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We study composition operators on Hardy and Dirichlet spaces belonging to Schatten classes

Introduction

In this paper, we consider composition operators acting on Hardy and weighted Dirichlet spaces. Let D be the unit disc. Let dA(z) = dxdy/π denote the normalized area measure on D. For α > -1, dA α will denote the finite measure on the unit disc D given by dA α (z) := (1 + α)(1 -|z| 2 ) α dA(z). The weighted Dirichlet space D α (0 ≤ α ≤ 1) consists of those analytic functions on D such that

D α ( f ) := D | f ′ (z)| 2 dA α (z) ≍ n≥0 | f (n)| 2 (1 + n) 1-α < ∞.
Note that the classical Dirichlet space D corresponds to α = 0 and D 1 = H 2 is the Hilbertian Hardy space. Every function f ∈ D α has non-tangential limits almost everywhere on the unit circle T = ∂D. If the non-tangential limit of f at ζ ∈ T exists it also will be denoted by f (ζ).

Let ϕ be a holomorphic self-map of D. The composition operator C ϕ on D α is defined by

C ϕ ( f ) = f • ϕ, f ∈ D α .
For s ∈ (0, 1), the level set of ϕ is given by

E ϕ (s) = {ζ ∈ T : |ϕ(ζ)| ≥ s},
The contact set of ϕ is E ϕ := E ϕ [START_REF] Beurling | Ensembles exceptionnels[END_REF]. Let H be a Hillbert space, a compact operator is said to belong in the Schatten class S p (H ) if its sequence of singular numbers is in the sequence space ℓ p .

In section 2, we give a simple proof of Luecking's Theorem [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF][START_REF] Zhu | Operator theory in function spaces[END_REF] about the characterization for p-Schatten class of Toeplitz operators for p ≥ 1. In section 3, we give a simple sufficient condition, in terms of the level set, which ensures the membership to S p (H 2 ). This approach allows us to give explicit examples of composition operator belonging to Schatten classes. If the symbol is outer and the contact set is reduced to one point, we give an explicit complete characterization to the membership to S p (H 2 ). In the last section, we study the size of contact set of ϕ, when C ϕ ∈ S p (D α ). For a treatment of some questions addressed in this paper see also [START_REF] El-Fallah | Level sets and Composition operators on the Dirichlet space[END_REF][START_REF] El-Fallah | Composition operators with univalent symbol in Schatten classes[END_REF][START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF][START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF][START_REF] Lefèvre | Compact composition operators on the Dirichlet space and capacity of sets of contact points[END_REF][START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF][START_REF] Lefèvre | Some examples of compact composition operators on H 2[END_REF][START_REF] Queffélec | Decay rates for approximation numbers of composition operators[END_REF].

The notation A

B means that there is a constant C independent of the relevant variables such that A ≤ CB. We write A ≍ B if both A B and B A. 

f 2 A α = D | f (z)| 2 dA α (z) < ∞.
The reproducing kernel of A α is given by

K w (z) = 1 (1 -wz) 2+α , z, w ∈ D.

So we have

f (w) = f, K w A α , f ∈ A α . (1) 
In particular,

K w 2 A α = K w (w) = 1 (1 -|w| 2 ) 2+α .
For a positive measure µ on the unit disc we associate the operator T µ defined on the Bergman space A α by

T µ ( f )(z) := D K w (z) f (w)dµ(w) = D f (w) (1 -wz) 2+α dµ(w), f ∈ A α .
Let us denote k w = K w / K w the normalized reproducing kernel at w. The Berezin transform of T µ is given by

µ(z) := T µ k z , k z A α = D (1 -|z| 2 ) 2+α |1 -wz| 4+2α dµ(w).
The hyperbolic measure in D is given by

dλ(w) = (1 -|w| 2 ) -2 dA(w).
It satisfies

D | k w , f A α | 2 dλ(w) = 1 1 + α f 2 α , f ∈ A α . (2) 
The dyadic decomposition of D is the family (R n, j ) given by

R n, j = re iθ ∈ D : r n ≤ r < r n+1 , 2πj 2 n ≤ θ < 2π(j + 1) 2 n
where j = 0, 1, .., 2 n -1 and where 1r n = 2 -n . Using the dyadic decomposition, it is not difficult to prove that µ ∈ L p (D, dλ) if and only if

n≥0 2 (2+α)np 2 n -1 j=0 µ(R n, j ) p < ∞.
For details see [START_REF] Wirths | Global integral criteria for composition operators[END_REF].

The following result is due to Luecking [START_REF] Luecking | Trace ideal criteria for Toeplitz operators[END_REF] ( an alternative proof is given by Zhu [START_REF] Zhu | Operator theory in function spaces[END_REF]).

Here we give a simple proof of this result.

Theorem 2.1. Let p ≥ 1. The following assertions are equivalent.

(i) T µ ∈ S p (A α ), (ii) µ ∈ L p (D, dλ).
For the proof, we need the following key inequality (see [START_REF] El-Fallah | Level sets and Composition operators on the Dirichlet space[END_REF]Lemma 2.1]).

Lemma 2.2. Let f ∈ A 2 α . Then there exists a constant C, depending only on α, such that

| f (z)| 2 ≤ C α D (1 -|w| 2 ) 2+α |1 -wz| 4+2α | f (w)| 2 dA α (w), z ∈ D. (3) 
Proof. Let f n be an orthonormal basis of A α . We have by ( 1) and (3),

n T µ f n , f n p A α = n≥1 D | f n (z)| 2 dµ(z) p ≤C p α n≥1 D D (1 -|w| 2 ) 2+α |1 -wz| 4+2α | f n (w)| 2 dA α (w) dµ(z) p =C p α n≥1 D µ(w)| f n (w)| 2 dA α (w) p =C p α n≥1 D µ(w)dν n (w) p , where dν n (w) = | f n (w)| 2 dA α (w). Note that ν n (D) = f n 2 A α = 1
. By (2) and Jensen's inequality, we have

n T µ f n , f n p A α ≤ C p α n≥1 D ( µ(w)) p | f n (w)| 2 dA α (w) = C p α D ( µ(w)) p n≥1 | f n (w)| 2 dA α (w) = C p α µ p L p (D,dλ) . The last equality comes from the fact that n≥1 | f n (w)| 2 = n≥1 K w , f n 2 A α = K w 2 A α = 1 (1 -|w| 2 ) 2+α
Conversely, since T µ ∈ S p (A α ), let (s n ) n≥0 be the singular values of T µ and (e n ) n≥0 be the orthonormal sequence of the eigenfunctions of T µ associated to (s n ) n≥0 . Using the spectral decomposition of T µ (T µ = n≥1 s n •, e n e n ) and Jensen's inequality we obtain

µ p L p (D,dλ) = D | T µ k w , k w A α | p dλ(w) = D n≥0 s n | k w , e n A α | 2 p dλ(w) ≤ D n≥0 s p n | k w , e n A α | 2 dλ(w) = 1 1 + α n≥0 s p n .
This completes the proof. 

N ϕ,α (z) = w∈D : ϕ(w)=z (1 -|w|) α , (z ∈ D).
Note that N ϕ,0 (z) = n ϕ (z) is the multiplicity of ϕ at z and N ϕ,1 . = N ϕ is equivalent to the usual Nevanlinna counting function associated to ϕ. For a Borel subset Ω of D, we put

µ ϕ,α (Ω) = Ω N ϕ,α (z)dA(z). It is well known that C ϕ ∈ S p (D α ) if and only if C * ϕ C ϕ ∈ S p/2 (D α )
. By a routine calculation (see [START_REF] Wirths | Global integral criteria for composition operators[END_REF]), there exists a rank one operator R on A α such that C * ϕ C ϕ and T µ ϕ,α + R are similar. It implies that C ϕ ∈ S p (D α ) if and only if T µ ϕ,α ∈ S p/2 (A α ), and the following result can be deduced easily from Theorem 2.1 (see also [START_REF] Wirths | Global integral criteria for composition operators[END_REF]).

Corollary 2.3. Let p ≥ 2, 0 ≤ α ≤ 1 and ϕ holomorphic self-map on D. The following assertions are equivalent

(i) C ϕ ∈ S p (D α ), (ii) n 2 (2+α)np/2 2 n -1 j=0 µ ϕ,α (R n, j ) p/2 < ∞, (iii) µ ϕ,α ∈ L p/2 dλ(w).
Remark 2.4. 1. Let g be a positive measurable function on D and a holomorphic self-map ϕ on D. By the change of variables formula [START_REF] Shapiro | Composition operators and classical function theory[END_REF] we have

D (g • ϕ)(z)|ϕ ′ (z)| 2 dA α (z) = (1 + α) D g(z)N ϕ,α (z)dA(z).
Hence the condition (iii) becomes

I α,p (ϕ) = (1 + α) p/2 D D (1 -|w| 2 ) 2+α |1 -wz| 4+2α N ϕ,α (z)dA(z) p/2 dλ(w) < ∞. (4) 

2.

The pull back measure associated to ϕ is defined by

m ϕ (B) := |{ζ ∈ T : ϕ(ζ) ∈ B a.e}|,
here B is a Borel subset for D and |E| denotes the normalized Lebesgue measure of a Borelian subset E of T.

In [START_REF] Lefèvre | Nevanlinna counting function and Carleson function of analytic maps[END_REF], Lefèvre, Li, Queffélec and Rodriguez-Piazza showed that the classical Nevanlinna counting function and the pull buck measure are connected as follows : There exists two universal constants

C 1 , C 2 such that m ϕ (W(ζ, C 1 h) sup z∈W(ζ,h)∩D N ϕ (z) m ϕ (W(ζ, C 2 h)), ζ ∈ T, h ∈ (0, 1) where W(ζ, h) = {z ∈ D : 1 -h ≤ |z| < 1 and | arg(z ζ)| ≤ h} are the Carleson boxes.
Clearly, one can formulate the membership to Schatten classes, in the case of the Hardy space, in terms of the pull back measure as follows,

C ϕ ∈ S p (H 2 ) ⇐⇒ n 2 np/2 2 n -1 j=0 m ϕ (R n, j ) p/2 < ∞. Let W n, j the dyadic Carleson box given by W n, j = z = re iθ ∈ D : 1 -2 -n ≤ |z| < 1 and 2πj 2 n ≤ θ < 2π(j + 1) 2 n , where j = 0, 1, .., 2 n -1. It was remarked in [15] that n 2 np/2 2 n -1 j=0 m ϕ (R n, j ) p/2 < ∞ ⇐⇒ n 2 np/2 2 n -1 j=0 m ϕ (W n, j ) p/2 < ∞.
In this paper we will also use the earlier characterization of compactness du to B. MacCluer and J. Shapiro. They showed in [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF] that C ϕ is compact on H 2 if and only if

sup ζ∈T m ϕ (W(ζ, h)) = o(h)(h → 0). 3. Membership to S p (H 2 ) 3.1. Membership to S p (H 2 ) through level sets. Note that C ϕ is in the Hilbert-Schmidt class in H 2 (i.e. C ϕ ∈ S 2 (H 2 )) if and only if n≥0 ϕ n 2 2 = 1 2π T |dζ| 1 -|ϕ(ζ)| 2 ≍ 1 0 |E ϕ (s)| (1 -s) 2 ds < ∞.
Then the membership of composition operators to S 2 (H 2 ) is completely described by the level sets of their symbols. For p > 2, it is proved in [START_REF] Lefèvre | Compact composition operators on the Dirichlet space and capacity of sets of contact points[END_REF] that there exists two symbols ϕ, ψ such that

|E ϕ (r)| = |E ψ (r)| for r ∈ (0, 1], C ϕ ∈ S p (H 2
) and C ψ S p (H 2 ). In the following proposition we give a sufficient condition in terms of the level sets which ensures the membership to Schatten classes. This allows us to give new examples of operators in

S p (H 2 ) \ S 2 (H 2 ) for p > 2. Proposition 3.1. Let p ≥ 2. If 1 0 |E ϕ (s)| p/2 (1 -s) 1+p/2 ds < ∞, then C ϕ ∈ S p (H 2 ). Proof. Since |E ϕ (1 -2 -n )| = 2 n -1 j=0 m ϕ (W n, j ), we get 2 n -1 j=0 m ϕ (W n, j ) p/2 ≤ |E ϕ (1 -2 -n )| p/2 .
Hence,

n 2 np/2 2 n -1 j=0 m ϕ (W n, j ) p/2 ≤ n |E ϕ (1 -2 -n )| p/2 1-2 -n-1 1-2 -n ds (1 -s) 1+p/2 ≤ 1 0 |E ϕ (s)| p/2 (1 -s) 1+p/2 ds < ∞. By Remarks 2.4.2, we obtain C ϕ ∈ S p (H 2 ). Remark 3.2. If C ϕ ∈ S p (H 2 ), then 1 0 |E ϕ (r)| p/2 (1 -r) 2 < ∞. Indeed, write |E ϕ (1 -2 -n )| = 2 n ( 2 n -1 j=0 2 -n m ϕ (W n, j )).
So by Jensen's inequality,

|E ϕ (1 -2 -n )| p/2 ≤ 2 np/2-n 2 n -1 j=0 m ϕ (W n, j ) p/2 .
Since C ϕ ∈ S p (H 2 ), by Remark 2.4.2, we have

1 0 |E ϕ (r)| p/2 (1 -r) 2 ≤ n 2 n |E ϕ (1 -2 -n )| p/2 ≤ n 2 np/2 2 n j=1 m ϕ (W n, j ) p/2 < ∞.
Now we are able to give some concrete examples. Let K be a closed subset of the unit circle T. Fix a non-negative function h ∈ C 1 [0, π] such that h(0) = 0. We consider the outer function defined by

f h,K (z) = exp - T ζ + z ζ -z h(d(ζ, K)) |dζ| ,
where d denotes the arc-length distance. It is known that the non tangential limit of

f h,K satisfies | f h,K (ζ)| = e -h(d(ζ,K)) , a.e. on T. (5) 
Given K ⊂ T and t > 0, let us write K t = {ζ : d(ζ, K) ≤ t} and |K t | denotes the Lebesgue measure of K t .

Corollary 3.3. Let p ≥ 2 and let ϕ = f h,K .

(1) If Note that there are several examples of composition operators which belong in S p (H 2 ) \ S 2 (H 2 ) for p > 2 (see [START_REF] Carroll | Compact composition operators not in the Schatten classes[END_REF][START_REF] El-Fallah | Composition operators with univalent symbol in Schatten classes[END_REF][START_REF] Jones | Compact composition operators not in the Schatten classes[END_REF][START_REF] Lefèvre | Compact composition operators on the Dirichlet space and capacity of sets of contact points[END_REF]). In all these examples the contact sets of their symbols is reduced to one point. Here we will construct examples with a large set of contact points. To state our example we have to recall the definition of Hausdorff dimension. Let E be a closed subset of T. The Hausdorff dimension of E is defined by

0 h ′ (t) h(t) 1+p/2 |K t | p/2 dt < ∞, then C ϕ ∈ S p (H 2 ). (2) If C ϕ ∈ S p (H 2 ) then 0 h ′ (t) h(t) 2 |K t | p/2 dt < ∞. Proof. Since |E ϕ (s)| = |{ζ ∈ T : e -h(d(ζ,K)) ≥ s}| ≍ |{ζ ∈ T : d(ζ, K) ≤ h -1 (1 -s)}| = |K h -1 (1-s) | Proposition 3.
d(E) = inf{α : Λ α (E) = 0}
where Λ α (E) is the α-Hausdorff measure of E given by Other type of examples are constructed by Gallardo-Gonzalez [START_REF] Gallardo-Gutiérrez | Exceptional sets and Hilbert-Schmidt composition operators[END_REF]. They proved that there exists a univalent symbol ϕ such that C ϕ is compact on H 2 and such that the Hausdorff dimension of E ϕ is equal to one. This result can not be extended to Schatten classes. Indeed, we have the following result

Λ α (E) = lim ǫ→0 inf i |∆ i | α : E ⊂ i ∆ i , |∆ i | < ǫ .
Proposition 3.5. Let p ≥ 2. If ϕ is univalent function such that C ϕ ∈ S 2 (H 2 ) then d(E ϕ ) ≤ p p + 2 .
For the proof see Remark 4.5.

3.2.

Contact set reduced to one point. In this subsection we will consider outer functions ϕ which their contact set is reduced to one point. In this case, and under some regularity conditions, we give a concrete necessary and sufficient condition for the membership to Schatten classes. Let h be a continuous increasing function defined on [0, π] such that h(0) = 0. We extend it to an even 2π-periodic function on R. We say that the function h is admissible if h is differentiable, h(2t) ≍ h(t) ≍ th ′ (t), and h is concave or convex.

Let ϕ be the outer function on D such that |ϕ(e it )| = e -h(t) , a.e on (0, π).

We have the following: 

C ϕ ∈ p>q S p (H 2 )\S q (H 2 ).
To prove our theorem, we need some notions. Let h be the harmonic conjugate of h. It is defined by

h(θ) = lim ε→0 1 2π π ε h(θ + t) -h(θ -t) tan(t/2) dt.
The Hilbert transform of h will be denoted by Hh and is given by

Hh(θ) = lim ε→0 1 π π ε h(θ + t) -h(θ -t) t dt
We will also need the following auxiliary function

Ψ(θ) := 1 π π-2θ 2θ h ′ (s) log s + θ s -θ ds.
The following estimates of h is the key of the proof of our theorem.

Lemma 3.8. Let h be an admissible function. There exists a, b > 0 such that

Ψ(θ) ≤ h(θ) ≤ Ψ(θ) + ah(θ) + bθ 2 , θ ∈ [0, π/4].
Proof. First let's estimate the Hilbert transform of h. Under our assumptions, the Hilbert transform can be written as follows

Hh(θ) = 1 π π 0 h(θ + t) -h(θ -t) t dt.
We split the integral into three parts

Hh(θ) = 1 π θ 0 h(θ + t) -h(θ -t) t dt + 1 π π-θ θ h(θ + t) -h(t -θ) t dt + 1 π π π-θ h(2π -θ -t) -h(t -θ) t dt = A + B + C.
Since h increases on (0, π), it is clear that A, B, C are positive. First, we will prove that

A + C = O(h(2θ) + θ 2 ). ( 6 
)
By concavity or convexity, we have

h(t + θ) -h(θ -t) ≤ 2t max(h ′ (θ -t), h ′ (θ + t)).
Hence,

A = 1 π θ 0 h(θ + t) -h(θ -t) t dt ≤ 2 π h(2θ)
By a change of variables and convexity, we get

C = 1 π θ 0 h(π -θ + u) -h(π -θ -u) π -u du = 1 π θ 0 2u max(h ′ (π -θ -u), h ′ (π -θ + u)) π -u du ≤ 8θ 2 3π 2 sup θ∈[π/2,π] |h ′ (t)|.
Hence ( 6) is proved. Now we have to estimate B. We have

πB = π 0 χ [θ,π-θ] t t+θ t-θ h ′ (s)ds dt = π 0 h ′ (s) s+θ s-θ χ [θ,π-θ] t dt = 2θ θ h ′ (s) log s + θ θ ds + π-2θ 2θ h ′ (s) log s + θ s -θ ds + π π-2θ h ′ (s) log π -θ s -θ ds = B 1 + B 2 + B 3 Note that B 1 + B 3 = O(h(2θ) + θ 2 ).
Indeed, we have

B 1 ≤ log 3(h(2θ) -h(θ))
and

B 3 ≤ 2θ log π -θ π -3θ sup [π/2,π] |h ′ (s)| ≤ 4 2 θ 2 π sup [π/2,π] |h ′ (s)|.
Hence the estimate of the Hilbert transform follows from B 2 and we have

Ψ(θ) ≤ Hh(θ) ≤ Ψ(θ) + c 1 h(2θ) + c 2 θ 2 , θ ∈ [0, π/4]. Since 1 tan(t/2) - 1 t = - t 3 + o(t 2 ), as before |Hh(θ) -h(θ)| = O(h(2θ) + θ 2 ) θ → 0.
The proof is complete.

Remark 3.9. 1. If π 0 h(t) t 2 dt = ∞, then θ 2 + h(θ) = O θ π θ h(t) t 2 dt , θ → 0 + .

Note that if h is an admissible function and

π 0 h(t) t 2 dt = ∞ then Ψ(θ) = π-2θ 2θ h ′ (s) log s + θ s -θ ds ≍ θ π θ h(t) t 2 dt.
Observe that, the function Ψ is increasing, Ψ(0) = 0, and satisfies the following properties Note that

• Ψ(t) ≍ Ψ(2t) • Ψ ′ (t) ≍ π θ h(t) t 2 dt • (Ψ -1 ) ′ (2t) ≍ (Ψ -1 ) ′ (t).

Proof of

m ϕ (W(1, δ)) = |{θ ∈ (-π, π) : |ϕ * (e iθ )| ∈ W(1, δ)} ≍ |{θ ∈ (0, π) : h(θ) < δ, h(θ) < δ}| ≍ |{θ ∈ (0, π) : Ψ(θ) < δ}| ≍ Ψ -1 (δ). Recall that C ϕ is compact if and only if m ϕ (W(1, δ)) = o(δ). It follows that C ϕ is compact if Ψ -1 (δ) = o(δ) as δ → 0, which is equivalent to 0 h(t) t 2 dt = +∞.
Conversely, suppose that

π 0 h(t) t 2 dt < +∞. It is clear that h(t) = o(t). Note that θ = O( h(θ)). Indeed by convexity h(θ) ≥ 1 2π π-θ 2θ h(θ + t) -h(t -θ) tan(t/2) dt ≥ 2θ π-θ 2θ max(h ′ (t -θ), h ′ (t + θ)) tan(t/2) dt ≍ θ π θ h(t) t 2 dt ≍ θ So in this case m ϕ (W(1, δ)) ≍ δ and C ϕ is not compact.
2) To prove the second assertion, we will estimate m ϕ (W n, j ), where

W n, j = W(e i2πj/2 n , 1/2 n ) = {z ∈ D : 1 -|z| < 1/2 n , j/2 n ≤ arg z < (j + 1)/2 n }. Let Ω n, j = {θ : h(θ) < 1/2 n , j/2 n ≤ h(θ) < (j + 1)/2 n }.
We have m ϕ (W n, j ) = |Ω n, j |. By Lemma 3.6, there exists κ > 0 such that

Ψ(θ) ≤ h(θ) ≤ Ψ(θ) + κh(θ).

Let

A n, j := {θ : h(θ) < 1/2 n , j/2 n ≤ Ψ(θ) < (j + 1)/2 n }.

Hence for j ≥ [κ] + 1, Ω n, j ⊂ {θ : h(θ) < 1/2 n , (j -κ)/2 n ≤ Ψ(θ) < (j + 1)/2 n } = j l=j-[κ]
A n,l and for j ≤ [κ],

Ω n, j ⊂ {θ : h(θ) < 1/2 n , Ψ(θ) < (j + 1)/2 n } = j l=0
A n,l .

Note that for θ ∈ A n, j , we have

A n, j = for j > J n = 2 n Ψ(h -1 (1/2 n )). We obtain n 2 np/2 2 n -1 j=0 m ϕ (W n, j ) p/2 n 2 np/2 J n j=0 |A n, j | p/2 .
Recall that (Ψ -1 ) ′ (2t) ≍ (Ψ -1 ) ′ (t). By Remark 3.9.2, we have

n 2 np/2 J n j=0 |A n, j | p/2 ≍ n 2 np/2 J n 0 ( j+1)/2 n j/2 n (Ψ -1 ) ′ (t)dt p/2 ≍ n J n 0 (Ψ -1 ) ′ (j/2 n ) p/2 ≍ n J n 0 (Ψ -1 ) ′ (s) p/2 ds ≍ n J n 0 2 n ( j+1)/2 n j/2 n (Ψ -1 ) ′ (t) p/2 dt ≍ n 2 n J n /2 n 0 (Ψ -1 ) ′ (t) p/2 ≍ n 2 n Ψ -1 (h -1 (1/2 n )) 0 (Ψ -1 ) ′ (t) p/2 ≍ n 2 n ∞ k=n Ψ -1 (h -1 (1/2 k+1 )) Ψ -1 (h -1 (1/2 k )) (Ψ -1 ) ′ (t) p/2 ≍ ∞ k=0 2 k Ψ -1 (h -1 (1/2 k+1 )) Ψ -1 (h -1 (1/2 k )) (Ψ -1 ) ′ (t) p/2 ≍ 1 0 (Ψ -1 ) ′ (t) p/2 h • Ψ -1 (t) dt ≍ 1 0 1 h(u) 1 Ψ ′ (u) p 2 -1 du ≍ 1 0 1 h(u) 1 u h(s) s 2 ds p 2 -1 du. Conversely, let 0 < c 1 < 1 B n, j := {θ : h(θ) < (1 -c 1 )/(κ2 n ) : j/2 n ≤ Ψ(θ) < (j + c 1 )/2 n },
By Lemma 3.8 B n, j ⊂ Ω n, j . The rest of the proof runs in the same way as before.

Remark 3.10. Note that H. Queffelec and K. Seip studied in [START_REF] Queffélec | Decay rates for approximation numbers of composition operators[END_REF] the asymptotic behavior of the singular values of composition operators with symbol having one point as contact set.

Schatten class S p (D α ) and level sets

Let ϕ be a holomorphic self map of D. In this section, we discuss the size of E ϕ , when C ϕ ∈ S p (D α ).

Given a (Borel) probability measure µ on T, we define its α-energy, 0 ≤ α < 1, by

I α (µ) = ∞ n=1 | µ(n)| 2 n 1-α .
For a closed set E ⊂ T, its α-capacity cap α (E) is defined by cap α (E) := 1/ inf{I α (µ) : µ is a probability measure on E}.

For Borelian set E of the unit circle its α-capacity is defined as follows cap α (E) := sup{cap α (F) : F ⊂ E, F closed}.

Note that if α = 0, cap := cap 0 is equivalent to the classical logarithmic capacity. There is a connection between the α-capacity and the Hausdorff dimension. In fact the capacitary dimension of E is the supremum of α > 0 such that cap α (E) > 0. By Frostman's Lemma [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF] the capacitary dimension is equal to the Hausdorff dimension for compact sets. Let us mention the result obtained by Beurling in [START_REF] Beurling | Ensembles exceptionnels[END_REF] (and extended by Salem Zygmund [START_REF] Carleson | Selected Problems on Exceptional Sets[END_REF][START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF]), which reveals an important connection between α-capacities and weighted Dirichlet spaces. These results can be stated as follows: Let f ∈ D α , the radial limit of f satisfies capacitary weak-type inequality

cap α {ζ ∈ T : | f (ζ)| ≥ t} ≤ A f 2 α t 2 .
In particular cap α ({ζ ∈ T : f (ζ) does not exist}) = 0. Our main result in this section is the following theorem. 

≤ 2/(1 -α). If C ϕ ∈ S p (D α ) then cap α (E ϕ ) = 0.
For the proof we need the following lemmas.

Lemma 4.2. If D |ϕ ′ (z)| 2 dA α (z) (1 -|ϕ(z)| 2 ) 2 log 1/(1 -|ϕ(z)| 2 ) < ∞, (7) 
then cap α (E ϕ ) = 0 Proof. First, note that 1 (1 -x 2 ) 2 log e/(1 -x 2 ) ≍ n≥0 1 + n log e(1 + n) x 2n , x ∈ (0, 1). (8) 
Indeed,

n≥0 1 + n log e(1 + n) x 2n ≥ 1 1-x 2 ≤n≤ 2 1-x 2 1 + n log e(1 + n) x 2n ≍ 1 (1 -x 2 ) 2 log e/(1 -x 2 )
,

and n≥0 1 + n log e(1 + n) x 2n ≤ sup n 1 + n log e(1 + n) x n m x m ≍ 1 (1 -x) log e/(1 -x) 1 1 -x .
By (8), we have

D |ϕ ′ (z)| 2 dA α (z) (1 -|ϕ(z)| 2 ) 2 log 1/(1 -|ϕ(z)| 2 ) ≍ n≥0 1 + n log(1 + n) D |ϕ ′ (z)| 2 |ϕ(z)| 2n dA α (z) = n≥1 D α (ϕ n ) (1 + n) log(1 + n) .
So [START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF] implies that lim inf n ϕ n α = 0. On the other hand, the weak capacity inequality gives 

cap α (E ϕ ) = cap α (E ϕ n ) ≤ c α ϕ n 2 α . Now let n → ∞, we get our result. Lemma 4.3. Let d > 0, c > -1 and σ ≥ 0, then D dA c (w) |1 -zw| 2+c+d | log(1 -|w| 2 )| σ ≍ 1 (1 -|z| 2 ) d | log(1 -|z| 2 )| σ (9 
dµ(w) = dA(w) (1 -|w|)| log(1 -|w|)| 1+β .
We have µ(D) < ∞, so for p ≥ 2, by Jensen inequality and by Lemma 4.3, we obtain see [START_REF] El-Fallah | Level sets and Composition operators on the Dirichlet space[END_REF][START_REF] Kellay | Compact composition operators on weighted Hilbert spaces of analytic functions[END_REF]. Hence µ ϕ,α (R n, j ) = O(1/2 (2+α)n ). Suppose that ϕ(D) is contained in a polygon of the unit disc, then for all n we have µ ϕ,α (R n, j ) = 0 uniformly on n except for a finite number of j. Then there exists J such that for all n and all j ≥ J, µ ϕ,α (R n, j ) = 0 and so Gallardo-González [START_REF] Gallardo-Gutiérrez | Hausdorff measures, capacities and compact composition operators[END_REF]Corollary 3.1] showed that for all α ∈ (0, 1] there exists a compact composition operator, C ϕ , on D α such that the Hausdorff dimension of E ϕ is one. In the case of the classical Dirichlet space (α = 0) the situation is different as showed in the following proposition. By Lemma 7, cap α (E ϕ ) = 0 for all α and hence d(E) = 0 (see [START_REF] Kahane | Ensembles parfaits et séries trigonométriques[END_REF]).

D |ϕ ′ (z)| 2 dA α (z) (|1 -|ϕ(z)| 2 ) 1+α+2/p | log(1 -|ϕ(z)| 2 )| p 2 ≍ D D (1 -|w| 2 ) 2+α-2 p | log(1 -|w|)| (1+β) 2 p |ϕ ′ (z)| 2 |1 -wϕ(z)| 4+2α dA α (z) dµ(w) µ(D) p 2 D D (1 -|w| 2 ) 2+α-2 p | log(1 -|w|)| (1+β) 2 p |ϕ ′ (z)| 2 |1 -wϕ(z)| 4+2α dA α (z) p 2 dµ(w) µ(D) ≍ I α,p (ϕ) 

2 .

 2 Luecking characterization for Schatten class of Toeplitz operators 2.1. Toeplitz operators on the Bergman spaces. Let α > -1. We denote by A α the Bergman space consisting of analytic functions f on D such that

2. 2 .

 2 Composition operators. Let α ≥ 0 and ϕ ∈ Hol(D) such that ϕ(D) ⊂ D. The generalized counting Nevanlinna function of ϕ is defined by

  1 and Remark 3.2 give the result.

Corollary 3 . 4 .

 34 Let p > 2 there exists an analytic self-map ϕ of D such that ϕ ∈ A(D), the disc algebra, C ϕ ∈ S p (H 2 )\S 2 (H 2 ) and d(E ϕ ) = 1. Proof. It suffices to apply corollary 3.3 with ϕ = f h,K where h(t) = 1 log 2 (e/t) and |K t | ≍ 1 log 2 (e/t) log log(e 2 /t) .

Theorem. 1 )

 1 Let m ϕ be the pull back measure associated to the function ϕ and let W(1, δ) = {z ∈ D : 1 -|z| < δ, | arg(z)| < δ} be a Carleson box.

Theorem 4 . 1 .

 41 Let ϕ be a holomorphic self-map of D, α ∈ (0, 1) and p

)

  Proof. Let w = |w|e it , by [23, Lemma 3.2], we have 2π 0 dt |1 -z|w|e -it | 2+c+d ≍ 1 (1 -|zw|) 1+c+d .Using this result the lemma follows from a direct computation. 4.1. Proof of Theorem. Let β = 2/(p -2) and

Remark 4 . 5 .Proposition 4 . 6 .

 4546 If ϕ is univalent function and C ϕ ∈ S p (H 2 ) (here α = 1) then cap p 2+p (E ϕ ) = 0. If C ϕ is bounded on D α and ϕ(D) is contained in a polygon of the unit disc, then cap α (E ϕ ) = 0. Proof. Since C ϕ is bounded on D α , sup ξ∈T µ ϕ,α (W(ξ, h)) = O(h 2+α )(h → 0).

  α (R n, j ) < ∞.Now, we getD |ϕ ′ (z)| (1 -|ϕ(z)| 2 ) 2 dA α (z) = α (z)dA(z) < ∞,and by Lemma 4.2 we obtain cap α (E ϕ ) = 0.

Proposition 4 . 7 .

 47 If C ϕ is compact on the Dirichlet space D, then E ϕ as vanishing Hausdorff dimension.Proof. Let K λ (z) = log 1/(1-zλ) be the reproducing kernel of D and let k λ (z) = K λ (z)/(log 1/1-|λ| 2 ) 1/2 the normalized reproducing kernel. If C ϕ is compact then C * ϕ is as well andC * ϕ (k λ ) → 0, |λ| → 1. Hence k ϕ(λ) (ϕ(λ)) k λ (λ) = | log(1 -|ϕ(λ)| 2 )| | log(1 -|λ| 2 |) → 0, |λ| → 1. Then (1 -|λ| 2 ) β /(1 -|ϕ(λ)| 2 ) 2 is bounded for all β ∈ (0, 1]. So D |ϕ ′ (z)| 2 (1 -|ϕ(z)| 2 ) 2 dA α (z) ≤ C D |ϕ ′ (z)| 2 dA(z) = D(ϕ) < ∞.

  Proof. Since ϕ is univalent, N ϕ,β = (N ϕ ) β . By[START_REF] Pau | Composition operators acting on weighted Dirichlet spaces[END_REF],C ϕ ∈ S p (D β ) if and only if N ϕ,β ∈ L p/2 (D, dλ). Using these observations, it is clear that C ϕ ∈ S p (D α ) if and only if C ϕ ∈ S p/γ (D αγ ). Let γ = 2 + pα/p, since C ϕ ∈ S p (D α ), C ϕ ∈ S 2+pα (D pα2+pα). The result follows from Theorem 4.1.

.

Since α + 2/p + 1 ≥ 2, by Remarks 2.4.2 and Lemma 4.2 we get the result.

As a consequence, we obtain the following corollary. Corollary 4.4. Let 0 < α ≤ 1 and ϕ be a holomorphic self-map of D. Suppose that ϕ is univalent. If C ϕ ∈ S p (D α ) then cap pα 2+pα (E ϕ ) = 0.