪ {∞}, where ∞ is the unique embedding Q →֒ C.

(3) Suppess(Prep( f ))an
∞ = E(C)× S1, where S1 = {(ζ : 1) ∈ P1(C) | |ζ| = 1}.

(4) The Dirichlet property of D does not hold.
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Proof. (1) follows from Lemma 3.1.
(2) As (p2)

an
v : Xan

v → (P1
Q)

an
v is surjective and (p2)

an
v (Prep( fv)an) ⊆ Prep(hv)an,

it is sufficient to show that Prep(hv)an is not dense in (P1
Q)

an
v . Note that

Prep(h) = {(0 : 1), (1 : 0)} ∪ {(ζ, 1) | ζ ∈ Q and ζm = 1 for some m ∈ Z>0},

so that the assertion is obvious if v = ∞. We assume that v = p for some prime
p. Let w ∈ Prep(hp)an ∩ Uan

Qp
, where U is the Zariski open set of P1

Q given by
U := {x 6= 0, y 6= 0} and UQp

:= U ×Spec(Q) Spec(Qp). In the same way as
Proposition 3.2, there is ξ ∈ Prep(h) such that w is one of valuations arising
from ξ, that is, if we set

Q(ξ) ⊗ Qp = K1 ⊕ · · · ⊕ Kr (the sum of finite extension fields over Qp),

then w is the valuation of some Ki. Put z := X/Y. As z(ξ)m = 1 for some
m ∈ Z>0, we obtain zm = 1 at Ki, so that |z|w = 1. Therefore we have

Prep(hp)
an ∩ Uan

Qp
⊆ {w ∈ Uan

Qp
| |z|w = 1},

and hence Prep(hp)an is not dense.
(3) We need to see Prep( f ) \Y(C) = E(C) × S1 for any proper subscheme Y

of E × P1
Q. Note that

Prep( f ) = E(C)× S1 and Prep( f ) \Y(C) ⊆ Prep( f ) \ Y(C),

so that it is sufficient to check E(C)× S1 ⊆ (E(C) × S1) \Y(C).
We set T = {ζ ∈ S1 | E(C) × {ζ} ⊆ Y(C)}. Let us see that T is finite.

Otherwise, as E(C)× T ⊆ Y(C) and E(C)× T is Zariski dense in E(C)× P1(C),
we have Y(C) = E(C)× P1(C), which is a contradiction.

Since (E(C)× {ζ}) \Y(C) = E(C)× {ζ} for ζ ∈ S1 \ T, we obtain

E(C)× (S1 \ T) ⊆ E(C)× S1 \ Y(C).

Thus the assertion follows because S1 \ T = S1.
(4) follows from (2) and Theorem 3.4. �

5. Measure-theoretical approach to the study of Dirichlet property

The purpose of the section is to study the Dirichlet property in a functional
point of view. Our method consists of introducing some (possible non-linear)
functionals on the spaces of continuous functions on the analytic fibers of the
arithmetic variety. The Dirichlet property leads to conditions on the supports of
these functionals.

We fix a geometrically integral projective scheme X of dimension d defined
over a number field K and denote by π : X → Spec K the structural morphism.
In the following subsection, we will establish an abstract framework to study
the consequences of the Dirichlet property by the functional approach. We then
specify the theorem for different choices of the functionals, notably those coming
from the asymptotic maximal slope and the volume function.
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5.1. A formal functional analysis on Dirichlet property. Let V be a vector sub-
space of D̂ivR(X) containing all principal divisors and let V+ denote the subset
of all effective adelic arithmetic Cartier divisors in V. Let C◦ be a subset of V
verifying the following conditions :

(a) for any D ∈ C◦ and λ > 0, one has λD ∈ C◦;
(b) for any D0 ∈ C◦ and D ∈ V+, there exists ε > 0 such that D0 + εD ∈ C◦ for

any ε ∈ R with 0 ≤ ε ≤ ε0;
(c) for any D ∈ C◦ and φ ∈ Rat(X)×R , one has D + (̂φ) ∈ C◦.

In other terms, C◦ is a cone in V which is open in the directions in V+ and
invariant under translations by a principal divisor.

Assume given a map µ : C◦ → R which verifies the following properties :

(1) there exists a positive number a such that µ(tD) = taµ(D) for all adelic
arithmetic R-Cartier divisor D ∈ C0 and t > 0;

(2) for any D ∈ C◦ and φ ∈ Rat(X)×R , one has µ(D + (̂φ)) = µ(D).

For D ∈ C◦ and E ∈ V+, we define ∇+
E

µ(D) to be

∇+
E

µ(D) = lim sup
ǫ→0+

µ(D + ǫE)− µ(D)

ǫ
,

which might be ±∞. Note that, for any D ∈ C◦, the function E 7→ ∇+
E

µ(D)

is positively homogeneous. Moreover, for any E ∈ V and t > 0, one has
∇+

E
µ(tD) = ta−1∇+

E
(D). In addition to (1) and (2), assume the following prop-

erty:

(3) there exists a map ∇µ : D̂ivR(X)+ × C◦ → R ∪ {±∞} such that

∇µ(E, D) = ∇+
E

µ(D) for E ∈ V+ and D ∈ C◦,

where D̂ivR(X)+ denotes the set of all effective adelic arithmetic R-Cartier
divisors.

Denote by C◦◦ the subset of C◦ of adelic arithmetic R-Cartier divisor D such
that, the map E 7→ ∇µ(E, D) preserves the order, namely, for any couple (E1, E2)

of elements in D̂ivR(X)+ such that E1 ≤ E2, one has ∇µ(E1, D) ≤ ∇µ(E2, D).
If D is an element in C◦◦, then the map ∇µ defines, for any v ∈ MK ∪ K(C), a
non-necessarily additive functional

Ψ
µ

D,v
: C0(Xan

v )+ −→ [0,+∞], Ψ
µ

D,v
( fv) := ∇µ(O( fv), D),

where C0(Xan
v )+ denotes the cone of non-negative continuous functions on Xan

v .

Definition 5.1.1. We define the support of Ψ
µ

D,v
to be the set Supp(Ψµ

D,v
) of all

x ∈ Xan
v such that Ψ

µ

D,v
( fv) > 0 for any non-negative continuous function fv on

Xan
v verifying fv(x) > 0. Note that F∞(Supp(Ψµ

D,σ
)) = Supp(Ψµ

D,σ̄
) for σ ∈ K(C)

because Ψ
µ

D,σ
( fσ) = Ψ

µ

D,σ̄
(F∗

∞( fσ)) for fσ ∈ C0(Xan
σ )+.
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Theorem 5.1.2. Let D be an element of C◦◦ with µ(D) = 0. If s is an element of

Rat(X)×
R

with D + (̂s) ≥ 0, then

Supp(Ψµ

D,v
) ∩ {x ∈ Xan

v | |s|gv < 1} = ∅

for any v ∈ MK ∪ K(C).

Proof. We set D′ = D + (̂s) = (D′, g′) and fv = min{g′v, 1}. Thus, as

0 ≤ O( fv) ≤ D′

and D ∈ C◦◦, one has

0 = ∇µ((0, 0), D) ≤ ΨD,v( fv) = ∇µ(O( fv), D) ≤ ∇µ(D
′, D) = ∇+

D′µ(D).

On the other hand, by using the properties (1) and (2), one obtains

µ(D + ǫD′)− µ(D) = µ(D + ǫD)− µ(D) = ((1 + ǫ)a − 1)µ(D),

and hence ∇+
D′µ(D) = aµ(D) = 0. Therefore, ΨD,v( fv) = 0, so that

Supp(ΨD,v) ∩ {x ∈ Xan
v | fv(x) > 0} = ∅.

Note that g′v = − log |s|2gv
. Thus, we can see that

{x ∈ Xan
v | fv(x) > 0} = {x ∈ Xan

v | |s|gv < 1},

as required. �

Under the assumptions of Theorem 5.1.2, we have the following corollaries.

Corollary 5.1.3. Assume that the Dirichlet property holds for D and that D is big. For
any v ∈ MK ∪ K(C), if Yv is a closed subvariety of Xv of dimension ≥ 1 such that

Yan
v ⊆ Supp(Ψµ

D,v
), then Yv is contained in the the augmented base locus of Dv.

Proof. Let s be an element of Rat(X)×
R

with D + (̂s) ≥ 0. We introduce D′ =

D + (̂s) as in the proof of the theorem. Assume that Yv is a closed subvariety of
Xv which is not contained in the augmented base locus of Dv (which identifies
with the augmented base locus of D′

v). Then the restriction of D′
v on Yv is a big

R-Cartier divisor since the restricted volume of D′
v on Yv is > 0 (cf. [11]). Hence

[D′
v] has non-empty intersection with Yv, which implies that [D′

v]
an ∩ Yan

v 6= ∅.
Therefore, by the previous theorem, Yan

v cannot be contained in the support of
the functional Ψ

µ

D,v
. �

Corollary 5.1.4. Assume that (D · C) > 0 for any curve C on X. If the Dirichlet
property holds for D, then, for any v ∈ MK ∪ K(C), there is no subvariety Yv of Xv

such that dim Yv ≥ 1 and Yan
v ⊆ Supp(Ψµ

D,v
).

Proof. It is sufficient to prove that (Dv · Cv) > 0 for any curve Cv on Xv. Indeed,
there are a variety W over K and a subscheme C of X × W such that Rat(W)
is a subfield of Kv, C is flat over W and C ×W Spec(Kv) = Cv. Let p and q be
the projections X × W → W and X × W → X, respectively. By our assumption,
(q∗(D) · C ∩ p−1(w)) > 0 for any closed point w of W, so that (q∗(D) · Cη) > 0,
where η is the generic point of W, as required. �
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5.2. Asymptotic maximal slope. In this subsection, let V = D̂ivR(X) and C◦ be
the cone of all adelic arithmetic R-Cartier divisors D such that D is big.

Let D be an adelic arithmetic R-Cartier divisor in C◦ and ζ be an adelic arith-
metic R-Cartier divisor on Spec K with d̂eg(ζ) = 1, we define µ̂

asy,ζ
max (D) as

sup{t ∈ R | D − tπ∗(ζ) has the Dirichlet property}.

Note that for sufficiently negative number t, the adelic arithmetic R-Cartier divi-
sor D − tπ∗(ζ) is big (since D is a big R-divisor) and therefore has the Dirichlet
property. Moreover, one has µ̂

asy,ζ
max (D) ≤ µ̂ess(D) (see Conventions and termi-

nology 6). Therefore µ̂
asy,ζ
max (.) is a real-valued function on C◦. By definition, for

any t ≥ 0 and any D ∈ C◦ one has µ̂
asy,ζ
max (tD) = tµ̂

asy,ζ
max (D).

The function µ̂
asy,ζ
max (D) is actually independent of the choice of ζ. This is a

consequence of the following proposition.

Proposition 5.2.1. Let ζ1 and ζ2 be adelic arithmetic R-Cartier divisors on Spec K.

Then d̂eg(ζ1) = d̂eg(ζ2) if and only if ζ1 = ζ2 + (̂ϕ) for some ϕ ∈ K×
R(:= K× ⊗ R).

Proof. It is sufficient to show that if d̂eg(ζ) = 0, then ζ = (̂ϕ) for some ϕ ∈ K×
R .

We set ζ = ∑p∈MK
ap[p] + ∑σ∈K(C) aσ[σ]. As the class group of K is finite, we may

assume that ap = 0 for all p ∈ MK. Therefore, Dirichlet’s unit theorem implies
the assertion. �

We shall use the expression µ̂
asy
max(.) to denote this function. By definition, for

any adelic arithmetic R-Cartier divisor ζ one has

µ̂
asy
max(D + π∗(ζ)) = µ̂

asy
max(D) + d̂eg(ζ).

This function has been introduced in the adelic line bundle setting in [9] in an
equivalent form by using arithmetic graded linear series. We refer the readers to
§6 infra for more details.

If D is an adelic arithmetic R-Cartier divisor verifying the Dirichlet property,
then for any ϕ ∈ Rat(X)×R , D+ (̂ϕ) also verifies the Dirichlet property. Moreover,
for any D′ ≥ D, the adelic arithmetic R-Cartier divisor D′ verifies the Dirichlet
property. We deduce from these facts the following properties of the function
µ̂

asy
max(.).

Proposition 5.2.2. (1) Let D be an adelic arithmetic R-Cartier divisor in C◦. For any

ϕ ∈ Rat(X)×
R

one has µ̂
asy
max(D + (̂ϕ)) = µ̂

asy
max(D).

(2) The function µ̂
asy
max(.) preserves the order relation, namely for D1 ≤ D2 in C◦ one

has µ̂
asy
max(D1) ≤ µ̂

asy
max(D2).

(3) The function µ̂
asy
max(.) is super-additive, namely

µ̂
asy
max(D1 + D2) ≥ µ̂

asy
max(D1) + µ̂

asy
max(D2)

for D1 and D2 in C◦.

The Theorem 5.1.2 leads immediately to the following corollary.



ALGEBRAIC DYNAMICAL SYSTEMS AND DIRICHLET’S UNIT THEOREM 23

Corollary 5.2.3. Let D be an adelic arithmetic R-Cartier divisor such that D is big and

that µ̂
asy
max(D) = 0. If s is an element of Rat(X)×

R
with D + (̂s) ≥ 0, then

Supp(Ψµ̂
asy
max

D,v
) ∩ {x ∈ Xan

v | |s|gv < 1} = ∅

for any v ∈ MK ∪ K(C).

The function µ̂
asy
max(.) is important in the study of Dirichlet’s theorem. In fact, it

is not only the threshold of the Dirichlet property but also the pseudo-effectivity.

Lemma 5.2.4. Let (Di)
n
i=1 be a family of adelic arithmetic R-Cartier divisors on X, and

D be an adelic arithmetic R-Cartier divisor on X such that D is big. Then one has

lim
|t|→0

µ̂
asy
max(D + t1D1 + · · ·+ tnDn) = µ̂

asy
max(D),

where for t = (t1, . . . , tn) ∈ Rn, the expression |t| denotes max{|t1|, . . . , |tn|}.

Proof. If we replace D by D + π∗(ζ), where ζ is an adelic arithmetic Cartier
R-divisor on Spec K, both sides of the equality to be proved differ the initial
value by d̂eg(ζ). Hence one may assume that D is big. Moreover, without
loss of generality, one may assume that (Di)

n
i=1 are adelic arithmetic Cartier

divisors which are big and effective (by possibly augmenting the number of
adelic arithmetic Cartier divisors in the family). In fact, each Di is R-linearly
equivalent to an R-linear combination of big and effective arithmetic Cartier
divisors. Then by using the fact that the function µ̂

asy
max(.) preserves the order,

one obtains
µ̂

asy
max(D − |t|(D1 + · · ·+ Dn)) ≤ µ̂

asy
max(D + t1D1 + · · ·+ tnDn)

≤ µ̂
asy
max(D + |t|(D1 + · · ·+ Dn)).

Therefore we have reduced the problem to the case where n = 1 and D1 is a
big and effective adelic arithmetic Cartier divisor. Let a > 0 be a real number
such that aD − D1 and aD + D1 are both R-linearly equivalent to effective adelic
R-Cartier divisors. By the positive homogenity of the function µ̂

asy
max(.), for any

t > 0 one has

µ̂
asy
max(D) ≥ µ̂

asy
max(D − tD1) ≥ (1 − at)µ̂

asy
max(D)

Hence lim
t→0+

µ̂
asy
max(D − tD1) = µ̂

asy
max(D). Similarly, one has lim

t→0+
µ̂

asy
max(D + tD1) =

µ̂
asy
max(D). The result is thus proved. �

Proposition 5.2.5 (cf. Proposition 7.2 ). Let D be an adelic arithmetic R-Cartier divi-

sor such that D is big. Then D is big (resp. pseudo-effective) if and only if µ̂
asy
max(D) > 0

(resp. µ̂
asy
max(D) ≥ 0).

Proof. Assume that D is big. Let ζ be an arithmetic R-Cartier divisor on Spec K

such that d̂eg(ζ) > 0. Since D is big, for sufficiently small t > 0, the adelic
arithmetic R-Cartier divisor D − tπ∗(ζ) is big, and hence verifies the Dirichlet
property. Therefore one has

µ̂
asy
max(D) = td̂eg(ζ) + µ̂

asy
max(D − tπ∗(ζ)) ≥ td̂eg(ζ) > 0.
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Conversely, assume that µ̂
asy
max(D) > 0. We write D as an R-linear combination

D = a1D1 + · · ·+ anDn,

where (Di)
n
i=1 are big adelic arithmetic Q-Cartier divisors. For any ε > 0, we can

choose b1, . . . , bn in Q such that ai − ε ≤ bi < ai. Then Dε = b1D1 + · · ·+ bnDn

is an adelic arithmetic Q-Cartier divisor and D − Dε is big. Moreover, if ε is
sufficiently small, Dε is big and µ̂

asy
max(Dε) > 0. By [8, Proposition 3.11] (see also

Proposition 6.1.1), one obtains that Dε is big. Therefore D is also big.
Assume that D is pseudo-effective. Let D′ be a big adelic arithmetic R-Cartier

divisor. For any t > 0, tD′ + D is big. Therefore µ̂
asy
max(tD

′ + D) > 0. By the
continuity of the function µ̂

asy
max(.) (see Lemma 5.2.4), one obtains that µ̂

asy
max(D) ≥

0.
Conversely, assume that µ̂

asy
max(D) ≥ 0. If D′ is a big adelic arithmetic R-Cartier

divisor, then D + D′ is big since D is pseudo-effective and D′ is big. Moreover,
one has

µ̂
asy
max(D + D′) ≥ µ̂

asy
max(D) + µ̂

asy
max(D

′) > 0.

Hence D + D′ is big. Therefore D is pseudo-effective. �

Remark 5.2.6. Let D be an adelic arithmetic R-Cartier divisor on X such that D
is big. The above proposition shows that

µ̂
asy
max(D) = max{t ∈ R | D − tπ∗(ζ) is pseudo-effective},

where ζ is any adelic arithmetic R-Cartier divisor such that d̂eg(ζ) = 1. Note
that big adelic arithmetic R-Cartier divisors verify the Dirichlet property. There-
fore, in order to construct counter-examples to the Dirichlet property, one should
examine adelic arithmetic R-Cartier divisor of the form D− µ̂

asy
max(D)π∗(ζ), where

d̂eg(ζ) = 1. Note that the functionals Ψ
µ̂

asy
max

D,v
remain invariant if one replaces D

by a translation of D by the pull-back of an adelic arithmetic R-Cartier divisor
on Spec K. Therefore the study of these functionals will very possibly provide a
large family of counter examples to the Dirichlet property and suggest a way to
characterize it.

5.3. Volume function. In this subsection, we still assume that V = D̂ivR(X) and
C◦ is the cone of all adelic arithmetic R-Cartier divisors D such that D is big.

Let µ be the arithmetic volume function v̂ol (see Conventions and terminology
8). Note that one has v̂ol(tD) = td+1v̂ol(D). Moreover, for any φ ∈ Rat(X)×

R
,

one has v̂ol(D + (̂φ)) = v̂ol(D). Therefore the function µ = v̂ol(.) verifies the
conditions (1)–(3) in §5.1. Moreover, the volume function preserves the order
relation. Namely for D1 ≤ D2 one has v̂ol(D1) ≤ v̂ol(D2).

A direct consequence of Theorem 5.1.2 is the following corollary.

Corollary 5.3.1. Let D be an adelic arithmetic R-Cartier divisor such that D is big and

that v̂ol(D) = 0. If s is an element of Rat(X)×R with D + (̂s) ≥ 0, then

Supp(Ψv̂ol
D,v) ∩ {x ∈ Xan

v | |s|gv < 1} = ∅



ALGEBRAIC DYNAMICAL SYSTEMS AND DIRICHLET’S UNIT THEOREM 25

for any v ∈ MK ∪ K(C).

5.4. Self-intersection number. In this subsection, let V be the subspace of D̂ivR(X)
consisting of integrable adelic arithmetic R-Cartier divisors. Let C◦ = V. We de-
fine the function µ : C◦ → R as µ(D) := d̂eg(Dd+1). The function µ verifies the
conditions (1) and (2) of §5.1. For D ∈ C◦ and E ∈ V+, we define ∇+

E
µ(D) as

follows

∇+
E

µ(D) = lim
ε→0+

µ(D + εE)− µ(D)

ε
= (d + 1)d̂eg(Dd · E).

The function extends naturally to the whole space D̂ivR(X) of adelic arithmetic
R-Cartier divisors (see Conventions and terminology 7) and thus defines a map
∇µ : D̂ivR(X)× C◦ → R. Note that the subset C◦◦ of D ∈ C◦ such that ∇µ(., D)
preserves the order contains all nef adelic arithmetic R-Cartier divisors. For
D ∈ C◦◦ and any place in v ∈ MK ∪ K(C), the map ∇µ(., D) defines a posi-

tive functional Ψ
d̂eg
D,v

on C0(Xan
v )+ which sends fv ∈ C0(Xan

v ) to d̂eg(Dd · O( fv)).

It is an additive functional on C0(Xan
v )+, which coincides with the functional

(Dd)v defined in Conventions and terminology 7 when D is nef. Therefore, from
Theorem 5.1.2, we obtain the following corollary.

Corollary 5.4.1. Let D be an adelic arithmetic R-Cartier divisor on X. Assume that D

is nef and d̂eg(Dd+1) = 0. If s is an element of Rat(X)×R with D′ := D + (̂s) ≥ 0,
then, for any v ∈ MK ∪ K(C),

Supp(Ψd̂eg
D,v

) ∩ {x ∈ Xan
v | |s|gv < 1} = ∅.

6. Comparison of the functionals

Let π : X → Spec K be a projective and geometrically integral scheme defined
over a number field K and D be an adelic arithmetic R-Cartier divisor on X
such that D is big. In view of the applications of Theorem 5.1.2 to different
functionals, notably Corollaries 5.2.3, 5.3.1 and 5.4.1, a natural question is the

comparison between the functionals Ψ
µ̂

asy
max

D,v
, Ψv̂ol

D,v
and Ψ

d̂eg
D,v

. For this purpose, we

relate the function µ̂
asy
max(D) to the graded linear series of D and show that it is

always bounded from below by v̂ol(D)/(d + 1) vol(D).

6.1. Asymptotic maximal slope and graded linear series. If D = (D, g) is an
adelic arithmetic R-Cartier divisor on X, we denote by V(D) the K-vector sub-
space of Rat(X) generated by Ĥ0(X, D) (see Conventions and terminology 8).
Let ζ be an adelic arithmetic R-Cartier divisor on Spec K such that d̂eg(ζ) = 1.
For any integer n > 1 and any real number t, we denote by V

ζ,t
n (D) the K-vector

subspace of R(X) defined as

V
ζ,t
n (D) := V(nD − π∗(ntζ)).
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The direct sum Vζ,t
• (D) forms a graded sub-K-algebra of V•(D) :=

⊕
n≥0 H0(X, nD).

Moreover, (Vζ,t
• )t∈R forms a multiplicatively concave family of graded linear se-

ries of the R-divisor D. Namely, for (t1, t2) ∈ R2 and (n, m) ∈ N2 one has

(6.1) V
ζ,t1
n (D)V

ζ,t2
m (D) ⊂ V

ζ,t
n+m(D)

where t = (nt1 + mt2)/(n + m).
For any integer n ≥ 1, let λ

ζ
n(D) be the supremum of the set

{t ∈ R |V
ζ,t
n (D) 6= {0}}.

The function λ
ζ
n(.) preserves the order. Namely, if D and D′ are two adelic arith-

metic R-Cartier divisors on X such that D ≤ D′, then one has λ
ζ
n(D) ≤ λ

ζ
n(D

′).
Therefore by [4, Lemma 2.6] (the Hermitian line bundle case), the sequence
(λζ

n(D))n≥1 is bounded from above. Moreover, the relation (6.1) shows that the
sequence (nλ

ζ
n(D))n≥1 is super-additive. Therefore the sequence (λζ

n(D))n≥1
converges in R. The following proposition relate the limit of the sequence
(λ

ζ
n(D))n≥1 to the asymptotic maximal slope of D. In particular, the function

µ̂
asy
max(.) coincides with the one defined in [8, §4.2] in the adelic line bundle set-

ting.

Proposition 6.1.1. Let D be an adelic arithmetic R-Cartier divisor such that D is big,

then for any ζ ∈ D̂ivR(Spec K) with d̂eg(ζ) = 1 one has

µ̂
asy
max(D) = lim

n→+∞
λ

ζ
n(D).

Proof. We say that an adelic arithmetic R-Cartier divisor E satisfies to the Q-
Dirichlet property if there is ϕ ∈ Rat(X)×

Q
such that E + (̂ϕ) ≥ 0. This condition

is stronger than the usual Dirichlet property. We define µ̂
asy
max,Q(D) as

sup{t ∈ R | D − tπ∗(ζ) has the Q-Dirichlet property}.

(1) lim
n→+∞

λ
ζ
n(D) ≤ µ̂

asy
max,Q(D): If nD − tnπ∗(ζ) + (̂φ) ≥ 0 for some φ ∈

Rat(X)× , then D− tπ∗(ζ) has the Q-Dirichlet property, so that λ
ζ
n(D) ≤ µ̂

asy
max,Q(D),

and hence the inequality follows.

(2) lim
n→+∞

λ
ζ
n(D) ≥ µ̂

asy
max,Q(D): Let ǫ be a positive number. Then there is t ∈ R

such that
µ̂

asy
max,Q(D)− ǫ ≤ t ≤ µ̂

asy
max,Q(D)

and D − tπ∗(ζ) has the Q-Dirichlet property. Therefore, nD − tnπ∗(ζ) + (φ) ≥ 0
for some n ∈ Z>0 and φ ∈ Rat(X)× . Thus,

µ̂
asy
max,Q(D)− ǫ ≤ t ≤ λ

ζ
n(D) ≤ µ̂

asy
max(D),

as required.

(3) µ̂
asy
max,Q(D) ≤ µ̂

asy
max(D): This is obvious.
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(4) µ̂
asy
max,Q(D) ≥ µ̂

asy
max(D): Let ǫ be a positive number. Let ζǫ be the adelic

arithmetic R-Cartier divisor on Spec K given by ζǫ := ∑σ∈K(C) ǫ[σ]. We assume
that D − tπ∗(ζ) has the Dirichlet property. In particular, D − tπ∗(ζ) is pseudo-
effective, so that D + π∗(ζǫ)− tπ∗(ζ) is big by [20, Proposition 4.4.2(3)], so that
D + π∗(ζǫ)− tπ∗(ζ) has the Q-Dirichlet property. Therefore, we have

µ̂
asy
max(D) ≤ µ̂

asy
max,Q(D + π∗(ζǫ)) = µ̂

asy
max,Q(D) + ǫ[K : Q]/2,

as desired. �

The following proposition compares the arithmetic maximal slope to a nor-
malized form of the arithmetic volume function.

Proposition 6.1.2. Let D be an adelic arithmetic R-Cartier divisor such that D is big

and µ̂
asy
max(D) ≥ 0. Then one has

(6.2) µ̂
asy
max(D) ≥ v̂ol(D)

(d + 1) vol(D)
.

In particular, if µ̂
asy
max(D) = v̂ol(D) = 0, then for any E ∈ D̂ivR(X)+ one has

(6.3) ∇+
E

µ̂
asy
max(D) ≥ 1

(d + 1) vol(D)
∇+

E
v̂ol(D),

so that, for any v ∈ MK ∪ K(C), one has

(6.4) Ψ
µ̂

asy
max

D,v
( fv) ≥

1
vol(D)

Ψv̂ol
D,v( fv)

for any non-negative continuous function fv on Xan
v and hence

Supp(Ψµ̂
asy
max

D,v
) ⊇ Supp(Ψv̂ol

D,v).

Proof. Let ζ be an adelic arithmetic R-Cartier divisor on Spec K such that d̂eg(ζ) =
1. By [4, Corollary 1.13], one has

v̂ol(D) = (d + 1)
∫ +∞

0
vol(Vζ,t

• )dt.

Therefore
v̂ol(D)

(d + 1) vol(D)
=
∫ +∞

0

vol(Vζ,t
• )

vol(V•(D))
dt.

Moreover, by Proposition 6.1.1 we obtain that V
ζ,t
n = {0} once n ≥ 1 and t >

µ̂π
max(D). Therefore (6.2) is proved. �

6.2. Poicaré-Lelong formula and integration of Green function. Let X be a
geometrically integral projective scheme of dimension d defined over a number
field K, and D1, . . . , Dd be integrable adelic arithmetic R-Cartier divisors on X,
and D = (D, g) be an arbitrary adelic arithmetic R-Cartier divisor of C0-type on
X. The purpose of this section is to establish the following result.
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Proposition 6.2.1. For each place v ∈ MK ∪ K(C), the Green function gv is integrable
with respect to the signed measure D1 · · · Dd. Moreover, if [D] denotes the R-coefficient
algebraic cycle of dimension d − 1 corresponding to D, then the following relation holds
(see Convention and terminology 7)

(6.5) h(D1, · · · , Dd, D; X) = h(D1, . . . , Dd; [D]) + ∑
v∈MK∪K(C)

(D1 · · · Dd)v(gv).

Note that in the particular case where D1, . . . , Dd, D are Cartier divisors, this
result has been obtained in [17, §5] and [7] respectively for hermitian and adelic
cases.

Before proving the above proposition, we present several observations as fol-
lows. Let D1, . . . , Dd be integrable adelic arithmetic R-Cartier divisors on X, and
p be a place in MK. In [20], the number d̂eg

p
(D1 · · · Dd; φ) was defined for an

integrable continuous function φ on Xan
p . Moreover, the set of integrable contin-

uous functions is dense in C0(Xan
p ) with respect to the supremum norm. There-

fore, one has a natural extension of the functional log #(OK/p)d̂eg
p
(D1 · · · Dd; φ)

for any continuous function φ, which defines a signed Borel measure on Xan
p

which we denote by (D1 · · · Dd)p. Similarly, for any σ ∈ K(C), the product of
currents 1

2c1(D1, g1,σ) ∧ · · · ∧ c1(Dd, gd,σ) defines a signed Borel measure on Xan
σ

which we denote by (D1 · · · Dd)σ . See Convention and terminology 7 for a
presentation of the construction of these measures in the language of arithmetic
intersection product. In particular, the proposition is true in the special case
where D = 0.

Proof of Proposition 6.2.1. Note that both side the equality (6.5) are multilinear
with respect to the vector (D1, · · · , Dd, D). Therefore we may assume that
D1, . . . , Dd are relatively nef and D is ample without loss of generality. More-
over, for any place v ∈ MK ∪ K(C) two D-Green functions on Xan

v differ by a
continuous function on Xan

v . Therefore it suffice to prove the proposition for an
arbitrary choice of adelic D-Green functions, and the general case follows by
the linearity of the problem and the particular case where D = 0. In particular,
we can assume without loss of generality that D is a relatively ample arithmetic
Cartier divisor, namely D comes from an ample line bundle L on X and the
adelic structure on D comes from an ample integral model of (X, L) equipped
with semi-positive metrics at infinite places.

We shall prove the following claim by induction on k. Note that the case where
k = d + 1 is just the result of the proposition itself.

Claim 6.2.1.1. Assume that Di is relatively nef for any i ∈ {1, . . . , d} . Let k be an
index in {1, . . . , d + 1}. Then the assertion of the proposition holds provided that each
Di (k ≤ i ≤ d) can be written as a positive linear combination of ample Cartier divisors
equipped with Green functions of C0 ∩ PSH-type.

The claim in the case where k = 1 is classical, which results from [7, The-
orem 4.1] by multilinearity. In the following, we verify that the claim for k
implies the same claim for k + 1. We choose an R-Cartier divisor Ek such that
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Ek can be written as a positive linear combination of ample Cartier divisors
and D′

k = Ek + Dk is an ample Cartier divisor. We choose suitable Ek-Green
functions such that Ek can be written as a positive linear combination of am-
ple Cartier divisors equipped with Green functions of C0 ∩ PSH-type. Then
D

′
k = Ek + Dk is an ample Cartier divisor equipped with Green functions of

C0 ∩ PSH-type. The induction hypothesis then implies that the claim holds for
D1, . . . , Dk−1, Ek, Dk+1, . . . , Dd and for D1, . . . , Dk−1, D

′
k, Dk+1, . . . , Dd. We then

conclude by the multilinearity of the problem. �

6.3. Intersection measure and comparison with Ψ
µ̂

asy
max

D,v
. Similarly to the results

obtained in the previous subsection, in the case where D is nef and D is big,

the linear functional ((d + 1) vol(D))−1Ψ
d̂eg
D,v

is bounded from above by Ψ
µ̂

asy
max

D,v

provided that d̂eg(Dd+1) = µ̂
asy
max(D) = 0 (we can actually prove that they are

equal). This comparison uses a generalization of the positive intersection prod-
uct to the framework of adelic arithmetic R-Cartier divisors.

Let D be a big adelic arithmetic R-Cartier divisor on X. We denote by Θ(D)
the set of couples (ν, N), where ν : X′ → X is a birational projective morphism
and N is a nef adelic arithmetic R-Cartier divisor on X′ such that

Ĥ0(X′, t(ν∗(D)− N)) 6= {0}

for some t > 0. We then define a functional 〈Dd〉 on the cone N̂efR(X) of nef
adelic arithmetic R-Cartier divisors on X as

∀ A ∈ N̂efR(X), 〈Dd〉 · A := sup
(ν,N)∈Θ

d̂eg(Nd · ν∗(A)).

If the set Θ(D) is empty, then the value of 〈Dd〉 · A is defined to be zero by
convention. The set Θ(D) is preordered in the following way :

(ν1 : X1 → X, N1) ≥ (ν2 : X2 → X, N2)

if and only if there exists a birational modification ν′ : X′ → X over both X1 and
X2 such that Ĥ0(X′ , t(p∗1 N1 − p∗2 N2)) 6= {0} for some t > 0, where pi : X′ → Xi

(i = 1, 2) are structural morphisms (which are birational projective morphisms
such that ν1p1 = ν2p2 = ν′). By the same method of [10, Proposition 3.3], one
can prove that Θ(D) is filtered with respect to this preorder and hence 〈Dd〉 is an
additive and positively homogeneous functional on N̂efR(X) and hence extends
to a linear form on the vector space ÎntR(X) of integrable adelic arithmetic R-
Cartier divisors. Finally, by [20, Theorem 3.3.7], one can extends by continuity
the functional 〈Dd〉 to the whole space D̂ivR(X) of adelic arithmetic R-Cartier
divisors such that 〈Dd〉 · E ≥ 0 if E ≥ 0.

The comparison between vol(D)−1Ψ
d̂eg
D,v

and Ψ
µ̂

asy
max

D,v
comes from the following

variant of [23, Theorem 2.2] in the adelic arithmetic R-Cartier divisor setting.
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Theorem 6.3.1. Let D = (D, g) and L = (L, h) be nef adelic arithmetic R-Cartier
divisors. Then

(6.6) v̂ol(D − L) ≥ d̂eg(Dd+1)− (d + 1)d̂eg(Dd · L).

Proof. By [20, Definition 2.1.6 and Proposition 2.1.7], there are sequences

{(Xn, Dn)}∞
n=1 and {(Xn, Ln)}∞

n=1

of models (X, D) and (X, L), respectively, with the following properties:

(1) Dn =
(
Dn, ∑σ∈K(C) gσ

)
and L n =

(
Ln, ∑σ∈K(C) hσ

)
are nef for each n.

(2) If we set
(

0, ∑
p∈MK

g′n,p[p]

)
= D −D

a
n and

(
0, ∑

p∈MK

h′n,p[p]

)
= L − L

a
n,

then limn→∞ ‖g′n,p‖sup = 0 and limn→∞ ‖h′n,p‖sup = 0.

Therefore, by [20, Theorem 5.2.1], it is sufficient to see the case where D = D

and L = L for nef arithmetic R-Cartier divisors D and L on some arithmetic
variety X .

Let A be an ample arithmetic R-Cartier divisor on X . If Siu’s inequality
holds for D + ǫA and L + ǫA (ǫ > 0), then, by using the continuity of the
volume function, we have the assertion for our case, so that we may assume that
D and L are ample. Thus we can set

D = a1D
′
1 + · · ·+ alD

′
l and L = b1L

′
1 + · · ·+ brL

′
r ,

where L ′
1 , . . . , L ′

l , D ′
1, . . . , D ′

r are ample Cartier divisors on X and

a1, . . . , al , b1, . . . , br ∈ R>0.

Let g′i (resp. h′j) be a D ′
i -Green function (resp. L ′

j -Green function) such that

D
′
i = (D ′

i , g′i) (resp. L
′
j = (L ′

j , h′j)) is ample. We set

D = a1D
′
1 + · · ·+ alD

′
l + (0, φ) and L = b1L

′
1 + · · ·+ brL

′
r + (0, ψ).

Moreover, for a′1, . . . , a′l, b′1, . . . , b′r ∈ R, we set

D a′1,...,a′l
= a′1D

′
1 + · · ·+ a′lD

′
l + (0, φ) and L b′1,...,b′r = b′1L

′
1 + · · ·+ b′rL

′
r + (0, ψ).

Note that if a′1 ≥ a1, . . . , a′i ≥ al and b′1 ≥ b1, . . . , b′r ≥ br, then D a′1,...,a′l
and

L b′1,...,b′r are nef, so that, using the continuity of the volume function together
with Siu’s inequality (cf. [23, Theorem 2.2]) for nef arithmetic Q-divisors, we
have the assertion. �

Corollary 6.3.2. Let D be a relatively nef adelic arithmetic R-Cartier divisor on X such
that D is big. If

(6.7) µ̂
asy
max(D) =

d̂eg(Dd+1)

(d + 1) vol(D)
,
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then one has

(6.8) ∀ E ∈ D̂ivR(X), ∇+
E

µ̂
asy
max(D) =

d̂eg(Dd · E)

vol(D)
.

In particular,

(6.9) Ψ
µ̂

asy
max

D,v
=

(Dd)v

vol(D)

for any v ∈ MK ∪ K(C).

Proof. Since the map E 7→ ∇+
E

µ̂
asy
max(D) from D̂ivR(X) to R ∪ {+∞} is super-

additive and E 7→ d̂eg(Dd · E) is a linear functional, it suffice to establish the
inequality (see [10, Remar 4.3])

∀ E ∈ D̂ivR(X), ∇+
E

µ̂
asy
max(D) ≥ d̂eg(Dd · E)

vol(D)
.

Note that both the condition (6.7) and the assertion (6.9) remain equivalent if
one replaces D by D + π∗(ζ) with ζ ∈ D̂ivR(Spec K). Therefore we may assume
that D is nef and big without loss of generality. In this case one has

∀ E ∈ D̂ivR(X), d̂eg(Dd · E) = 〈Dd〉 · E

since D is nef. We shall actually establish the equality

∇+
E

v̂ol(D) = (d + 1)〈Dd〉 · E

for any E ∈ ÎntR(X). We choose M ∈ N̂efR(X) such that M − E and M + E are
nef and big and M − D is big. Then for any (ν, N) ∈ Θ(D), by (6.6) one has

(6.10)

v̂ol(D + tE) ≥ v̂ol(N + tν∗(E)) = v̂ol((N + tν∗(M))− tν∗(M − E))

≥ d̂eg((N + tν∗(M)d+1)

− (d + 1)td̂eg((N + tν∗(M))d · ν∗(M − E))

= d̂eg(Nd+1) + t(d + 1)d̂eg(Nd · E) + O(t2),

where the implicit constant in O(t2) only depends on v̂ol(M) = d̂eg(ν∗(M)d+1).
We then deduce

v̂ol(D + tE) ≥ v̂ol(D) + t(d + 1)〈Dd〉 · E + O(t2),

which implies that

∇+
E

v̂ol(D) ≥ (d + 1)〈Dd〉 · E

By the continuity of the linear functional E 7→ 〈Dd〉 · E, we obtain that this
inequality holds for general E ∈ D̂ivR(X). Finally, by the log-concavity of the
arithmetic volume function, the functional E 7→ ∇+

E
v̂ol(D) is super-additive (see

[10, Remar 4.2]). Therefore one obtains ∇+
E

v̂ol(D) = (d + 1)〈Dd〉 · E. The result
is thus proved by using the relation (6.3). �
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6.4. Comparison with the distribution of non-positive points. In this subsec-
tion, we compare the functional approach and the distribution of non-positive
points in the particular case where the set of non-positive points is Zariski dense.
The main point is an equidistribution argument. Let X be a projective and geo-
metrically integral variety over a number field K. Let D be an adelic arithmetic
R-Cartier divisor on X. We assume that D is nef and D is big.

Proposition 6.4.1. Assume that the set X(K)D
≤0 is Zariski dense, then for any place

v ∈ MK ∪ K(C) one has

Ψ
µ̂

asy
max

D,v
=

(Dd)v

vol(D)
and

Suppess(X(K)D
≤0)

an
v ⊇ Supp Ψ

µ̂
asy
max

D,v
.

Proof. Since the set X(K)D
≤0 is Zariski dense, we obtain that the essential mini-

mum of the height function hD(.) is non-positive. However, since D is nef one
has d̂eg(Dd+1) = v̂ol(D) and therefore

0 = µ̂ess(D) ≥ µ̂
asy
max(D) ≥ v̂ol(D)

(d + 1) vol(D)
≥ 0,

which implies that d̂eg(Dd+1) = v̂ol(D) = 0.
Let S = (xn)n≥1 be a generic sequence in X(K)D

≤0. For any adelic arithmetic
R-Cartier divisor E on X we define

ΦS(E) := lim inf
n→+∞

hE(xn).

This function takes value in R ∪ {+∞} on the cone Θ of adelic arithmetic R-
Cartier divisors E such that E is big. The function ΦS(.) : Θ → R ∪ {+∞} is
also super-additive. Moreover, one has ΦS(E) ≥ µ̂

asy
max(E) for any E ∈ Θ and

ΦS(D) = µ̂
asy
max(D) = 0. Therefore one has

∀ E ∈ D̂ivR(X), ∇+
E

ΦS(D) ≥ ∇+
E

µ̂
asy
max(D).

By (6.8) and [10, Proposition 4.3], one obtains

∀ E ∈ D̂ivR(X), ∇+
E

ΦS(D) = ∇+
E

µ̂
asy
max(D) =

d̂eg(Dd · E)

vol(D)
.

This relation implies that, for any E ∈ D̂ivR(X), the sequence (hE(xn))n≥1

actually converges to vol(D)−1d̂eg(Dd · E). In fact, one has hD(xn) = 0 for
any n ∈ N, n ≥ 1. Therefore ∇+

E
ΦS(D) = ΦS(E). In particular, one has

ΦS(−E) = −ΦS(E), which implies the convergence of the sequence (hE(xn))n≥1.

Suppose Suppess(X(K)D
≤0)

an
v 6⊇ Supp Ψ

µ̂
asy
max

D,v
, that is, there is wv ∈ Supp Ψ

µ̂
asy
max

D,v
\

Suppess(X(K)D
≤0)

an
v . As wv 6∈ Suppess(X(K)D

≤0)
an
v , there is a proper subscheme

Y of X such that wv 6∈ ∆(X(K)D
≤0; Y)an

v . Let fv be a non-negative continuous

function on Xan
v such that fv(wv) = 1 and fv ≡ 0 on ∆(X(K)D

≤0; Y)an
v .
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Claim 6.4.1.1. For x ∈ X(K)D
≤0 \Y(K), we have hO( fv)

(x) = 0.

Proof. If v ∈ MK, the assertion is obvious, so that assume v ∈ K(C). By the
definition of O( fv) (cf. Conventions and terminology 5),

4[K(x) : K]hO( fv)
(x) = ∑

w∈Ov(x)

fv(w) + ∑
w′∈Ov̄(x)

fv(F∞(w′)).

Note that F∞(Ov̄(x)) = Ov(x), and hence the assertion follows. �

By the previous observation,

lim
n→∞

hO( fv)
(xn) = ΦS(O( fv)) =

(Dd)v( fv)

vol(D)
> 0.

On the other hand, as S = (xn)n≥1 is generic, there is a subsequence S′ = (xni
)

such that xni
6∈ Y(K) for all i, so that, by the above claim, limi→∞ hO( fv)

(xni
) = 0.

This is a contradiction. �

7. Extension of the asymptotic maximal slope

In this section, we extends the function of the asymptotic maximal slope to the
whole space D̂ivR(X) of adelic arithmetic R-Cartier divisors. Let D be an adelic
arithmetic R-Cartier divisor on X. We define µ̂

asy
max(D) to be

(7.1) inf
D0∈Θ

lim
t→+∞

(
µ̂

asy
max(tD0 + D)− tµ̂

asy
max(D0)

)
∈ R ∪ {−∞},

where Θ denotes the set of all adelic arithmetic R cartier divisors E such that
E is big. Note that if D is big, then the value (7.1) coincides with the maximal
asymptotic maximal slope of D. In fact, for any D0 ∈ Θ one has

µ̂
asy
max(tD0 + D)− tµ̂

asy
max(D0) ≥ µ̂

asy
max(tD0) + µ̂

asy
max(D)− tµ̂

asy
max(D0) = µ̂

asy
max(D).

Therefore the infimum is attained at D0 = D and coincides with µ̂
asy
max(D).

The extended function also verifies the good properties such as positive ho-
mogenity, super-additivity etc. We resumes these properties in the following
proposition.

Proposition 7.1. (1) Let D be an adelic arithmetic R-Cartier divisor on X. For any

λ ≥ 0 one has µ̂
asy
max(λD) = λµ̂

asy
max(D).

(2) Let D1 and D2 be two adelic arithmetic R-Cartier divisors on X. One has

µ̂
asy
max(D1 + D2) ≥ µ̂

asy
max(D1) + µ̂

asy
max(D2).

(3) Let D1 and D2 be two adelic arithmetic R-Cartier divisors on X. If D1 ≥ D2, then

µ̂
asy
max(D1) ≥ µ̂

asy
max(D2).

(4) If D is an adelic arithmetic R-Cartier divisor on X and ζ is an adelic arithmetic
R-Cartier divisor on Spec K, one has

µ̂
asy
max(D + π∗(ζ)) = µ̂

asy
max(D) + d̂eg(ζ).

(5) For any adelic arithmetic R-Cartier divisor D on X and any ϕ ∈ Rat(X)×R one has

µ̂
asy
max(D + (̂ϕ)) = µ̂

asy
max(D).
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Proof. (1) The equality is trivial when λ = 0. In the following, we assume that
λ > 0. For any D0 ∈ Θ one has

lim
t→+∞

(
µ̂

asy
max(tD0 + λD)− tµ̂

asy
max(D0)

)

= lim
t→+∞

(
µ̂

asy
max(λtD0 + λD)− λtµ̂

asy
max(D0)

)

= λ lim
t→+∞

(
µ̂

asy
max(tD0 + D)− tµ̂

asy
max(D0)

)

By taking the infimum with respect to D0, one obtains the result.
(2) Let D0 be an element in Θ. For sufficiently positive t, one has

lim
t→+∞

µ̂
asy
max(2tD0 + D1 + D2)− 2tµ̂

asy
max(D0)

≥ lim
t→+∞

µ̂
asy
max(tD0 + D1)− tµ̂

asy
max(D0)

+ lim
t→+∞

µ̂
asy
max(tD0 + D1)− tµ̂

asy
max(D0) ≥ µ̂

asy
max(D1) + µ̂

asy
max(D2).

Since D0 is arbitrary, one obtains the result.
(3) Let D0 be an element in Θ. For sufficiently positive number t one has

lim
t→+∞

µ̂
asy
max(tD0 + D1)− tµ̂

asy
max(D0)

≥ lim
t→+∞

µ̂
asy
max(tD0 + D2)− tµ̂

asy
max(D0) ≥ µ̂

asy
max(D2).

Since D0 is arbitrary, one obtains µ̂
asy
max(D1) ≥ µ̂

asy
max(D2).

(4) For any D0 ∈ Θ and any sufficiently positive number t, one has

µ̂
asy
max(tD0 + D + π∗(ζ)) − tµ̂

asy
max(D0) = µ̂

asy
max(tD0 + D)− tµ̂

asy
max(D0) + d̂eg(ζ).

By passing to limit when t tends to the infinity and then by taking the infimum
with respect to D0, one obtains µ̂

asy
max(D + π∗(ζ)) = µ̂

asy
max(D) + d̂eg(ζ).

(5) Let D0 be an element in Θ. For sufficiently positive number t, one has

µ̂
asy
max(tD0 + D + (̂ϕ))− tµ̂

asy
max(D0) = µ̂

asy
max(tD0 + D)− tµ̂

asy
max(D0).

Therefore µ̂
asy
max(D + (̂ϕ)) = µ̂

asy
max(D).

�

The following is a criterion for the pseudo-effectivity of adelic arithmetic R-
Cartier divisors, which is a generalization of Proposition 5.2.5.

Proposition 7.2. Let D be an adelic arithmetic R-Cartier divisor. Then D is pseudo-

effective if and only if D is pseudo-effective and µ̂
asy
max(D) ≥ 0.

Proof. Assume that D is pseudo-effective, then D is a pseudo-effective R-divisor.
Moreover, for any D0 ∈ Θ, there exists ζ ∈ D̂ivR(Spec K) such that D1 = D0 +
π∗(ζ) is big. Therefore, for any ε > 0, the adelic arithmetic R-Cartier divisor
ε(D0 + π∗(ζ)) + D is big. Hence for t > ε one has

µ̂
asy
max(tD0 + D)− tµ̂

asy
max(D0) = µ̂

asy
max(tD1 + D)− tµ̂

asy
max(D1)

≥ (t − ε)µ̂
asy
max(D1)− tµ̂

asy
max(D1) = −εµ̂

asy
max(D1).
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Since ε is arbitrary, we obtain that

lim
t→+∞

(
µ̂

asy
max(tD0 + D)− tµ̂

asy
max(D0)

)
≥ 0.

Conversely assume that D is pseudo-effective and µ̂
asy
max(D) ≥ 0. If D′ is a big

adelic arithmetic R-Cartier divisor, then D+ D′ is big since D is pseudo-effective
and D′ is big. Moreover, one has

µ̂
asy
max(D + D′) ≥ µ̂

asy
max(D) + µ̂

asy
max(D

′) > 0.

Hence D + D′ is big by Proposition 5.2.5. Therefore D is pseudo-effective. �

The results which we have obtained in §5.1 can be applied to the extended
function µ̂

asy
max(.). Let C◦ be the cone of all pseudo-effective adelic arithmetic R-

Cartier divisors and V = D̂ivR(X). Then the cone C◦ satisfies the conditions
(a)–(c) of §5.1. Moreover, Proposition 7.2 shows that the restriction of µ̂

asy
max on C◦

is a real valued function. By Proposition 7.1, this function verifies the conditions
(1)–(3) of §5.1. Thus we obtain the following corollary of Theorem 5.1.2.

Corollary 7.3. Let D be an adelic arithmetic R-Cartier divisor such that D is pseudo-

effective and that µ̂
asy
max(D) = 0. If s is an element of Rat(X)×R with D + (̂s) ≥ 0,

then

Supp(Ψµ̂
asy
max

D,v
) ∩ {x ∈ Xan

v | |s|gv < 1} = ∅

for any v ∈ MK ∪ K(C).

We conclude the article by the following question.

Question 7.4. Let D be an adelic arithmetic R-Cartier divisor such that D is
pseudo-effective and that µ̂

asy
max(D) = 0. Assume that, for any place v ∈ MK ∪

K(C), the union of all algebraic curves lying in Supp(Ψµ̂
asy
max

D,v
) is contained in the

augmented base locus of Dv, does the Dirichlet property always hold for D?

References

[1] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathemati-
cal surveys and monographs, No. 33, AMS, (1990).

[2] J.-B. Bost, H. Gillet and C. Soulé, Heights of projective varieties and positive Green forms, Journal
of the American Mathematical Society 7 (1994), no. 4, 903-1027.

[3] J.-B. Bost and K. Künnemann, Hermitian vector bundles and extension groups on arithmetic

schemes. I. Geometry of numbers, Advances in Mathematics 223 (2010), no. 3, P. 987-1106.
[4] S. Boucksom and H. Chen, Okounkov bodies of filtered linear series, Compositio Mathematica

147 (2011), no.4, 1205-1229.
[5] J. I. Burgos i Gil, A. Moriwaki, P. Philippon and M. Sombra, Arithmetic positivity on toric

varieties, to appear in J. of Alg. Geom., (see also arXiv:1210.7692v1 [math.AG]).
[6] A. Chambert-Loir, Mesures et équidistribution sur des espaces de Berkovich, J. Reine Angew.

Math. 595 (2006), 215-235.
[7] A. Chambert-Loir and A. Thuillier, Mesures de Mahler et équidistribution logarithmique, An-

nales de l’Institut Fourier 59 (2009), 977-1014.
[8] H. Chen, Convergence des polygones de Harder-Narasimhan, Mémoire de la Société Mathéma-

tique de France 120 (2010), 1-120.
[9] H. Chen, Arithmetic Fujita approximation, Annales de l’ENS 43 (2010), no.4, 555-578.



36 HUAYI CHEN AND ATSUSHI MORIWAKI

[10] H. Chen, Differentiability of the arithmetic volume function, Journal of the London Mathemati-
cal Society 84 (2011), no.2, 365-384.
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