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ON THE SPREAD OF A BRANCHING BROWNIAN MOTION

WHOSE OFFSPRING NUMBER HAS INFINITE VARIANCE

JEAN AVAN, NICOLAS GROSJEAN AND THIERRY HUILLET

Abstract. We study the impact on shape parameters of an underly-
ing Bienaymé-Galton-Watson branching process (height, width and
first hitting time), of having a non-spatial branching mechanism
with infinite variance. Aiming at providing a comparative study of
the spread of an epidemics whose dynamics is given by the modulus
of a branching Brownian motion (BBM) we then consider spatial
branching processes in dimension d, not necessarily integer. The
underlying branching mechanism is then either a binary branching
model or one presenting infinite variance. In particular we evaluate
the chance p(x) of being hit if the epidemics started away at distance
x. We compute the large x tail probabilities of this event, both when
the branching mechanism is regular and when it exhibits very large
fluctuations.

Keywords: Bienaymé-Galton-Watson process, branching Bessel process, evolu-
tionary genetics and epidemics, extreme events.

1. Introduction

The aim of this paper is a comparative study of the spread of an epidemics whose
dynamics is given by the modulus of a branching Brownian motion (BBM) in di-
mension d, not necessarily integer; the underlying branching mechanism is either
the one of a binary branching model or the one presenting infinite variance which
we define presently.

Before the spatial aspects of the BBM are addressed, we study the impact of hav-
ing a branching mechanism with infinite variance on the shape of the underlying
continuous-time Bienaymé-Galton-Watson tree process. This chiefly concerns the
time to extinction (the height of the tree), the maximum population size (the width
of the tree) and its first hitting time. We compute the laws of these shape quan-
tities for both the binary and the infinite variance branching mechanisms, in the
sub-, super- and critical regimes, and we compare the two situations. The obtained
results are developed in Section 2.

In Section 3, space is introduced. The special spatial BBM in dimension d = 1 is
addressed specifically since the model is then exactly solvable. Following the work
of [13], we study the probability p (x) that the Eve particle starting at 0 has some
descendant ever diffusing above the threshold x ≥ 0. The main new aspects of our
results concerns the branching mechanism with infinite variance and its comparison
with the binary branching model typically studied in [13] where the new individuals
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that come to birth along the branching mechanism are viewed as new mutants in
an infinite allele model of population genetics.

In Section 4, we deal with the d 6= 1 case. We study p(x), the probability that
the Eve particle starting at a distance x of the origin has any of its descendants
ever diffusing within a ball of radius ǫ centered at the origin. It is found that
p(x) satisfies a non-linear differential equation, which we use to compute its tail
probabilities. In the critical case, the equation exhibits exact conformal covariance
and has a corresponding invariant power-law solution. The large x behavior of
p(x) is then in any case power-law, the exponent of which depends sharply on the
value of the dimension d with respect to a critical dimension dc, reflecting the very
large fluctuations of the branching mechanism. In the sub- and super-critical case,
the large x behavior of p(x) is exponential with a multiplicative power prefactor
depending on dimension d.

2. Branching processes: a reminder

2.1. Generalities and well-known facts. Let us start with well-known facts on
continuous-time elementary branching Bienaymé-Galton-Watson (BGW) processes,
[8].

Suppose at some random (mean one) exponential time, one initial individual dies
out and produces a random number M of offspring, with M ∈ {0, 1, 2, ...}. Let
f (z) = E

(
zM
)
, z ∈ [0, 1], be the probability generating function (pgf) ofM, f (z) =∑

k≥0 πkz
k with πk = P (M = k).

Let φt (z) = E
(
zNt
)
, φ0 (z) = z, be the pgf of the number of particles Nt alive at

time t ≥ 0. Then, setting g (z) = f (z)− z, φt (z) solves

·

φt (z) = g (φt (z)) , φ0 (z) = z,

where the ‘.’ represents partial differentiation with respect to time.

We assume in the sequel that µ := f
′

(1) = E (M) < ∞.

If µ := f
′

(1) = E (M) < 1, the process is denoted “subcritical”. It is supercritical
if µ > 1 and critical if µ = 1.

When the process is either critical or subcritical, extinction occurs with proba-
bility 1, meaning N∞ = 0; otherwise if it is supercritical, extinction occurs with
probability ρ < 1 which is the smallest solution to f (ρ) = ρ (g (ρ) = 0). Note
that f ′ (ρ) < 1. A supercritical process explodes (N∞ = ∞) with complementary
probability ρ = 1− ρ > 0

The probability that the time to extinction, say τ e, is smaller than t is φt := φt (0) =
P (Nt = 0) = P (τe ≤ t), solution to

(1)
·

φt = g (φt) , φ0 = 0.

Alternatively, the probability that the time to extinction τ e is larger than t is
φt := 1− φt (0) = P (Nt > 0) = P (τ e > t), solution to

·

φt = −h
(
φt

)
, φ0 = 1,

where h (z) = g (1− z). τ e is also called the height of the BGW tree.
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Whenever M has all its moments finite, it holds that

h (z) = (1− µ) z +
∑

k≥2

E [(M)k]
(−z)

k

k!
,

where E [(M)k] := E [M (M − 1) ... (M − k + 1)] are the falling factorial moments
of M.

We now specialize to two main special BGW cases:

1. (binary branching) f (z) = π0+π1z+π2z
2. Here h (z) = (1− µ) z+2π2

z2

2! , with
µ = 1− (π0 − π2) and µ > 1 iff π2 > π0.

2. (infinite variance Lamperti branching model [11]): f (z) = 1 − µ (1− z) +
C (1− z)

γ
where µ/γ > C > µ − 1 and γ ∈ (1, 2) so that f (0) ∈ (0, 1) . Here

h (z) = (1− µ) z + Czγ and since γ ∈ (1, 2), the variance of M is infinite, in
contrast with the preceding binary splitting model. Given our constraints on C,
f (z) is a well-defined completely monotone pgf (in particular, f ′ (z) > 0, for all
z ∈ (0, 1)).

The probability system for this model is

(2) π0 = 1− µ+ C, π1 = µ− Cγ, πk = C
γ (γ − 1) (2− γ) ... (k − γ − 1)

k!
, k ≥ 2.

Let us investigate φt = P (τ e > t) for these 2 models. We compute the exact form
of the function and its asymptotic behavior at infinite time:

Consider first Model 1. It is easy to establish:

Proposition 1. -a) In the subcritical case µ < 1 and ρ = 0 :

P (τ e > t) = e−(1−µ)t/
(
1 + π2

(
1− e−(1−µ)t

)
/ (1− µ)

)
∼ (1 + π2/ (1− µ))

−1
e−(1−µ)t

with exponential tails.

-b) In the critical case µ = 1 and ρ = 0 :

P (τ e > t) = 1/ (1 + π2t) with power-law Pareto(1) tails.

-c) In the supercritical case µ > 1 and 1 > ρ > 0 :

P (τ e > t) = e(µ−1)t/
(
1 + π2

(
e(µ−1)t − 1

)
/ (µ− 1)

)
→ (µ− 1) /π2 = ρ.

Proof: direct resolution. ✷

Note P (τe > t) = ρ+O
(
e−(µ−1)t

)
.

Consider now Model 2. Again we easily establish:

Proposition 2. -a) In the subcritical case µ < 1and ρ = 0 : we get

P (τe > t) =
[
e−(γ−1)(1−µ)t/

(
1 + C

(
1− e−(γ−1)(1−µ)t

)
/ (1− µ)

)]1/(γ−1)

∼ (1 + C/ (1− µ))
−1/(γ−1)

e−(1−µ)t,
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again with exponential tails. The characteristic scale factor is tc = 1/ (1− µ), as
in Model 1.

-b) In the critical case µ = 1 and ρ = 0 :

P (τ e > t) = (1 + C (γ − 1) t)
−1/(γ−1)

with power-law Pareto (1/ (γ − 1)) tails. Here
the tails of τ e are lighter than in Model 1, due to 1/ (γ − 1) > 1.

-c) In the supercritical case µ > 1 and 1 > ρ > 0 :

P (τ e > t) =
[
e(γ−1)(µ−1)t/

(
1 + C

(
e(γ−1)(µ−1)t − 1

)
/ (µ− 1)

)]1/(γ−1)

→ ρ = ((µ− 1) /C)
1/(γ−1)

,

the probability of explosion.

Proof: again by direct computation. ✷

Note that P (τ e > t) = ρ + O
(
e−(γ−1)(µ−1)t

)
. Given τe < ∞, the tails of τ e are

exponential with a corrected scale factor tc = 1/ [(µ− 1) (γ − 1)] . This fact is in
contrast with what was observed in Model 1.

2.2. Extreme events and the width of the BGW tree. In this Section, we
shall deal with extreme events pertaining to BGW trees. To the best of our knowl-
edge these issues have not yet been adressed in the litterature.

Let us first briefly discuss the problem of the largest family size: Let

M∗
t = max (M1, ...,MNt

)

be the maximal offspring number that the Nt individuals alive at time t can ever
give birth to.

Let F (m) = P (M ≤ m) be the probability distribution function of M , with

P (M > m) = [zm] 1−f(z)
1−z . We have

P (M∗
t ≤ m) =

∑

n≥0

P (Nt = n)F (m)n = φt (F (m)) .

Thus, setting φ∗
t (m) := φt (F (m)), φ∗

t (m) is the solution to
.

φ
∗

t (m) = g (φ∗
t (m)) , φ∗

0 (m) = F (m) ,

which is of the type (1), except for its initial condition.

For the two models under study, this equation can therefore easily be solved, but
we leave the details to the reader.

We now consider another extreme event problem of interest: the maximal value
(width of the BGW tree) that Nt can take in its lifetime. We need to expand
the context of our study as follows: so far we have considered a single starting Eve
particle. We now suppose there are i initial particles, each branching independently
of the others according to the same branching mechanism f . Then

φt (z)
i
= E

(
zNt | N0 = i

)
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is the pgf of the whole population size Nt at time t, given N0 = i.

Let us indeed define pi (k, t) = P (Ns ≤ k for all s ≤ t | N0 = i) as the probability
that, starting from i initial particles, 1 ≤ i ≤ k, the population size profile keeps
bounded above by k, up to time t.

For all i = 1, ..., k, from the Markov property 1 we establish time evolution as:

Proposition 3. For all i = 1, ..., k, with p0 (k, t) = 1, we have

.
p1 (k, t) = −p1 (k, t) +

k∑

j=1

πjpj (k, t) + π0, p1 (k, 0) = 1,

.
pi (k, t) = −ipi (k, t) + i

k∑

j=i−1

πj−i+1pj (k, t) , pi (k, 0) = 1, i = 2, ..., k.

Proof: We have:

pi (k, t) = e−it + i

∫ t

0

dse−is




k−i+1∑

j=0

πjpi+j−1 (k, t− s)





= e−it + i

∫ t

0

dse−is
k∑

j=i−1

πj−i+1pj (k, t− s)

= e−it


1 + i

∫ t

0

dτeiτ
k∑

j=i−1

πj−i+1pj (k, τ )


 .

The e−it term arises when the first branching event is larger than t (the pdf of the
minimum of i iid exponential(1) random variables), in which case pi (k, t) = 1. The
second term arises when the first branching event occurs at s ≤ t, in which case,
if the branching particle gives birth to j particles, provided i + j − 1 ≤ k, pi (k, t)
is given from pi+j−1 (k, t− s) because the new starting number of particles is now
i + j − 1. Note that, if i = 1, this equation exhibits the source term p0 (k, τ) = 1
occuring when j = 0 with probability π0.

We now rewrite this time evolution in vector form. Introduce

p (k, t) := (pi (k, t) , i = 1, ..., k)
′
,

with Qk the k × k upper Toeplitz-Hessenberg matrix with non-zero entries

Qk (1, 1) = 1− π1, Qk (1, j) = −πj , j = 2, ..., k and

Qk (i, i− 1) = −iπ0, Qk (i, i) = i (1− π1) ,

Qk (i, j) = −iπj−i+1, i = 2, ..., k; j = i+ 1, ..., k,

1The following results constitute the continuous-time version of similar results derived for
discrete-time BGW processes in [1].
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with r′k = (π0, 0, ..., 0)
2, we have the compact algebraic form (1′ = (1, ..., 1) denotes

the unit row vector)
.
p (k, t) = −Qkp (k, t) + rk, p (k, 0) = 1.

Note that, with k′ := (1, 2, ..., k) and Dk =diag(k), Qk = DkQk for some Qk

involving only the πj−i+1s and Qk = I − Pk for some substochastic matrix Pk

with Pk1 < 1. From this structure of Qk, this matrix is invertible with Q−1
k =

(I − Pk)
−1

D−1
k

and (I − Pk)
−1

a potential matrix. ✷

Proposition 4. The probability that, starting from i initial particles, the overall
maximum population size keeps bounded above by k for ever, is given by: pi (k) :=

e
′

iQ
−1
k rk = π0Q

−1
k (i, 1).

Remark: In particular, pk (k) = π0Q
−1
k (k, 1) is the probability that, starting from

k initial particles, the overall maximum population size keeps equal to k for ever.

Proof: The solution of the latter differential equation is

p (k, t) = e−Q(k)t1+

∫ t

0

dse−Qks
k rk = e−Qkt1+

(
I − e−Qkt

)
Q−1

k rk.

As t → ∞, pi (k, t) → e
′

iQ
−1
k rk = P (Nt ≤ k for all t ≥ 0 | N0 = i) where e

′

i =
(0, ..., 0, 1, 0, ..., 0) is the ith unit row vector of size k, with 1 in position i. Note
that pi (k)− pi (k − 1) is the probability that, starting from i initial particles, the
overall maximum population size is exactly equal to k. ✷

We now establish an interesting result on the joint probability of maximum size
and its time-of-reach:

Proposition 5. Starting from 1 ≤ i < k particles, the joint probability that the
maximum population size is k and that this maximum value is reached exactly at
time t for the first time is:

(3)


pi (k − 1, t)

k−1∑

j=1

je−tQk−1 (i, j)πk−j+1


 pk (k) .

Proof:

Let 1 ≤ i < k. The term e−tQk−1 (i, j) is the probability, starting from i particles,
that Nt = j < k given Ns ≤ k − 1 for all s ≤ t. The term pi (k − 1, t) is the
probability that Ns ≤ k−1 for all s ≤ t, so the product of the two is the probability,
starting from i particles, that Nt = j < k and Ns ≤ k − 1 for all s ≤ t. Recall

pi (k − 1, t) = e
′

i

(
e−Qk−1t1+

(
I − e−Qk−1t

)
Q−1

k−1rk−1

)
.

Now, if t is a branching time for any of the j particles alive at t−,

pi (k − 1, t)
k∑

j=1

je−tQk−1 (i, j)πk−j+1

2Here and throughout all the paper, a bold x represents a column vector with appropriate
dimension so that its transpose, say x′, is a row vector.
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is the probability (density) that the first hitting time of k is t and that k is the
maximal value over the past. Multiplying this probability by pk (k), the probability
that, starting from k initial particles, the overall maximum population size stays
lower or equal to k for ever in the future, and making use of the independence of
the past and the future gives the result. ✷

Remarks: (i) Integrating (3) with respect to t > 0, we obtain that

pi (k)− pi (k − 1)

is the marginal probability that the maximum population size is k ≥ i given N0 = i.

(ii) Summing (3) with respect to k ≥ i gives the marginal density of the first hitting
time of the maximum over the lifetime.

A second result on size and (this time) overshot time is:

Proposition 6. Starting from 1 ≤ i < k particles, the joint probability that the
maximum population size over the past is k and that this maximum value is overshot
exactly at time t for the first time is:

(4) − .
pi (k, t) pk (k) = e

′

ie
−Qkt (Qk1− rk) .

Proof:

Let 1 ≤ i < k. Because with τk = inf (s > 0 : Ns ≥ k | N0 = i) , defining the first
overshooting time of k, (Ns ≤ k for all s ≤ t | N0 = i) ⇒ (τk > t | N0 = i), pi (k, t)
is also P (Ns ≤ k for all s ≤ t and τk > t | N0 = i). We now have

.
pi (k, t) = e

′

ie
−Qkt (rk −Qk1)

with

− .
pi (k, t) = P (Ns < k for all s < τk and τk = t | N0 = i)

= e
′

ie
−Qkt (Qk1− rk) ,

the joint probability that, givenN0 = i < k, the maximum value of Nt over the past
is k and that the first overshooting time density of this value k occurs at τk = t.
Note that Qk1− rk > 0 as required from the substochasticity of Pk, if −

.
pi (k, t) is

to be the probability density of some event. ✷

We can now explicitely compute the Q−1
k (i, 1), required for instance in

P (Nt ≤ k for all t ≥ 0 | N0 = i) = π0Q
−1
k (i, 1) ,

i.e. the probability that, starting from i initial particles, the overall maximum pop-
ulation size remains bounded above by k for ever.

This is achieved by introducing the generating function for θ coefficients as a power
series:

θ (z) :=
∑

k≥1

θkz
k,
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with θ0 = 0, θ1 = ((1− π1) /π0) , θk = − (πk/π0), k ≥ 2. Of course we first have
the trivial determinantal identity

|Qk| = k! |I − Pk| .
From (2) in [9], we thus have the key expansion property expressing the generating
function for the determinants as inverse of the original generating function:

1

1− θ (z)
=
∑

k≥0

|Qk|
k!

(z/π0)
k
=
∑

k≥0

|I − Pk| (z/π0)
k
.

Thus |I − Pk| = πk
0

[
zk
] (

1
1−θ(z)

)
. By Faa di Bruno formula (see [4], p. 137) one

then has:

|I − Pk| = πk
0Bk (θ•)

where

Bk (θ•) =

k∑

l=1

Bk,l (θ•)

are the complete Bell numbers of the sequence θ• = (θ1, θ2, ...) , (see [4], p. 133),
obtained by summing the ordinary Bell polynomials Bk,l (θ•) in the indeterminates
θ•. Now

Q−1
k (i, 1) = (I − Pk)

−1
(i, 1) =

(−1)
i+1

|I − Pk|
C1,i,

where C1,i is the (1, i)−cofactor of I −Pk. Clearly now C1,i = (−π0)
i−1 |I − Pk−i|.

Using this, we finally obtain

pi (k) = π0Q
−1
k (i, 1) = π0

(−1)
i+1

|I − Pk|
C1,i = π0 (−1)

i+1
(−π0)

i−1 |I − Pk−i|
|I − Pk|

=
Bk−i (θ•)

Bk (θ•)
,

in terms of a ratio of Bell numbers.

Corresponding expressions can be obtained for Model 2, while plugging in the πks,
as given in (2).

For simplicity let us finally compute the exact values and asymptotic behaviour of
pi(k) for Model 1.

In the subcritical case (π0 > π2), with z− = π0/π2, we have

1

1− θ (z)
=

1

(1− z) (1− z/z−)
=

A

1− z
+

B

1− z/z−

where A = −z−/ (1− z−) and B = 1/ (1− z−). Thus

|I − Pk| = πk
0

π0

π0 − π2

(
1−

(
π2

π0

)k+1
)
,

leading to

pi (k) = π0Q
−1
k (i, 1) = π0 (−1)

i+1
(−π0)

i−1 |I − Pk−i|
|I − Pk|

=
1−

(
π2

π0

)k−i+1

1−
(

π2

π0

)k+1
.
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When k gets large, pi (k) ∼ 1−
(

π2

π0

)k−i+1

→ 1 and 1−pi (k) decreases geometrically

with k. The term 1− pi (k) is the probability that, starting from i initial particles,
the overall maximum population size overshoots k at least once in the BGW process
lifetime (before τe).

Let us now consider the critical case (π0 = π2). Setting π2 = π0 + ε in the latter
formula, we get

pi (k) ∼
ε→0

1−
(
1− ε

π2
(k − i+ 1)

)

1−
(
1− ε

π2
(k + 1)

) ∼
ε→0

1− i

k + 1
.

We conclude that 1 − pi (k) decreases algebraically like i/k with k, hence much
slower than in the subcritical case.

In the supercritical case (π0 < π2), if the process explodes, pi (k) = 0 and
conditioned on non-explosion, we are taken back to the previous subcritical study
with the new branching mechanism fρ (z) = ρ−1f (ρz) where ρ < 1 is the extinction
probability solving f (ρ) = ρ, here ρ = π0/π2. Thus fρ (z) = ρ−1f (ρz) = π2 +
π1z + π0z

2, exchanging the roles of π0 and π2.

3. Spatial branching process in dimension 1

We have until now dealt with zero-space dimension tree-like branching processes.
Let us move to aspects of the spatial BGW process, first of all restricted to one-
dimensional case. We shall revisit some results of [13] and extend them to a new
situation akin to Model 2. In such a spatial branching process, an Eve particle
diffuses according to one-dimensional standard Brownian motion (with diffusion
constant fixed to 1 without loss of generality). At some (mean one) exponential
time, it dies out giving birth in the process to M offspring; if M > 0, the daugh-
ter particles diffuse according to independent standard Brownian motions, started
where the mother particle died.

Let p (x) be the probability that the Eve particle starting at 0 has some descendant
ever diffusing above the threshold x ≥ 0. Then [13] p (x) solves (p (0) = 1)

(5)
1

2
p′′ − h (p) = 0 or p′ (x)

2 − 4

∫ p(x)

h (z) dz = Cte,

as a stationary solution of the Kolmogorov-Petrovsky-Piskounov equation, [10].

We note that p (x) is also the probability that the supremum of the positions of all
particles that appeared at any time exceeds x, so p (x) = 1− q (x) where q (x) is a
probability distribution function (which in particular is monotone non-decreasing).

Because p (x) →
x→∞

ρ, the limit p′ (x) should also exist and this limit is necessarily

0. These equations are then generically solved by inverting the quadrature:

x =
1

2

∫ 1

p(x)

H (y)
−1/2

dy,

where H (y) =
∫ y

ρ h (z) dz. Let us investigate p (x) for the previous two examples:
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Consider first Model 1.

Proposition 7. -a) In the subcritical case µ < 1 and ρ = 0 :

H (y) = (1−µ)
2 y2

(
1 + 2π2y

3(1−µ)

)
. Then

p (x) =
4AE (x)

c (1−AE (x))
2

where E (x) = exp
(
−
√
2 (1− µ)x

)
, c = 2π2

3(1−µ) and A =
(√

1 + c− 1
)2

/c.

Note that p (x) has exponential tails with scale factor xc = 1/
√
2 (1− µ) and

p (0) = 1.

-b) In the critical case µ = 1 and ρ = 0 : Here p (x) = (1 + x/xc)
−2 hence p (x)

decays algebraically at infinity with exponent 2. The scale factor is xc =
√
3/π2/4.

-c) In the supercritical case µ > 1 and 1 > ρ > 0 : Here, with ρ = 1 − π0/π2,

p (x) = ρ+O
(
e−x/xc

)
, where xc = 1/

√
2h′ (ρ).

Proof:

-a) and -b) follow by direct computations. Concerning -c), p (x) has an atom at
infinity which is the probability of explosion of the underlying branching process
and the remaining tails are exponential. Indeed, letting p (x) − ρ = p̃ (x), p̃ (x)
solves 1

2 p̃
′′−h (p̃+ ρ) = 0 which for small p̃ (large x) is 1

2 p̃
′′−h′ (ρ) p̃ = 0, recalling

h (ρ) = 0. One can check that h′ (ρ) = π2 −π0 > 0 and so p̃ is exponential with the
right scale factor. ✷

As observed in [13], any branching model for which f (z) = π0+π1z+π2z
2+O

(
zγ

′

)

with γ′ > 2, will display similar tail behaviors.

Let us now move to Model 2.We get:

Proposition 8. -a) In the subcritical case µ < 1and ρ = 0 :

H (y) = (1−µ)
2 y2

(
1 + 2Cyγ−1

(γ+1)(1−µ)

)
. One computes:

p (x) =

(
4AE (x)

c (1−AE (x))
2

)1/(γ−1)

where:

E (x) = exp
(
− (γ − 1)

√
2 (1− µ)x

)
, c = 2C

(γ+1)(1−µ) and A =
(√

1 + c− 1
)2

/c;

p (x) has again exponential tails with scale factor xc = 1/
√
2 (1− µ).

-b) In the critical case µ = 1 and ρ = 0 : We get p (x) = (1 + x/xc)
−2/(γ−1)

and
p (x) decays algebraically at infinity with exponent 2/ (γ − 1) . The scale factor is
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xc =
√
(γ + 1) /C/ (γ − 1).

-c) In the supercritical case µ > 1 and 1 > ρ > 0 : Setting ρ = ((µ− 1) /C)
1/(γ−1)

,

one has p (x) = ρ + O
(
e−x/xc

)
, where xc = 1/

√
2h′ (ρ). p (x) has an atom at

infinity which is the probability of explosion (non-extinction) and the remaining
tails are exponential.

Proof:

Statements -a) and -b) are obtained by direct computations. To get statement
-c), setting as before p (x) − ρ = p̃ (x), p̃ (x) solves 1

2 p̃
′′ − h (p̃+ ρ) = 0 which for

small p̃ (large x) is 1
2 p̃

′′ − h′ (ρ) p̃ = 0, recalling h (ρ) = 0. One checks that here
h′ (ρ) = (µ− 1) (γ − 1) > 0 and p̃ is exponential with the claimed scale factor,
different from the scale factor obtained in the subcritical case. ✷

The quantity p (x) is equivalently the probability that an Eve particle started at
x ≥ 0 has some descendant ever diffusing below the threshold x = 0. This way of
thinking p (x) also pertains to dimensions not equal to one which we move to now.

4. Spatial branching process in dimension d 6= 1

Let P (x) be the probability that some particle started at x in R
d (d = 2, 3, ...)

has some descendant ever diffusing within a ball of radius ε > 0 around the ori-

gin, with x := ‖x‖2 =
(∑d

i=1 x
2
i

)1/2
> ε. Then, from [13], introducing ∆ as the

d−dimensional Laplacian, P (x) solves 1
2∆P − h (P ) = 0 and in view of rotational

invariance, p (x) := P (‖x‖2) solves

(6)
1

2
p′′ +

d− 1

2x
p′ − h (p) = 0,

We impose the boundary conditions p (ε) = 1 and p (∞) = 0 for consistency with
the probabilistic interpretation of p. Indeed this modified construction is dictated
by the fact that d−dimensional branching Brownian motion with d = 2, 3, ... has
zero probability to meet the origin. 1

2∂
2
x + d−1

2x ∂x is the Bessel generator of the
modulus of a d−dimensional Brownian motion. Thus p (x) is the probability that
the full trail of the d−dimensional branching Brownian motion ever happened to
be at distance to the origin less than ε. Hence the boundary conditions.

This construction can be extended to non-integer d(≥ 2) as follows. Let Rt =

exp (Bt + at) and Xt = Rτt
where τ t =

∫ t

0
X−2

s ds and Bt is the standard Brownian
motion. Assume a ≥ 0. Then the infinitesimal generator of Xt > 0, as a time-
changed geometric Brownian motion R with non-negative drift, is [7]

1

2
∂2
x +

(2a+ 1)

2x
∂x,

so it is the generator of some Bessel process (say BSd), with ‘dimension’ parameter
d = 2 (a+ 1) ≥ 2, not necessarily an integer.

Proposition 9. Denote by p (x) the probability that some branching 1−dimensional
BSd particle system, started at x > 0, has some descendant ever diffusing below ε
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(x > ε > 0). Then p (x) solves

1

2
p′′ +

d− 1

2x
p′ − h (p) = 0,

with p (ε) = 1 and p (∞) = 0.

The BSd process X is well-defined even if d > 1 then with E
(∫ t

0 ds/Xs

)
< ∞, and

also even if d > 0, [6]. We also recall some basic properties of BSd processes with
respect to their dimension d as from [12]:

- For d > 2, the process BSd is transient.

- For d ≥ 2 the point 0 is polar and for d ≤ 1 it is reached almost surely.

- For 0 < d < 2, BSd is recurrent (null recurrent if d ∈ (1, 2], positive recurrent
otherwise); the point 0 is instantaneously reflecting.

We are now in a position to extend the interpretation of the latter differential
equation describing the BSd process X when d is non integer. Integer values of
d all correspond to a d−dimensional Brownian motion with full rotational invari-
ance and the occurrence of d in the differential equation follows from the reduction
of a d−dimensional Laplacian to invariant configurations. We consistently con-
jecture that non-integer values of d similarly characterize Brownian motion on a
fractal-type background (possibly relevant in epidemics propagation description)
again with a full ‘rotational” invariance, here by the simplest analytic continuation
of the differential equation to non-integer values of d (More complicated analytic
extensions involving additional, real-periodic functions may be considered but they
shall not be addressed here). This bears some technical resemblance with proce-
dures in quantum field theories such as dimensional regularization. This conjecture
is strongly borne out by the following checks: starting from the definition of spher-
ically symmetric random walks in non-integer dimensions d by Bender et al. [3]
and taking the large (continuous) limit of radii of the nested d-dimensional spheres
between which the particle random-walks, one recovers exactly the drift contribu-
tion d−1

2x and the constant unit local variance term in the second-order differen-
tial operator generating BSd. Following this interpretation, the BSd process Xt

may be viewed as the modulus of some isotropic d−dimensional diffusion process,
evolving in a d−dimensional space for which the surface of a ball with radius x is
2πd/2xd−1/Γ (d/2).

We shall now study equation (6) when h (z) = (1− µ) z + Czγ , γ ∈ (1, 2). It is
not solvable contrary to the d = 1 case, except for integer values of γ (elliptic
functions for γ = 3, hyperelliptic functions for γ = 4, 5 · · · . These integer values
however lie beyond the interval of relevance for the probabilistic interpretation of
the model. It must be however suggested that rational values of γ lying in the
relevant open interval (1, 2) may still lead to solutions with some interpretation in
algebraic geometry (multiple coverings of elliptic or Prym manifolds).

Anyway here we limit ourselves to the sole asymptotic analysis (large x) form of
the solutions with the suitable limit behavior p (∞) = 0 (except in one case).

The case γ = 2 (Model 1) has been analyzed to a large extent (in the critical
regime) by [13]. Some further extensions of the binary branching model (either
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subcritical or critical) has also been reported in [5], in the d = 2 dimensional case,
involving a deep study of the dynamics of both perimeter and area of the convex
hull of the BBM trail.

4.1. Subcritical case (µ < 1). Recalling again the asymptotic limit behavior
p (∞) = 0 we conclude that the higher power term Czγ is to be dropped when
analyzing around ∞. The large x (small p) solutions are thus governed by

1

2
p′′ +

d− 1

2x
p′ − (1− µ) p = 0,

which can be mapped into a modified Bessel equation, (see [2], p. 117). Indeed,
with α, β some constants, let

p (x) = xαJα (βx) ,

where Jα (x) obeys J ′′
α + J ′

α/x +
(
1− α2/x2

)
Jα = 0, as a Bessel function of the

first kind, of order α. Then p obeys

p′′ − 2α− 1

x
p′ + β2p = 0.

Setting α = (2− d) /2 and β = i
√
2 (1− µ) =: iγ and recalling that Iα (x) =

i−αJα (ix) is the modified Bessel function of the first kind of order α, we get:

p (x) = xα (A1Iα (γx) +A2Kα (γx)) ,

where Kα (x)is the modified Bessel function of the second kind of order α.

Recalling Kα (x) ∼ e−x
√
π/ (2x) near x = ∞ and keeping only the decaying factor

at ∞, we establish:

Proposition 10. In the subcritical case, p(x) behaves for large x as

p (x) ∼ A2x
αKα (γx) ∼ λx−(d−1)/2e−

√
2(1−µ)x, λ > 0

Compared to the exact d = 1 case studied before, the asymptotics of p (x) exhibit
an extra x−(d−1)/2power term.

4.2. Critical case (µ = 1). In this case, h (p) = Cpγ . A conformal covariance
property then arises:

Proposition 11. If p is a solution of (6) with h (p) = Cpγ, then, for all λ > 0,

pλ (x) = λ2/(γ−1)p (λx) are also solutions. The constant 2/ (γ − 1) is the conformal
weight for p.

This will play an important role in the next analysis. In particular the conformal
invariant solution m (x) = x−2/(γ−1), will appear.

4.2.1. Behavior of p near infinity. We first assume an asymptotic power-law form
p ∼ λx−α, α, λ > 0, leading to

λαx−(α+2) (α+ 2− d)− 2Cλγx−γα = 0.
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Let us first analyze the power-law behaviour. We need to impose α + 2 ≤ γα,
otherwise the dominant term would be the unique one x−γα, which would be in-
consistent. So α ≥ 2/ (γ − 1) .

- Suppose first α > 2/ (γ − 1) . Then necessarily the power-law exponent is α = d−2
and this regime occurs when d > dc := 2 + 2/ (γ − 1) . Note that there is no speci-
fication of what λ is (except of course for λ > 0).

- Suppose now α = 2/ (γ − 1) . Then the two power terms contribute equally likely
and the solution asymptotically behaves like the conformally invariant monomial

m (x) = x−2/(γ−1), obeying m (x) = λ2/(γ−1)m (λx).

We can now discuss the scale factor λ .

* Suppose first d 6= α+2; then we also need to have d < dc = 2+α = 2+2/ (γ − 1)
in addition with

λα+ (α+ 2− d) = 2Cλγ ,

leading to λ = (α (α+ 2− d) /C)1/(γ−1) = ((dc − d) / ((γ − 1)C))1/(γ−1) .

* Suppose now d = α+2; then d = dc and we have to try the enhanced asymptotic

form p ∼ λx−α (log x)β , α = dc − 2, λ > 0. We get

d− 1

x
p′ ∼ λ (dc − 1)x−(α+2)

(
β (log x)

β−1 − α (log x)
β
)

p′′ ∼ λx−(α+2)
(
α (α+ 1) (log x)

β − β (2α+ 1) (log x)
β−1

+ β (β − 1) (log x)
β−2
)
.

Plugging these estimates into p′′ + d−1
x p′ − 2h (p) = 0, the (log x)

β
terms cancel,

leading to

−αλβx−(α+2) (log x)β−1 − 2Cλγ (log x)βγ x−αγ = 0,

discarding the (log x)
β−2

term as compared to (log x)
β−1

. Observing αγ = α + 2,
this can be achieved only if βγ = β − 1, so if β = −1/ (γ − 1) . The constant λ is

also determined by λγ−1 = −αβ/ (2C), so λ =
(
C (γ − 1)

2
)−1/(γ−1)

.

To summarize:

Proposition 12. In the critical case, the behavior of p(x) for large x depends on
the value of the dimension d with respect to a critical dimension dc := 2+2/ (γ − 1).

• if d > dc, p ∼ λx−(d−2) with λ > 0 being left unspecified.

• if d = dc, p ∼ λ
(
x−2/ log (x)

)(dc−2)/2
with λ =

(
C (γ − 1)2

)−1/(γ−1)

.

• if d < dc, p ∼ λx−2/(γ−1) with λ = ((dc − d) / ((γ − 1)C))
1/(γ−1)

.

4.2.2. Behavior of p near the origin. Although this question does not necessarily
make sense in our probabilistic context because p (x) is intrinsically defined for
x > ε, it turns out that the formal analysis of p (x) near the origin is possible.
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We first try the asymptotic power-law form p ∼ λx−β , β, λ > 0, leading to

λβx−(β+2) (β + 2− d)− 2Cλγx−γβ = 0.

Once again we first analyze the power-law behaviour. We need to impose β+2 ≥ γβ,
otherwise the dominant term would be the unique one x−γβ , which would fail. So
β ≤ 2/ (γ − 1) .

- Suppose first β < 2/ (γ − 1) . Then necessarily the power-law exponent is β = d−2.
This regime occurs when 2 < d < dc := 2 + 2/ (γ − 1) . Note that there is again no
specification of what λ is (except of course for λ > 0).

- Suppose now β = 2/ (γ − 1) . Then the two power terms contribute equally likely
and we are back to the conformally invariant solution.

Let us now discuss the scale factor λ.

* Suppose first d 6= β+2; then we also need to have d < dc = 2+β = 2+2/ (γ − 1)
in addition with

λβ + (β + 2− d) = 2Cλγ ,

leading to λ = (β (β + 2− d) /C)
1/(γ−1)

= ((dc − d) / ((γ − 1)C))
1/(γ−1)

.

* Suppose now d = β + 2; then d = dc and we try the asymptotic form p ∼
λx−β (− log x)

δ
, β = dc − 2, λ > 0. We get

d− 1

x
p′ ∼ λ (dc − 1)x−(β+2)

(
−δ (− log x)δ−1 − β (− logx)δ

)

p′′ ∼ λx−(β+2)
(
β (β + 1) (− logx)

δ
+ δ (2β + 1) (− log x)

δ−1
+ δ (δ − 1) (− logx)

δ−2
)
.

Plugging these estimates into p′′ + d−1
x p′ − 2h (p) = 0, the (− log x)

β
terms cancel

again, leading to

λβδx−(β+2) (− log x)
δ−1 − 2Cλγ (− log x)

δγ
x−βγ = 0,

discarding the (− log x)δ−2 term compared to (− logx)δ−1 when x is small. Ob-
serving βγ = β+2, this could be achieved only if δγ = δ− 1, so if δ = −1/ (γ − 1) .

The constant λ should also be determined by λγ−1 = βγ/ (2C) and because β < 0,
λ cannot be real 3.

Interestingly enough we may also define consistent solutions of the alternative as-
ymptotic form p ∼ c

(
1 + λxβ

)
for some constants c, β > 0. To leading order, we

need to have
λcβ (β + d− 2)xβ−2 = 2cγ

which also requires β = 2 together with λ = cγ−1/d > 0.

To summarize:

3There exist solutions with a complex prefactor which we disregard, due to their lack of physical
meaning so far, in particular because it hampers an interpretation of p as a probability.
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Proposition 13. In the critical case, the behavior of p(x) near x = 0 also depends
on the value of the dimension d with respect to the critical dimension dc (with
dc = 2 + 2/ (γ − 1))

• if 2 < d < dc, p ∼ λx−(d−2) with λ > 0 being left unspecified.

• if 0 < d < dc, p ∼ λx−2/(γ−1) with λ = ((dc − d) / ((γ − 1)C))
1/(γ−1)

.
• if d > 0, p ∼ c

(
1 + λx2

)
with c > 0 and λ = cγ−1/d.

• if d = dc, there is no real solution of the form λx−β (− logx)δ with β, δ, λ
real. A solution nevertheless exists, albeit with λ complex.

• if d > dc, there is no real solution either.

4.3. Supercritical case (µ > 1). We must slightly modify the asymptotic behav-
ior at infinity in this case by substracting a non-zero asymptotic limit corresponding

to the zero of the potential term. Defing accordingly ρ = ((µ− 1) /C)
1/(γ−1)

, let
p (x)−ρ = p̃ (x). Then p̃ (x) solves 1

2 p̃
′′+ d−1

2x −h (p̃+ ρ) = 0 which for small p̃ (large

x) is 1
2 p̃

′′+ d−1
2x −h′ (ρ) p̃ = 0, recalling h (ρ) = 0. Recall h′ (ρ) = (µ− 1) (γ − 1) > 0.

The large x (small p̃) solutions of p̃ are thus governed by

1

2
p̃′′ +

d− 1

2x
p̃′ − h′ (ρ) p̃ = 0,

which can be mapped into a modified Bessel equation as before, but now with
β = iγ and γ =

√
2h′ (ρ).

Proceeding similarly as in the subcritical case, we now get (λ > 0)

p̃ (x) ∼ A2x
αKα (γx) ∼ λx−(d−1)/2e−

√
2(µ−1)(γ−1)x.

Finally, we obtained

Proposition 14. In the supercritical case, p(x) behaves for large x as

p (x) ∼ ((µ− 1) /C)1/(γ−1) + λx−(d−1)/2e−
√

2(µ−1)(γ−1)x.

Again, as compared to the d = 1 case studied before, the asymptotics of p (x) has
an extra x−(d−1)/2 power factor in the corrective term p̃ (x).

Let us supply a final result pertaining to the supercritical regime: conditionally
given the extinction time is finite, the underlying branching process is subcritical
with offspring pgf fρ (z) := ρ−1f (ρz) , obeying fρ (1) = 1, f ′

ρ (1) = f ′ (ρ) < 1.

Recalling f (z) = 1− µ (1− z) +C (1− z)
γ
where µ/γ > C > µ− 1 and γ ∈ (1, 2) ,

we indeed get f ′
ρ (1) = f ′ (ρ) = µ−Cγργ−1 = µ− γ (µ− 1) < 1. Defining hρ (z) :=

fρ (1− z)− (1− z), we get

hρ (z) = (1− µ) z + C
ργ

ρ

((
1 +

ρ

ρ
z

)γ

− 1

)
,

which is regular near z = 1.

We have fρ (z) ∼z=0 ρ−1 (1− µ+ C) + (µ− Cγ) z + ρCγ (γ − 1) z2/2 +O
(
z3
)
, so

we are in the domain of attraction of the subcritical model studied in Section 3.1.
Defining µρ := µ − γ (µ− 1), and applying the results of Section 3.1, we conclude
that
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Proposition 15. Conditionally given that the supercritical branching process sur-
vives

p (x) ∼ λ

ρ
x−(d−1)/2e

−

√

2(1−µρ)x =
λ

ρ
x−(d−1)/2e−

√
2(γ−1)(µ−1)x, λ > 0,

displaying the modified scale factor xc = 1/
√
2 (γ − 1) (µ− 1).

Remark: Let:

xV =

(
πd/2

Γ (d/2 + 1)

)−1/d

and xS =

(
2πd/2

Γ (d/2)

)−1/(d−1)

.

If the epidemics starts at distance x of the origin, the tail probability of its spatial

extension in d−dimensional space for which the volume of a ball is V = (x/xV )
d

will be: P(V > v) ∼ p(xV v
1/d), v > 0 large, where the large x behaviors of p(x) are

given in Propositions 10− 12 and 14. Similarly, the tail probability of the area of
the boundary S of the d−dimensional sphere V will be P(S > s) ∼ p(xSv

1/(d−1)),
s > 0 large.
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