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ON EXTREME EVENTS FOR NON-SPATTIAL AND SPATIAL
BRANCHING BROWNIAN MOTIONS

JEAN AVAN, NICOLAS GROSJEAN AND THIERRY HUILLET

ABSTRACT. We study the impact of having a non-spatial branching
mechanism with infinite variance on some parameters (height, width
and first hitting time) of an underlying Bienaymé-Galton-Watson
branching process. Aiming at providing a comparative study of the
spread of an epidemics whose dynamics is given by the modulus
of a branching Brownian motion (BBM) we then consider spatial
branching processes in dimension d, not necessarily integer. The
underlying branching mechanism is either a binary branching model
or one presenting infinite variance. In particular we evaluate the
chance p(z) of being hit if the epidemics started away at distance z.
‘We compute the large z tail probabilities of this event, both when
the branching mechanism is regular and when it exhibits very large
fluctuations.

Keywords: Bienaymé-Galton-Watson process with infinite variance, height and
width and hitting time, spatial branching Bessel process, evolutionary genetics and
epidemics, extreme events.

1. INTRODUCTION AND OUTLINE OF THE RESULTS

The aim of this paper is a comparative study of the spread of an epidemics whose
dynamics is given by the modulus of a branching Brownian motion (BBM) in di-
mension d, not necessarily integer; the underlying branching mechanism is either
the one of a binary branching model or the one presenting infinite variance which
we define presently.

Before the spatial aspects of the BBM are addressed, we study the impact of hav-
ing a branching mechanism with infinite variance on the shape of the underlying
continuous-time Bienaymé-Galton-Watson tree process. This chiefly concerns the
time to extinction (the height of the tree), the maximum population size (the width
of the tree) and its first hitting time. We compute the laws of these shape quan-
tities for both the binary and the infinite variance branching mechanisms, in the
sub-, super- and critical regimes, and we compare the two situations. The obtained
results are developed in Section 2.

In Section 3, space is introduced. The special spatial BBM in dimension d = 1 is

addressed specifically since the model is then exactly solvable. Following the work

of [20], we study the probability p (x) that the Eve particle starting at 0 has some

descendant ever diffusing above the threshold x > 0. The main new aspects of our

results concerns the branching mechanism with infinite variance and its comparison
1
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with the binary branching model typically studied in [20] where the new individuals
that come to birth along the branching mechanism are viewed as new mutants in
an infinite allele model of population genetics.

In Section 4, we deal with the d # 1 case. We study p(x), the probability that
the Eve particle starting at a distance x of the origin has any of its descendants
ever diffusing within a ball of radius € centered at the origin. It is found that
p(z) satisfies a non-linear differential equation, which we use to compute its tail
probabilities. In the critical case, the equation exhibits exact conformal covariance
and has a corresponding invariant power-law solution. The large x behavior of
p(x) is then in any case power-law, the exponent of which depends sharply on the
value of the dimension d with respect to a critical dimension d., reflecting the very
large fluctuations of the branching mechanism. In the sub- and super-critical case,
the large a behavior of p(x) is exponential with a multiplicative power prefactor
depending on dimension d.

2. BRANCHING PROCESSES: A REMINDER

2.1. Generalities and well-known facts. Let us start with well-known facts on
continuous-time elementary branching Bienaymé-Galton-Watson processes, [13].

Suppose at some random (mean one) exponential time, one initial individual dies
out and produces a random number M of offspring, with M € {0,1,2,...}. Let
f(z) =E (2M), z € [0,1], be the probability generating function (pgf) of M, f (z) =
> koo Th2® with T = P (M = k).

Let ¢, (2) = E (™), ¢, (2) = z, be the pgf of the number of particles Ny alive at
time ¢ > 0. Then, setting g (2) = f (2) — z, ¢, (2) solves

by (2) = g (04 (2)) s ¢ (2) = 2,
where the ¢’ represents partial differentiation with respect to time.
We assume in the sequel that = f (1) = E (M) < oc.

If u:= f (1) = E (M) < 1, the process is denoted “subcritical”. It is supercritical
if > 1 and critical if p = 1.

When the process is either critical or subcritical, extinction occurs with proba-
bility 1, meaning N, = 0; otherwise if it is supercritical, extinction occurs with
probability p < 1 which is the smallest solution to f(p) = p (g(p) = 0). Note
that f'(p) < 1. A supercritical process explodes (No, = 00) with complementary
probability p=1—-p >0

The probability that the time to extinction, say 7, is smaller than ¢ is ¢, := ¢, (0) =
P (N, =0) =P (7. <t), solution to

(1) e =9(d), by =0.

Alternatively, the probability that the time to extinction 7. is larger than ¢ is
¢y =1—¢,(0) =P (N, >0) =P (7. > t), solution to

Gi=—h(3), =1,
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where h (z) = g (1 — z). 7. is also called the height of the Bienaymé-Galton-Watson
tree.

Whenever M has all its moments finite, it holds that

k
—2)
ne) = -zt Y B0 S0
k>2
where E[(M),] :=E[M (M —1)...(M — k + 1)] are the falling factorial moments
of M.

We now specialize to two main special branching mechanisms generating Bienaymé-
Galton-Watson trees, one extremely classical, the other one not so much:

1. (binary branching) f (z) = mo+m12+ w222 Here h(2) = (1 — p) Z+27T2%T, with
p=1—(mg—mz) and p > 1 iff mo > mp.

2. (infinite variance Lamperti branching model [17]): f(z) = 1 — p(1—2) +
C(1—2)" where u/y > C > p— 1 and v € (1,2) so that f(0) € (0,1). Here
h(z) = (1—p)z+ C27 and since v € (1,2), the variance of M is infinite, in
contrast with the preceding binary splitting model. Given our constraints on C,
f(2) is a well-defined completely monotone pgf (in particular, f/(z) > 0, for all
z € (0,1)).

The probability system for this model is

(r-DHE2—7)..(k—y-1)

(2) 7TO:17#+C, 7‘-1:,“‘7077 Trk:CFY k!

k> 2.

Let us investigate ¢, = P (7. > t) for these 2 models. We compute the exact form
of the function and its asymptotic behavior at infinite time:

Consider first Model 1. This is easy to establish and very well-known, see [16] for
instance:

Proposition 1. -a) In the subcritical case p <1 and p=0:

P(re>t)=e UM/ (1+my (1 —e =Y /(1 —p)) ~ (1 +ma/(1— p) e (-mt
with exponential tails.

-b) In the critical case p=1 and p=0:

P (1. >t) =1/ (1 + mat) with power-law Pareto(1) tails.

-c) In the supercritical case p>1 and 1 >p>0:

P(re>t)=er D/ (14 m (e Dt —1) /(u—1)) = (u—1) /72 =P
Proof: direct resolution. O

Note P (1. > t) =p+ O (e~ (+=V1).

Consider now Model 2 which is not so widespread in the literature. We similarly
establish:
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Proposition 2. -a) In the subcritical case p < land p =0 : we get

1/(y=1)
P(r.>t) = [efwfl)(w)t/ (1 LC (1 _ efwfl)(lfmt) /(- u))} K
~ O/ (1)) T e

again with exponential tails. The characteristic scale factor ist. = 1/ (1 — p), as
in Model 1.

-b) In the critical case p=1 and p=0:

P(re>t)=(14+C(y-1) t)_l/('y_l) with power-law Pareto (1/ (v — 1)) tails. Here
the tails of T are lighter than in Model 1, due to 1/ (v — 1) > 1. Due to very large
fluctuations of the offspring number, the time to extinction is stochastically shorter
than the similar one under Model 1.

-¢) In the supercritical case p>1 and1>p>0:

1/(r=1)
P(r.>t) = |e0Dw=1t; (1 LC <6<H><H>t _ 1) /(= 1))} K
- p=(n-1) /)0,

the probability of explosion. The characteristic scale factor ist. =1/ (1 — p), as in
Model 1.

Proof: again by direct computation. O

Note that P (r, >t) = p+ O (e-(~D®=1t)  Given 7. < oo, the tails of 7, are
exponential with a corrected scale factor t. = 1/[(n — 1) (v — 1)]. This fact is in
contrast with what was observed in Model 1.

2.2. Extreme events and the width of the Bienaymé-Galton-Watson tree.
In this Section, we shall deal with extreme events pertaining to Bienaymé -Galton-
Watson trees in continuous-time. To the best of our knowledge these issues have
not yet been addressed in the literature. Although similar questions were raised
and solved for discrete-time Bienaymé-Galton-Watson processes in [1], we shall see
that in the very different continous-time context, the machinery involves Toeplitz-
Hessenberg matrices which seems to be new.

We consider an extreme-event problem of interest: the maximal value (width of the
Bienaymé-Galton-Watson tree) that NV; can take in its lifetime. We need to expand
the context of our study as follows: so far we have considered a single starting Eve
particle. We now suppose there are ¢ initial particles, each branching independently
of the others according to the same branching mechanism f. Then

¢ (2) =B (2N | No = i)
is the pgf of the whole population size N; at time ¢, given Ny = i.
Let us indeed define p; (k,t) = P (N, < k for all s <t | Ny =) as the probability

that, starting from ¢ initial particles, 1 < ¢ < k, the population size profile keeps
bounded above by k, up to time t.



ON EXTREME EVENTS FOR SOME BRANCHING BROWNIAN MOTIONS 5

For all i = 1,..., k, from the Markov property ! we establish time evolution as:

Lemma 3. For alli=1,...,k, with py (k,t) =1, we have

k
pl (kat) = P (kvt) + Zﬂ-jpj (k7t) + mo, P1 (k70) = 1a
=1
k
pi (k,t) = —ip; (k1) +1i Z Tj—iv1p; (K1), pi (k,0)=1,i=2,.. k.
j=i1

Proof: We have:

t k—i+1
pi (k,t) = e "+ z/ dse™ " Z TiDitj—1 (k,t —8)
0 ’
7=0

t k
et +i/ dse™ ' Z Tj—it1p; (k,t —s)
0

j=i—1
k

¢
= ¢ 1+i/ dre'” Z Tj—i+1pj (k,T)
0

j=i—1

The term e~ * is the contribution corresponding to the first branching event oc-
curring later than ¢ (the probability of which is the pdf of the minimum of ¢ iid
exponential(1) random variables). The second term arises when the first branch-
ing event occurs at s < ¢, in which case, if the branching particle gives birth to j
particles, provided i +j — 1 < k, p; (k,t) is given from p;;,_1 (k,t — s) because the
new starting number of particles is now ¢ + 7 — 1. Note that, if ¢ = 1, this equation
exhibits the source term pg (k,7) = 1 occurring when j = 0 with probability 7g. O

We now rewrite this time evolution in vector form. Introduce
p(k,t) == (ps (k,t),i=1,..,k),
and Qy the k x k upper Toeplitz-Hessenberg matrix with non-zero entries

Qr(L,1)=1—m, Qr(1,j) =—7j,j=2,...,k and

Qk (171_1) = _7;71-07 Qk (277’)21(1_771)7
Qk (%J) = _iﬂ-jfi+1> z:2auka ]:Z+17>ka
with r}, = (70,0, ...,0) ?, we have the compact algebraic form (1’ = (1, ..., 1) denotes
the unit row vector)
p (k7t) = 7Qkp (kvt) +rg, p (k70) =1

Note that, with k' := (1,2,...,kl and Dy =diag(k), Qr = DyQ, for some Q,
involving only the m;_;11s and @), = I — P for some substochastic matrix Py

IThe following results constitute the continuous-time version of similar results derived for
discrete-time Bienayme-Galton-Watson processes in [1].

2Here and throughout all the paper, a bold x represents a column vector with appropriate
dimension so that its transpose, say x’, is a row vector.
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with Py1 < 1. From this structure of @i, this matrix is invertible with Q,:l =
(I—-P,)" D' and (I — P,)" " is a potential matrix.
Lemma 4. The probability that, starting from i initial particles, the overall max-

imum population size keeps bounded above by k for ever, is given by: p; (k) =
englrk = WOQEI (i,1).

Remark: In particular, py (k) = 7T0Q]:1 (k, 1) is the probability that, starting from
k initial particles, the overall maximum population size keeps equal to k for ever.

Proof: The solution of the latter differential equation is

¢
p(k,t) = e Qwi1 —|—/O dse,:Q’“srk — ety 4 (I — e_Q"'t) Q;lrk.

Ast — oo, pi(k,t) — e;lelrk = P(N, <kforallt>0]|Ny=1i) where e, =
(0,...,0,1,0,...,0) is the ith unit row vector of size k, with 1 in position i. Note
that p; (k) — p; (k — 1) is the probability that, starting from ¢ initial particles, the
overall maximum population size is exactly equal to k. O

We now establish an interesting result on the joint probability and probability
density of maximum size and its time-of-reach:

Lemma 5. Starting from 1 < i < k particles, the joint probability and probability
density that the mazximum population size is k and that this mazximum value is
reached at time t for the first time is given by:

k—1
(3) pi(k—=1,6) > je " (i, ) mjur | o ().

Jj=1

Proof:

Let 1 < i < k. The term e~*@*-1 (4, j) is the probability, starting from i particles,
that N; = j < k given Ny < k — 1 for all s < t. The term p; (k— 1,t) is the
probability that N, < k—1 for all s < ¢, so the product of the two is the probability,
starting from ¢ particles, that Ny = j < k and Ny < k — 1 for all s < ¢. Recall

pi (k—1,t) = e; (e*Q’“—ltl + (I - e*Q’“—lt) Q,:_llrk_l) .
Now, if ¢ is a branching time for any of the j particles alive at ¢_,
k
pi(k—1,4)> je " (i, ) e
j=1

is the probability density that the first hitting time of k is ¢ and that k is the max-
imal value over the past. Multiplying this probability by py (k), the probability
that, starting from k initial particles, the overall maximum population size stays
lower or equal to k for ever in the future, and making use of the independence of
the past and the future gives the result. O

Remarks: (i) Integrating (3) with respect to ¢ > 0, we obtain that
pi (k) —pi (k—1)
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is the marginal probability that the maximum population size is k > ¢ given Ny = 4.

(#4) Summing (3) with respect to k > ¢ gives the marginal density of the first hitting
time of the maximum over the lifetime.

A second result on size and (this time) overshot time is:

Lemma 6. Starting from 1 < i < k particles, the joint probability and probability
density that the maxzimum population size over the past is k and that this mazimum
value is overshot at time t for the first time is:

(4) —p; (k. t) pi (k) = e;e” ¥ (Qrl — 1p) .

Proof:
Let 1 < i < k. Because with 74, = inf (s > 0: Ny, > k | Ny = i), defining the first
overshooting time of k, (Ny < k for all s <t | Ng =4) = (7 >t | No = 10), p; (k, 1)
is also P (N < k for all s <t and 7 >t | Ng = 4). We now have
by (k1) = eje” @ (ry — Q1)
with
—p; (k,t) = P(Ns<kforals<rt,andtp,=1¢|Ny=1)
= e U (@Qul — i),

the joint probability that, given Ny = i < k, the maximum value of N; over the past
is k and that the first overshooting time density of this value k occurs at 7, = t.
Note that Qr1 — ry > 0 as required from the substochasticity of Py, if —p; (k,t) is
to be the probability density of some event. O

We now explicitly compute the Q,;l (i,1), required in all previous lemmas in par-
ticular for

pi(k) =P (N, <kforallt >0|Ny=1)=mQ;" (i,1).

This can be achieved by introducing the generating function for 6 coefficients as an
ordinary power series:

0(z):= Z 052",

k>1
with 0 = 0, 01 = (1 — 1) /7o), Ok = — (7k/m0), k > 2. Of course we first have
the trivial determinantal identity

|Qr| = K1 — Pyl

From (2) in [14], we thus have the key expansion property expressing the generating
function for the determinants as inverse of the original generating function:

1 —19(z) => %' (2/m0)" =Y I = P (z/m0)" .

k>0 k>0
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Thus |I — Py| = nfy [2¥] (ﬁ(z)) . By Faa di Bruno formula (see [7], p. 137) one
then has:

|1 — Py| = 6B (6s)
where

k
Bi(0s) =Y Bru(0s)
=1

are the complete Bell numbers of the sequence 8, = (01,62, ...), (see [7], p. 133),
obtained by summing the ordinary Bell polynomials By, ; (fe) in the indeterminates
6. Now _
Q) = (- Py iy - S

k 9 k 9 |I _ P]{;‘
where C ; is the (1,4) —cofactor of I — Py. Clearly now Cy ; = (—7r0)F1 [T — P—q].
Using this, we finally obtain

Cl,i7

Theorem 7. The probability

)it i
pi (k) = moQy " (6,1) = WO(I—)P;JCM = (7o)

is a ratio of ordinary Bell numbers.

Corresponding expressions can be obtained for Model 2, while plugging in the s,
as given in (2).

As a simple illustration, let us finally compute the exact values and asymptotic
behaviour of p;(k) for Model 1, using Theorem 7 and the fact that 7, = 0 for
k> 3.

Corollary 8. (i) In the subcritical case (mg > m3), we have

k—it1
=Pyl 17 <?§)

Pi (k‘) = 71'0@71 (i7 1) = (7‘(’0) = .
k |I — Py 1 (B)kJrl
0
k—it1
When k gets large, p; (k) ~ 1— (:—f}) — 1 and 1—p; (k) decreases geometrically

with k. The term 1 — p; (k) is the probability that, starting from i initial particles,
the overall maximum population size overshoots k at least once in the Bienaymé-
Galton-Watson process lifetime (before ).

(#3) The critical case (mg = m3). Setting mo = 7o + € in the latter formula, we
get

1—(1—7%2(k—i+1)> ;
o 1—(1—%(1@4—1)) szoliki—i—l'

We conclude that 1 — p; (k) decreases algebraically like i/k with k, hence much
slower than in the subcritical case.

pi (k)

(#i1) In the supercritical case (g < m3), if the process explodes, p; (k) = 0
and conditioned on non-explosion, we are taken back to the previous subcritical
study with the new branching mechanism f,(z) = p~'f (pz) where p < 1 is the



ON EXTREME EVENTS FOR SOME BRANCHING BROWNIAN MOTIONS 9

extinction probability solving f (p) = p, here p = wo/ma. Thus f,(z) = p~'f (pz) =
T + mz + w22, exchanging the roles of my and .

Proof: Only part (i) requires a proof. With z_ = 7 /72, we have
1 1 A B

1-02) (-2 -2/-0) 1-z2 1-z/=
where A= —z_/(1—2_)and B=1/(1— z_). Thus

k+1
[Py =nk—"0 (1_ (“) >.D
T — T2 0

k+1
Note that in this binary case, By (f) = —2— {1 - (ﬂ) ] , in accordance with

T2 —To o

Theorem 7.

3. SPATIAL BRANCHING PROCESS IN DIMENSION 1

We have until now dealt with zero-space dimension tree-like branching processes,
underlining how some basic shape parameters of the tree (either sub-, super- or
critical) were strongly affected by the infinite-variance assumption.

‘We now move to the problem of the spatial Bienaymé-Galton-Watson process, first
of all restricted to the one-dimensional case. This problem is in essence distinct and
its significant features can therefore not be deduced by any obvious generalization
from the zero-dimensional case. We shall revisit some results of [20] and extend
them to a new situation akin to Model 2. In such a spatial branching process,
an Eve particle diffuses according to one-dimensional standard Brownian motion
(with diffusion constant fixed to 1 without loss of generality). At some (mean one)
exponential time, it dies out giving birth in the process to M offspring; if M > 0,
the daughter particles diffuse according to independent standard Brownian motions,
started where the mother particle died. The study of branching Brownian motion
(measure-valued processes) has a long and rich history, starting from [4], through
[8], to [2], to cite only just a few. See also [10] and [19].

Let p (z) be the probability that the Eve particle starting at 0 has some descendant
ever diffusing above the threshold = > 0. Then [20] p (x) solves (p (0) = 1)

p(z)
) 3 ) =0or s @ ~4 [ () dz=Ce

as a stationary solution of the Kolmogorov-Petrovsky-Piskounov equation, [15].

We note that p (z) is also the probability that the supremum of the positions of all
particles that appeared at any time exceeds x, so p (z) = 1 — ¢ (z) where ¢ (z) is a
probability distribution function (which in particular is monotone non-decreasing).

Because p () — p, the limit p’ (z) should also exist and this limit is necessarily
r—00
0. These equations are then generically solved by inverting the quadrature:
1 [

v=g | Hy) 'y,
p(w)
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where H (y) = fﬁy h (z) dz (differentiating the latter equation with respect to x and
squaring the result gives back (5)). Let us investigate p (z) for the previous two
examples:

Consider first Model 1.

Proposition 9. -a) In the subcritical case p <1 and p=0:

H(y) = 7(1;“) y? (1 + 3(21?%)) Then

_ 4AE(x)
P) = AR @)?
where E (x) = exp (—\/2 (1- u)x) , = 3(217?#) and A= (V1+c— 1)2 /c.

Note that p(x) has exponential tails with scale factor x. = 1/4/2(1 —p) and
p(0)=1.

-b) In the critical case p = 1 and p = 0 : Here p(z) = (14 x/z.)"> hence p(z)
decays algebraically at infinity with exponent 2. The scale factor is x. = \/3/m2/4.

-¢) In the supercritical case p > 1 and 1 > p > 0 : Here, with p = 1 — m/m2,

p(x) =p+0 (e7%/%), where z. = 1/\/2W (p).

Proof:

-a) and -b) follow by direct computations. Concerning -c), p(z) has an atom at
infinity which is the probability of explosion of the underlying branching process

and the remaining tails are exponential. Indeed, letting p(z) —p = p(x), p(x)
11 17

solves 5p" —h (p + p) = 0 which for small p (large x) is 5p"” —h’ (p) p = 0, recalling
h () = 0. One can check that k' (p) = w3 — 7 > 0 and so p is exponential with the
right scale factor. O

As observed in [20], any branching model for which f (z) = mo+m12+7m22%2+0 (ZVI)
with 7/ > 2, will display similar tail behaviors.

Let us now switch to Model 2. We get:

Proposition 10. -a) In the subcritical case p < land p=0:

— -1
H (y) = 5542 (1 + %) One computes:

-1
B 4AE (x)
plr)= (c(l —AE (:17))2>

where:
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2
E(x) = eXP(—(’Y—l) 2(1—u)x), c= % and A = (V1+c—1)" /g
p(x) has again exponential tails with scale factor z.=1//2(1 — p).

-b) In the critical case p =1 and p = 0: We get p(x) = (1 —l—x/azc)ﬂ/hfl) and
p(x) decays algebraically at infinity with exponent 2/ (y —1). The scale factor is

re=/(y+1)/C/(y—1).

-c) In the supercritical case pr > 1 and 1 >p > 0: Settingp = ((u— 1) /0)1/(771) ,
one has p(z) = p+ O (e7*/*<), where . = 1//2h'(p). p(x) has an atom at
infinity which is the probability of explosion (non-extinction) and the remaining
tails are exponential.

Proof:

Statements -a) and -b) are obtained by direct computations. To get statement
-c), setting as before p (z) — p = p(z), p(z) solves $p” — h(p+ p) = 0 which for
small p (large z) is 5p” — b/ (p)p = 0, recalling h (p) = 0. One checks that here
W) = (p—1)(y—1) > 0 and p is exponential with the claimed scale factor,
different from the scale factor obtained in the subcritical case. O

The quantity p (z) is equivalently the probability that an Eve particle started at
x > 0 has some descendant ever diffusing below the threshold x = 0. This way of
thinking p (x) also pertains to dimensions not equal to one which we move to now.

4. SPATIAL BRANCHING PROCESS IN DIMENSION d # 1

Let P (x) be the probability that some particle started at x in R? (d = 2,3,...)
has some descendant ever diffusing within a ball of radius € > 0 around the ori-

1/2
gin, with z = ||x||, = (Zj:l xf) > ¢. Then, from [20], introducing A as the
d—dimensional Laplacian, P (x) solves AP — h(P) = 0 and in view of rotational
invariance, p (z) := P (||x||,) solves

1, d-1,
(6) P T —h(p) =0,
We impose the boundary conditions p(¢) = 1 and p(c0) = 0 for consistency with
the probabilistic interpretation of p. Indeed this modified construction is dictated
by the fact that d—dimensional branching Brownian motion with d = 2,3, ... has
zero probability to meet the origin. %6% + %&C is the Bessel generator of the
modulus of a d—dimensional Brownian motion. Thus p (z) is the probability that
the full trail of the d—dimensional branching Brownian motion ever happened to
be at distance to the origin less than €. Hence the boundary conditions.

This construction can be extended to non-integer d(> 2) as follows. Let R; =
exp (B; + at) and X; = R, where 7, = fg Xs’2ds and B, is the standard Brownian
motion. Assume a > 0. Then the infinitesimal generator of X; > 0, as a time-
changed geometric Brownian motion R with non-negative drift, is [12]

1 2a + 1
,82 + g

0
2% 2 Y



12 JEAN AVAN, NICOLAS GROSJEAN AND THIERRY HUILLET

so it is the generator of some Bessel process (say BSy), with ‘dimension’ parameter
d=2(a+ 1) > 2, not necessarily an integer.

Proposition 11. Denote by p (x) the probability that some branching 1— dimensional
BS, particle system, started at x > 0, has some descendant ever diffusing below e
(x >¢e>0). Then p(x) solves

1, d-1,
Z Z Ty —h =
5P + 57 P (p) =0,

with p(e) =1 and p(c0) = 0.

The BSy process X is well-defined even if d > 1 then with E (fot ds/Xs) < 00, and

also even if d > 0, [11]. We also recall some basic properties of BS; processes with
respect to their dimension d as from [18]:

- For d > 2, the process BS; is transient.
- For d > 2 the point 0 is polar and for d < 1 it is reached almost surely.
- For 0 < d < 2, BSy is (null) recurrent; the point 0 is instantaneously reflecting.

We are now in a position to extend the interpretation of the latter differential
equation describing the BS; process X when d is non integer. Integer values of
d all correspond to a d—dimensional Brownian motion with full rotational invari-
ance and the occurrence of d in the differential equation follows from the reduction
of a d—dimensional Laplacian to invariant configurations. We consistently con-
jecture that non-integer values of d similarly characterize Brownian motion on a
fractal-type background (possibly relevant in epidemics propagation description)
again with a full ‘rotational” invariance, here by the simplest analytic continuation
of the differential equation to non-integer values of d (More complicated analytic
extensions involving additional, real-periodic functions may be considered but they
shall not be addressed here). This bears some technical resemblance with proce-
dures in quantum field theories such as dimensional regularization. This conjecture
is strongly borne out by the following checks: starting from the definition of spher-
ically symmetric random walks in non-integer dimensions d by Bender et al. [6]
and taking the large (continuous) limit of radii of the nested d-dimensional spheres
between which the particle random-walks, one recovers exactly the drift contribu-
tion % and the constant unit local variance term in the second-order differen-
tial operator generating BSy. Following this interpretation, the BS,; process X
may be viewed as the modulus of some isotropic d—dimensional diffusion process,
evolving in a d—dimensional space for which the surface of a ball with radius x is
2w/ 224=1 T (d/2).

We shall now study equation (6) when h(z) = (1 —p)z+ Cz7, v € (1,2). It is
not solvable contrary to the d = 1 case, except for integer values of v (elliptic
functions for v = 3, hyperelliptic functions for v = 4,5---. These integer values
however lie beyond the interval of relevance for the probabilistic interpretation of
the model. It must be however suggested that rational values of v lying in the
relevant open interval (1,2) may still lead to solutions with some interpretation in
algebraic geometry (multiple coverings of elliptic or Prym manifolds).
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Anyway here we limit ourselves to the sole asymptotic analysis (large ) form of
the solutions with the suitable limit behavior p (c0) = 0 (except in one case).

The case v = 2 (Model 1) has been analyzed to a large extent (in the critical
regime) by [20]. Some further extensions of the binary branching model (either
subcritical or critical) has also been reported in [9], in the d = 2 dimensional case,
involving a deep study of the dynamics of both perimeter and area of the convex
hull of the BBM trail.

4.1. Subcritical case (u < 1). Recalling again the asymptotic limit behavior
p(c0) = 0 we conclude that the higher power term Cz7 is to be dropped when
analyzing around co. The large x (small p) solutions are thus governed by

1, d-1,
G+ —(L=p)p=0,

which can be mapped into a modified Bessel equation, (see [3], p. 117). Indeed,
with «, 3 some constants, let

p(x) =a%J, (Bx),
where J, (z) obeys JJ + J,/z + (1 — a?/2?) Jo = 0, as a Bessel function of the
first kind, of order a.. Then p obeys
200 — 1
p'— =+ =0

Setting @« = (2—4d)/2 and § = i\/2(1 —p) =: iy and recalling that I, (z) =
i~*J, (iz) is the modified Bessel function of the first kind of order «, we get:

p(x) = 2% (A1l (v2) + A2 Ko (72))
where K, (z)is the modified Bessel function of the second kind of order a.
Recalling K, (x) ~ e~ *y/7/ (2x) near x = oo and keeping only the decaying factor

at 0o, we establish:

Proposition 12. In the subcritical case, p(x) behaves for large x as
p(2) ~ As2® K, () ~ Ax*(dfl)/ze*mz’ >0

Compared to the exact d = 1 case studied before, the asymptotics of p (x) exhibit

an extra m_(d_l)/onwer term.

4.2. Critical case (¢ = 1). In this case, h(p) = Cp?. A conformal covariance
property then arises:

Proposition 13. If p is a solution of (6) with h(p) = Cp?, then, for all A > 0,
px (2) = XYYy (A\z) are also solutions. The constant 2/ (v — 1) is the conformal
weight for p 3.

This will play an important role in the next analysis. In particular the conformal
invariant solution m () = =2/~ will appear.

3By analogy with the terminology of Conformal Field Theory, the constant A := 2/ (y —1)
such that p (z) is transformed into A®p (Az), A > 0, can be named a conformal weight, see [5].
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4.2.1. Behavior of p near infinity. We first assume an asymptotic power-law form
p~Ax~% a, A > 0, leading to

Az~ (2 (42 —d) — 20Nz = 0.
Let us first analyze the power-law behaviour. We need to impose o + 2 < vya,

otherwise the dominant term would be the unique one x~7%, which would be in-
consistent. So a > 2/(y—1).

- Suppose first a > 2/ (v — 1) . Then necessarily the power-law exponent is o = d—2
and this regime occurs when d > d, := 2+ 2/ (v — 1). Note that there is no speci-
fication of what X is (except of course for A > 0).

- Suppose now @ = 2/ (v — 1) . Then the two power terms contribute equally likely
and the solution asymptotically behaves like the conformally invariant monomial
m (z) = 72/~ obeying m (x) = A" Ym (Az).

‘We can now discuss the scale factor A .

* Suppose first d # a4+ 2; then we also need to have d < d. =2+a =2+2/(y—1)
in addition with
N+ (a+2—d) = 20X,

leading to A = (o (a + 2 —d) /C)l/(”ffl) =((de—d)/((y 1) C))l/(vfl) .

* Suppose now d = o+ 2; then d = d. and we have to try the enhanced asymptotic

form p ~ Az™¢ (logm)ﬁ, a=d.—2, \>0. We get

d—1
x

P o~ Ade—1)z=(@F2 (ﬂ (log )’ — a (log x)ﬁ)
p o~ Mgt (a (a+1)(ogz)’ = B(2a+1)(logz)* ' +8(B—-1) (10gx)’872> :

Plugging these estimates into p”’ + %p' — 2h (p) = 0, the (log 1:)5 terms cancel,
leading to
—aABz~ ) (log )"~ — 20X7 (log 2)* 2= = 0,

discarding the (logz)”~? term as compared to (logz)”~'. Observing ay = a + 2,
this can be achieved only if 8y = 8 — 1, so if 3 = —1/(y —1). The constant A is

—1/(v=1)
also determined by \Y™' = —af/ (2C), so X = (C’ (v — 1)2) .

To summarize, we have shown:

Theorem 14. In the critical case, the behavior of p(x) for large x depends on the
value of the dimension d with respect to a critical dimension d. :=2+2/ (v —1).

o ifd>d., p~ Ae=(12) with \ > 0 being left unspecified.
e ifd=de, p~X\(z7?/log (ac))(dﬁQ)/2 with A\ = (C (v—1)°
o ifd<de, p~ =20V with A= ((d. —d) / (v —1)C))"/O~V,

-1/(v=1)
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4.2.2. Behavior of p near the origin. Although this question does not necessarily
make sense in our probabilistic context because p (z) is intrinsically defined for
x > €, it turns out that the formal analysis of p (z) near the origin is possible.

We first try the asymptotic power-law form p ~ Az=?, 3, A > 0, leading to
Az~ P2 (342 —d) — 20\ 277" = 0.

Once again we first analyze the power-law behaviour. We need to impose 3+2 > (3,
otherwise the dominant term would be the unique one =%, which would fail. So

B<2/(y-1).

- Suppose first § < 2/ (v — 1) . Then necessarily the power-law exponent is 8 = d—2.
This regime occurs when 2 < d < d. := 242/ (v —1). Note that there is again no
specification of what A is (except of course for A > 0).

- Suppose now 3 =2/ (y —1). Then the two power terms contribute equally likely
and we are back to the conformally invariant solution.

Let us now discuss the scale factor \.

* Suppose first d # 8+ 2; then we also need to have d < d. =2+ 03 =242/ (y—1)
in addition with
A8+ (B+2—d) =20\,

leading to A = (8 (8 +2 ~d) /0)/07Y = ((d. — d) / ((y = 1) €)'V

* Suppose now d = 3 + 2; then d = d. and we try the asymptotic form p ~
Az~P (_IOgﬂf)éa B=d.—2, A>0. We get
d—1

Tp’ ~ A(d.—1)z~+2) (—6 (—logz)’ ' = B(~ logx)6>

P~ AT (ﬁ (B+1)(—logz)’ +6(28+1)(—logz)’ ' +6(6—1) (- 10gx)572) :

Plugging these estimates into p” + 9=2p’ — 2k (p) = 0, the (—log 2)” terms cancel
again, leading to

ABSz~ 2 (—logz)’ ! — 207 (—logx)*" 27 = 0,

discarding the (—logz)’ 2 term compared to (—logz)’~" when z is small. Ob-
serving By = B+ 2, this could be achieved only if 6y =6 —1,s0if 6 = -1/ (y—1).
The constant A should also be determined by A\? ™' = 3/ (2C) and because 3 < 0,
A cannot be real .

Interestingly enough we may also define consistent solutions of the alternative as-
ymptotic form p ~ ¢ (1 + Az ) for some constants ¢, 5 > 0. To leading order, we
need to have

AeB(B+d—2)zP~2 =2

4There exist solutions with a complex prefactor which we disregard, due to their lack of physical
meaning so far, in particular because it hampers an interpretation of p as a probability.



16 JEAN AVAN, NICOLAS GROSJEAN AND THIERRY HUILLET

which also requires 8 = 2 together with A = ¢?=1/d > 0.

To summarize:

Proposition 15. In the critical case, the behavior of p(x) near x = 0 also depends
on the value of the dimension d with respect to the critical dimension d. (with

o if2<d<d., p~ =92 with \ > 0 being left unspecified.

o if0<d<d., p~ Az~ with A= ((d. —d) / (v — 1) €))7V,

e ifd>0,p~c(l+Az?) withc >0 and A =c"71/d.

e if d = d., there is no real solution of the form A\x=P (—log .Z‘)é with 3,0, A
real. A solution nevertheless exists, albeit with A complex.

e if d > d., there is no real solution either.

4.3. Supercritical case (u > 1). We must slightly modify the asymptotic behav-
ior at infinity in this case by substracting a non-zero asymptotic limit corresponding
to the zero of the potential term. Defining accordingly p = ((1 — 1) /C’)l/(vfl) , let
p(z)—p =p(z). Then p(z) solves 35"+ %L —h (p + p) = 0 which for small p (large
z)is 3p"+%L—1h' () p = 0, recalling h (p) = 0. Recall ' (p) = (p— 1) (y — 1) > 0.
The large x (small p) solutions of p are thus governed by

1 ~1! d—1 ~ I (=)

= —p —h =0

5P+ 5P (P)p=0,

which can be mapped into a modified Bessel equation as before, but now with
B =iy and v = /2l (p).

Proceeding similarly as in the subcritical case, we now get (A > 0)

P(x) ~ Az K, (yz) ~ Ap—@=1D/2,=2(p=1)(v=D)=z
Finally, we obtained

Proposition 16. In the supercritical case, p(x) behaves for large x as

P (@) ~ (1) JC) OV 4 g @22 DD,

Again, as compared to the d = 1 case studied before, the asymptotics of p (x) has
an extra z~(4=1/2 power factor in the corrective term 7 ().

Let us supply a final result pertaining to the supercritical regime: conditionally
given the extinction time is finite, the underlying branching process is subcritical

with offspring pef /, (=) = p~f (p2) , obeying f, (1) = 1, £, (1) = /' (p) < 1.
Recalling f (2) =1—p(1—2)+C(1—2)" where u/y>C >p—1and v € (1,2),
we indeed get f} (1) = f' (p) = p— Cyp"~" = p—~ (u— 1) < 1. Defining h,, (2) :=
fo(1—2)— (12 2), we get
hy(2) = (1— )2+ (<1+pz) 1> ,
p 2
which is regular near z = 1.
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We have f, (2) ~zz0 p7" (1 = 4 O) + (1 = C) 2+ pCy (y = 1) 22 /2 + O (2°) , s0
we are in the domain of attraction of the subcritical model studied in Section 3.1.
Defining p, := p — v (1 — 1), and applying the results of Section 3.1, we conclude
that

Proposition 17. Conditionally given that the supercritical branching process sur-
vives

p(x) ~ éx—(d—l)/2e— 2(1—Hp)w _ éx—(d—l)/2e—\/2(7—1)(y—l m’ A > O,
p p

displaying the modified scale factor x. =1/4/2(y —1) (u—1).

Remark: Let:
B Tl'd/2 d 7 27Td/2

VEAT @2+ ) WEES= AT (d/2)
If the epidemics starts at distance x of the origin, the tail probability of its spatial
extension in d—dimensional space for which the volume of a ball is V = (z/zy)*
will be: P(V > v) ~ p(xyv!/?), v > 0 large, where the large x behaviors of p(z) are
given in Propositions 10 — 12 and 14. Similarly, the tail probability of the area of
the boundary S of the d—dimensional sphere V will be P(S > s) ~ p(zgv'/(¢=1),
s > 0 large.

—~1/d —1/(d—1)
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