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DYNAMICS OF A POINT VORTEX AS LIMITS
OF A SHRINKING SOLID IN AN IRROTATIONAL FLUID

OLIVIER GLASS, ALEXANDRE MUNNIER, AND FRANCK SUEUR

ABSTRACT. We consider the motion of a rigid body immersed in a two-dimensional perfect fluid. The
fluid is assumed to be irrotational and confined in a bounded domain. We prove that when the body
shrinks to a pointwise massless particle with fixed circulation, its dynamics in the limit is given by the
point vortex equation.

As a byproduct of our analysis we also prove that when the body shrinks with a fixed mass the
limit equation is a second-order differential equation involving a Kutta-Joukowski-type lift force, which
extends the result of [7] to the case where the domain occupied by the solid-fluid system is bounded.

Date: February 21, 2014.
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Allowed configurations

Qs: set of points at distance § from the boundary,
5: set of body positions at distance § from the

boundary,

Q5: set of body positions of size O(e) at distance §
from the boundary,

Q: set of body positions without collision,

Q°: set of body positions of size O(e) without
collision,

s: bundle of shrinking body positions at distance §
from the boundary,

£: bundle of shrinking body positions without
collision,

5,2, bundle of shrinking body positions at distance
0 from the boundary with ¢ < g, 12

Christoffel symbols

I': Christoffel symbols, [7]

I's: Christoffel tensor related to the rotation of the
shrinking body,
5a: Rescaled Christoffel tensor omitting the solid
rotation,

I's: Christoffel tensor related to the solid rotation,
1

Tsq: Christoffel tensor omitting the solid rotation,

o

Densities
phe: density associated with s, B4l
pE.: density associated with 1%, 34
pc: density on C,
Domains
Q: fixed domain occupied by the whole system, (]
F(q): fluid domain associated with the solid position
q,
Fo: domain initially occupied by the fluid, []
S(q): solid domain associated with the solid position
q
S¢: position of the shrinking solid,
S§: initial position of the shrinking solid,
So: domain initially occupied by the solid, @

Electromagnetic fields
B(q): magnetic-type field acting on the solid,
B*®(q): magnetic-type field acting on the shrinking
solid,
E(q): electric-type field acting on the solid , 8]
E°(q): electric-type field acting on the shrinking
solid , [53]
Ei(q): weakly gyroscopic subprincipal term,
El(q): drift subprincipal term,
Energy
—1/C%(q): condenser capacity of S°(¢q) in €,
U(q): potential energy,
U#(q): potential energy of the shrinking solid,

gs(qm): modified renormalized energy of the
shrinking solid,

£%(q,p): renormalized energy of the shrinking solid,
I8

E(q,p): total energy,

E%(q,p): total energy of the shrinking solid,

Ey(e,7°): modulated energy,

Clag: value on Sy of 15a, [

Force
Fysa.9(p): force term when Q = R?, [[3
F(q,p): total force acting on the solid,
F*(q,p): total force acting on the shrinking solid, 241

Geometry
o: capacity variance of Sp,
o®: symmetric part of o,
T: tangential vector,
n: normal vector,
ds: surface element,
C: smooth Jordan curve, 27]
¢: conformal center of Sp, [I4]
Co: conformal center of Sy rotated of 9,
Capg,: logarithmic capacity of So,
Capyq: logarithmic capacity of 09, @

Impulse

P, sa,9: translation impulses when Q = ]R27 13

II and P: total angular and translation impulses, [7]

II, and P,: added angular and translation impulses,
@

II; and Py: genuine angular and translation
impulses, [7]

Inertia

J¢: moment of inertia of the shrinking solid,

M: total inertia of the solid, [Tl

M added inertia of the shrinking body, B8]

M, added inertia, [

My genuine solid inertia, [7]

J solid’s moment of inertia,

m: solid’s mass,

m®: mass of the shrinking solid,

Mg, sa: added inertia of the solid when Q2 = R27 13

My(g): universal inertia matrix,

MT: real traceless symmetric 2 x 2 matrix built on
the added-mass coefficients of the case ) = ]Rz,

Mg: Conjugate matrix of MT by the rotation of
angle 9.,

Miscellaneous
~: circulation, [G]
m: fluid pressure,
e: typical size of the solid,
G: Newtonian potential, [I0]
H*(C): Sobolev space of order s on C,
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I.: multiplication by ¢ of the first line,

Position

R(I¥): 3 x 3 rotation matrix of angle ¥,

R(¥Y): 2 x 2 rotation matrix of angle ¥,

¥: rotation angle of the solid,

h: position of the center of mass,

q: body position, [0l

q°: position of the shrinking solid,

t: time, [l

x: space position,

e1,es: unit vectors of the canonical basis,

h(;y: limit position of the center of mass in Case (i),[d

hyisy: limit position of the center of mass in Case (i),

Stream and potential functions

©(q,-): vector containing the three Kirchhoff
potentials, [7]

@aq: vector containing the three Kirchhoff potentials
when Q = R? [I3]

1°(gq, -): circulatory part of the stream function of
the shrinking solid,

1. circulatory part of the stream function,

1q: Routh’ stream function,

3s: Routh’ stream function,

©5(q,-) (j = 1,2,3) : Kirchhoff’s potentials of the
shrinking body,

wilg,-) (4 =1,2,3) : Kirchhoff’s potentials, []

paa,; (j =1,2,3) : Kirchhoff’s potentials when
Q=R? D3

W,.: corrector stream function,

©°(q,-): vector containing the three Kirchhoff
potentials,

%;(q,-): functions harmonically conjugated to the
Kirchhoff’s potentials ¢5(q, ), up to a rotation,

P ;: functions harmonically conjugated to the
Kirchhoff’s potentials paq ; when Q = R? E3l

¥Es(q,-): kth-order profile, defined in Q, BTl

¥Eo(q,-): kth-order profile, defined in R? \ So,

P'(¢, X): harmonic polynomial extending (g, -)
iIl S()7 BI'

SL[pc]: single-layer potential of density pe,

Velocity

£: solid’s center of mass velocity,

w: modulated rotation solid velocity,

@®: solid rescaled angular velocity,

p°: solid velocity with rescaled angular velocity, [IG]

w: body angular velocity,

p: body velocity,

p°: velocity of the shrinking solid,

u: fluid velocity,

ug: Routh’ velocity, [0

Uet corrector velocity,

0¢: shrinking solid’s center of mass velocity drifted
by the Routh and the corrector velocities, 21]

OF A SHRINKING SOLID IN AN IRROTATIONAL FLUID

A shrinking solid’s velocity drifted by the Routh
and the corrector velocities, 211

£¢: shrinking solid’s center of mass velocity drifted
by the Routh velocity, 21

¢: shrinking solid’s velocity drifted by the Routh
velocity, 211

&;: elementary rigid velocities,

K%(q,-): normal trace of elementary rigid velocities
on 9S8°(q),

K;(q,-): normal trace of elementary rigid velocities,
@

?: solid’s center of mass velocity drifted by the
Routh and the corrector velocities,

5
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1. INTRODUCTION

The vortex point system is a classical playground which originates from fluid mechanics and goes
back to Helmholtz, Kirchoff, Routh, and Lin. It appeared as a idealized model where the vorticity
of an ideal incompressible two-dimensional fluid is concentrated in a finite number of points. Despite
the fact that it does not constitute a solution of the Euler equations in the sense of distributions, it
is now well-known that point vortices can be viewed as limits of concentrated smooth vortices which
evolve according to the Euler equations. In the case of a single vortex moving in a bounded and
simply-connected domain this was proved by Turkington in [22]. An extension to the case of several
vortices was given by Marchioro and Pulvirenti, see [15]. Recently Gallay has proven in [6] that the
vortex point system can also be obtained as vanishing viscosity limits of concentrated smooth vortices
evolving according to the incompressible Navier-Stokes equations.

The main goal of this paper is to prove that the vortex point system can also be viewed as the limit
of the dynamics of a solid, shrinking into a pointwise massless particle with fixed circulation, in free
motion in an irrotational fluid.

Actually our analysis also allows to cover another asymptotic regime corresponding to the shrinking
of a solid with fixed mass and circulation. In this case we obtain at the limit a second-order differential
equation involving a Kutta-Joukowski-type lift force, which extends the result of [7] to the case where
the solid-fluid system is bounded. Indeed this second case is way easier to tackle and we will therefore
present it first in the sequel as a warm up before the difficulties appearing in the massless case.

We will consider the same setting than Turkington in [22], that is we assume that the fluid is ideal,
confined in a two-dimensional bounded domain and we consider the motion of a single solid immersed
in it. Moreover the flow is supposed to be irrotational.

We are interested in determining the limit of the dynamics of the solid when its size goes to 0,
distinguishing two cases:

e Case (i): when the mass of the solid is fixed (and then the solid tends to a mass pointwise
particle), and

e Case (ii): when the mass tends to 0 along with the size (and then the solid tends to a massless
pointwise particle). This encompasses the case of fixed density.

1.1. Dynamics of a solid with fixed size and mass. To begin with, let us recall the dynamics
of a solid with fixed size and mass. We denote by €2 the bounded open regular connected and simply
connected domain of R? occupied by the system fluid-solid.

We assume without loss of generality that

0eQ,
and that the logarithmic capacityl] Capyq of 012 satisfies
Capyn < 1,

using translation and dilatation of the coordinates system if necessary. At the initial time, the domain
of the solid is a non-empty closed regular connected and simply connected set So C 2 and

]:0 = Q\S(],

lalso called external conformal radius or transfinite diameter in other contexts [21]
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is the domain of the fluid. Observe that the monotony property of the logarithmic capacity entails
that Capyg, < 1.

There is no loss of generality in assuming that the center of mass of the solid coincides at the initial
time with the origin.

The rigid motion of the solid is described at every moment by a rotation matrix

_|ecosd(t) —sind(t)
R()) = sind(t) cosd(t) |’

describing the rotation of the solid with respect to its original position and a vector h(t) € R? describing
the position of the center of mass. The domain of the solid at every time ¢t > 0 is therefore

S(t) := R(V(t))So + h(t),
while the domain of the fluid is
F(t) =2\ S(@).
The fluid-solid system is governed by the following set of coupled equations:

Fluid equations:

(1.1a) %+(U'V)U+V7T:0 in F(t),
(1.1b) divu =0 in F(t),
Solid equations:
(1.1c) vV =w, h={,
(1.1d) ml' = / mnds,
85(t)
(1.1e) Juw' = / (x — h(t))*t - Tnds,
85(t)
Boundary conditions:
(1.1f) u-n=(wi--h)T+-n on 9S(t),
(1.1g) u-n=0 on 092,
Initial data:
(1.1h) U= = UQ in Fy,
(1.11) ¥(0) =0, h(0) =0, £(0) = £y, w(0) = w.

Above u = (uj,u2) and 7 denote the velocity and pressure fields in the fluid, m > 0 and J > 0
denote respectively the mass and the moment of inertia of the body while the fluid is supposed to be
homogeneous of density 1, to simplify the notations. When 2 = (z1,x2) the notation 2 stands for
xt = (—x9,21), n denotes the unit normal vector pointing outside the fluid, £(t) = h/(t) is the velocity
of the center of mass h(t) € R? of the body and w(t) € R denotes the angular velocity of the rigid
body at time t. Let us also emphasize that we will use ds as surface element without any distinction

on 09, S(t) and on 9Sy.

Let us recall that if the flow is irrotational at the initial time, that is if curlug = 0 in Fy, it will
remain irrotational for every time, that is

(1.2) curlu(t,-) = 0 in F(t),
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according to Helmholtz’s third theorem. On the other hand the circulation around the body is constant
in time:

(1.3) /as(t) u(t) - Tds =7,

with

04 :/ ug - 7ds,
9Sp

according to Kelvin’s theorem. Here 7 denotes the unit counterclockwise tangential vector so that
n = 7+. Let us mention here that we will also use the notation 7 on 9Q such that n := 7 so that it
is clockwise.

In the irrotational case, the system (LI]) can be recast as an ODE whose unknowns are the degrees
of freedom of the solid, namely ¢ and h. In particular the motion of the fluid is completely determined
by the solid position and velocity. In order to state this, let us introduce the variables

h:=(hi,h2), q:=(9,h1,he) € R,
and their time derivatives
0= (01,0), pi=(w,l1,0ls) € R’

Since the domains S(t) and F(t) depend on ¢ only, we shall rather denote them S(¢) and F(g) in the
rest of the paper. Since throughout this paper we will not consider any collision, we introduce:

(1.4) Q:={q R’ : d(S(q),09) > 0},
where d(A, B) denotes for two sets A and B in the plane
d(A,B) := min{|z — y|g2, x € A, y € B}.
Above and all along the paper we will use the notation | - |ga for the Euclidean norm in R%. Since Sy

is a closed subset in the open set € the initial position ¢(0) = 0 of the solid belongs to Q.

Now we will need to introduce various objects depending on the geometry and on m, 7, v, in order
to make the ODE explicit.

Kirchhoff potentials. Consider the functions &;, for j = 1,2, 3, defined for (¢,x) € Ugegq ({q} X f(q)),
by the formula
(1.5) &1(q,2) := (x — h)* and &(q, ) == e;_1, for j = 2,3.

Above ey and es are the unit vectors of the canonical basis. For any j = 1,2,3, for any ¢ in Q, we
denote by Kj(q,-) the normal trace of {; on 92U 0S(q), that is:

(1.6) Kj(q,-) :==n-&;(q,-) on 00U IS(q).

We introduce the Kirchhoff’s potentials ¢;(q, ), for j = 1,2,3, which are the unique (up to an additive
constant) solutions in F(q) of the following Neumann problem:

(1.7a) Ap; =0 in 7(q),
(1.7) 000 = Kyla,)  on 05(a),
(1.7¢) %(q, )=0 on 0.
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We also denote
(1.8) K(q,") :== (Ki(q,"), Ka(q,-), K3(g,-))" and o(q,-) := (¢1(q,-), ¥2(q, "), ¢3(q, )",

where the exponent ¢ denotes the transpose of the vector.
Inertia matrices and impulses. We can now define the mass matrices

J 0 0
(1.9a) Mg=[0 m 0],
0 0 m
o
1.9b M, (q ::/ w(q,") ® =—(q,-)ds = Vi, - Vy;dx ,
(1.9) @i [ eladegrads=( [ pa)
(1.90) M(q) = M, + Ma(g).

The matrix M(q) corresponds to the sum of the genuine inertia M, of the body and the so-called
added inertia M,(q), which, loosely speaking, measures how much the surrounding fluid resists the
acceleration as the body moves through it (since it needs to be accelerated as well). Both M, and
M,(q) are symmetric and positive-semidefinite, and M, is definite. The index “g” above stands for
“genuine”, and the index “a” for “added”.

We also introduce the impulses:

o () = () = (3)- (%)

Christoffel symbols. We can then define the bilinear symmetric mapping I'(¢) associated with M (q)
by the formula

(1.11a) (T(@).p.p) = D> TFi(@pwp; €R?,
1<i,j<3 L<h<3

where, for every i, j,k € {1,2,3}, we set

(1.11b) Ihy(a) = 5 (M) + M), — M) ) (@)
where (Ma)f ; denotes the partial derivative with respect to gx of the entry of indexes (i,7) of the
matrix M,, that is
O(My);.;
1.11 M,)F, = 220
(1110 ()t = 2o

With a slight imprecision, we call the coefficients Ff’ ; the Christoffel symbols associated with the mass

matrix. Usually, one should multiply by M (g)~' the right hand side (LIIB)) considered as a column
vector indexed by k to get the standard Christoffel symbols.

We underline that since the genuine inertia M, of the body is independent of the position ¢ of the
solid, only the added inertia is involved in the Christoffel symbols.

Stream function for the circulation term. Now we can introduce a function v as follows. For every
q € Q, there exists a unique C'(¢) € R such that the unique solution (g, -) of the Dirichlet problem:

(1.12a) AY(g,)) =0 in F(q)

(1.12D) ¥(g,") =C(q) ondS(q)
(1.12¢) ¥(g,-) =0 on 052,
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satisfies
(1.12d) / a—w(q, )ds = —1.
0S(q)

This can be seen easily by defining the corresponding harmonic function &(q, -) with T/N)(q, =1
on 9S(q) and ¢(g,-) = 0 on 9Q and renormalizing it (using the strong maximum principle gives
g—ﬁ(q, ) < 0 on 9S(q) so that fas(q) g—iﬁ(q, )ds < 0).

The function C(g) is actually the opposite of the inverse of the condenser capacity of S(¢) in €,
that is, of f]_-(q) |Vi(q,-)|? dz. Observe that

(1.13) weQ == [ v far<o
q
(1.14) C € C*(Q;(—00,0)) and depends on Sy and €.

Regarding (LI4]) and similar properties below of regularity with respect to shape, we refer to [I1].

Force term. Eventually, we also define:

(1.15a) B(q) := /as(q) (g—:ﬁ (g—i X g—f)) (g,-)ds,
(1.15b) E(q) = _%/%(q) ( g_;f 2(;_45> (q,-)ds,
and the force term

(1.15¢) F(gq,p) :=7"E(q) +vp x B(q).

We recall that v denotes the circulation around the body.

Remark 1. The notations E and B are chosen on purpose to highlight the analogy with the Lorentz
force acting on a charged particle moving under the influence of a couple of electromagnetic fields E
and B. This force vanishes if v = 0.

It can be checked that

(1.16a) M € C*(Q; S31(R)) and depends on Sp,m,J and €,
(1.16b) F € C™(Q x R3;R?) and depends on Sy, and 2, and vanishes when v = 0,
(1.16¢) '€ C®(Q; BL(R? x R*;R?)) and depends on Sy and Q.

Above S T(R) denotes the set of real symmetric positive-definite 3 x 3 matrices, BL(R? x R3;R?)
denotes the space of bilinear mappings from R? x R? to R3.

We stress that M does not depend on the circulation v whereas F' does not depend on m and 7 and
I" does not depend on m, v and J. In the following, when specifying these dependences is relevant,
we will denote

(1.17) M[Sy,m,TJ,Q], T[Sy, Q2] and F[Sy,~, ] instead of M, I' and F.

Now our first result gives a reformulation of the system in terms of an ordinary differential equation.
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Theorem 1. Up to the first collision, System [I1l is equivalent to the second order ODE

(1.18a) q =p,
(1.18b) M(q)p’ + (T(q), p,p) = F(q,p),

with Cauchy data
q(0) =0 € Q, p(0) = (wo,4y) € R x R%,

The proof of Theorem [ is postponed to Section [l

Remark 2. Note that if v = 0 and one faces the potential case, then the ODE (ILI8]) means that the
particle is moving along the geodesics associated with the Riemann metric induced on Q by the matrix

M(q).

According to classical ODE theory there exists a maximal time 7" > 0 and ¢ € C*°([0,7); Q) a
unique solution to (LI8)) with Cauchy data ¢(0) = (0,0), p(0) = (wo, o) and given ~.

Moreover, it follows from Corollary [Il below that T is the time of the first collision of the solid with
the outer boundary of the fluid domain. If there is no collision, then T" = 4o00.

Let us now turn our attention to the limit of the dynamics when the size of the solid goes to 0. As
mentioned above, we will distinguish two cases:

e Case (i): when the mass of the solid is fixed (and then the solid tends to a massive pointwise
particle), and

e Case (ii): when the mass tends to 0 along with the size (and then the solid tends to a massless
pointwise particle).

1.2. Case (i): Dynamics of a solid shrinking to a pointwise massive particle. For every
e € (0,1], we denote

(1.19) S5 = &S,

and for every q = (9, h) € R3,

(1.20) S%(q) == R(9)S5 + h and F°(q) = Q\ S°(q).

The solid occupying the domain §¢(q) is assumed to have a mass and a moment of inertia of the form
(1.21) mf =m and J° = 2T,

where m > 0 and J1 > 0 are fixed.

With these settings, we denote by (¢°,p°) the solution to the ODE (II8)) associated with M¢® :=
M[S§5,mf, J¢,Q], T :=T[S§,Q] and F*© := F[S§,v,Q] in place of M, I" and F, respectively, defined
on the maximal time interval [0,7°). We decompose ¢° into

¢ = (0°,h°) € R x R?.
Notice that v and the Cauchy data (pg,qo) are not depending on . The latter are decomposed into
po = (wo, o) and go = (0,0).

Our first result is the convergence, in this setting, of A® to the solution of a massive point vortex
equation. Let us introduce this limit equation. Let (h(i),T(i)) be the maximal solution of the ODE:

(1.22) m(h(z))” = ’Y((h(z)), — ’yug(h(l)))J_ for ¢ € [O,T(i)), with h(z)(O) =0 and (h(l))/(()) = 60,
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where ug is the Kirchhoff-Routh velocity defined as follows. We introduce 12, (h,-) as the solution of
the following Dirichlet problem:

(1.23) AP (h,-) =01in Q, ¥Y.(h,-) = G(- — h) on 99,
where

1
(1.24) G(r) = —%ln |7].
The Kirchhoff-Routh stream function g is defined as

1

(1.25) Yo(x) = §¢2§($,$),
and the Kirchhoff-Routh stream velocity ug is defined by
(1.26) ug == V',

where V+ := (=0, 0).

The existence of (h;, T(;)) follows from classical ODE theory. Moreover it follows from the energy
conservation stated below in (Z24]) and from the continuity of the Kirchhoff-Routh stream function
Yo in Q that T;) is the time of the first collision of h(; with the outer boundary 9 of the fluid
domain. If there is no collision, then T{;) = +o00.

The precise statement of our first convergence result is as follows.

Theorem 2. Let
e Sy C
e po € R? and (y,m,J) € R x (0, +00) x (0, 4+00);
o (hgy, T(y)) be the mazimal solution of (L22));
o for every € € (0,1] small enough to ensure that S§ C Q, ((¢°,p°),T¢) be the mazimal solution
of (LI8) with
M*® = M[S5,m®,J°,Q, I =T[S,9Q] and F* = F[S;,7, 9]
i place of M, T' and F, respectively,
where 8§ is given by (LI9) and m*®, T are given by (L21)), and with the initial data
(¢°,p°)(0) = (0, po).
Then, as € — 0,
e liminf 7° = T(z):
o h® — hgy in WA([0,T];R?) weak-* for all T € (0,T(;)),
o e — 0 in W([0,T];R) weak-x for all T € (0,T(;)).

1.3. Case (ii): Dynamics of a solid shrinking to a pointwise massless particle. In this section
the solid is still assumed to occupy initially the domain Sf§ given by (I.I9) but we assume now that it
has a mass and a moment of inertia given by

(1.27) m® = a.m!' and J° = . T,

where o, — 0 when € — 0 and o = 1, and where m' > 0 and J' > 0 are fixed. In order to simplify
the notations we will assume that o, is of the form

e = &7,

with o > 0. The particular case where ov = 2 corresponds to the case of a fixed solid density. Case (i)
corresponded to the case where o = 0.
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In this setting, we denote by (p, ¢°) the solution to the ODE (I8 defined on the time interval
[0,7¢). Let us stress that the circulation v and the Cauchy data are still assumed not to depend on
€. Moreover we will assume that

v # 0.

Our second result is the convergence of hA® to the solution of the point vortex equation:

It is well-known that the solution h(;) is global in time, and in particular that there is no collision
of the vortex point with the external boundary 9€2. This follows from (2.25]) below and the fact that
Yo (h) — 400 when h comes close to 0€2, see for instance [22] Eq. (1.27)].

More precisely, our result is the following.

Theorem 3. Let
e Sy C
° v #0;
e po €R3 and (v,m, J) € R x (0,+00) x (0,+00);
e hy be the global solution of (L28));
o for every e € (0,1] small enough to ensure that S§ C Q, ((¢°,p°),T°) be the mazimal solution

of (II8) with
Me® = M[S5,m®, J°,Q], T° =T1S;, 9] and F° = F[S;,7, )
in place of M, T" and F, respectively,
where S; is given by (LI9) and m*®, J° are given by (L2T)), and with the initial data

(¢°,p")(0) = (0, po).
Then, as e — 0T,

o T — +00,
o h® — hyy in WEo([0, T); R?) weak-x for all T > 0.

1.4. A few comments. Let us emphasize that the limit systems obtained in Case (i) and in Case
(ii) do not depend on the body shape nor on the value of « > 0. Still the proof is more simple in the
case where the body is a disk. Indeed if Sy is a disk, in both Cases (i) and Case (ii), it follows directly
from ([LIe) that the rotation ¥° satisfies, for any e € (0, 1), ¥°(¢) = twq as long as the solution exists.

One may wonder if the weak-x convergence obtained in Theorem 2 and Theorem B can be improved.
In general it seems that some strong oscillations in time show up when £ — 0 which prevent a strong
convergence. We plan to study this phenomenon by a multi-scale approach of the solution of the ODE
(LI8) in a forthcoming work. Once again the case where the body is a disk is likely to simplify the
discussion.

In Case (i), one may also raise the question whether it is possible that liminf 7 > Tj;. This
problem should be connected to the behaviour of the potentials and stream functions as the body
approaches the boundary; see for instance [3], [4] and [I7] and references therein for this question.

The analysis performed in this paper can be easily adapted in order to cover the case where the
circulation v depends on & under the form 7 = & 4! with 3 > 0 in Case (i) and 8 € (0,1) in Case
(ii). Then one obtains respectively at the limit the trivial equations (h(;))” = 0 and (h(;)" = 0.

Our analysis should hold as well in the case of several bodies moving in the full plane or in a
multiply-connected domain, as long as there is no collision. This will be tackled in a forthcoming
work.
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Another natural question is whether or not one may extend the results of Theorem [2] and Theorem
to rotational flows. This issue is tackled in a more restricted geometric set-up in the work in
preparation [g].

2. PRELIMINARY MATERIAL

In this section, we introduce some material that will be important in the sequel.

We begin by introducing some notations.

Let

e for 6 >0,

(2.1) Qs :={q € R? : d(S(q),090) > 6},
e for ¢ > 0,

(2.2) Q= {g € R : d(S°(0),09) > 0}, Q= Useon ({2} x @),
e for § > 0,

(2.3) =g € R d(S7(0),09) > 6}, Q5= Ueep ({6} x ©5),
e for § >0 and g9 € (0,1),

(2.4) Qs = {(5,9) € Qs/ € € (0,20) }-

We will also make use, for & > 0, of

(2.5) Qs :={r Q) d(z,00)>d}.

Observe that despite the fact that center of mass h® does not necessarily belong to S¢(q), we have
the following.

Lemma 1. Let § > 0. There exists 5y € (0,6) and ey € (0,1] such that for any (¢,q) € Qse,, with
q = (9, h), necessarily h € Qs,.

Proof of Lemma [l Let us introduce Ry := max{|z|, = € 0Sp}. Set dp := g and gp := min(1, ﬁ).

Let (e,q) € Qs.,, with ¢ = (0, h). We pick h € §°(¢); in particular d(h,0) > 0. Since S%(q) is a
subset of the closed disk B(h,eRy) of center h and of radius Ry, we have d(h,h) < eRy < g. Then
observing that d(h,08) > d(h,09) — d(h,h) > 09, we deduce the claim. O

2.1. Dynamics of the solid without external boundary. Theorem [ extends to the case of a
bounded domain €2 a result which is well-known in the case where the domain 2 occupied by the
fluid-solid system is the plane whole, i.e. © = R?, with the fluid at rest at infinity. And it turns out
that the objects associated with this case are of central importance in our analysis.

The equations (LIX) when 2 = R? are as follows:
(2.6) ¢ =p, Msayp' + (Loap,p,p) = Faau(p),

where

(27) M@Q,ﬂ = M[807m17 j17R2](Q)7 P@Q,ﬂ = F[S()aRz](q) and F@Q,ﬁ(p) = F[SQ,’Y,R2](q,p)
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Observe in particular that the dependence on g of M, I and F' reduces to a dependence on the rotation
R(¥) only; from now on, we will mention this dependence on ¥ through an index, so ¢ does no longer
appear as an argument.

Of course, as previously, M, I" and F also depend on Sy, m', J' and «, but here this dependence
can be made rather explicit. We describe below the form of these functions.

Kirchhoff potential and inertia matrices. Let us first denote by @aq j, for j = 1,2, 3, the Kirchhoft’s
potentials in R? \ Sy which are the functions that satisfy the following Neumann problem:

(2.8a) Apsa ;=0 in R%\ Sy,
9 .
(2.8b) % —gt.n forj=1 on 08,
o .
(’gas’y =ej_1-n, for j =2,3 on 08y,
(2.8¢) Vsa, j(z) =0 at infinity.
We also denote
(2.9) Pon = (Pan1, Poa2, Poa3)’
We can now define the added mass matrix
e
2.10 My e i— é“*d:(/ Vouni-V -d> .
(2.10) a, 8 /aso Paoa @ an 08 . Paq,i* V Paa AT L<ij<s

Let us notice that the matrix M, sq is symmetric positive-semidefinite and depends only on &p.
Actually it is positive definite if and only if Sy is not a disk. Moreover, when Sy is a disk, the matrix
M, s is diagonal, of the form M, 4o = diag (0, Mg 00, Mase) With mg a0 > 0.

Then we can introduce the mass matrix M1, 9(¢) taking the rotation into account by

J 0 0
(2.11) Mgy =My + Mg sa9, My:={ 0 m! 0 | and Mgy = R(9)MaeaR (D).
0 0 mt
Above we used the notation
1 0
(2.12) R(V) := <O R 0)> € SO(3).

Christoffel symbols. Without outer boundary, the Christoffel symbols take the simple following form:
(2.13) (T b= (0 ) xp-wn, 0
. 9&,197p7p T Pa,@Q,’ﬂ p a, 89,9 EJ' )
where P, 5o 9 denotes the last two coordinates of M, sq 9 p.
Force term. The force term Fuq y(p) in that case is given by
,_ Gyt
(2.14) Faao(p) =1 <€J_ L

where

(2.15) o == R(V)C,
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and the geometric constant ¢ € R?, depending only on Sy is defined as follows. In the same spirit as
([CI2), we first introduce the function ¢4 as the solution of

(2.16a) ~ At =0 in R?\ Sy,
(2.16b) Voa = Csa on 98y,
(2.16¢) Ve = O(In|z|) at infinity,

where the constant

1 1
2.1 = ——1
(2.16d) Con o (Capaso>

is such that:

-1
(2.16¢) / OWen ds = —1.
0Sp

on

The existence and uniqueness of 95+ will be recalled below in Corollary [l
Then ( is defined by

-1
(2.17) ¢ = —/ xaw‘% ds.
9So

on

and it is usually referred to as the conformal center of gravity of Sy.
An important feature of the force Fyq »(p) is that it is gyroscopic, in the sense of the following
definition, see for instance [II, p. 428].

Definition 1. We say that a vector field F € C™(R? x R3;R3) is gyroscopic if for any (q,p) in
Rg X R37 pF(Q7p) =0.

Indeed, for any (9,p) in R x R3, the force Faq9(p) can be written as

(2-18) Fas:z,z?(p) = Yp X Baqy,
with

(2.19) Baay = (;) .

We used the following formula for the vector product, which will be also useful later on in some
computations:

(2.20) VDo = (Wa, La), Py = (wp,p) in Rx R pu xpp= (£ by, we b —wp £5).
Observe that, compared to (LI5d), there is no electric-type field in (2.18]).

The derivation of (2.0) seems to date back at least to Lamb [I4, Article 134a.]. With respect
to Theorem [, the analysis is simplified from a geometrical point of view, since considering a frame
attached to the body allows to reduce the problem to a fixed boundary one. In order to overcome the
geometrical difficulty in the proof Theorem [I], we extend the analysis performed by the second author

in [I9] in the case of a vanishing circulation. We end up with a less explicit expression of the force,
see (L15)), as compared to the force term Faq 9(p) described in (Z.14]).

Remark 3. Let us mention that the derivation of (2.0) can also be obtained with a different strategy,
relying on the use of complex analysis and more particularly on Blasius’ lemma. This approach is due
to Kutta, Joukowski and Chaplygin. An elegant exposition is given in [I8, Article 9.53|. In this latter
approach the geometrical vector { appears as a complex integral. The link is given by the following
lemma, whose proof is postponed to an appendiz.
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Lemma 2. Denote V1 i)o) := (Hy, Hy) and ¢ := (¢1,(2). Then

(1 +iCe = / 2(Hy — iHy)dz.
0So

2.2. The role of the energy. In this subsection, we discuss several aspects concerning the energy
of the systems considered here. The energy plays a central role in our analysis.

Conservation of energy. An important feature of the system (LIS8]) is that it is conservative. More
precisely, we have the following result.

Proposition 1. For any (q,p) € C*([0,T]; Q x R?) satisfying (LIS) one has
d 1
(2.21) aé’(q,p) =0, where E(q,p) := §M(q)p -p+Ul(q),
where the potential energy U(q) is given by
1
Ulq) := =57°C(9),
with C(q) given by (LI2). Moreover

(2.22) Vge O, E(q) = %DC’(q).

Above the notation DC(q) stands for the derivative of C'(q) with respect to gq. Let us emphasize
that the energy function € belongs to C*°(Q x R3;R) and is the sum of two positive signs, see (.14
and ([LIGa)). In addition to its dependence on ¢ and p, the energy £ depends on Sy, m, J,~ and .

If we assume that the body stays at distance at least § > 0 from the boundary we may infer a bound
of the body velocity depending only on the data and on . Indeed we have the following immediate

corollary of Proposition [[, (L.I4]) and (IIGal).
Corollary 1. Let

e So CQ,po€R3 and (y,m,J) € R x (0,400) x (0, +00);

e > 0;

e (g,p) € C°([0,T]; Qs x R3) satisfying (LIN) with the Cauchy data (g,p)(0) = (0, po).
Then there exists K > 0 depending only on Sy, <Y, po,y,m,J,0 such that |p|gs < K on [0,T].

Let us refer here to [I2] for an example of collision of a disk moving in a potential flow (that is in
the case where v = 0) with the fixed boundary of the fluid domain.

The case of the whole plane. In the case where the domain ) occupied by the fluid-solid system is
the plane whole, i.e. = R? with the fluid at rest at infinity, the potential C(q) degenerates to the
geometric constant Cysg. This, combined with (222, explains why there is no electric-type field in
@.13).

Another consequence of the degeneracy of the potential C'(¢) into a geometric constant in that case
is that the equivalent of Proposition [Il gives the conservation of the kinetic energy

1
(2.23) Eono(p) 1= GMoapp - p.

Observe in particular that the meaningless constant %72039 has been discarded.

Energy for the limit equations. Let us now turn to the energy conservations for the limit equations.
It is classical and elementary to see that for any h € C*°([0,T]; ),
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e satisfying (I.22]) one has

(2.24) %g(l)(h, 6) = 0, with 5(2)(}1, 6) = %mﬁ -l — 721/19(}1), with £ = h/,
e satisfying (I.28)) one has
d .

Theorem ] and Theorem [] therefore respectively assert the convergence of the trajectories of the
system (LI8) associated with the energy £(q,p) given by (221)) to those of the Hamiltonian system
(L22) associated with the energy (2.24]) in Case (i) and to the Hamiltonian system (L.28)) associated
with the energy (2.20]) in Case (ii).

For further Hamiltonian aspects related to Systems (I.1]) and (L28]), we refer for instance to [15] 20 23].

2.3. Scaling with respect to . In this subsection, we give a few remarks concerning the scaling of
several objects with respect to ¢.

Genuine inertia matriz and kinetic energy. Under the relation (L2T), the matrix of genuine inertia
reads

JE 0 0 e2J5 0 0
(2.26) M;:={0 m 0 |=e*{ 0 m' 0
0 0 mf 0 m!
Let us introduce
e 0 0
(2.27) I..=10 1 0
0 01
Now we can extract € from the inertia matrix as follows:
JL o0 0
(2.28) Mj =e*I.M,I., with My:=| 0 m! 0
0 0 mt

Hence it is natural to associate with p® := (w®, £¢)! the vector
. W . .
(2.29) pPi=Ip = .| with &°:=ew".
In particular the solid kinetic energy of the solid can be recast as
1 €, € 5 1 anrrl ~e e
(2.30) §Mgp = gE Mgy p® - p°.

Hence the natural counterpart to £ for what concerns the angular velocity is rather ew® than w*®.
This can also be seen on the boundary condition (LIf): when z belongs to dS°(t), the term
w(z — h®)L is of order ew® and is added to £°.

Added inertia matriz. The matrix M; corresponding to the added inertia in 2 associated with the
solid S§° of size € depends in an intricate way on e, see Proposition ] below. However in the case of an
outer domain such as described in Subsection 1], the added inertia matrix behaves in a simple way.
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Let Mg ., be the matrix defined as in ([2.I0) for the solid S§, and let us recall that M, sq denotes
the one corresponding to Sy, that is for € = 1. Then one easily sees after suitable scaling arguments
that

(2.31) M 40 = €2 1. Mg sal..

Other terms in the case without outer boundary. The other terms in (Z.6]) have also a simple scaling
with respect to ¢, in the case where there is no external boundary.
Concerning the Christoffel symbols (ZI3]), it is not hard to check that

(232) <P‘€§‘g7197p€7p€> - EIE <F99,197]3€7ﬁ€>7
and concerning the force term (2.I4]) that
(2.33) 59,,9(295) = IEF@Q,ﬁ(f)e)'

3. SCHEME OF PROOF OF THE MAIN RESULTS: THEOREM [2] AND THEOREM [3]

In this section we give the scheme of the proof of Theorem 2 (Case (i)) and of Theorem [3] (Case
(ii)). The proof is split into six parts.

3.1. ODE Formulation. The first step of the proof consists in establishing the reformulation of
the system in terms of an ordinary differential equation given by Theorem [Il Once this is obtained
(see Section [), we will prove in addition that the Christoffel symbols can be split into two parts:
one taking into account the effect of the solid rotation and the other part encoding the effect of the
exterior boundary.

First, we let:

) st = (p) xr—wtla) (1) € %

We can notice that one also has

(T's(q),p,p) = — (2) X p—wM(q) (ﬁ) € R3,

since the extra terms cancel out. Let us recall that P, and P are defined in (LI0).
Next, for every j,k,l € {1,2,3}, we set

, 1 0, O 0, Opy Oy, Oy
J I J J _ Rt ps .
(3.2) (Toa)y, (@) = 5 /89 < % Br K + 9 Dy Ky, 9 or K; | (g,")ds,

and we associate correspondingly T'ga(q) € BL(R3 x R3;R3) so that for p = (p1, p2, p3) € R3:

(3.3) (Ton(a),p,p) == | D> (Toali,(a) prpi € R®.
1<k,I<3 e
\.]\3

The Christoffel symbols satisfy the following relation.
Proposition 2. For every ¢ € Q and for every p € R® we have:
(34) (T(q),p,p) = (U's(a),p,p) + (Toa(q), p, p)-
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The proof of Proposition 2l is given in Section We emphasize that in ([34]) and the expressions
above, with respect to (LTId), there is no derivative with respect to ¢, that is, no shape derivative. We
will see that in this decomposition, ['gg obeys a softer scaling law with respect to € than I' (compare

232) and (E9) below.)

Next we work on Equations (ILI8) with a shrunk solid, that is

(3.5a) () =17,
(3.5b) M*(¢°)(p°) + (T°(a°), p°, p°) = F(¢°,0%),
where

M¢ := M[S5,m®, T, Q], I'° :=T[S5,9Q] and F* := F[S§, 7, ().

Recall that the difference between Case (i) and Case (ii) is that m®, J¢ are given by ([LZI]) in the
first case whereas they are given by (L[27)) in the second one. The functions M¢(q), (I"“(¢q), p,p) and
F¢(q,p) are defined for ¢ in Q° and for p in R3.

3.2. Behaviour of the energy as ¢ — 07. We will of course need uniform estimates of p° as ¢ — 0
in order to establish the result. The energy is the natural candidate to yield such estimates. Hence
we are led to consider the behavior of the energy with respect to €. We index the energy as follows:

1
(3.6) &5 p7) = oM (¢)p" - 0" + US(d),
where the potential energy U*® is given by
1
(3.7) U%(q) := —57*C%(a).

e Potential energy. Let us start with the potential energy which does not depend on whether we
consider Case (i) or Case (ii). The following result establishes that the potential energy U¢(¢)
diverges logarithmically with €. The expansion is uniform, in the sense that the reminder is uniformly
bounded, as long as the solid stays at a positive distance from the external boundary.

Lemma 3. For any 6 > 0, there exists eg € (0,1) and a function U, € L*(Qs.,;R) such that for any

(e,q) in Qs
(3.8) U%(q) = % 2(G(e) — Caa) — v20a(h) +<Us (2, q).

Lemma [3] follows from Lemma [@ below.

Although the first term in the right hand side of ([B.8]) diverges as € goes to 0 it can be discarded from
the energy (B.6]) since it does not depend on the solid position and velocity. Hence the renormalized
energy £°(q%,p°) defined by

< 1
(3.9) E(q"p7) = MA@ )p" - p° — Vo (h?) + €Uy (g, ¢°),

is also conserved according to the following result which is obtained by combining ([B.6]) and (B.8]).
Corollary 2. Let (¢°,p°) and T¢ as in Theorem [ or as in Theorem[3. Then, till T¢, there holds:

d Se( € E\
(3.10) ZE (¢ p) = 0.
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e Kinetic energy. Let us now deal with the kinetic energy %M °(¢°)p° - p°. Let, for any ¥ € R, for any
e € (0,1),

]\41—1—52 *Mysay if a<2
. g Qy 5 ~ bl
(311) Mﬁ(e) ‘ { Ma,ag,ﬂ + e 2 Mgl if a> 2,

and, for any p € R3,

1
(3.12) Eo(e,p) = 5 My(e)p - p.
Then we have the following result.

Lemma 4. Let 6 > 0. In Case (i) (o = 0) and in Case (ii) (o > 0), there exists g € (0,1) and a
function M, € L°°(Qs.,; R3*?) depending on Sy and 2, such that, for all (,q) € Qs.c,, for all p € R3,
1

. . 1 o ) N
§NF@Mrp=€“““”%@JO+§§MN&®p4LuMhp:&p

Lemma [4] is an immediate consequence of Proposition M below.

Now we slightly modify £y in order to give general statements of the results covering the particular
case where & is a disk. Indeed if Sp is not a disk, whatever ¥, M, 5 ¢ is positive definite, whereas if
So is a disk, for any ¥ € R, the matrix M, aq » is diagonal, of the form M, 5oy = diag (0, mq 20, Mq.s0)
with 1M se > 0 not depending on ¥.

Let us define My(e), for any 9 € R, for any ¢ € (0,1), by setting My(e) := My(e) if Sy is not a
disk, and My(e) := diag (1,0,0) + My(e) if Sp is a disk. Then, for any p € R3, we define

(313) Eale,p) 1= 5Mo(E)p - p.
Then we straightforwardly have the following universal result.
Lemma 5. There exists K > 0 depending only on Sy, m' and J' such that, for any (,9,p) in
(0,1) x R x R3,
Klplgs < E9(e,p) < K pls.
Let us recall that if Sy is a disk, in both Cases (i) and (ii), it follows directly from ([I€) that for

any € € (0,1), w® = wp as long as the solution exists. Therefore combining Corollary 2l and Lemma @l
we obtain the following result for the slightly modified renormalized energy £°(¢°, p°) defined by

v

- ~ 1
(3.14) E(q7,7) += e £y (e, 0%) + 5 Ma(e, ) - 1 — v *wa(h) + eUn(e,¢°).
Let us recall that p® is defined by ([2.29]).

Corollary 3. Let (¢°,p%) and T¢ be as in Theorem[2Q or as in Theorem[3. Then, till T¢, there holds:

(3.15) ié’f(qiﬁe) =0.
dt
Roughly speaking the two most important terms in the right hand side of ([B.I4]) are the first and
third ones which are respectively of order O(e™(2®) |5%|2,) and O(1) as long as there is no collision.
Indeed the uniformity in € in Lemma [Bland Lemma [ combined with the conservation property stated
in Corollary B allows to get the following counterpart of Corollary [
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Corollary 4. Let (¢°,p°) satisfies the assumptions of Theorem[d (. = 0) or of Theorem[3 (o > 0).
Assume that there exists T > 0, 6 > 0 and g € (0,1) such that for ¢ € (0,e0), T > T and on
0,7, (e,¢°) is in Qsz,. Then, reducing g9 € (0, 1) if necessary, there exists K > 0 depending only on
S0, 2, po, v, mt, T, 6 such that for e € (0,¢0), gmin(l,3) |p°|rs < K on [0,T].

The proof of Corollary []is given in Section

3.3. A drift term in the velocity of the center of mass. In Case (ii), Corollary M does not
provide a uniform bound of the solid velocity. An important part of the proof consists in finding an
appropriate substitute for the energy £°(¢%,p°) which allows a better control on the body velocity.
This will be accomplished below by a modulated energy (see Section B.5l), which, roughly speaking,
consists in applying the energy &y (see ([B.I12])) to some modified version of pf, which we will denote
by pF.

This modulation is driven by the leading terms of the electric-type potential. We will establish
in Section (2] the following result regarding the expansion of C¢(q) with respect to €. Let, for
q:=(9,h) € R xQ,

(3.16) Ye(q) == Drba(h) - Co-

Above Dy, denotes the derivative with respect to h.

Lemma 6. Let 6 > 0. There exists g € (0,1) and a function C, € L*>(Qs.,;R) such that for any
(€,9) in Qiz,

(3.17) C%(q) = —G(e) + Caq + 20a(h) + 2e0.(q) + £2Cr (e, q).

€
Observe that Lemma [] follows from Lemma [6 by setting U, (¢, q) := 5(7v%*¢c(q) +Cy(c,q)). The
proof of Lemma [6] is postponed to Section
Now, in the same way as we defined the Kirchhoff-Routh velocity uq by ug = V- 1q we introduce
the corrector velocity u. by

(3.18) ue(q) = Vitbe(q).
Observe that the function u. depends on €2, Sy, ¢ and on h, whereas uq depends only on 2 and h.
The modulation will consist in considering the unknown

(3.19) (=0 — y(ug(h) + cue(q))

rather than ¢. Let us observe that v(uq(h)+¢cu.(q)) is the beginning of the expansion of —%VﬁU “(q)

where U¢(q) is the electric-type potential energy defined in (3.7)).

Moreover, as long as the solid does not touch the boundary, a bound of ([3.19)) is equivalent to a
bound of ¢. Indeed the following lemma is a direct consequence of Lemma [Tl and of the definitions of
ug and ue.

Lemma 7. There exists 6 > 0, g € (0,1) and K > 0 such that for any (e, q) in Qs., with ¢ = (V, h),
lua(h) + cuc(q)|rs < K.

3.4. Geodesic-gyroscopic normal forms. We will establish that ([3.3) can be put into a normal
form whose structure looks like (2.6]). We first introduce two definitions.

Definition 2. We say that a vector field F € L= (Qs., x R*R3) is weakly nonlinear if for any § > 0
there exists g9 € (0,1) depending on Sy, m, J, v, Q and § such that for any (¢,q,p) € Qs X R3,

(3.20) |F(e,¢,p)|rs < K(1+ |ples + elplfs)-
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Definition 3. We say that a vector field F € C®(R x Q;R3) is weakly gyroscopic if for any § > 0
there exists K > 0 depending on Sy, Q, v and & such that for any smooth curve q(t) = (9(t), h(t)) in
R x Qg, we have, for any t > 0,

(3.21) [ Fa] <exares [ i),

with p = ¢'(t) = (w,¥), p= (0, £), where & = ew, and (=0— Y(uq(h) + cuc(q)).
Above u.(q) denotes the corrector velocity defined in (BI8]).

We introduce

O = ew®, 0% =05 —yug(h®), p° = (@5, 0°),
0=t - Y(ua(h®) + cuc(q®)) and p° = (@E,Ze).
Recall also that p® was defined in (229]). The normal forms are as follows.

Proposition 3. Let 6 > 0. There ezists ¢y € (0,1) and

e H. H, € L>®(Qse, x R%R3) depending on Sy, v and 2, weakly nonlinear in the sense of
Definition [Z;
e E} € C®(R x Q;R3) depending on Sy and 2, weakly gyroscopic in the sense of Definition [3;
such that Equation B3] can be recast as

(3.22) Mgy () = Foap-(5°) + eH,(e,¢%,5°),

in Case (i), and

(3.23) ™Y Ny (e) (55)/ + e(Tange, D> ) = Faape(p°) + ev?EL () + ™G9 H, (e, ¢°,5°),
in Case (ii).

e Motivations. The normal form ([B:22]) will be useful in order to pass to the limit in Case (i)
and the normal form ([B:23]) both in order to get a uniform bound of the velocity and to pass
to the limit in Case (ii). It would be actually possible to deal with the case where « is small
with a less accurate normal form and still get an energy estimate.

In particular in order to get a uniform bound of the velocity in Case (ii) we will perform an
estimate of an energy adapted to the normal form ([B:23]). Observe that should the right hand
side vanish the normal form ([B.23]) would be the geodesic equation associated with the metric
My(e). On the other hand the right hand side is the sum of terms with a quite remarkable
structure: the leading term Flhg g= (p “) is gyroscopic in the sense of Definition [ the electric-
type term Ell)(qa) is weakly gyroscopic in the sense of Definition B} and the reminder H, is
weakly nonlinear.

Regarding the passage to the limit we will face an extra difficulty: the force, including the
leading term Fjg <, depends on the unknown £9° through 9%, that is singularly. This difficulty
will be overcome by using some averaging effect; see Lemma [B1] and (8I6]) in Case (i), and

[B20) in Case (ii).

e Ideas of the proof of Proposition [Bl To get Proposition [B] we will perform expansions of
the inertia matrix, of the Christoffel symbols and of the force terms with respect to €. Roughly
speaking the leading terms coming from the force terms will be gathered into the first term of

the left hand side of (3:22) and ([B.23)), see (Z64)). A striking and crucial phenomenon is that
some subprincipal contributions (that is, of order ¢) of the force terms will be gathered with
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the leading part of the Christoffel symbols into the second term of the left hand side of ([3.23]),
see Lemma B0l and (Z68]). The leading part of the contribution coming from the Christoffel
symbols will be provided by the I's-part of the decomposition ([B4]).

Remark 4. The normal forms above are inspired by the case without external boundary (see equation
25)) and by the paper [2] where the authors consider the motion of a light charged particle in a
slowly varying electromagnetic field. The equation of motion for the particle is an ordinary differential
equation involving a small parameter in front of the higher order term. In order to restore some
uniformity with respect to the small parameter they use a modulation, subtracting to the particle
velocity the |B|™2E x B drift, and a normal form, see [2, Eq. (3.5)], where the only remaining singular
term appears through a Lorentz gyroscopic force. This allows to tackle the convergence of the particle
motion to the so-called guiding center motion despite the fast oscillations induced by the gyroscopic
force.

However our drift term (0,v(uq(h) + cu.(q))) does not enter this framework. Actually the use of
the |B|72E x B drift could give a modulated energy estimate only in the case o < 1, and in particular
not in the case of a solid with a fized homogeneous density (o = 2). Moreover it would not be adapted
to the passage to the limait.

3.5. Modulated energy estimates. In Case (i), Corollary [ provides a uniform bound of /¢ as long
as the body stays at a positive distance from the external boundary. As mentioned above, in Case
(ii), Corollary @ fails to provide such a bound.

However the structure established in Proposition [ will allow us to obtain an estimate of the mod-
ulated energy

(3.24) Ey(2,0%),

where the functional £y is defined in (3I3)). Since the equation (B23)) looks like the equation (Z8)) of

the case without external boundary for which the total energy is the kinetic energy defined in (2.23])
alone, one may hope to have a good behaviour of the the modulated energy ([3.24]) when time proceeds.
Indeed we have the following result.

Lemma 8. Let (¢°,p°) satisfies the assumptions of Theorem [3. Then, as long as the solution ezists,

d s < max(l—a,— = = [ =
(3.25) —E0(e57) = TV By () + 57 Hole, g )

Lemma [§] is proved in Section

Then we use that Corollary @ and Lemma [7 already give us that ep° is bounded, and then that
H, € L>®(9Q5-, x R3; R?) is weakly nonlinear in the sense of Definition ] that E} is weakly gyroscopic
in the sense of Definition B (using Lemma [I), Lemma [l and Gronwall’s lemma to get the following
result.

Corollary 5. Let (¢¢,p°) satisfies the assumptions of Theorem [3. Assume that there exists T > 0,
d >0 and e € (0,1) such that for e € (0,e0), T° > T and on [0,T], (¢,¢°) is in Qse,. Then, reducing
g0 € (0,1) if necessary, there exists K > 0 depending only on Sy, €, po,v, m', J*,6 and T such that
for e € (0,e0), [p°lrs < K on [0,T].

Corollary [{ therefore provides the same estimates for Case (ii) than Corollary E for Case (i).
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3.6. Passage to the limit. We deduce from Corollary [l two different results. The first result regards
the lifetime T° of (¢°,p®) of the solution, which can be only limited by a possible encounter between
the solid and the boundary 0f).

Lemma 9. There exists g >0, T >0 and 6 > 0, such that for any € € (0,¢0), we have
(3.26) T°>T and on [0,T], (e,¢°) € Q5

The proof of Lemma [0 is given in Section
The second result establishes the desired convergence on any time interval during which we have a
minimal distance between S%(¢) and 0f2, uniform for small e.

Lemma 10. Let e; > 0, 6 > 0 and T > 0 with T < T in Case (i), and suppose that for any
e € (0,e1), we have

(3.27) (e,4°) € Qs on[0,T].

0,1
Then
e in Case (i), (h*,e0°) — (h;,0) in W220([0, T]; R?) weak-*;
e in Case (ii), h® — h in W2 ([0, T]; R?) weak-.

Let us recall that (h;,T(;)) denotes the maximal solution of (L22)) and h; the global solution of
([C2]). The proof of Lemma [I0lis given in Section It consists in passing to the weak limit, with
the help of all a priori bounds, in each term of ([B.22)) or (3:23).

Then to get the precise results of Theorems [2land Bl it will only remain to extend the time interval
on which the above convergences are valid. This is done in Section Bl

Organization of the rest of the paper. Now the rest of the paper is organized as follows. In
Section Ml we prove the normal forms ([.22]) and (8.23]), relying on propositions on the asymptotic
expansions of the inertia matrix and the force term as ¢ goes to 0. These propositions are respec-
tively proved in Sections [6] and [ relying on lemmas concerning the asymptotic expansions of stream
functions, proved in Section Bl Next in Section [8] we prove the results about the renormalized and
modulated energy estimates (Corollary @ and Lemma [§]), and concerning the passage to the limit (in-
cluding Lemmas [0 and [I0)) in order to conclude the proofs of Theorems 2] and Bl Finally Theorem [II
Proposition [Tl and Proposition 2, which are independent of ¢, are proved in Section

4. CONDITIONAL PROOF OF THE NORMAL FORMS

The proof of the normal forms ([8.22))- (3:23)) consists first in expanding the functions M¢(q), (I'*(q), p, p)
and F*(q,p) with respect to ¢ and then in plugging these expansions into ([B.5]). Next, further modifi-
cations are in order to reach the exact forms ([3.22) and (3.23)).

4.1. Expansions of the inertia matrix and of the force. We begin by giving the expansions in
terms of ¢ of the inertia matrix and of the force.

Inertia matrix. The first part concerns the expansion of the inertia matrix M¢(q) which is the
counterpart for the body of size € of the added mass M,(q) defined in (L9D).
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Proposition 4. Let § > 0. There exists g € (0,1) and a function M, € L>(Qs,; R3*3) depending
on Sy and 2, such that, for all (¢,q) € Qs4,,

(4.1) M;(q) = &L (Mo 00 + My (5,) ) L.

Let us recall that the matrix M), s 4 is defined in (210 and 21T .
Force term. Now we turn to the force term. Indeed as hinted after Proposition Bl there is some
key combinations between terms coming from the expansion of (I'*(¢), p, p) and the ones coming from
F¢(q,p). We therefore introduce, for (g,q,p) € Q x R3,

(4.2) H®(q,p) == F<(q,p) — (I°(q),p, ),

and state here the expansion of H¢(q,p). Roughly speaking, Proposition [l below establishes that the
subprincipal term of H®(q,p) can be decomposed as the sum of three terms:

e a term which can be interpreted as a Christoffel-type term,

e a term which has a special structure allowing the gain of one factor € by integration by parts
in time,

e a term which can be absorbed by the principal term, up to introducing a corrector velocity.

Let us introduce in details these two last terms, which are denoted below respectively by Eé and
EL.

The weakly gyroscopic subprincipal term Ei. Let us introduce the geometrical constant 2 x 2 matrix

-1 _1
3 U::/&s agZQ<X>X®deS(X)+<®<L:/ Woa

| o X)X X" (e () ds(X),

which only depends on S,
1
(4.4) o’ i= (0 +0"),

its symmetric part and the associated field force Eé (q) defined, for ¢ = (¢,h) in R x Q, by

— (D22 (h, h), R(—209)0°)pax2
(4.5) Ey(q) := 0
0

Lemma 11. The vector field Eé € C®(R x Q;R?) defined by [@X) is weakly gyroscopic in the sense
of Definition[3

Proof of Lemma[I1l First, for any smooth curve ¢(t) = (¢(t), h(t)) in R x Q there holds

t
(16) [ b+ ZE@) = GO ), B(-20 + D)r")mara(t) = 5 (D3Eu(0,0), R )r")mavs
0 9

[\

t
—/ (D3¢0 (R, h) - £, R(—20 + g)05>R2x2ds,
0

where p = ¢ = (w,¢), p = (d},g), & =cw, and { = — Y(uq(h) + cuc(q)).
The conclusion then follows from crude bounds, Lemma [, the smoothness of the function Y,
defined in (L23]) and Lemma [7] O
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The drift subprincipal term EL. Let us introduce the force field E!(q) defined, for ¢ = (9,h) in R x Q,
by

(4.7) (q) (uc(q))J_

Above u.(gq) denotes the corrector velocity defined in (B:1I8]).

Let
(4.8) pi=(w,0) p:=(00), &:=cw, and {:={—~uq(h).
The asymptotic expansion that we obtain for the force term is as follows.

Proposition 5. Let § > 0. There exists g9 € (0,1) and H, € L>®(Qs., x R3;R?) depending on So, v
and Q, weakly nonlinear in the sense of Definition[d, such that for all (¢,q) € Qs¢,, with ¢ = (Y, h),
for all p € R3,

(1.9) HE(q,p) = I (Fanno () + €M (0, 5) + €2 H,(e,0,1)),
with
(4.10) H! (4, 5) = —(Ton, 0,5, 7) +7* (B} () + EL(@)).

Let us recall that Fse(p) is defined in ([2.14]) and I'pq 9 is defined in (ZI3)).

The proofs of Proposition @ and Proposition [l rely on the asymptotic expansions of stream and
potential functions with respect to . These expansions involve two scales corresponding respectively
to variations over length O(1) and O(e) respectively on 92 and dS%(q). The profiles appearing in these
expansions are obtained by successive corrections, considering alternatively at their respective scales
the body boundary from which the external boundary seems far away and the external boundary from
which the body seems tiny, so that good approximations are given respectively by the case without
external boundary and without the body.

Then we plug these expansions into the expressions of the Christoffel symbol (I'*(¢),p,p) and of
the force fields £¢ and p x B® and compute the leading terms of the resulting expansions. We will use
a lemma due to Lamb, cf. Lemma 22 to exchange some normal and tangential components in some
trilinear integrals over the body boundary. In particular, we will make appear in several terms of the
expansions of £° and B¢ some coefficients of the added inertia of the solid as if the external boundary
was not there. Strikingly this allows to combine the subprincipal terms of the expansions of F and B
with the leading term of the expansion of T', see Lemma B0l and (Z.68]).

4.2. From Propositions [ and [Bl to Proposition Bl. We focus on the more delicate Case (ii). Case
(i) can be proved with the same strategy with some simplifications. In order to prove ([B.23]) we have
to perform additional manipulations. The first one is due to the fact that the expansion of H® above
involves ¢ rather than /. Consequently, to begin with, we modify the asymptotic expansion (Z9)) of
H* as follows, by changing the arguments of the functions in the right hand side.

Proposition 6. Let § > 0. There exists g9 € (0,1) and H, € L>®(Q5., x R3;R3) depending on So, v
and Q, weakly nonlinear, such that, for all (e,q) € Qse,, with ¢ = (I, h), for all p:= (w,l) € R3,

(4.11) HE(¢,p) = I (Foan(B) — £(Tonp, 5.5) + £4°E}(0) + £ Hr(,0.)),

with p := (0, £), where & = ew, and (i=10— Y(uq(h) + cuc(q)).
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From Proposition[d to Proposition [l Let us take Proposition Bl for granted and let us see how to infer
Proposition [6l
Considering (ZI9) and ([ZT), we have

(4.12) Faa9(D) = Foan(P) +e7°EL(q).

This relation is the reason why we introduced /- the part E! of the subprincipal term H! can be
absorbed by the principal term up to a modification of size ¢ of the arguments.

Combining (£I0) and ({I2) we infer that

Foan(p) + H' (4, P)
= Foa9(p) — (Ton, 5, ) + €7°Ep (@) — 26*y (Tons, B, Pe(9)) — £%7* (Tonp, pe(9), Pe(0)),
where p.(q) := (0,uc(q)). It therefore remains to deduce from @) that the function H, defined by
)=

H,(e,q,p) = Hy(e,4.p + evpe(q)) — 2v(Tan,0, 5 9e(@)) — €7* Tan0, e(q), pe(q))

is convenient.
Proof of Proposition [3. Using the Propositions Ml and [0, and recalling definition (2.29]), the equation
[B35) can be recast as follows:

(4.13) (&?“Mgl + &My o090 +* M, (e, qE)) (5°) = Fanw:(p°) — €(Ton,0:, 0%, 5°) + ev°Ef(q)

+ % H, (e, ¢, ).
In the case where Sy is a disk, an extra difficulty is that the matrix appearing in the second term is sin-
gular. Indeed, for any ¥ € R, the matrix M, sq ¢ is diagonal, of the form M, a0 » = diag (0, mq 20, Mq.s9)
with 1m0 > 0 not depending on . Let us regularize the matrix M, sq 9 into
Ma,@&ﬂ = diag (17 Mg 56, ma,af-})-

As mentioned in Section [[4] in the case where Sy is a disk, it follows directly from (L[Iel) that the
rotation ¥° satisfies, for any ¢ € (0,1), (¥°)”(t) = 0 as long as the solution exists. Therefore the

equation ([4.I3]) is valid as well with M, sq 9 instead of M, 50 9 in the second term. Recalling the
notation (BII)) the right hand side of (4.I3]) reads

(414) €min(2,a) <M05 (6) + 64—min(2,a) MT (6, qe)) (ﬁg)/

whether Sy is a disk or not.

We need further modifications to this equation in order to achieve the forms ([B.22))-([323]), due to
the fact that (£I4]) contains some extra lower-order terms, and that the time derivative is applied to
£¢ rather than to ¢¢.

Let us start with the first discrepancy. Since M, € L>®(Qs.,; R**3), reducing o € (0, 1) if necessary,
we get the following. For any (g,q) € Qs,, With ¢ = (9, h), My(e) + &t~ min(2e) N7 (e, q) is invertible
and M, 1, M, defined, for (¢,q) € Qs¢,, by

~ ~ . —1
My1(e,0) = My(e) (My () + ™2 M, (e,q))
Myo(e,q) ==& (Mya(e, q) — Id),
are in L>(Qg¢,; R3*3).
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Let, for any (q,p,e) € Q° x R3 x [0, 1),
(415) F?‘(gy q)ﬁ) = MT,1(€7 q)HT(€7 q)ﬁ) + MT,2(€7 qE) (F@Q,ﬁ(ﬁ) - €<F@9,19757 ﬁ> + 6/72 EI:E (Q)) .

Using that H, € L>® (Qs.60 X R3;R?) is weakly nonlinear in the sense of Definition 2] and that M, 1
and M, 5 are in L>®(Qs.,; R?*3) we obtain that H, is weakly nonlinear as well.
Now equation (AI3]) can be rephrased as

(4.16) M) Mye () (5°) + e(Toaes 1, 5°) = Fono=(5°) + ev’Ep(a) + 7 Ho (e, 47, 5°).
On the other hand, for the second discrepancy, we compute

(4.17) (FY = () = H)(e, ¢ 5°),

where

H(e,q,5) = L - (Vu)(h) +7*(ua(h) + cuc(q)) - Vug(h) + yDyuc(q)d
+ evDntie() - (£+(ua(h) + cuc(q))).

Let H, be defined by
(4.18) e (e, q,p) = e*H,(e,q,p) — <€°‘M1 +E2Maa£}19) [ . } :
g =) | H (e, q,p)

Then (F23) is obtained by combining IB), {EI7) and @IS). Moreover H, € L>®(Qs., x R3;R?)
and is weakly nonlinear in the sense of Definition 21

Hence the proof of Proposition Bl will be complete once Propositions Ml and [l are established. ]

5. ASYMPTOTIC DEVELOPMENT OF THE STREAM AND POTENTIAL FUNCTIONS

In this section, we establish asymptotic expansions for the circulation stream function and the
Kirchhoff potentials in the domain F¢(q), as € tends to 0*. The asymptotic analysis of the Laplace
equation when the size of an inclusion goes to 0 has been deeply studied, cf. for example [17] and [13].
However to our knowledge the results of this section are not covered by the literature.

5.1. A few reminders about single-layer potentials. In order to get the asymptotic expansions
hinted above, we will look for a representation of these stream and potential functions as a super-
position of single-layer integrals supported by the two connected components 95%(q) and 0f2 of the
boundary of the fluid domain F°(¢). In this subsection, we give a few reminders about single-layer
potentials which we will use in the analysis. We refer for instance to [16] and [5].

Below we consider single-layer potentials of the form:
(51) SLlpel = [ pe(u)G( ~ p)ds(y).

where C is a smooth Jordan curve in the plane and p¢ belongs to the Sobolev space H -3 (C). We say
that C is the support of the single-layer potential and that p¢ is a density on C.

(R?) so that in
particular, for any p¢ in H —2 (C), the trace of SL[pc] on C is well-defined as a function of the Sobolev
space H?2 ©).

e Harmonicity and trace. The formula (5] defines a function in the Sobolev space H}} .
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o Jump of the derivative and density. The density pc is equal to the jump of the normal derivative of
SLpc| across C.

In order to state this rigorously let us be specific on the orientation of the normal. According to
Jordan’s theorem, the set R? \ C has two connected components, one bounded (the interior), say O;,
and the other one unbounded (the exterior), say O.. Moreover the curve C is the boundary of each
component. We consider the restrictions of SL[pc]:

U; 1= SL[PC]\Ol and Ue ‘= SL[pChOe-

Denote n; (respectively n.) the unit normal on C outward to O; (resp. to O.). Then the function wu;

(respectively u.) is harmonic in O; (resp. O.) and the traces of the normal derivatives g;‘zz and gZZ

on each side of C are well-defined in H ™2 (C) and satisfy
8’[14' 8ue
pc = 8n,~ B 8n,~'
In the sequel we will make use of single-layer potentials supported on the external boundary 02, on
the boundary 05¢(q) of the solid body and on the boundary 0S8y of the rescaled body as well. We will

not use the notations n; nor n. but rather the notation n which always stands for the normal outward
the fluid. Hence we will have to particularly take care of the signs when referring to the formula ([5.2]).

(5.2)

e Kernel and rank. We will use the following facts:

(5.3) The operator SL is Fredholm with index zero from L*(C) to H*(C);

(5.4) If pc € H_%(C) satisfies / pcds =0 and SL[pc] = 0 then p¢ = 0;
C

(5.5) If Cap(C) # 1, then for any pc € H_%(C), SL[pc] = 0 implies pc = 0.

Above, with some slight abuses of notation, we omit to mention the trace operator on C and we write
Jo pc ds for the duality bracket <1,pC>H7%(C) gy We refer to [16, Th. 7.17] for (53)), to [I6, Th.

8.12] for (5.4) and to [I6l Th. 8.16] for (G.5).
In particular, using that Capygs, < 1, we deduce the two following results.

Corollary 6. There exists a unique smooth function Vs solution of 2I6). Moreover,

Nza
on

In potential theory —pg is called the equilibrium density of dS.

(5.6) Ve = SLlpag], with pay =

Corollary 7. Let g be a smooth function on 0Sy such that

(5.7) / gpalds = 0,
0So
Then there exists a unique bounded smooth function f such that
(5.8) —Af=0 in R?>\S;, and f=g ondSo.

Moreover, there ezists a unique smooth density pas, in C°°(0Sy) such that f = SL[pss,] and

(59) [ vosds=0.
9So
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Finally, f = O(|ZE|I§21) at infinity and

(5.10) or ds = 0.

a8y 871
Proof of Corollary[@ and[7 The uniqueness part of Corollary [6l and of Corollary [7] and the decaying
at infinity in Corollary [ can be established by considering holomorphy at infinity of appropriate
functions, see for instance [5, Prop. 2.74. and Prop. 3.2.].

The existence part of Corollary [0 is given in [I6, Th. 8.15]; it also follows from the properties of
the single-layers potentials recalled above, in particular (5.3]) and (5.3]).

Regarding the existence part of Corollary [7] we proceed in two steps.

First we prove that the operator which maps (pas,. C) in L?(Sy) x R to (SL[pas,] — C, [, sy P0So ds)
in H'(Sp) x R is invertible. In order to prove this, we observe that this operator is Fredholm with
index zero as a consequence of (53]). Moreover if (pss,,C) is in the Kernel of this operator, then
SLd[pago — &p@}i] =0, so that according to (5.4), pas, = %p@_{% Then using that |, o5, P, ds =0
an

(5.11) / Poa ds = —1,
d0So

as a consequence of (2.I6el) and of the second identity of (5.0]), we get that C' = 0 and therefore
Pas, = 0 as well.
Then (g,0) is in the image of this operator, that is there exists (pps,, C) € L*(Sp) x R such that

(5.12) SL[pss,] — C = g on 0S8y,
and (0.9). Observing that the trace of the operator SL on 0S8y is self-adjoint we infer that
(5.13) SLlpos,Jpat ds = | pos,SLlpat]ds = Can | pas,ds =0

880 880 8SO

Combining (5.7)), (511)), (512) and (B.I3) we infer that C' = 0.
Finally the smoothness part of Corollary [6]and of Corollary [7] follows from [16, Th. 7.16] and (5.10)

follows from (5.9)), (5.2 and the vanishing by integration by parts of the interior contribution. O

e Regular integral operators. Since we consider single-layer potentials supported on two disjoint curves
and their values on both curves, we will also be led to consider regular integral operators. We recall
below some straightforward results which are useful in the sequel. Given C a smooth Jordan curve in
Q, we introduce, for § > 0,
C%:={x e/ dist(z,C) < 6},
and define
F5:C'(Q\C’;H2(C)) x H 2(C) — C'(2\ C%;R),

by setting, for any (b,pc) € C! (Q\C‘S;H%(C)) X H_%(C), for any = € Q\ C?,

F[b,pcl(z) == /C b(z,y)pc(y)ds(y).

This will be applied to b defined in a larger set but singular for x = y; this motivates our framework
for b.
Next, given another smooth Jordan curve C in @\ € and for b € C* (Q\ o H 3 (C)), we define the
operator 3
Fsy,: L*(C) — H'(C)

by setting Fj;(pc) as the trace of Fs[b,p¢c| on C. We will make use of the following lemma.
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Lemma 12. Let § > 0.

(i) The operator Fy is bilinear continuous with a norm less than 1, in other words: for any (b,pc)
in C1 (Q\C‘;;H%(C)) X H_%(C), one has

15t pelllo@nesy < ¥l fgarb ) TPl o
(ii) If C is a smooth Jordan curve in Q\C? and b e C*(Q2\ C’; H%(C)), the operator Fyy is compact
from L*(C) to H(C).
The proof of Lemma [12]is elementary and left to the reader.
5.2. Statements of the results.

5.2.1. Circulation part. Let (e,q) € Q. Let us recall that the function ¥*(q,-) in F*(q) is defined as
the solution to the Dirichlet boundary value problem:

(5.14a) —AyYS(g,-) =0 in 7*(q),
(5.14b) ¥(g,-) = C°(q) on S(q),
(5.14c) v (q,) =0 on 0},
where the constant C¢(q) is such that:

oY*®
5.14d / q,-)ds = —1.
( ) 9S5¢(q) on ( )

Here, n stands for the unit normal vector to 05%(q) U 092 directed toward the exterior of F°(q). The
function ¢ is the counterpart, for the case where the size of the solid is of order &, of the function ¢
defined in (I.12) in the case where the size of the solid is of order 1. For any ¢ € Q, the existence and
uniqueness of a solution 1°(q, ) of (B.14)) is classical.

In order to state a result establishing an asymptotic expansion of C¢(q) and of %(q, -) on 0S8%(q)
as € — 0 we need to introduce a few notations.

e Definition of 13,(q,") and of P°(q, X). We denote, for any ¢ := (J,h) in R x Q, by P%(g, X)
the harmonic polynomial

(5.15) P%(g, X) := ua(h)" - (R(9)X — ().
Let us recall that (y is defined in (215 in term of ¢ defined in (ZIT).
Recalling (5.I1) and the second identity of (5.6 we observe that P°(q, X) satisfies

(5.16) P%(q, - )psa ds = 0.
0So
Therefore, according to Corollary [l there exists a unique smooth function J,(q,-) satisfying
(5.17a) ~AY.(q,-) =0 in R?\ Sp,
(5.17b) ¥9.(q,-) = P°(q,-) on 88y,

and vanishing at infinity. Moreover

0
(5.17¢) / Oon ds =0.
a8y Z?n
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e Definition of ¥L.(q,-). We also introduce the solution 11 (q,-) of
(5.18a) ~AYl(g,) =0 in Q,
(5.18b) Yas(@,) = —(VG)(- = h) - (g on OQ.

Above G denotes the Newtonian potential defined in (L24]).

The function 9}, can be expressed thanks to the function 13, defined in (L23)) according
to the following formula:

(5.19) Vh,z € Q, YO ER, Dypds(h,x)-Cy=hse(9,x, h).

Proof of (519). The relation (EI9) can be proved as follows. We first recall that 3. is
symmetric in its variables. Indeed by uniqueness of the Dirichlet problem (L.23]) we have for
any h € €2, the decomposition in €2:

(5.20) W0e(h,-) = G(- — h) + Galh, "),
where G denotes the Green function associated with the domain 2 and the homogeneous
Dirichlet condition, that is
AGq(h,-) =6y in Q, Gq(h,-) =0 on 0.
Using the decomposition (5.20]), that the Newtonian potential G is even and the symmetry of
Gq we get that the function Y, is symmetric with respect to its arguments, that is:
(5.21) Vh,e € Q,  Yfs(h,x) = Yls(z, h).

It follows that (D,v9s)(z, h) - (9 = (Dpls)(h, ) - (9. Next we observe that Dy (h, ) - (o
satisfies the same Dirichlet problem as 1}.(¥,h,-), by derivation of (L23]). Formula (5.19)
follows then from the uniqueness of solutions to the Dirichlet problem, after switching h and
x. ]

e Definition of ¥}, (q,-) and of P'(q, X). Let us denote, for any q := (9, h) in R x Q, by P!(q, X)
the polynomial defined by
1
(5:22) P(q, X) := =5 (R()" DivGe(h, h)R(9), T (pe) + X “)paxe + R(Y)" Datbs(a, h) - (¢ = X).

Above D240, (h, h) denotes the second derivative of 12, (h, -) evaluated in h, Dls(q, h) stands
for the derivative of ¥)1.(q,-) evaluated in h and X®? stands for the 2 x 2 matrix X ® X. The
notation T2 (pga ) stands for

-1
(5.23) T?(pad) := /88 8?2‘4 (X) X®2ds(X).

This notation is justified by (5.6]).
Observe that P'(g, X) is harmonic (since every monomial of Taylor’s expansions of harmonic
functions are themselves harmonic) and satisfies

(5.24) PY(q,)pga ds = 0.
0So
Therefore, according to Corollary [7 there exists a unique smooth function 1., (g, -) satisfying
(5.25a) ~Apli(q,) =0 in R?\ S,
(5.25b) ¥i(q,-) = Pl(q,-) on 8Sy,
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and vanishing at infinity. Moreover

o 1
(5.25¢) /as gf(q, )ds = 0.

Our main result regarding the potential ¢° is the following, in addition to Lemma [6l
Proposition 7. Let § > 0. There exists ey € (0,1) and pas,, € L™ (D5750;L2(0SO;R)), depending
only on Sy and Q, such that for any (¢,q) € Qs¢, and for any X € 0Sy,

o
on

-1
(5.26) (¢, cRW)X + h) = L% x) 4 (W‘g‘g(q, X) — R(9)t ug(h) - T>

e On on
1 1
L. <8w@Q oP

on %) (¢, X) + £%posor (€. ¢, X).

We recall that the set Q5. was defined in (2.4]).

The proofs of Lemma [l and of Proposition [ are gathered in Section
5.2.2. Potential part. For any j = 1,2,3, for any ¢ in O, we consider the functions Kj(q, ) on OQ U
0S¢(q) given by:
(5.27) Kj(q,") =n-§(q,-) on QU IS(q),
where n denotes the unit normal to 95¢(¢) U 05, pointing outside F°(¢) and the functions £;(q, -) are
given by the formula (5.

Then the Kirchhoff’s potentials cp?(q, 1), for j =1,2,3, are the unique (up to an additive constant)
solutions in F¢(q) of the following Neumann problem:

(5.28a) Api(q,-) =0 in F°(q),

0yt

(5.28D) 87; (¢:) = Kj(q,") on dS(q),
OE

(5.28¢) ﬂ(q, ) =0 on 0f).

The functions K (q,-) (respectively @;((L -)) are the counterpart, for the case where the size of the
solid is of order ¢, of the functions defined in (6] (resp. in (L)) in the case where the size of the
solid is of order 1.

We will use the vector notations:

(5.29) ¢ = (¢, 3. ¥5)" and K° = (K7, K3, K5)".

Our result on the expansion of the Kirchoff potentials ¢ is the following.

Proposition 8. Let 6 > 0. There exists g € (0,1) and

(i) there exists @, € L™ (Qg,ao; L?(0Sp; R3)) and ¢ € L™ (535750; R3) such that for any (¢,q) € Qs
with ¢ = (Y, h), for any X € 08y,

(5.30) @ (0 2RO)X + 1) = sLR(O) (pan(X) + 8(e,0) + 20,(2,0,X) )

(i) there ewists pys, , € L™ (Q5,00; L*(0S0; R?)) such that for any (e,q) € Qs¢,, with ¢ = (V,h), for
any X € 08y,

€

(5.31) R(9) 22

0
(g, 2RW)X + h) = L( T2 (X) + s, (2.0, X) )
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(ii) there exists pyq . € L™ (535750; L2(OQ;R3)) such that for any (g,q) € Qs.,, for any x € 0,
0p®
or
Moreover the reminders @,., Pys, , and Pyq, depend only on Sy and 2.

(5.32)

(q7 33‘) = IE 62 paQ,r(‘S) q, 33‘)

The proof of Proposition [§ is given in Section

5.3. Proof of Proposition [7l and of Lemma [6l We now turn to the proof of Proposition [7] and of
Lemma[6l We proceed in four steps that we now detail. We rely on intermediate results: Lemma [I3]
Lemma [I4] Lemma 16 Lemma [I7] and Lemma [I8 whose proofs are postponed to Subsection [5.4]

We will use the following functional space: for —% < s < 1, let the Hilbert space

Fy := H?(0Sp) x H*(09) x R.

1

We will mainly make use of the indices s = 0 and 1 and also for technical reasons of —% and 3.

First Step. Reduction to integral equations. We look for the solution ¢°(q,-) of (5I4]) as a
superposition of two single-layer integrals, one supported on the body’s boundary and the other one
supported on 9. This transforms (5.I4]) in an integral system as follows.

We define, for any (e,¢) € Q with ¢ = (J,h) € R x Q, two operators Kps,(e,q) and Kpq(e, q)
respectively from L?(9Q) to H'(0Sy) and from L?(0Sy) to H'(09), by the following formulas: given

densities ppn and pys respectively in L2(9€) and L?(0Sy),
(5.33) Kasy(e,9)[poal(+) := SL[paal(eR(I) - +h) on 0S8y,

(5.34) Koo, )lpas, () i= /a o (V)G(- —(eRO)Y +1)ds(¥) on 99

Thanks to Lemma[I2 (), the operators Kps, (€, ¢) and Kpq (e, q) are compact respectively from L?(952)
to H'(0Sp) and from L%(9Sy) to H'(9).

We also introduce for (g,q) € £, the operator A(e,q) : Fy — Fy as follows: for any p :=
(Pasy, pa, C) in Fp,

(5.35)  A(e, q)[p] == (SLlpas,] + Kas, (¢, 9)[poal — C, SLlpaq) + K89(57Q)[P880]7/ Pas,ds).

d0So
Let us observe that in order to simplify the notations, we omitted to write the trace operators applied
to the single-layers in Kps,(¢,q), Kaal(e,q) and (e, q). We also emphasize that the dependence of
2(e,q) on (e, q) occurs only through the compact operators Kys, (¢, q) and Kaq(e, q).

Now the equation (5.I4]) is transformed into an integral system thanks to the following lemma.

Lemma 13. For any (e,q) € Q, let p°(q,-) = (pggo(q, 0,504, ), C%(q)) € Fy such that

(5.36) e, q)[p*(g,7) + (0,0, G(e))] = (0,0,-1).
Then the function in F=(q)
(5.37) V¥ (") i= SLlphse(q)(@:)] + SLlpha(a, )],

where the density pgss(q) (g,-) on 0S%(q) is defined through the relation:
(5.38) for X € 080,  phs, (4, X) = ePpse(g)(a,eR(I) X + h),
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is the solution of (B.I4)). Moreover the normal derivative %(q, -) on S(q) is given by:

€

0 1
(5.39) for X €080, - (q,eR(9)X + h) = Lps 4. X).
The proof of Lemma [I3]is postponed to Section E.4.11

Second Step. Construction of an approximate solution. In this step we describe an approx-
imation p,pp up to order O(e?) of the solution p° of (5.36) and reformulate the equation (E.36) in
terms of the rest p* — papp-

We introduce the various terms involved in the approximation.

e Densities on 0Sy. We first introduce the following potentials defined in R? \ 0Sy:

— 954 defined in (ZI6), extended by Cyg in Sp,
— Y9,(h, ) defined in (517, extended by P%(h,-) in Sy and
— ¥l (q,-) defined in (5.25)), extended by P!(q,-) in Sp.

Now we let pl,(q,-) and pl,(g,-) be the densities on dSy respectively associated respectively
with 99, (h,-) and ¥},(q,-) Correspondingly, we write:

(5.40a) Upa(q,-) = SL[p3a(q; )],
(5.40b) Usa(q, ") = SLIpia(q )],

and we observe that the first identity of (5.6]) is also true in Sp.
e Densities on ). We introduce the following potentials defined in R? \ 9

— Y9:(h,-), defined in (L23)), extended by G(- — h) in R?\ €,
— ¥ki(q,-), defined in (BIS), extended by —(VG)(- — h) - {y in R?\ Q, and
— ¥24(q,-), defined below in (5.44)); extended by Q*(q, ), defined in (5.42)), in R?\ Q.

We let p2e(q,-), pls(q,-) and p2s(q,-) be the densities on O respectively associated with
Y9a(h,-), ¥ia(g,-) and ¥2.(q,-). This translates into:

(5.41a) Vos(h, ) = SL[p3s(h. )],
(5.41b) 3s(a,7) = SLlpas(a, )],
(5.41c) V3s(a,7) = SLIp3s(a,)]-

o Definition of 12.(q,-) and of Q*(q,-). In order to define ¥2.(q,-), we introduce the harmonic
function in R? \ Q:

(542)  Q%(q,x):= %<R(19)t D*G(x — h)R(9), T*(pza))mex> + R(9)' VG (x — h) - T (p3alg, ).

where

(5.43) T (pls(q, ")) = /&S Ypla(q, Y)ds(Y).
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Then we consider 12.(g, ) as the solution of
(5.44a) —AY2e(q,-) =0 in Q,
(5.44b) V3s(a,7) = Q*(g,) on 99,

extended by Q?%(q,z) for x in R?\ Q. These functions 12.(q, ) and Q?(q,-) do not appear in
the claim of Proposition [f] and of Lemma [6]l but will be useful later.

With the choices above we expect to construct a solution of (5.36) with p5g, (€,q,-) and p5q (e, q,-)
respectively close to

(5.45) Poso.app (€ 0:7) 1= Pan + €Poal(e, ) +€° Paald, ).
Po0,app(€: ¢ 7) = Pasl(hy ) + ePas(a, ) +€*P3s(g, ).

The corresponding approximation Capp (e, q) of C(g) is chosen as:
(5.46) Capp (2, 9) 1= —G(g) + CO(h) +Cl(q) + £2C*(q),
with

CO(h) := Caa +¥5s(h. h),

C'(q) := 2Dat5s(h ) - o,
(5:47) C*(q) = 3s(g:h) + Dathas(a,h) - Co — §<R<0>t Dvhs(hs h)R(9), T (o) s
Using that 13, is symmetric with respect to its two arguments (see (5.2I))), and using (L2H), we see
that the first terms of the expansion above are the same as those claimed in (B.17]), that is
(5.48) CO(h) := Con + 2¢a(h) and C'(q) := 2¢e(q).
We finally denote

Papp(e: . ) = (Poso.app(&: @: ), Pocapp (€, 4; *); Capp (£:.9)) -

Now the equation (5.30) translates as follows. Let us introduce gas, (e, ¢, ) and gsa(e, g, ) two
functions respectively defined on 9S8y and 952, for ¢ = (¥, h), by

(5.49a)
2
—98s,(€:¢,") = Z/ Pas(q, Y)13-4(2, 4, y)ds(y),
is0/o%
(5.49b)
1
—goa(e, q, ) :=/ P (W)13(2, (9, 2), —y, h)dS(y)+Z/ P2a(d, Y)me—;i (e, (9,2), —y, h)ds(y),
880 ]:0 880
where we have denoted, for N > 1,
1 (1 o O,)N—l
(5.50) NN (e, q, - y) = / WDNG(O?R(&) - +h —y) - (R(9))*Ndo.
0 - .

Let
(5.51) a(e.q.") == (908, (€:¢: ), goar (€. ¢, ), 0).
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We can deduce from the definitions of the densities pg,s for j = 0,1,2, pae and pég for j =0and 1, and
from Lemma [2, () that gss, (¢, ¢, ) and gaq(e,q,-) belong respectively to H(dSy) and to H'(9Q).
Actually we even have

(5.52) g € L™(Qg; F).
We can now state the result of this step.

Lemma 14. For any (e,q) € Q, let p,(e,q,-) € Fy satisfying:

(553) Ql(ev Q) [pr (57 q, )] = 9(5, q, )
Then
(5.54) p°(q,) = Papp(e.0,) +° pr(e. 4, ),

is solution of (5.30]).

The proof of Lemma [I4] is postponed to Section (£.4.2

Let us stress in particular that the third argument of the left hand side of (553]) does not contain
the singular term G(g) anymore and that the third argument of the right hand side of (5.53]) is now 0.

Third Step. Existence and estimate of the reminders. In this third step we prove, for (¢,q) €
Q5.¢9, With § and gg positive small enough, the existence of p, (e, q,-) € Fy satisfying (6.53) and provide
an estimate in Fp, uniform over (e, q) € Qg .

We will make use of the fact that the the third argument of the right hand side of (5.53]) vanishes.
Accordingly, we denote

(5.55) Fy = HY(0Sy) x H'(99) x {0},
which is a closed subspace of Fi, and prove the following result.

Lemma 15. Let 6 > 0. There exists €9 in (0,1), such that for any g in L*(Qse,; F\), there exists p,
in L®(Qs.,; Fo) such that p,(e,q,-) solves [B53) for any (,q) € Qsz,-

Proof of Lemmal[Id In order to prove Lemma [I3] let us start with stating a perturbative result. The
framework is as follows. Given X and Y two Banach spaces, we denote £(X;Y") the space of bounded
linear operators from X to Y. Let § > 0. We introduce the following families of operators.

e First we consider a family of operators in £(L?(09Q); H*(9Sy)):
(5.56) Kps, € Lip (Q; £L(L*(99); H'(8Sp))) such that for all h in Qj,
Kas,(h) is compact from L*(992) to H'(dSy).

e Next we consider two families of operators: one in £(L?(9Q); H'(0Sp)) and the other one in
L(L%(080); HY(09)):

(5.572) (Tasa(e, @) w10, bounded in L(LH0Q); H'(9S))
(5.57b) (Toa(g,q))(e,q9)en; bounded in L(L*(08y); H(09Q)).

Given these operators we can construct the following one. For (e,q) € Qs, let A(e,q) : Fy — Fy
given by the following formula: for any p := (pss,, paa,C) € Fo,

(5.58) A, Q)] == (A Q) ooy € Frs



DYNAMICS OF A POINT VORTEX AS LIMITS OF A SHRINKING SOLID IN AN IRROTATIONAL FLUID 39

with
(5.59a) A(e, q)[ph := SL[pas,] + Kas, (h)[pac] + eThs, (€, 9)[pac] — C,
(5.59b) A(e, q)lpl2 := SL[paa] + €Toal(e, q)[pas,],
(5.59¢) Ae, )pls = / pas, ds.
0So

Our perturbative result is as follows.

Lemma 16. Let 6 > 0 and for (¢,q) € Qs, A(e,q) given as above, with assumptions (5.56) and (5.57).
Then there exists eg € (0,1) such that for any (e,q) € Qs¢,, A(e, q) is an isomorphism from Fy to Fy
and

(5.60) sup ||A(5aQ)_1HL(F1;Fo) < 0o.
(£,0)€9Q5.¢,

The proof of Lemma [I6 is postponed to Section (.4.3]

In our case, Lemma [T0] is applied as follows. We define, for any (¢, q) € Q, with ¢ = (9, h),
e for any density pao € L2(09),

Kas,(h)[paa] := Kas, (0,0, h)[paa] = SLlpaa](h) as a constant function on 9Sp,

Tos, (e, ) lpos] = /a pon(m(e, g )ds(y) on 05,

e for any density pas, € L*(9S0),

T@Q(€7q)[p850] = /88 paSo(Y)nl(evﬁv *y _K h)dS(y) on 9S).
0

The following lemma entails that the hypotheses of Lemma [I6] are satisfied.
Lemma 17. Let 6 > 0. With the definitions above, (5.58) and (B5T) hold true.
The proof of Lemma [I7is postponed to Section £.4.41
Then we consider the operator A(e,q) associated with these operators f(@go (h), Tos,(e,q) and

Toale,q) as given by (B58)-(E5H9). The next lemma shows that this operator A(e,q) provides the
existence of a solution to (B.53]) with uniform estimates.

Lemma 18. Let 0 > 0. There exists eg € (0,1) such that for any (&,q) € Q5.
(561) pr(qu,‘) = A(€7q)_lg(€7q7')
belongs to Fy and solves (553). Moreover p,. is in L>(Qs..; Fo).

The proof of Lemma, [I8 is postponed to Section (.45 Now once assumed Lemma [I8, Lemma
follows in a straightforward manner. O

Fourth Step. Conclusion.

End of proof of Lemmal@ We apply Lemma[I5lto (5.5I)). Thanks to (5.52]) the assumption is satisfied.
Regarding C¢(q) this yields an expansion actually better than the one stated in Lemma [ that is,
according to (5.46) and (5.48]) and what precedes, there exists C, € L™(Qs,; R) such that

(5.62) C(q) = —G(e) + Cag + Y25 (h, h) + 2eDpp0 (h, h) - Gy + €2 C2(q) + £° Ci(e, q),
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where C2(q) is given by (G47). In order to prove Lemma [f it is therefore sufficient to observe that
C2(q) is bounded uniformly in R for (¢,q) € Qs and to redefine C,.(g, q) such that €2 C,(¢,q) is equal

to the sum of the two last terms in (5.G2)). O
End of proof of Proposition[] Combining (5.39), (5.45) and (B.54]), we get that on 98

o* _

%(Q7 ER(ﬁ) : +h’) = pa{i() + Epg{.}(Q7 ) + 62 pég(% ) + 63 paSO,T(€7 q, ')7
with pasy,r € L (Qs,; L?(0S0; R)). Moreover using (5.2) we have that

o O O3y OPY O,  OP!
1 _ fied 0 _ ea 1 ea

(5.63) Poa = 75, Paa T 75, on and paq on on '

Referring to the definition of P? in (G.I5]) we obtain %—I;:)(q,X) = —R(W) ug(h) - 7, for X on IS,
which concludes the proof of Proposition [7l O

5.4. Proof of the intermediate lemmas. In this subsection, we establish the intermediate lemmas
used in Subsection

5.4.1. Proof of Lemma [I3. First observe that for any densities p%ss(q)(q,') € H_%(&S'E(q)) and

Poald:) € H_%((‘)Q), the right hand side of (E37) is in H} (R?) and harmonic in F°(g) and in
R?\ F¢(g). In particular the equation (5.I4al) is satisfied when v¢°(q,-) is given by ([E.37) without
further assumptions about pj, S<(q) (q,-) or p5(q,-)-

Next we write (0.36]) explicitly in the form:

(5.64a) / Posy (@, )ds = —1,

0S80
(5.64b) —G(e) + SL[pps, (g, )] + Kas, (g, 0)[P50.(q, )] = C°(q)  on 9Sy,
(5.64c) SLp5a(g, )] + Koale, q)[phs, (¢,))] = on 9.

0
Thanks to a change of variable, and using G(e(z — y)) = G(e) + G(z — y), E33), :34) and (31,
this can be recast as

(5.652) / Phseiy (@ )ds = —1,

05¢(q)
(5.65b) SL[pjse(q)(¢: )] + SLpaale,-)] = C°(q)  on 9S°(q),
(5.65¢) SL[p%SE(q)(qa )]+ SL[pja(e, )] =0 on 9.

In particular we infer from (5.65D) and (5.65d) that, when ¢°(q,) is given by (E37), with p*(q, ) =

(s, (@), Do (a, ), C°(q)) solution of (E.3G), the boundary conditions (5.14D]) and (G.I4d) are satisfied.
Moreover, by uniqueness of the solutions to the Poisson problem:

AV =01in S°(¢q), ¥ = C%(q) on 95°(q),

the right hand side of (5.37)) is equal to C¢(q) in S%(q).

The single-layer potential SL[pq(q,-)] is smooth in a neighborhood of 05°(q). Hence, according
to (B:2]), when 9°(q, -) is given by (B.37), the density pgss(q) (g,-) is equal to the jump across 0S%(q) of
the normal derivatives of the function equal to ¥°(q,-) in F°(q) and to C*(q) in S%(q), that is

£ aws 5
pBSE(q)((L ) = %(% ) on 08°(q).

Hence we obtain (5.39)), by using (5.38)) and the condition (5.14d]) by using (5.65al). O
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5.4.2. Proof of Lemma[T] Let (¢,q) € Q and p,(g,q,-) == (pago,r(e,q, -),pagvr(s,q,-),C}(s,q)) c Fy
satisfying (B.53)), that is

(5663‘) SL[P@SQ,T(E7 q, )] + KBSO (87 q)[PaQ,T (57 q, )] = 9880 (57 q, ) on a5’07
(5.66b) SL[poa,r(e,q,")] + Koale, a)[pas,r(€: ¢: )] = goale, q, ) on 0%,
(5.66¢) / Pasy.r(€,¢,-)ds = 0.

0So

Let p*(q,-) = (Phs, (¢ ), Pha(a:-), C°(q)) € Fy given by ([E54). In order to prove (536) we now verify
the three parts of (G.64]).

Verification of (5.64al). Using again that the densities above are equal to the jumps of the normal
derivatives of the associated single layer integrals and the conditions (2.I6Gel), (2.I6D), (5I7d) and

(525d) we get that

(5.67) [ padds=—tand [ plufaids= [ plafa)ds =0,
9So 0S80 9So
As a consequence of (5.67]) and of (5.66d) we get that the condition (5.64al) holds true.

Verification of (5.64D])). Using (2.I6D)), (5.40), (5.67) and (5.66d) we obtain, on Sy,

(5.68) SL[ppsy(9: )] = Con + e¥3a(4:7) + £ 3a(g: ) + £*SLlphs, - (5,4 )
Using Taylor’s formula, (5.41)) and (.I9) we get on 0Sy
(5.69)

Fay (&0l 1) = Y2000 1) D) (RO +o)
2 (Y2ela,h) + Dethela,h) - RO)X + 5 D28l ) - (R()X, R(9)X) )

+é (Kaso (€, 9)Pacr(e, ¢, )I(X) — gas, (€, 4, X))-
We recall that the function gss, (¢, q,-) is defined in (5.49a).
Gathering (5.40), (554]), (5.68) and (5.69) we obtain, on dSy,
~G(e) + SLIpps, (a, )] + Kos, (e, ) Phal. )] = C°(a) = (¥8alg, ) — P(q."))
& (V3ala.) = P(a,))
e’ <SL[p<€9So,r(E7 q.-)] + Kas, (€, 9)[poo,r (€, 4, )] — gos, (€. 4, -)) :

where P%(g,-) and P(g,-) are the harmonic polynomials defined respectively in (5.I5) and in (5:22).

Now taking into account the boundary conditions (5.I7D]) and (5.44DL), and (5.G6a) we get that (5.64Dl)
holds true.

Remark 5. Let us explain a bit how the ansatz of C*(q) given by (B46) and ([E54) was guessed.
Taking into account (B.68) and (E69) we multiply —G(e) + SL[pps,(q,-)] + Kos,(€,9)[P5a(q, )] by

—pad, and integrate over Sy, combining with (E.64D). We then simplify the resulting equation with
the following observations:

e using (2I0)), 2I7) and the first equality in (5.63), we have:
(5.10) | PR EOR@)X as(x) =~
0
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so that
[ PO ) - R)X ds(X) = ~Dudelh ) - o,
| PR XIDLvkula ) R)X ds(X) = ~Deiela ) - G

e using again the first equality in (5.63) and (523]), we get:
(5.71) [ P XTasx) = T30,

9So
so that
/ Paa (X)D390s(h, h) - (R()X, R(¥)X) ds(X) = (R(9)" Divs(h, h)R(D), T* (pza ) max2;
0So

e using (5.16), (BI7D), (5:24), (5.25D).

Then we deduce that if (5.64al) and (5.64D) hold true then C¢(q) should be given by ([6.46) and (5.54)
with

CT’(Ev Q) = /88 p;.é (SL[p%S,r(E7 q, )] + K{)So (57 Q)[PQQ,T (57 q, )] — 908, (57 q, ))ds

We see that the ansatz ([5.40)-(5.54) leads to a reminder Cy(g,q) of order O(1), which encourages the
try of (5.46) as an approzimate solution.

Verification of (5.64d). First, using (5.54)), (5.41), we obtain, on 9,
(5.72) SLpHa(a. )] = ¥s(h, ) +ets(a, ) + € ¥3s(a, ) +* SLlpoa,r (e, a. ).
On the other hand, using Taylor’s formula, (5.54)), (5.67), (5.66d), (5.70), (£43) (G7I) and (5.490),

we get, for x € 050,
(5:73)  Koole.q)lphs, (0, )](@) = =Gz = b) +=DGla — ) - Gy
+8 (= RO DGl —h) - T Bala, ) — (RO DAG(r — h)R(9), T (pih) o
+ &% (Konle,0) hs, - (¢4, ))(@) — gon(,.2)).
Gathering (5.72) and (5.73), the equation (B.64d) now reads, for z € 99,
(5:74)  SLIpha(a;)](@) + Koo (= a)lphs, (@, ))(2) = vSe(h,) = Glo — )
+2(vhsla.2) + DGz — 1) - )
+ 2 (velg.2) — Q¥g.7)
+ & (SLIpor(e:0:)] + Koo (e @) Phsy.r(e: 4, )] (@) — gon(e.,2) )

where Q?(q, ) denotes the harmonic polynomial defined in (5.42).

Taking now the boundary conditions (L23), (2.I8b), (5.44h) and (E.66D)) into account, we deduce
from the equation (5.74) that (5.64c) holds true. O




DYNAMICS OF A POINT VORTEX AS LIMITS OF A SHRINKING SOLID IN AN IRROTATIONAL FLUID 43

5.4.3. Proof of Lemmal[I0. Tt is straightforward to see that for any (g,q) € Q, A(e, q) is linear contin-
uous. Let (g,¢) in Q, with ¢ = (¥, h) € R x Q. Let us introduce, for any p := (ps,,paq,C) € F_1,
2

L[p] := (SL[ps,], SL[paa], C),
K(R)lp] := (Kas, (h)lpag] — C.0, / pos,ds — C),

280
T'(g,q)lp] :== (Tos(e, @) poal, Toa(e, 9)[pas, ], 0),

so that we can write A in the following form: on Fy,
(5.75) Ale,q) = L+ K(h) +T'(e, q).

We first consider the operator L+ K (h). According to (5.3]), the operator L is Fredholm with index
zero and since for each h € Qj, K(h) is compact, we deduce that L + K(h) is Fredholm with index
zero. It follows that in order to prove that L + K (h) is an isomorphism, it is sufficient to prove that
its kernel is trivial.

Consider p := (pas,,paa,C) € F_ 1 such that (L + K (h))[p] = 0. Since the logarithmic capacity
Capy of 00 satisfies Capyg # 1, according to (5.0]), the second equation SL[ppn] = 0 implies
poo = 0. Then reporting in the first equation, we get SL[ps,] = C, whereas the third equation reads
f 050 pas,ds = 0. Thus according to (5.4)), we obtain pss, = 0 and thus C' = 0. This proves that the
kernel of L + K (h) is trivial, and consequently that for any h € Qg, L + K (h) is an isomorphism.

Now using that the dependence of K on h is Lipschitz, we deduce that L + K (h) has locally a
bounded inverse. By compactness of g, it follows that L + K (h) has a bounded inverse for h running
over (5.

Since the operators (T°).¢(o,1) are bounded in the space of bounded operators from Fp to Iy we
can then easily deduce the result from (G.75)). O

5.4.4. Proof of Lemma [I7 The proof of Lemma [I7 relies on Lemma First we use Lemma
with C = 092, b = G and p¢ = pag to obtain that IN(ago satisfies (B.56]). Next we apply Lemma [12]
@) for any (e,q) € Qse,, with C = 9Q, b(z,y) = m(e,q,z,y) and pc = paq and with C = 08y,
b(z,y) = m(e,d,z,—y,h) and pc = ps, to get that Tss,(c,q) and Tha(e, q) satisfy (5.57). O
5.4.5. Proof of Lemma[I8 Let § > 0. Let us first observe that for any (e,q) € Qg, for any p :=
(Pas,, paq, C) € Fy satisfying the condition

(5.76) / pas,ds =0,
0So

one has

Ale, q)[p] = Ale, q)[p-
Indeed B
Kas,(h) = Kas, (0,0, h)[paa] = SL[paa](h)
and first order Taylor expansions yield that
Kas, (€, 9)[pocl — Kas, () [paa] = Ts, (€, q)[Poal,
Koa(e, q)lpas,] = eToale, a)[pas, -

We emphasize in particular that the last equality relies on the condition (B.76]).
Now, consider ¢y € (0,1) obtained by applying Lemma For any (e,q) € Qs¢,, consider

pr(€7 q, ) = (paso,r(ev q, ')7p8977“ (67 q, ')7 OT (67 q)) given by (MID It belongs to FO and satisfies (m)

and consequently
Ale, )lpr(e.q,)] = Ale, @)lpr(e,¢, )] = a(e,q, ).
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Moreover we have the estimate

HpT(€7 q, )HFO < HA(€7 q)_l ||[,(F1;Fo) Hg(€7 q, )HFI :
The estimates (5.52]) and (G60) entail that p, is in L™°(Qs,; Fo), which concludes the proof. O
5.5. Proof of Proposition [8. In this subsection, we establish Proposition [} by following the lines of

the proof of Proposition [l A first step consists in transforming the (Neumann) problem defining the
Kirchhoff potentials into a Dirichlet one, so that we can more closely follow the steps of Subsection [5.3]

5.5.1. Reduction to a Dirichlet problem. We consider the functions @;(q, )), for j = 1,2,3, as the
solution to the following Dirichlet boundary value problem in F*(q):

(5.77a) —AP5(q,-) =0 in 7= (q),
(5.77b) ?5(¢,) = Kj(q,7) +¢j(q) on 9S(q),
(5.77¢c) ?i(q,") =0 on 09,
where the functions K (g, -) are given by
B 3|z — h|? it j=1,
Ki(q.)={ ~RW) @—h)-es if =2
Rt (x—h)-ex if j=3,

and the constants ¢ (q) are such that:

s
(5.77d) / 73 (q,-)ds = 0.
05 (q)

Let us recall that e; and es are the unit vectors of the canonical basis.
The constants c5(g) are determined by

(579) 0 =) [ % (g, a5,
o5:(q) On

where Ej, j =1,2,3 are the solutions of

(5.79) ~Ad;(q,) =0 in F(q),

(5.80) $i(a,) = Kj(a.)) on 8S°(q),

(5.81) Ej(q, =0 on 0N.

We will use the vector notation:

(5.82) P = (71, 75, 95)".

The functions $5(q, ) are harmonically conjugated to the Kirchhoff’s potentials ¢5(q,-), up to a
rotation, as shown in the following result.

Lemma 19. For any (e,q) € Q, with ¢ = (9, h), there holds in F¢(q),
(5.83) V(e ) = V&g, ),
where

(5.84) (#5(a.), #5(a,), #i(a.)) = RO (Fila. ), Pilas ), Filas))-
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Proof of Lemma[I9. First, let us recall that for any (g, q) € Q, the system
(5.85a) divu =0 in F°(q),

5.85b) curlu =0 in F*(q),

5.85¢) u-n=0 on 0L,

5.85d) u-n = Kj(g,-) on 0S5 (q),

5.85¢) / u-71ds =0,
95°(q)

has a unique solution wu, say in H'(F°(g)). Then one observes that both Vgilg,-) and Vl@j(q, )
solve (B5.85]). In particular let us emphasize that, on 9S°(q),

(
(
(
(

0K ;
. VLEE (g, - — (222, — RMVK (a.-
(n Ve )>j:1,2,3 ( or (g, )>j:1,2,3 R(I)'K(q,"),
so that, for j = 1,2,3, V+35(q,-) satisfies (5.85d)), and the condition (B.ZZd)) ensures that (.85 is
satisfied. ]
In the case without exterior boundary we consider in the same way ©,, ; as the solution of

(5.86a) —APuq ;=0 in R?\ S,
(5.86b) Doa () = K;(0,-) + canj on 0Sp,
(5.86¢) Paaj(z) =0 as |z| — +o0,
where the constant caq ; is such that

9G... .
(5.86d) / TPo25 45 — 0.

88y 87’L

The existence and uniqueness of such a constant csq ; is provided by a similar argument as for
(E7R)-([E19). Proceeding as in the proof of Lemma [[9 we get

(5.87) Vesai = V' Paa s

where the functions ¢aq ;, for j = 1,2, 3, are the Kirchhoff’s potentials in R? \ Sy defined in ([Z8]). As
before we introduce the vector notation for the functions p,q, ;:

(588) ¢69 = (@%,17@99,27 @69,3)‘
Then, following the strategy of Proposition [ we will establish the following result.

Proposition 9. Let § > 0. There exists g € (0,1) and

(i) there exists pys, , € L>(Qs20; L?(0S0; R?)) such that for any (e, q) € Qsey, with ¢ = (9, h), for
any X € 98y,

£

op 0p.
(0.2 RW)X + h) = L(222(X) + Epas, (2.0, X)),

(i) there exists paq . € L°(Qs,0; L? (0 R?)) such that for any (e, q) € Qszy, for any x € 89,
8_5
(5.90) o (0,7) = L& Py (2. ,).

Once Proposition [@ is obtained, Proposition [ follows by using additionally Lemma [I9 and (G.87).
O

(5.89)

Hence the rest of Subsection is devoted to the proof of Proposition [
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5.5.2. Proof of Proposition[d. We will follow the lines of the proof of Proposition [{] and will therefore
highlight the differences.
Let j = 1,2 or 3. We introduce the solution /i; of the interior Dirichlet problem

(5.91) Arj(q,-) =01in §(q), #5(q,) = K;(q,-) on 9S*(q),

which merely gives £5(q,-) = Kj(g,-) in 8°(q) in the cases j =2 or 3.

First step. Reduction to an integral equation. As a counterpart of Lemma we have the
following result.

Lemma 20. For any (c,q) € Q, let p(q,-) = (pgso’j(q, ), Paq.i(4,7) C5(q )) € Fy such that

(5.92) A(e, q) [p5(a, )] = (¢K;(0,-),0,0).
Then the function
(5.93) #5(a.) 1= 2 (SLIPhse(.4(0: )] + SLIpb (a. )],

where the density pgss(q) j(q, -) on S¢(q) is defined through the following relation:
(5.94) for X € 0So,  Dhs, (0, X) = €ppse(y),; (@, €R(I)X + h), with ¢ = (I, h),
is the solution of (BTT) with

(5.95) ¢ (q) = "9 C5(q).

£

. . 0gS . .
Moreover the normal derivative nj on 05°(q) and on ONY is given respectively by the formula:

X cos, i NX + h) = i1 (e 0462 0 x

(5:96)  for X €080, (g, 2RW)X +h) = 7! (phs, (0. X) +e52(0,X) )
P o

(5.97) for x € 99, anj (q,z) = g0 PH0,; (4, 7).

Above 01 ; stands for the standard Kronecker symbol.

Proof of Lemma[20. For any densities p%ss(q)j(q,') € H_%(&S'E(q)) and phq i(q,") € H_%@Q), the
right hand side of (5.93)) is in H.} (R?) and harmonic in F°(g) and in R? \ F=(g). In particular the

equation (B.77a)) is satisfied when $5(g, -) is given by (5.93)).
Next we observe that (5.92) is equivalent to:

(5.980) | #hsila s =0,
0Sp
(5.98Db) SLIpgs,,;(4: )] + Kas, (€, 9)[pha,; (¢, )] = €K ;(0,-) + C5(q), on dSy,
(5.98¢) SLlpho,s(a.)] + Koale )Pfs,;(a.)] = 0. on 9
Thanks to a change of variable, and using
(5.99) Kj(q,eR(9)X + h) = £+ K (0, X),
this can be recast as
(5.100a) /885( )pgss(q),j(q, Jds = 0,
(5.100b) SiBhise5(0: )] + SLlpe (0 )] = Ki(a,) + (@) on 0S°(a),
(5.100c¢) SL[pya.;(q,-)] + SL[paSE (@)1=0 on 0f).
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In particular we infer from the two last equations that the boundary conditions (5.77D) and (E.77d)
are satisfied when 3%(q, ) is given by (5.93).

Moreover the single-layer potential SL[p%Q ; (g, -)] is harmonic in a neighborhood of 98%(¢q) so that,
according to (5.2)), when Gj(q, -) is given by (£.93)), the density 661»jpgsg(q)7j(q, -) is equal to the jump
across 05°(q) of the normal derivatives of the function equal to 35(g,-) in F°(¢) and to £5(q,-) in
S%(q), that is

5.101 015 pe _ % Or; dS®
(5.101) e Pyse(q)(@) = 57(a,7) — 5=(a,) on 95" (q).
Using (5.91)) and (5.99) we get, for any X € Sy,

(5.102) K5(q,eR()X + h) = "9 £3(0, X),

so that using (5.38), we get (5.96]). A similar reasoning yields the formula (5.97).
Finally from (5.101) we deduce that, when $5(q,-) is given by (5.93)), the condition (5.100al) entails

the condition (B.77d). O

Second step. Construction of an approximate solution. Next we look for some solutions of

[E92) close to

(5.103) Pjapp(€,q,) = (PaSo,j,app(Ev q,°), Pos,japp (€, 4, ")s Cjapp (&, q)),
with

(5.104a) PoSo.japp (€, G, ) = EPaaj(+),

(5.104b) P00 japp(€: ¢, ) = °pas (¢, ),

(5.104c) Cjapp(e.q) = £C} +£2C3(q),

where paq,j, Pas,j(q, ) C}(q) and C?(q) are defined as follows:

o Definition of paq,;. We define paq ; as the density associated with the function @, ; extended
by Fj(O, ) + Caq,j in Sy.
e Definition of pss,j(q,-). Let Pugs ;(q,) be the solution of
AGusj(q:) =0 Q, Pug;(g,7) = R()' DG(z — h) - T (psa,;) on 0L,
where
T (pae,j) = /88 Y paa,; (Y)ds(Y).
0
Then we define pas,j(g,-) as the density associated with the function @, ;(q,-) extended by
R(9)' DG(x = h) - T (pan (g, -)) in B2 \ .
o Definition of C} and C?(q). We set:
(5.105) C} = coays
(5.106) C3(9) = Pas (0, ).

Now we look for a solution p5(g,-) to the equation (£.92) in the form

(5.107) p5(q,) = Papp.j (&, 0,7) + £° prjle, a0, ).
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Hence the goal in this step of the proof is to reduce the equation (£.92)) to an equation for the
reminder p, ;(e,q,-) with some source terms depending on papp ;. Let (gago (,q, -),gag(a,q,-)) €
HY(0Sy) x H'(082) defined by

(5.108a) —9050,j(€:¢;) = /m Pas,j (¢, y)m (e, ¢, - y)ds(y),

(5108b) —909Q,j (67 q, ) = /65 p@&,](y)nl (67 197 Y, h)dS(y),
0

We recall that the functions ny, for N > 1, are defined in (B.50]). Let

(5109) gy (67 q, ) = (gaso,j(‘S) q, ')7 9oQ,5 (67 q, ')7 0) .

Applying Lemma [[2] (), we get that

(5.110) g; is in L(Qs.0; F1),

where we recall that F} was defined in (5.55). Now we can establish the following.
Lemma 21. For any (g,q) € Q, let p, j(e,q,-) € Fy satisfying:

(5111) Q‘(‘g?q)[pT’,j(E7Q7’)] = gj(ana )

Then p5(q,-) given by (BI0T) is solution of (B.92).

PTOOf Of Lemma ' Let (5,(]) € Q and pr,j(qu, ) = (paSo,r,j(€7Q7 ')7p6977“,j(67q7 ')707“,j(67q)) € FO
satisfying (5.I11)), that is

(51123) SL[PE)SO,r,j(Q q, )] + K@So (67 q)[paﬂ,r,j (67 q, )] = 90Sy,j (67 q, ')7
(5112b) SL[PE)Q,T*(Q q, )] + K@Q(€7 q) [pﬁso,r,j(‘S) q, )] = 909Q,j (67 q, ')7
(5.112¢) / Pasy,r(€,¢,-)ds = 0.

Sy

Let p;(q7 D)= (p3807j(q7 .)7p39’j(q, .),Cj(q)) € Iy given by (.107)). We now check (5.98]) which is the
detailed version of .

Proof of (5.98al). By definition of psa j we get that

(5.113) / Pacj ds = 0.
0So

As a consequence of (BI13]) and of (B.112c) we get that the condition (£.98a]) holds true.

Proof of (5.980). On 98y, we have on the one hand:

(5114) SL[p%SO,j(Q7 )] = E@@Q,j + EgSL[p%SO,T,j (57 q, )]7
and, using Taylor’s formula, on the other hand:
(5.115) Kas, (¢, q)[pEQJ»] = 52@@37j(q7 h) + g3 (Kaso (e, Q)[PaQ,m(Ea q,-)] — gaso,j(& q, ‘))-

Gathering this, we obtain, on 08y,
SLpjs,.;(a: )] + Kas, (e, 0)[pha; (e, )] — eK;(0,-) — C5(q)
= &(Pang (0:) = K;5(0,) = €}) + % (B (0, 1) = C(a))

+ 63 (SL[p%So,T,j(ev q, )] + K@S() (67 q)[paﬂ,r,j (67 q, )] - gaSo,j(€7 q, )) :
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Now taking into account the definitions of le- and C?(q) and the boundary conditions we get that

(5.98L) holds true.

Proof of (5:98d). Finally it remains to check (5.98c]). First we obtain, on 02, that

(5.116) SL[p50,;(4: )] = € Pas j(a, )+ SLlpaa,r,;(e 4. )],
and
(5.117) Kaa(e,9)[Ps, (¢, (@) = = R(9)" DG (2 — h) - T' (paa,;)

+ &% (Kon(e,0)phs, - (50, ))(@) — goa(e,.2)).
Gathering (5.I17) and (5.116]), the right hand side of the equation (5:98d) now reads, for x € 052,
(5.118) SLipjos(a. (@) + Koa(e.0) [P0, (@) = & (Fasla.2) — R(9) DC(x —h) - T' (pany))
+ % (SLlponrj(e,0, )] + Koole, @) Py (0. )(@) = go05(e,0.)).

Taking now the boundary conditions into account, we deduce from the equation (5.I1I8]) that (5.98d])
holds true. [

Third Step. Existence and estimate of the reminders. We now focus on equation (G.I1T]). We
apply Lemma [5l with g, (e, ¢, -) given by (5.I09) instead of g(e, g, ). Thanks to (G.II0]) the assumption
of Lemma [I5lis verified and we therefore obtain the existence of g9 € (0,1) and of p, ; € L™=(Q;s,; Fo)

such that for any (e,q) € Qs¢,, Pr.j(€,q, ) solves (LIII)).

Fourth Step. Conclusion. Combining with Lemma 20} (5103)), (5.104) and the jump formulas:

0P Ok}
on 0S8y, Paa;(q,-) = % - a—n](O, )
0Pys
on 897 p@aS,](qa ) - %(qa ')7
we get
9%; 5. (Paaj | o
on a‘907 a—n(qagR(ﬁ) : +h’) =g <W +e€ paSO,T,j(€7 q, )>7
8¢§ 01, 2(9@@%,]' 3
on 90, S20.) = " (€5 (q,) 4 € ponryea, )

with pasy,rj € L®(Qs¢0: L*(0S0; R)) and paq,r; € L (Qs.c05 L (O R)).
It is then sufficient to set, for (e, q) € Qs.,,

OPss. i
paSO,r(€7 q, ) = (pﬁSo,T,j(‘S) q, ‘))j=1,2,3’ and paQ,r(ev q, ) = ( on K (q7 ) + €PoQ,r,j (67 q, '))j=1,2,3’

so that pys, , € L™ (Qg,ao;LQ(ﬁSo;R?’)) and pyq ,(€,q,") € L™ (ngEO;Lz(aQ;R?’)), to conclude the
proof of Proposition O
6. ASYMPTOTIC EXPANSION OF THE ADDED INERTIA AND THE CHRISTOFFEL SYMBOLS

In this section, we use the asymptotic developments of Section Bl to deduce expansions for the added
inertia matrix and for the Christoffel symbols.
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6.1. Asymptotic expansion of the added inertia M:(q): Proof of Proposition [4. The matrix
MZ¢(q) is the counterpart for the body of size ¢ of the added mass M,(q) defined in (L9D)). It is defined
for (e,q) € Q by

8 £
(61) M= [ et e Pt = [ ela) o Ko )ds
0S¢ (q) n 0S¢ (q)

The function ¢° mentioned above is defined in (B.28)), (5:29). Using a change of variable, observing
that, for (g,q) € Q, on 9S8y,

(6.2) K(q,eR(9) - +h) = LR(9)K(0,-),
we obtain:
(6.3) ME(q) = & /8 5@ ER0) ) © LR)K(0.)ds.

We now apply Proposition 8, (i) to get

(6.4) ME(0) = 2L ( | RO (pon+ 8lea) + 20, (e.0,7) ) @ RWIK0,)ds ) .
0So
(65 = (Moo + R0) [ pule0) @ K005 RE) )

/ 6(57 Q) ® K1(07 )dS = 6(57 q) ® K1(07 )dS = 07
0So 080
and

My s0.9 = R(D) / 0on @ K'(0,)ds R(D),
0So
thanks to (2.80), @I0) and @II). Above o € (0,1) and ¢, € L>(Qs.,; L*(0S0; R?)).

Then we set

My(e.q) == R(9) /a () @ K04 R()'

and we observe that M, is in L>°(Qs.,;R) and depends only on Sy and €2, which concludes the proof
of Proposition @l

6.2. Expansion of I's. In this subsection we consider the Christoffel symbols I'S given for (e, ¢) € Q
and p € R3, by

(6.6 @) = () xp-wiito) (1) €,

where P¢ denotes the two last lines of M:(q)p. The formula (G.0]) is the counterpart for a body of size
e of the Christoffel symbols given by (3.1l when € = 1.

The next result proves that the leading term of I'S is given, up to an appropriate scaling, by the
Christoffel symbols (I'sq 9, p, p) of the solid as if it was immersed in a fluid filling the plane. We recall
that (I'sq g, p,p) is defined in ([ZI3]). Precisely, we have the following result.

Proposition 10. Let § > 0. There exists gg € (0,1) and s, € L>®(Qs-,; BL(R3 x R3;R3)) depending
on S, v and §, such that for any (g,q) in Qs-,, with ¢ = (9, h), for any p = (w, ) € R3,

(6.7) ('5(q),p.p) = eI ((Tonw, 5, D) + € (Ts.r(2,0), 9. D)),
where p = (w,0) = (ew, {).

Proposition 00 follows from Proposition E by straightforward computations.
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6.3. Expansion of I'sq. In this subsection we study the Christoffel symbols I'g, given for (¢,q) € Q
and p = (p1,p2,p3) € R?, by

(6.8) (Toa(@)p:0) = | > (o)t (@)pep eR’,
1<k,1<3

where for every j, k,l € {1,2,3}, we set

(P50)hi() = AT 0) + A5 (@) — A3 (@)

. 995 Oy,
A= [ (a— 2 m) (,7)ds.

Proposition 11. Let § > 0. There exists ¢g € (0,1) and o, € L®(Qse; BLIR? x R3;R3))
depending on Sy, v and Q, such that for any (¢,q) in Qsc,, with ¢ :== (9, h), for any p := (w,l) € R3,

(69) <F%Q(Q)7p7p> = €3I€<Faﬂ,7’(€7 Q)7p7p>
Proof of Proposition [I1. Proposition[IIlfollows from Proposition[§] (iii). Indeed, (6.8 can be rewritten

as:
0p° . 0p® 1_ .. [ 0¢° 2
or (K°-p) < o7 p> - §K (W p> (q,-)ds.

Observe that K¢ is actually independent of e on 9. Let us denote K¢ := eI7'K?. According to

(532), we obtain:
<F%Q(Q),p,p> = 63[6/

o0

with

(T50(0),p.p) = /a )

N ~ R 1. R
|:p8(2,7’(KE ' p) (pﬁﬂ,r p) - §K€ (pﬁﬂ,r : p)2:| (q7 ) dSv

which gives the expected result. O

7. ASYMPTOTIC EXPANSION OF THE TOTAL FORCE H: PROOF OF PROPOSITION

This section is devoted to the proof of Proposition We start with recalling a technical result
borrowed from [14], Article 134a. (3) and (7)], cf. Lemma 22l below. We will go on with some technical
results regarding some inertia matrices and the corrector velocity. Then we will make use of the
expansions of the previous sections and of Lemma to expand the different contributions coming
from F and B. Finally we will combine these expansions, together with those of the Christoffel symbols
obtained above, in order to conclude the proof of Proposition Bl

7.1. Lamb’s lemma. The following lemma seems to originate from Lamb’s work. We recall that ¢;
and K, for j =1,2,3, were defined in (LL5) and (L.G) respectively.
Lemma 22. For any pair of vector fields u, v in C®(R2 \ Sp;R?) satisfying
e divu = divwv = curlu = curlv =0,
e u(x) =0(1/|z|) and v(x) = O(1/|x|) as |z| — 400,
one has, for any 7 =1,2,3,

(7.1) /880 (u-v)K;(0,-)ds = £;(0,) - ((u “n)v+ (v- n)u) ds.

9So
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Proof of Lemmal22 Let us start with the case where 7 = 2 or 3. Then

(7.2) /650 (u-v)K;(0,-)ds = /680 ((u -0)&;(0, )) -nds = / div ((u -0)&;(0, )) dx,

R2\Sy

by using that u(z) = O(1/|z|) and v(x) = O(1/|z|) when |z| — +o00. Therefore

(7.3) / (u - 0) (0, )ds = / £(0,) - V(u-v)da = / &(0,) - (u- Vo +v- Vu) da,

S0 R2\So R2\So
using that curlu = curlv = 0. Now, integrating by parts, using that divu = divev = 0 and once again
that u(x) = O(1/|z|) and v(z) = O(1/|z|) as |z| — 400, we obtain (1)) when j = 2 or 3.

We now tackle the case where j = 1. We follow the same lines as above, with two precisions. First
we observe that there is no contribution at infinity in (Z2)) and (T3] when j = 1 as well. Indeed &
and the normal to a centered circle are orthogonal. Moreover there is no additional distributed term
coming from the integration by parts in (T3]) when j = 1 since

/ v-(u-ngj(O,-))—i-u-(U'foj(O,'))dx:/ (v-ut +u-vt)dz =0.
R2\Sp R2\So
g

7.2. Some useful inertia matrices. In the sequel it will be useful to consider some functions of the
entries of the matrix M, sq defined in ([2.10). We decompose M, sq into

m#*
(74) Mm@{-} = < m Mb> )

where M” is a symmetric 2 x 2 matrix. We also define the real traceless symmetric 2 x 2 matrix M
defined by

(7.5) Mt = (M}

Dheiger = 3 (MW + (P = 3 () - (Wwr),

1<i,j<2”

where (L) denotes the 2 x 2 matrix

(7.6) (1) := (‘1) ‘01> .

The matrix MT depends only on Sy. Its coefficients can be described as follows: using the definition
of the matrix M, sq in ([2.10), we have

0
(7.7a) MIT1 = —Mgz = / 7(’299’3 Paa2ds, and
’ ) 0 /”L
1 0¥sa,3 DPag 2
am =ty = [ (Ot 2,

where the functions ¢aq ;, for j = 1,2, 3, are the Kirchhoff’s potentials in R?\ Sy defined in ([2.).

We also consider
(7.8) M}y = RO)M R@), py:=R)u M) := RWO)MR@).

The matrix Mg enjoys the following properties.
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Lemma 23. For any ¥ € R, for any X € R?,

(7.9) (MyX)E- X = X+ Mjx+,
(7.10) (M3X)*: — MyX+ = —2M) X,
(7.11) (L)M}(L) = M.

The proof of Lemma 23] is elementary and left to the reader.

In Section we will need to compute (I'sq 9, p,p) in terms of MT.
Lemma 24. For any ¥ € R, for any p = (w,?) € R3,

—ot. M et >

7.12 Lsaw,0.p) =
(7.12) (Lo, p:7) (w%ué - 2wM2;€

Proof of Lemma[24 Using the definition of M 0147‘99719 in (Z.I1]) and the decomposition of M, sq in (7.4)
we get

# t
m#* k)
7.13 My s = ,
( ) a, 719 ()u“ﬂ 7\15)

with Mg and py as in (Z8). As a consequence
(7.14) P say = wity + M3
In particular we infer from (220, (213]), (CI3) and (ZI4]) that

B 0 w g - 0+
o=~ ) () ()

:_<wu$-e+(Mge)i.g> _w<uﬂ,€J_>

—wpy — w(Mge)*-

_ —(Myo)* -4
- (w% +w((My0)*+ — MM)) '

It remains to recast this expression thanks to the matrix MT defined in (ZF). This is done thanks to
Lemma 0

Let us introduce now the matrix

Boas I%a0.3
AT -— 58, 0
(7.15) M = /880 <%93> O ey | 45,

on

where the functions @, ;, for j = 1,2,3, defined in (5.86]), are harmonic conjugates to the functions
Pae, j. The matrix M will intervene through the following result regarding the stream function 12, (q, -)

defined in (5.17).
Lemma 25. For any q:= (9,h) in R x Q,

0
(7.16) /a i agzg (q,2)2 ds(z) = TTRW): ua(h)~.
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Proof of Lemma[23. First it follows from (5.86bl) that, on 9S8y,

(7.17) zt = <¢@Q’2 B c@‘w) .

E@Q,i} — Csq.3

We now express the stream function 19, (g, -) thanks to the functions Pag3 and Pag 9.

Lemma 26. For any q:= (J,h) in R x Q, on R2\ Sy,

(7.18) ) = R0 i) (P )

_¢@972

Proof of Lemma[28. Let q := (9,h) in R x Q. On 98y, it follows from (EI7D]) and (5.806) that the
equality holds true up to a constant. Therefore according to Corollary [0l there exists ¢ € R such that,
on R2\ S,

Walar) = RO i) (P29 )
T Fen2

Then using ([2.I66), (5.17d) and (5.86d) we obtain ¢ = 0, which proves the result. O

As a consequence, we get, on 05y,

0 O%sq 3
(7.19) PWon (4,.) = R(9) walh) ( —a%gm> -
T on

Plugging (7I7)) and (Z.I9]) into the left hand side of (7.I6]) and using (5.I7d]) establishes Lemma25 [

We will also use the following identities regarding the analogous moments of the functions a%f'?’
O%sq 2
and —or

Lemma 27. The following identities hold true:

15.%) _

(7.20) | et dsta) = ~Tea(0.),
15.%) _

(7.21) /as ‘12@:3,2 (z)zt ds(x) = MEs(0,-).

Proof of Lemma[27 Let us focus on the proof of (Z20), the proof of (Z.2I)) being similar. Using an
integration by parts we see that

% —
/ 39,3 (x)xJ_ dS(x) — _/ Paa,3 nds = _M§2(07 )
850 T 9So

Let us now connect the matrices M1 and M.

Lemma 28. The following identity holds true:

(7.22) Mt = %(HJFH'*).
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Proof of Lemma[28. Using some integrations by parts and (5.87]), we get, for any i,j = 2,3,

a@é@i
— P, ds = / V@aai VPua dr
/880 On 1o R\ S, 29, 29,j

= / Vsa,i - Vipaa jdr
R2\Sp

B / 890@9,1' Vop 1Az
= 20, i
a8y 871 7

Combining this with (Z7]) and recalling the definition of M in (Z.I5) yield (7.22)). O

7.3. Expansion of E°. We now consider the expansion of E° which is given, for (g,q) € Q, by
1 e 2

E*(q) = ——/ ——(g,-)| K*(q,-)ds.

2 882 (q) a?’L

This formula is the counterpart of (LIBD]) for a body of size e. We recall that the function (g, -) is

defined in (5.14) and the vector field K*(q,-) in (5:27)-(5.29]).

The following expansion will use the vector fields E} (q) and El(q) defined in (&F) and (£7) and the
following ones:

g (h) - ug(h)t M ug(h)*
(723 = (") wa B@=( 0
0

We recall that ug, ¢y and Mg were defined in (IL26]), (ZI5)-(ZI7) and (Z3H)- (), respectively.
The goal of this subsection is to establish the following result.

Proposition 12. Let § > 0. There exists g9 € (0,1) and a function E, € L>®(Qs.,; R3) depending on
So and 2, such that for any (e,q) in Q5.

(7.24) E*(q) = L. (E'(q) + E'(q) + *Ev(=,0))
where
(7.25) E'(q) == E3(0) + E} () + EL(0):

Proof of Proposition[I3. Let § > 0. We proceed in three steps: first we use a change of variable in
order to recast E°(q) as an integral on the fixed boundary 0Sy. Then we plug the expansion of )¢
into this integral. Finally we use several times Lamb’s lemma in order to compute the terms of the
resulting expansion.

Thanks to a change of variable, using (6.2]), we get

E(0) = ~5LRO) [ |G- (a.eR()  +h)

on

where K (g, -) is the vector field defined in (L8]). Using (5.26) we get that there exists g9 € (0,1) such
that for any (e,q) in Qs,

2
K (0, -)ds,

(7.26) E*(q) = LR()(ZE + E0) + 5E'(q) + <°E,(5,0)),

€
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with
S O BT |
E = 2/330 o K(0,)ds,
_ e (095 ¢
(7.27) E@»——A%an(anm»—wammyﬁwaw,
(7.28) E'(q) := Ei(q) + Eb(a),
where
0 2
(7.29) BN =5 [ |72~ RO) ua(h) 7| K(0.)ds
—1 1 1
(7.30) B0 = [ T (%0 - G () K0, )ds,

and E, € L>®(Qs.,;R?) depending only on Sy and €.

We now compute each term thanks to Lamb’s lemma. More precisely we establish the following
equalities:

(7.31) El=o,

(7.32) R()E%(q) = E°(q),

(7.33) R(9)EL(q) = E4(q),

(7.34) R(9)E;(q) = Ey(q) + Ec(a).

The proof is then concluded after observing that R(9)E, is also in L®(Qs.,; R?) and depends only
on &y and .

In order to simplify the notations we omit to write the dependence on ¢ except if this dependence
reduces on ¥ or h. Similarly we omit to write that the functions K, its coordinates K; and the vector
fields &;, which appear thanks to Lamb’s lemma, are evaluated at ¢ = 0.

Proof of (Z3I). Computation of E~'. We use Lemma 22 with u = v = V5] and observe that
V45 is tangent to Sy to obtain (Z31).

Proof of (Z32). Computation of E’. We observe that

11 Mzar

(7.35) Vg = — 7 on 98y,
on
that
0
(7.36) Vil = _a;ng on 08y,
so that, for j =1,2,3,
81[)39 81[)@9 —1 0
— . K;ds = — Vo, - Vo K, ds
/830 on on 8So o et

and we use Lemma P2 with (u,v) = (V1e5d, V+49,,) to obtain, still for j = 1,2, 3,

ozl 90, e
_/850 on om 198 /680(53 V5o ) (n - Viibgg)ds




DYNAMICS OF A POINT VORTEX AS LIMITS OF A SHRINKING SOLID IN AN IRROTATIONAL FLUID 57

Then we use again (Z.35]) and observe that applying the tangential derivative to (5.17Dl), taking (5.15])
into account, yields

0
(7.37) n- Vil = agj* = R(¥) uq(h)* - 7 on 8Sp.
Thus
Mo O3 . Moo ¢ 1
(7.38) _ /a o s = /a L e TR () s

On the other hand, we have:

—1 1
/880 agig (R(0) uq(h) - 7) Kds = ( / 8§ZQ (R(9) ugy(h) .7—)(5j.n)ds)

950 j=1,2,3
Nza t
(7.39) = (/aso a—n(fj -n) (R(9)" uq(h)+ ’n)d8>j:1,2,3'
Thus, combining (ZZ7), (Z38)), (Z39), and then using (LI12d)), [ZI6€), (2ZI7) and ZI5), we get
1
(7.40) R(9)E — R(ﬁ)(/as ngg (& - R() ug(h)")ds), = — (uﬁng)wfﬁ) = E.

This concludes the proof of (T.32]).

Proof of (Z33). Computation of E.. We start with expanding the square in (Z29), to get

0
(741)  EL—gM 4 / Qoe (R(9) ug(h) - 7) Kds — & / IR(0) ua(h) - 7|* Kds,
as, On 2 Jas,
with
1 oo, |2 1 2 1 oo |2
E};lz——/ o2 de:——/ Vil de+—/ 2| Kds.
- 2 88y an 2 85()‘ @QJ 2 8So 87’

We apply Lemma 22 with u = v = V+4J, to get
1
3 [ Vi K= ([ (Tl ) (V4 0k -€)as)
0 0

Jj=12,3

Let us denote by EXY. 5 = 1,2, 3, the coordinates of the vector EM'. We use (Z37) to get

=a,)’

El = [ (6 VL) (RO un®) )ds+ 5 [ (RO un®) 1)K ds,
950 aSo

Then we decompose &; - V4109, in normal and tangential parts and use again (Z37)) to obtain:

11 M oo (R ) (Es - ) ds — 1 tuo(hL . P2K ds
Eaj = /880 o (B ua(h)™-7)(& 7)ds — 5 /880 (R(9)" ua(h)™ - 7)"K; ds.

Now we plug this expression of EL'! into (Z41) to get

1 0Y5e
Ei= 3 /880 (R(®) ug(h)")*K; ds + /a o on (R()! uq(h) - 7) K ;ds

ol .
+/aso === (R()' ua(h)" - 7)(& - 7)ds.
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We observe that the first term in the right hand side vanishes and we combine the two other ones to
get

0
E:.j :/ a1/}—6{%(17'3(19)%Q(h)L) -&jds.
0S80

on
Using (5I7d) we infer
(7.42) E,;=0forj=2,3
Now for j = 1, we start with observing that
1 ¢ 1 MWl 1
(7.43) E;1 = (R(®) uq(h)™) - x— ds.
’ S0 on

Then, combining (43]) and (ZI6]), we obtain:
Eon = (R(9) ua(h)T) - MR(9) ua(h)",

with M given by (ZI5]).
Using (7.22)) and recalling the definition of Mg in (Z8)), we get that

(7.44) El, = ua(h)* M} ug(h)*.
Gathering (Z42]) and (Z.44)) we obtain (Z.33]).

Proof of (Z34). Computation of Eé. We start with splitting Eé into two parts as follows:

—1 41 —1 gpl
E, = - / Wsn Won e / Won OF pe g
as, On On as, On On

Using (7.35]) and (7.36), the first term of the right hand side above is equal to

— Vst Vil K ds.
0S8y

We denote Eaj’ j = 1,2,3, the coordinates of Eé. We apply Lemma with v = VLl/J‘;gl and
v = Vb, for any j = 1,2,3, to get

ol _ o OP!
1 EC SR vAR OWse O o
Ej ;= /880 506 Vs ds+/<930 55— Kds.

We now use that, on 98y,

_ Maer O,  OP!
G Vo = =756 T and T =
the last identity being a consequence of (5.25Dl), to deduce
IMer
4 S 22 ¢ - VPlds.
(7.45) Ep; /aso on & VP ds
Using the expression of P! in (5.22)), we obtain
(7.46) Ey; = —(Ditgs(h, h), R(V) A R(9) )pox2 — Daths(g, h) - R(9) A3,

where

Ot et
Al ::/ 2 r @& ds and A2 ::/ 22 ¢ ds.
! 080 on 4 ! 8So on “
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e We start with the case j = 1. Consider the first term in the right hand side of (.40]). We decompose
Al'into Al = 0 —(®(*, where o is given in (@3] and we observe that, since D20, (h, h) is symmetric,

<D£wgs(h7 h)? R(ﬁ)aR(ﬁ)tM@“ - <D£¢gs(h7 h)? R(ﬁ)USR(ﬁ)t>

where ¢° is the symmetric part of o defined in (44]).
Then, using that ¢° is a traceless symmetric 2 x 2 matrix we get

<D§¢g§(h7 h)? R(ﬁ)aR(ﬁ)tM@“ = <Dg2c¢g§(h7 h)? R(_279)0'S> - _E;,l(Q)y

where Eal(q) denotes the first coordinate of the vector field Ef (¢) defined in (@5]). Therefore we obtain
for j =1,

—(D2pps(h, h), R(9)AJR(0)")gax2 = E} 1 (q) + (D3t3s(h, h), Gy ® (g )maxe.

Concerning the second term in the right hand side of (Z46)), we use A? = —(* (see (2I7)) to get that
for j =1,

—Dytbis(q,h) - R()AT = Dywihs(a. h) - Gy
Thus
Ely = E}1(q) + (D2Y0s(h, 1), Gy @ (i )pexz + Dotiis(a, h) - (5

Let us now express the corrector velocity u.(q) defined in (BI8]) thanks to the functions 19, (h, h) and
Vas(a; h).

Lemma 29. For any q = (9,h) in Q x R,
2.0 1 +
(7.47) ue(q) = (D200a(h, ) - Gy + Datihela, )

Proof of LemmalZ9. We first recall from (5.48]) that for any ¢ = (9, h) in QxR, ¥.(9, h) = Dyps(h, h)-
Cy. Hence from the definition of u.(q) in (BI8]) we deduce that

uela) = (D2l ) - Gy + D2l 1) -Go)
which yields (Z47) thanks to (5.19I). O
Hence we obtain
(7.48) Ep1 = Epa(a) = Go - uela).
e On the other hand, for j = 2 or 3, we have A}- =—(®¢& and A? = —¢&;, and therefore
EL, = (D2u(h, h), RO)(C @ &)R(0) Jgows + Dida(a, ) - RO)E;

= (D208e(h,h) - o + Dibkala. 1)) - RO

= —R() uc(q)" - &
Thus
(7.49) R(0)(Epp)j=23 = —uc(a) ™
Gathering (7.48]) and (7.49)) entails (Z.34]). This ends the proof of Proposition O
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7.4. Expansion of B°. We now tackle the expansion of B* which is given, for (g,q) € 9, by

o° 0p°
B(q :2/ ——(q,- (Keq,- ><—q,->d8-
W= [ G (K Gra)
This formula is the counterpart of (LI5al) for a body of size €. Let us recall that the Kirchhoff’s
potentials ¢ are defined in (5.28)- (5.29).

The expansion that we obtain for B¢(q) is given in the following statement.

Proposition 13. Let § > 0. There ezists ey € (0,1) and a function B, € LOO(Q(;,&O;R?’) depending
only on Sy and Q, such that for any (e,q) in Qs¢,,

(7.50) B(q) = <17 (Bon +€B'(0) + *B.(c.0)).

with Bag g as in (ZI9) and

Bl(q) = <_2Mggg(h)i> '

Proof of Proposition[13. We proceed as in the proof of Proposition Let us state the following
formula which is useful several times in the sequel:

(7.51) for any pg := (Was ), b= (Wp,lp) in RxR%  ep, x pp = Ie((Iepa) X (Iepb)>-

This formula easily follows from (2.20]).
By a change of variable, using (Z51]) and again ([G2]), we get
oY

B¥(q) = eI-'"R(¥) s %(q,sR(ﬁ) -+h) <K(0, ) x R(9)

€

e
or

Now let § > 0. We use (5:20) and (53] to obtain that there exists ey € (0, 1) such that for any (e, q)
in Q5,€07

(g,eR(V) - —l—h)> ds.

B(q) = eI 'R(9)(B” + <B'(a) + £ B, (<,0)).

0. 8¢£ ) 0P a0
BY = /880 o <K(O, ) X 5 ) ds,
oo 0
EI(Q) — /880 (% — R(ﬂ)t uq(h) '7-> <K(0,.) X %) ds,

and B, € L*°(Qs.,;R?) depending only on Sy and Q.

with

We now compute each term thanks to Lamb’s lemma. More precisely we will prove the following
equalities:

(7.52) R(9)B” = Bags,
(7.53) R(¥)B! = BL.

As in the proof of Proposition [13] we will omit to write the dependence on ¢, except if this dependence
reduces to a dependence on ¢ or h, and it will be understood that the functions K, its coordinates
K and the vector fields &; are evaluated at ¢ = 0.
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Proof of (Z52). Computation of B’. Let us denote by 5?, for j = 1,2,3, the coordinates of B°.
We have

87/1_1 0psa 3 87/1_1 0paa2
B = 22 TR0 R d —/ o0 0Po02 e q
- /880 871 87’ 248 8So an 87’ A

—— | VR Vesakads+ [ VL VoK ds
98o 980

using (Z35). Then we use Lemma B2 with (u,v) = (VY 5, Vpaa o) and (u,v) = (VY 9aa, Voaas),
and again (2.I6€) and (T35) to obtain

B- [ Wit (- 2)(n- ) — (- €0)(n-€2)) ds = 1.

Now, proceeding in the same way, we get

Daa Dpsa1 aa Dpsa3
BY = o2 T K ds — / 22 TR K d
o /880 on or 348 88, on or s

=~ [ V'l VewiKsds+ [ Vgl Ve sKids
880 aSO

B /83 agis% <(T &3)(n &) — (7-&)(n- 53)) ds

a -1
= —/ g‘% §1-&2ds
s, on

:CJ_'é.Qu

thanks to (2.I7)).

Proceeding in the same way we also have B = ¢ - £3. This entails (752).
Proof of (Z53). Computation of B'. Let us start with the first coordinate B} of B!, that is:
67/)0 Dpaa2 Opsas
Bl =— —22 — R(9)" uq(h) - = K3 — 2K, | d
=1 /880 ( on (9)"ua(h) T) < or ar 2]

=Bi,+Bi,+B]

1,¢°

with
0
Bl.i=— / Oon o0 ¢, gy,
’ S0 on or
0
Ei 1= / arl)[)@Q 6(10\99,3 K2 dS,
? S0 on or
0 0
B!, = R(ﬁ)tuQ(h)-< Por2 i, (’0‘99’3K2>Td8.
’ aSo or or
We start with
1 _ 1,0 _ la
El,a_ \% ¢39 VQDQQ,QK:;dS KQKgdS.
830 880 T
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We use Lemma 22 with u = V9%, and v = Vaa2 to obtain

/ V0L, - Voo Ky ds — / (V4L - &) (Vipons - n) ds
0S8y 0So

+ / (Vlzbgg . n) (VC,D@QQ . {3) ds
9So

0
:/ (81/}@9K —81/}@95 T)KQdS—l-/ aw@gKQKgdS
aSo 9

or 8sy 9T
5%9 a‘p@QQ
+/880 or  or (&3 - 7)ds.

Therefore

Ol 008 Y Dgans
1 _ e - OWaq 80 3 ]
Blo= [ (G206 - 52 nodes [ Z=mEmdi, as

By switching the indexes 2 and 3 we obtain

oY azp OY, 0paa3
Bl — _ @-Q-K _ R K _ R 5 . .
Biy= /850( o 52 7)K3ds /aso 9 on (&2-7)ds

We sum these two terms, observing that —(&3 - 7)Ka + (& - 7) K3 = K3 + K3 and

0y 0y
K3+ K3 %ds:/ 22 s = 0,
[ e T [ S

thanks to (B.17d), to get

0
B +Blb—/ aw@g<8¢%’2(f3'7)—a(’g@f’?)(&'ﬂ)ds-

Now, using (Z.37), we obtain

O0psa O0psa
Bl +Bly=— [ RO ua(h) - (5226 7) — 2y ) s

0 0

(7.54) = RO ua() [ (226 m + G ) ds
aSo T
On the other hand we observe that
Opsa 0psa3
1 _ t . 89, . 9 .

(7.55) B!, = R(9) uq(h) /a . (226 1) + 226 7)) rds.
As a consequence, gathering (7.54]) and (7.55]) we get

Opaa,2 a3

1 _ t . o8, 3 —
Bl = RO ua(h) - [ [F5526 + S5m0 as =0,

by integration by parts.

Let us now consider the second coordinate B} of B!, that is:

0 Opsa Dpoa
B = [ (%2 - ) i) r) (222t R - 22 ) s

on or or
= E%,a + E2,b + B%,c?
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with
0

B - [ Trelimip g,

’ 3So on or

e Opaa
1 20 29
= —= —Ksd

BZb /380 8n 87' 34as,
Bl .= R() uq(h) - a(’p‘%’?’Kl— 89039’1[{3 Tds.
e 85 or or

Proceeding as above with Eia and Eib we get

oYy oYy O3s Opsns
1 _ feiad _ 8 ¢ 90 ) .
E2,a_/680( gy K1— =0 T)K3d3+/880 sl (GRELES

oYY oYY oo, 9
B%,bz—/ ( %QK?)— g%is'T)KldS—/ Ve ('D@Q’l(&'T)dS-
88 n

or as, Ot Ot
We sum these two terms, observing that
(7.56) (61 7)Ks— (&3 1)Ky = a7 - &,
to get

0 0

750 Bh+Bl=- [ (@t [ O (Bmiig ) - Bl 0)) as
Using (Z.I6]) we obtain
(7.58) / (v - gg)% ds = MR(9) uq(h)* - &,

850 on

63

with M given by (ZI5]). We also use (Z.37)) to modify the second term in the right hand side of (Z.57))

and then get

_ &P@g,i’, 890@9,1
Bha+ Bhy = ~TTRO) ua(h)* &= | RO ua(h)- (S35 1) = =526 ) Jnds.

Adding 5%,0 to this we get
(7.59)
with

B; = ~MR(0)" ug(h)" - & — R(9) uqa(h) - B} 4,

— )

Eéd = / 8%@7?’3 <(§1L -n)n + (51L . T)T) ds +/ %< — (§3L “n)n — (fgl 'T)T) ds

8So 8’7’
0paa3 1 / O0psa1 n
= e ds — ’ ds.
/a e

Using an integration by parts we see that the second term of the right hand side above vanishes. Thus

R(9) uq(h) - Bl ; = —R(9) ug(h)* - / Opeas 1 g
’ S or

(7.60) = M' R(9)! uq(h)* - &,
thanks to (Z.20)).
Gathering (Z59) and (Z60) and using (Z22)) we get

(7.61) By = —2M'R(9)" ug(h)" - &.
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Proceeding in the same way for the third coordinate, using
(-7 — (& - 1)Ky = 2t - &,
instead of (T50) and (C21)) instead of (Z20) we get
(7.62) Bj = —2MTR(9) ug(h)" - &.
Combining (Z61]) and (.62 and recalling the definition of Mg in (CH), we get

which concludes the proof of (Z.53]) and hence of Proposition [I31 0

7.5. Proof of Proposition [5l Let us now proceed to the proof of Proposition Bl We recall, see ([£.2]),
that H¢(q,p) is defined, for (¢,q,p) € Q x R3, by

H®(q,p) == F*(q,p) — (T°(q),p, p)-

Using the decomposition of the Christoffel symbols provided by Proposition [2] we infer that for
(€7q7p) G D’ X Rg?

H*(q,p) =7*E*(q) + v x B*(q) — (T5(q), p,p) — (D0 (a), p. p)-

We now plug the expansion of each term of the right hand side using the results above. Let us
start with the term involving B¢(q). Let 6 > 0. Using (Z50) and (Z5I) we obtain that there exists
g0 € (0,1) such that for any (e,¢,p) in Qs¢, x R,

px B(q) = I (§ X (Bosp + B (0) + B, (¢,0)) )

where p = I.p.
Therefore, using now the expansions of the other terms, that is (6.7)), (69]) and (7.24]), we get,
reducing &g € (0,1) if necessary, that for any (g, q,p) in Qs., x R?,

(7.63) 17" H*(a,p) = (+2E°(0) + 7D % Banyy ) +2(1°E (@) +75 % B (0) — (Ton .51 8} ) + 2 Hy (e, 0, ),
where
H,(e,4,9) = v*Er(,9) + 7P x By(e,q) — ¢(Ts,r(€,9),5,9) — £(To,r(, ), b, B)-
Then we observe that the zero order term in the right hand side of (.63]) can be recast as follows:
(7.64) V(@) + 9D % Boao(9) = Fono(D)-

Now, in order to deal with the subprincipal term of the right hand side of (.G3]), let us state the
following crucial lemma, where we consider the part E}(g) defined in (Z.23)) of the decomposition (725
of the term E!(q).

Lemma 30. For any q = (¥,h) € R x Q, for any p := (w,{) € R3,
(7.65) V*Ea(@) + 75 % B'(q) — (Ton0, 5, 5) = —(Toa,0,5,P),

where p = I.p and p := (@,g), with & = ew and = { — yuq(h).
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Proof of Lemma[30. Let ¢ = (9,h) € R x Q and p := (w,f) € R3 and p = I.p. Using (Z65) and that
for any 9 € R, M:; is symmetric, we obtain

A —20% - M ug(h)* —20+ - M ug(h)*
(7.66) pxBlg) = ( 2 AMyualh) ) _ (=207 Myua(h)=)
—20% (M uq(h)™*) —20° My uq(h)
thanks to (ZII). We recall that, according to (ZI2]) and (Z.23]) we have:
Lt 1

AR MT L uﬂ(h) Mﬁ uq(h)
7.67 Lo, D) = v d El(q) =
(7.67) (Lsq,0,D: D) <(D2,u$ B ZQMgE and E(q) 8
Now it suffices to combine (Z.66]) and (Z67) to deduce (Z6T). O

As a consequence, we obtain:
(7.68) Y’E(q) + b x BY(q) — Tsa9. B, ) = H' (¢, p),

where § is defined in (@S] and H'(g,p) is given by (EI0).
Combining (7.63)), (Z64) and (7.68)) we get that Equation (@) holds true for all (¢, ¢, p) in Qs -, x R>.
Moreover H, € L®(Qs., x R3R3), depends on Sy, v and 2 and is weakly nonlinear in the sense of

Definition 2l This concludes the proof of Proposition O

8. ASYMPTOTIC ENERGY ESTIMATES AND PASSAGE TO THE LIMIT

In this section, we prove Corollary [l and Lemma [§] and establish the main results by passing to the
limit as € — 0.

8.1. Proof of Corollary 4. First, according to Lemma [Il and reducing g and ¢ if necessary, (g, ¢%)
belonging to Qs., implies that A° is in Q5. We recall that the sets Qs, for 6 > 0 are defined in (Z5]).
Thanks to Corollary [l we have, on [0,T1], for € € (0,¢9),

v

. . 1 .
E(q, ) = ™) &y (e,57) + S Mi(e, )P - 5 — 7 wa(h?) + eUr(e, ¢7) = £5(0, po).
Now, since hg = 0 € Qs and ¢(0) = 0 € Qs, we infer from Lemma Bl and Lemma @] that the initial

renormalized energy e (0,p0), when e runs into (0,&¢), is bounded by a constant K; > 0 depending
only on

(8.1) So, Q. po, v, m', T, 6.
Moreover, on [0,77], for ¢ € (0,g0), v*¢q(h) is bounded by a constant K5 > 0 depending only on

B.1).

Using furthermore that, according to Lemma Bl U, is in L*>(Q;.,;R) we get that on [0,7], for
e € (0,e0), —€U,(g,4%) is bounded by a constant K3 > 0 depending only on (8.I]).

On the other hand, thanks to Lemma [ and Lemma [0, reducing again ¢q if necessary, we have that
on [0,T], for € € (0,29),

. . 1 o 2
8m1n(2,o¢) (29(6,]56) + §€4Mr(5,q€)]§€ ‘]56 > Ky <€m1n(1,§) |ﬁ€|R3) ]

Corollary H then follows by choosing for instance K = (K, (K + Ko + Kg))% O
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8.2. Proof of Lemma [8l Using the symmetry of the matrix Myge, we get that the time derivative
(Eg=(,7°)) of the modulated energy is

d - : o
(8:2) G0 (6 5) =" My ()
Combining ([82]) and [B23]) we get
1 d

i d s 2 ~ x = min(2,« ] = e
(83) &) LE (e ) =5 Fange () + 5+ () (G010r(0)) 5~ eCane .5 )

o 1., [d -~ N
P+ 51)5 : <_M195(5)> P

2 dt
+ e EL(gF) + €M) 5 (e, 65, 50).

Using that the force term is Faq 9(p) is gyroscopic in the sense of Definition [l we get that the first
term of the right hand side of the equation (83]) vanishes.

Let us now show that the second term in the right hand side of the equation (83]) vanishes as well.
Going back to the definition of My(e) in Section we obtain that

d : d ~
(8.4) £? 7 Moo = gmin(2.2) 7 My (e).
On the one hand we observe that
d 1 aM@Q 9 ~e
. —M e — — . &) . .
(8 5) dt 80,0 - 8(] (19 ) p

On the other hand we introduce, for any ¥ € R, for any p € R3, the matrix

Sag,ﬁ(p) = < Z (Fas:z,ﬁ)?,jpi> )
1<k,j<3

1<i<3
so that

(Tsa,0,p,p) = Ssau(p)p-
Then, we observe that for any ¥ € R, for any p € R3,
1 0Maq 9
2 dq
This can be checked by using the explicit expression of Mg .(¥) and Ssq 9. Another method, more

theoretical, is given in the second proof of Proposition[lin Subsection[0.6.2] see Lemma@d3l Combining
B3], (B6) and ([84) entails that the second term of the right hand side of the equation (8.3 vanishes.

(3.6)

(¥) - p — Saq9(p) is skew-symmetric.

Therefore the equation (B3] reduces to (B:25]). O
8.3. Proof of Lemma [0l Let us recall that

(8.7) Ry := max{|z|, z € 0Sp},

so that, whatever ¢t > 0, ¥(t) € R and € € (0, 1),

(8.8) S*(q°(t)) € B(h*(t),eRy).

We introduce

(8.9) 5= %d(o,m).

and introduce ¢ € (0,1) (which may be reduced later) such that

(8.10) coRo <9,

(8.11) Ve e (0,20), d(B(0,2Ry),09) > %d(o,am.
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We apply Corollary [ with § defined in (83) and 7' = 1 to deduce that there exists K > 0 such that,
reducing ¢¢ if necessary, we have

(8.12) |°| < K, for all ¢ € [0, 1] for which d(Se(qe(t))ﬁQ) > 0.
We introduce 4(0.09)
T — Imin <1, T) s

and, for € € (0,g¢],
7 ={te|0,1] / Vse[0,t], d(B(h°(s),eRy),00) > 4d}.

The set Z¢ is a closed interval containing 0, according to (8I1]). Consider T¢ := max Z¢, and let us
show that T¢ > T. Of course, if T¢ = 1, then this is clear; let us suppose that 7¢ < 1. This involves
that
d(B(h*(T%),2Rp),09) = 0.
Using (810) we deduce
d(h®(T%),09) < 26.
With the triangle inequality and (8.9 we infer that

d(he(7),0) > %d(o,am.

Now the relation (B8] implies that for all ¢ € [0,T¢],

(3.1 0S¢ (1)), 092) > d(B( (1), =Ro), 00) > 5,
so that (812) is satisfied during [0,7°]. We deduce that KT¢ > d(0,99)/2, so T* > T. Therefore for
any t € [0, 7], for any € € [0, 0], (BI3) holds true. This concludes the proof of Lemma [ O

8.4. Local passage to the limit: proof of Lemma We consider 6 >0, 7> 0 and £; > 0 and
suppose ([B27) to be satisfied. In particular we can apply Corollary Bl on the interval [0, 7] so that
reducing 1 > 0 if necessary,

(8.14) (16| + lew®|)ec(0,e1) is bounded uniformly on [0,77].
Our goal is to pass to the limit in each term of (322 in Case (i) and in ([B:23]) in Case (ii).

8.4.1. Case (i). In that case, we work on (3.22)).
First, thanks to (814) and .22), we deduce some uniform W?%> bounds on h® and e¥°. This
involves that there exists a converging subsequence (h",e,9) of (h®,e¥®):

(8.15) (R, £, 9°m) — (R*,©%) in W™ weak — «.
We now aim at characterizing the limit. The uniqueness of this limit will then prove the convergence
as € = 07 (and not merely along a subsequence).

We start with noticing that the remaining term eH,. (g, ¢%,p) converges to 0 strongly in L>°. Hence
we only have to pass to the limit in the terms M (p°)" and Fuq g-(p°). For what concerns the term
M}(p*")" we have

1/ ren/ 1 (@*)// : o0
M, (p™) — M, (h)" in L°° weak — *.
Now consider

Faqo(p™") =~ <( ) o £ > ;

- - Enwa" Cﬂsn
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see (2I4). On the one hand using w®" = (¥°")" and (ZI3]) we see that
(8.16) Enw Cgen — 0 in WH weak — *.
On the other hand since the weak-+ convergence in W2 involves the strong W1 > one, we get that
Fr — (%) — yug(h*) in WH™ weak — x and (R*(0), (R*)'(0)) = (0, 4).
Hence we infer from the two last components of the system ([B8.22]) that
m! ()" = y[(h*) = yuc(R)) in [0, 7).
Due to the uniqueness of the solution of (L22]), this proves that h* = h(), and this concludes the
proof of Lemma [IQ) for the part concerning the position of the center of mass.

We now turn to the part concerning the angle, that is the convergence of 9. We will use the
following lemma (see [7]).
Lemma 31. Let
o (wWn)nen € W0, T;R)N, (en)nen € (RHN with e, — 0 as n — +o0, such that

(8.17) Enwn — P in WH(0,T;R) weak —x as n — 400;
o (Wp)nen € L(0,T; C)N such that

(8.18) wy, — w in L™(0,T;C) as n — 4o0;
° 1V, = fg W,

Suppose that, on (0,T),

(8.19) enwh (t) = R[wy, (t) exp(—id, (1))].

Then p is constant on [0,T].

Above the notation R stands for the real part. We consider the first component of the system (B.22)):
it allows to apply Lemma B to w, = w®", 9, = 9" and

wn = 27 [(C£) = (¢ (7)) 4 Z5e Ho(en g™ p%).

Using (8I5) and the initial data, we infer that ©* = 0. This concludes the proof of Lemma [0 in
Case (i).
8.4.2. Case (ii). Here we work with ([323]).
We first observe that in the left hand side ,
(e“M, + Mg p0,9:) (5°) — 0 in Wh,
Indeed, thanks to (8I), eM, a0 is bounded in W whereas (5°)’ is bounded in W1, On the
other hand, M gl is constant. Then the extra powers of € in the left hand side allow to conclude.

Next, the term e(Isq9:,p ,p ) converges to 0 in L™ since all terms in the brackets are bounded.
In the same way, the terms E’yzE; (¢°) and Emin@’a)Hr(s, ¢°,p°) converge strongly to 0 in L.

Now let us consider the remaining terms in the two last lines of the equation (8.23]). These are
(8.20) (F)E — % Cye.
The last term converges weakly to 0 in W~ as seen in Case (i), see (8I6). Hence we infer that

(en converges weakly to 0 in W ™1, Due to the a priori estimate, this convergences occurs in L
weak-x. Again this is sufficient to deduce that the convergence of h® towards h* is strong in L, and
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that (h*) = qu.(h*) and h*(0) = hg. The uniqueness of the solution of this Cauchy problem gives
h* = h;). Do to the uniqueness of the limit, the whole h® converges toward h(;;) as € — 0". This

concludes the proof of Lemma [I0]in Case (ii).
O

8.5. Proof of Theorems [2] and Bl We begin with Theorem [, that is with Case (ii).

In that case, as mentioned below (28] it is well-known that the solution hiy is global in time,
and in particular that there is no collision of the vortex point with the external boundary 0f2. Hence
let T' > 0, and let us prove that for small € > 0 the time of existence T° is larger than T and establish
the convergences on the time interval [0, 7.

For such a T, we know that there exists d > 0 such that

(8.21) Vi€ [0,T+1], d(hgu(t),00) > d.
We let
T :=max {t > 0, d(B(h°(t),eRy),00) > d/2} .
Let us recall that Rg is defined in (87). Using Lemma [ we deduce that, reducing d if necessary, we
have that for some € > 0, inf.¢(gg T° > 0. Therefore

T :=liminfT" satisfies 7T > 0.

e—0t

Due to Corollary [ there exists K > 0 and ¢y such that for all ¢ € [0,7 4 1] and € € (0,&¢), one has
the following estimate

(8.22) |6°] + |ew®| < K as long as ¢°(t) belongs to Q%/z'
Now we claim that

~ 1
(8.23) T>T+.

Suppose that this is false. Then we have a sequence £, — 07 such that T°" — T < T + % Now for
any 1 € (0,T), on the interval [0,T — ], the condition d(B(h*"(t),eRy), 052) > d/2 is satisfied for n
large enough. Moreover, for such n, for all ¢ € [0, — n|, (B8] implies that

d(87(t),09Q) = d(B(h*"(t),enR0),00) > d/2.

Hence applying Lemma [0, we deduce the uniform convergence of (h*"), to h(;) on [O,T —n]. In
particular, as n — oo, d(hE" (T —n), 89) — d(h(ii) (T —n), OQ) > d, according to (B.21)).

On the other hand by definition of T°" we have d(B(h* (T, enRo), 99Q) = d/2. Using the triangle
inequality and T°" — T, we get a contradiction with (822). Hence (823) is valid, so that, reducing &
if necessary, we have inf ¢z T >T.

Now, applying again (88) and Lemma [I0] we reach the conclusion. This ends the proof of Theo-
rem [3] O

The proof of Theorem [ is exactly the same, except that the maximal time T;) of existence of h;
may be finite. Let 7" € (0,7(;). It is then only a matter of replacing (8.2I) and ([8.23)) respectively
with
T+ T(i)

2
to get the result in this case. This ends the proof of Theorem 21 O

_ ~ _ T =T
Vt € [0, ] , d(h@(t),09) >d, and with T :=liminf T >T+ (@)

e—0+ 4 ’
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9. RECASTING OF THE SYSTEM ([[LI) AS AN ODE: PrROOF OF THEOREM [I]

9.1. Scheme of proof of Theorem [l Let us first give the scheme of the proof of Theorem [l
The fluid velocity u(g,-) satisfies a div-curl type system in the doubly-connected domain F(q),
constituted of (LIDL), (T2), (LIf), (TIg), and of ([L3). When the solid position ¢ € Q and the

right hand side s of these equations are given, the fluid velocity u(g, -) is determined in a unique way.
Moreover, using (LI2)), (L1) and (L8), the solution u(q, -) takes the form:

(9.1) u(g, ) = ui(g, ) + ua2(g, ),
with
3
(9.2) ui(q,-) = V(p(g,-) -p) =V Z‘Pj(% Jpj | and ua(q, ) == ~vV*(q,-),

where ¢ € Q and p = (p1,p2,p3) € R®. So besides the dependence with respect to Sp, to €2 and to the
space variable, u; depends on ¢ and linearly on p while us depends on ¢ and linearly on ~.

In the system of equations (LT)), the initial data (LIL]) for the fluid is not required any longer
(actually, it can be deduced from the given circulation v and the initial data of the solid through the
functions (0, -) and (0, -)).

The pressure m can be recovered by means of Bernoulli’s formula which is obtained by combining

(CIal) and (I2), and which reads:

(9.3) V= — <§:+ V|u2|> in F(q).

For every ¢, p and =, the pair (u, ) where u is given by (@) and 7 by (@3] yields a solution to
(CIh-d). Equations (I.Ik-h) can be summarized in the variational form:

(9.4) ml -0+ Ju'w* = / m(w*(x —h)t 4+ 0%) - nds, Vp* = (w*,0*) € R3
95(q)

Let us associate with (g, p*) € @ x R? the potential vector field

(9.5) u* = V(p(g,-) p"),
which is defined on F(gq). According to Bernoulli’s formula (@3]) and upon an integration by parts,
identity (@.4]) can be turned into:

(96) ml . +jw/w* _ _/]:( ) <88,;L V’ ‘2> *d dz, Vp* = (w*’e*) € R3.
q

Therefore plugging the decomposition ([@.]) into (@.6]) leads to

0 1 1
<% + §V\u1\2) cutde = —/ (—V!u2]2) ~utde

F(a)

9.7 ml -0+ Jow +/
F(a)

OUQ
— -+ V(ul ug)) - u*dz,
/f@ o )

for all p* := (w*, ¢*) € R3.

Then the reformulation of Equations (IIk-h) mentioned in Theorem [l will follow from the three
following lemmas which deal respectively with the left hand side of ([@7]) and the two terms in the
right hand side.
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Lemma 32. For any smooth curve q(t) in Q and every p* = (w*,¢*) € R3, the following identity
holds:

0 1
(9.8) ml 0+ Jw'w* + / <_u1 + —V\u1\2> ~u*de = M(q)p' - p* + (L(q), p, p) - v,
Fao\ Ot 2

where p == (w, ) = ¢, u* is given by (@A), uy is given by [@2)), M(q) and T'(q) are defined in (L3)
and (LIT).

Lemma 33. For every ¢ € Q and every p* = (w*, £*) € R3, the following identity holds:
1
(99) — / <—VIU2‘2> ufde = 72E(q) . p>o<7
Fla) \2

where u* is given by (@A), ug is given by @2), E(q) is defined in (LID).

Lemma 34. For any smooth curve q(t) in Q and every p* = (w*,£*) € R3, the following identity
holds:

(9.10) - /;@ (% + V(u -u2)> ~u*dz =v(p x B(g)) - p",

where p := (w,?) = ¢, u* is given by (@A), u; and ug are given by [@.2)), B(q) is defined in (LIH).

Lemma simply follows from an integration by parts. Let us consider Lemmas and B4 as
granted. Then gathering the results of Lemmas B2 B3] and B4 with (@1), the conclusion of Theorem [
follows. 0

9.2. Reformulation of the potential part: Proof of Lemma We start with observing that,
under the assumptions of Lemma [32]

(9.11) ml -0+ Juw'w* = Mgp' - p*.

Now in order to deal with the last term of the right hand side of ([@.8]) we use a Lagrangian strategy.
For any ¢ in Q and every p in R?, let us denote

1
(912) Eian) =y [ fuld.
F(q)

where wu; is given by ([@.2)). Thus &;(q,p) denotes of the kinetic energy of the potential part u; of the
flow associated with a body at position g with velocity p. It follows from classical shape derivative
theory that & € C’OO(Q x R3; [0, +oo)). Below we make use of the first order partial derivatives that
we now compute.

On the one hand the linearity of u; with respect to p and then an integration by parts leads to:

%-p*:/ ul-u*dx:/ (¢ p)(u*-n)ds.
Op 7@ 25(a)

Then, invoking Reynold’s formula, we get:

ot , 0 . Op .
9.13 —p == / p-p)dz | -p —/ — -p)-pder.
1) p 0q ( f<q>( ) ) f(q>(3q )

On the other hand, again using Reynold’s formula, we have:

0&, Ouy 1 2
9.14 —-p*:/ <— *)u d:E—I——/ up]“(u* - n)ds.
(9.14) 94 i \ 1 2 Josi Jur |*( )
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Now the crucial quantity here is the Euler-Lagrange function:

[ doE  0& N
(9.15) EL = <dt ap 8q> P
Lemma 35. For any smooth curve q(t) in Q , for every p* € R®, we have:
(9.16) / <6u1 + V!u1\2> cutde =EL

where uy is given by [@2), u* is given by QD) and EL is given by (Q.I5).

Let us introduce a slight abuse of notations which simplifies the presentation of the proof of Lemma
For a smooth function I(gq,p), where (¢, p) is running into Q@ x R?, and a smooth curve ¢(t) in Q
let us denote

(aa jt (g, >> () = (a%J)(qu),q’<t>,q”<t>>>7

where, for (¢,p,r) in Q@ x R3 x R3,

(9.17) J(q,p,7) = pg—q(q,p) + Ta—p(q,p)-

Observe in particular that

d
7 (I(a(),d' () = T (a(t),d'(t),4" (1)),
and
d (01 , 0 d
(9.18) pn (8—q(q(t),q (t))> (8 predC] p)> (t)-
Below, in such circumstances, it will be comfortable to write

2[00 0 4"0)] nstead o (g—g) (4.4 (1), 4"(1))).

and it will be understood that J is extended from (q(t),¢'(t),q"(t))) to general (¢, p,r) by @IT).

Proof of Lemma[3] We start with manipulating the right hand side of (@.1]). Differentiating ([@.13])
with respect to t, we obtain:

498 . dd / d / A )
9.19 St = p)da | pt— — —= .p)-pidz ).
(9.19) Gop ¥ = qioqg < F(q)(w p) ) P ( ;@(aq p)-p )

With the abuse of notations mentioned above we commute the derivatives involved in the first term
of the right hand side, so that the identity (Q.19) can be rewritten as follows:

dos, , 0d / d / O .
9.20 Pt = -p)dz - prde |
(9-20) dop ¥ " agd < f(q)(w p) ) P ( f(q)(aq p)-p )

Moreover, using again Reynold’s formula, we have:

(9.21) %(/ﬂq)(w p) dx) / (e - p) dx+/s(q)(<ﬁ-p)(ul -n)ds

(9.22) = (- p)da + 2E1(q,p),
F(q)

by integration by parts.
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We infer from ([@.20]) and (IEI:I), again with the abuse of notations mentioned above, that:

/ (¢ -p)d ]p dt(/f(q)(aq p)pdat)-

(9.23) EL =— + =
Thanks to Reynold’s formula, we get for the second term of the right hand side

0 * 0 * *
(9.24) a_[ at(cp-p)dw] P =/ 3 — (¢ p)-p dx+/ Ot - p)(u” -n)ds,
q |JF(q) F(q) 94 9S(q)

and for the last one:

£ (L ) o) () )L () )

Using again (@.I8)) for the first term and integrating by parts the second one, we obtain:

9.25 — —-p| -p'dx | = Oi(p-p)) -p-de+ — - p" ) - upde.
OB ( F@) \ 91 7@ 5 %® V) F@) \ 94
Plugging the expressions (0.14]), ([@.24) and [@.27]) into (@.23]) and simplifying, we end up with:
1
EL = / [&t @ D) glul\z} (u*-n)ds.

Upon an integration by parts, we recover (Q.I6]) and the proof is then completed. ]

Now, we observe that the kinetic energy & (q,p) of the potential part of the flow, as defined by
[©@I2]), can be rewritten as:
1
~M.u(q)p - p,

(9.26) E1(a:p) = 3
where M,(q) is defined by ([L9]). Indeed this allows us to prove the following result.

Lemma 36. For any smooth curve q(t) in Q, for every p* € R3, we have:

(9.27) EL = Mu(q)p" - p* + (T(q),p,p) - ",

with p == ¢, EL is given by (@12, M,(q) defined by ([LA) and T'(q) associated with M(q) by the
Christoffel formula (II1a)-(LI10).

Proof of Lemma[36. Using (0.26]) in the definition (O8] of £L£ we have
EL = Ma(q)p" - p" + <(DMa(Q) -p)p> P - —((DM (a)p )p> .

Let us recall the notation (Ma)f](q) in (LIId) and let the notation ) stands for },; ;5 for the
rest of this proof. Then

1 kS
EL=M,p -p*+> (Ma); papiv} — 3 = (M)} pip;pi.
A symmetrization of the second term of the right hand side above leads to

* 1 >k
EL=Mop 1"+ (Z(M ) pkpip; + Y (Ma)] prpip; = Y (Ma)¥; pipjpk>,

and then to the result by exchanging ¢ and k in the last sum. O
Then Lemma B2 straightforwardly results from the combination of ([@I1), Lemmas B5l and O
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9.3. Reformulation of the cross part: Proof of Lemma B4l Assume that ¢ := (J,h) and
p:= (w,?) = ¢ and recall that

up = yVEY(q,), ui:=V(e(g,-)p) and u* = V(p(g,") - p*).
We first observe that

(9.25) Lo (GE)war=— [ (G500 G209

Let us emphasize that there is no contribution on 0f2 since (g, -) is vanishing there.
Now we have the following result.

Lemma 37. On 05(q), we have

0 0 0
(9.29) 5 (W) = =55 (G2 ») + DCG) .
Proof of Lemma [37 We start with the observation that
0 0
(9.30) 5 (0(0) = (@),

is the derivative of the function (q,-) when the boundary dS(¢q) undergoes a rigid displacement of
velocity w = w(x — h)* + £.
Then we differentiate the identity:

(¢, R(I)X + h) = C(q), for X € 08,

with respect to ¢ in the direction p. We obtain:

(9.31) z—fw, ©) pt Vg, 0) w=DClg)-p,  forz € dS(q).

Since ¥(q,-) is constant on 0S(q), its tangential derivative is zero. Besides, on dS(q) we have
wen=uy -n= g—sno(q,-)-pandwe then get

(9.32) V(g x) - w = g—z(q,w)(g—i(q,w) -p) for z € 3S(q).
Gathering (@.30), ([@31)) and ([@32]) we obtain ([@.29]). O

Plugging now ([@.29) into ([@.28) we deduce that:

Oug oY (O Op
9.33 / <—> cutdr = / — (— 'p> <— -p*> ds.
( ) F(q) ot 7 8S(q) on on or

On the other hand, integrating by parts and using that uo = —vg—ZT on 9S8(q), we get:

(9.34) V(ug - ug) - u'de = ’y/ (ug - ug)(u* - n)ds.
F(9) a5(q)

Adding ([©33]) and (@.34]), we get:

o o [ O0T(P0 N (%0 N (9% (%
/ﬂq)(at *V(“l'“”)’“ dx‘”/w o Kan p><af p) (an p)(e% pﬂds’

which is (@.10). O
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9.4. Proof of Proposition [2l. This section is devoted to the proof of Proposition 2. We will use the
matrix M,(q) given by

(9:35) Ma(q) = R(9)" Ma(q)R(9),

where we recall that R(¥) is defined by ([2I2)). We also introduce the real valued function of ¢ =
(9,h) € Q, p € R? and p* € R3:

Zi(q,p,p*) = K%‘Za (q) -p*> R(ﬂ)tp] -R(9) p,

Z3(q,p,p*) = K%‘Za (q) -p> R(ﬁ)tp] - R(9)' p*.

Let us emphasize that the indexes above are chosen in order to recall the position where p* appears
in the three occurrences of p and p* of Z1(q, p, p*) and Z3(q, p, p*).
Similarly we define, for p = (w,?), p* = (w*, £*),

T1(g,p,p) = " Ma(g)p - QL), To(g,p.p") = wMa()p" - <€l> |

* 0
and T3(q,p,p") := wMa(q)p - <€*J_> :
Proposition [2 straightforwardly results from the following three lemmas.

Lemma 38. For any (q,p,p*) € Q x R3 x R3, we have:

(9.36) (I'(q),p,p) -p" =Ti(q,p,p") — Yo(q,p,p*) — YT3(q,p,0*) + =3(q, p, p*) — zE1(q, 0, D")-

DN =

Lemma 39. For any (¢,p,p*) € Q x R x R3, we have:

*

Yi(q,p,p*) — Ya(q,p,p*) — Y3(q,p,p*) = L's(q),p,p) - p",
where T's(q) is defined in (LII).

Lemma 40. For any (¢,p,p*) € Q x R x R3, we have:

— * 1r—~ * *
(9.37) E3(0,p,p") = 5E1(a,p,p7) = (Toa(9), p,p) - p",
where Toq(q) is defined in (LII)).

O
Before proving these three lemmas, let us introduce a few notations. For every ¢ = (9,h) € Q, we
introduce the change of variables y = R(J)!(x — h), the domains

Q(q) = RW)'(Q—h), F(q):=RW)"(F(q) —h) =Qq) \ So,
and the functions &Z(qa y) such that, denoting gb(qa ) = (61 (Q7 ’)7 (:52(q7 ')7 63(q7 ))7 we have
&(q,y) == R(W)'p(g,7),  ye Flg).
For every j = 1,2, 3, the functions ¢;(q, -) are harmonic in f(q) and satisfy:

9o; yteon =1
9.38 —= = oS
( a) on (qu) {nj_l ] _ 2’3 on 05
00, ) ~
(9.38D) gy =0 (=123  ondq).
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Therefore the matrix Ma(q) defined in ([@35]) can be recast as
—~ _ 0w
(939 M@= [ @5 wds
dSo n

Proof of Lemma[38. Let ¢(t) be a smooth curve in Q, defined in a neighborhood of 0 such that ¢(0) = ¢
and ¢/(0) = p. For every p* = (w*,£*) € R3, using the expression of & (g, p) given by (3.26) lead to,
on the one hand:

A8 o s) RO — Talapp”
dop VT (Ma(Q)R(ﬂ) p) R(9) p* — T3(q,p,p")

(9.40) = M (q)p" - p* — Ta2(q,p,p*) + Z3(q, p, p*) — T3(q,p,0").
On the other hand, we get:

0&;

1
9.41 =7 * -
( ) q p 1(q7p,p)+2

Gathering (@.40) and ([@41) and [@.27) we deduce (Q.36). O
Proof of Lemma[39 On the one hand, invoking the symmetry of M(q), we get:
* 0 *

(9.42) Ta(q,p,p*) = wMa(q) <€¢> P
On the other hand:
(9.43) — T3(q,p,p") + T1(q,p,p") = Pyt == o) x| p

. ' 1 ' 1 wPLJI_ Pa .
Now gathering ([©9.42]) and (0.43]) concludes the proof of Lemma [39] O
Proof of Lemma [{0, We first prove the following lemma.

E1(q,p,p").

Lemma 41. Fori,j =1,2,3, for every § = (19,?1) € Q and every p* = (w*,£*) € R3, we have:

9.44 — Vilq) - Vi(q)dy -p:—/ — (w" - n)ds,

with w*(4,p", ) i= ~w* -+ ~R(D)' "

q=q

Let us take Lemma] for granted for a while and let us see how to conclude the proof of Lemma [401
Applying now the change of variables © = R(¥)y + h, we deduce that:

OM, . ) N N .
5 (@) -p" = 0 </~ Vgilq) - Vtﬁj(Q)dy) ‘D
q q F(q) .
9=q 1<4,5<3
=_ </~ &pi%(w* 'n)ds>
39((1) 87 87’ 1<ij<3
— R())’ ( 0%t )22 (4) (" - n)ds) R()
00 87' 87' 1<i,5<3 ’

with @* := w*(z — h)* + £*.
Therefore, applying this with (4, p*) = (¢, p*) and with (¢, p*) = (¢q,p), we get

Zs(q:p:0") = 5Ei(a,p,p") = > A (@) — SN @pp;lpi,
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where the notation ) stands for 21<i7j,l<3 for the rest of this proof and for every k = 1,2,3 the
matrices x*(§) are given by:

A¥(G) = ( %04 %% (4K a, '>ds) |

oq OT or 1<i,5<3

where we recall that K;(g,-) = (z — h)* -n and K;(§,-) = nj_1 (j = 2,3) on 9.
The quadratic form in p can be symmetrized as follows:
Z [Aéj(Q)Psz - §Ajl(Q)plp]} pPi =35 Z [Aéj + A7 - Ajl] (@) pipj D3 s

which leads to the equality (9.37) in the statement of Lemma

Now we give the proof of Lemma ATl
Proof of Lemma [{1] The quantity

(9.45) 8% ( B )qu)-wj(q)dy)

*

D
q=q

can be interpreted as the time derivative of the quantity between parentheses, when the fluid outer
boundary 9€(§) undergoes a rigid displacement of velocity w*.
More precisely, denote by x a cut-off function, compactly supported, valued in [0, 1] and such that

x = 1 in a neighborhood of 85(@) and x = 0 in a neighborhood of Sy. Then, denote by (¢, ) the flow
associated with the ODE:
€' (ty) = x(E(ty)w(t,&(t,y)), fort>0, with {(0,y) =y.
Notice that:
E(t,y) = R(—tw")y — tR(V)" 1",

in a neighborhood of Q(§) and £(¢,y) = y in a neighborhood of 8Sp.
For every t small, define

Q= £(t,Q(G)) and Fy := &(t, F(§)).

For 7 =1,2,3, let 4,53 be harmonic in F; and satisfy the Neumann boundary conditions:

a5t L _
(9.46a) &5 (y=h)=-n on 08y,
on nj—1 =4
P, ‘
(9.46b) B = 0 (j=1,23) on 0.
With these settings, the quantity (9.45]) can be rewritten as:
d
9.47 — Vg - Vgid
( ) dt < ft (IDZ ()0] fl;) 0

According to Reynold’s formula, it can be expended as follows:

(9.48)

d
— (/ V@f . Vcﬁg dx) = / V@;-V(ﬁj da:+/ V@V&; dx—i—/ (V@i-Vg;)(w*-n)ds,
dt Fi =0 Fi—o Fi=0

0Q—o
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where oGt
- L2
90;' = 8—;’t:0-
Lemma 42. For j =1,2,3, the function (ﬁ; is harmonic in Fi—g = .7?(@), satisfies
o'
(9.49) % =0 on 08
and
og'. o 0p; ~
. 4 *op) L Qo = (G).
(9.50) =5 <(w n) - ) on d_o = 99(q)
Once Lemma [42] is proved, (@.44) follows from (@.48]) and an integration by parts. O

Proof of Lemma {23 The function (,Z; is defined and harmonic in F_g = F (¢) and the boundary
conditions are obtained by differentiating with respect to ¢, at t = 0, the identities on the fixed
boundaries 08y and 0€2(q):

ot _ByL. —_1.
(9.51a) %(g(t, 9) = {(y hymem g _;’3 on 8S,,
nj—1 J = 49
0%, P 5
(9.51b) %(5@, ))=0 (j=1,2,3) on 9Q(§).

Let us focus on the proof of ([@.50), the proof of ([@2) being quite similar with some simplifications.
On 092(¢) we can write that:

dt \ on on or’

where the last term is obtained by remarking that n({(t,-)) = R(—tw*)n.
Therefore by taking the derivative at ¢ = 0 of the identity (O.51D]) and using (@.52]) we obtain

oot o7 >
(9.52) ; (ﬁ(at, ->)> lt=0 = Fiy (D*@j,w*,n) +w*%

8_@:_<D2~' * > *%

275 ~
(9:53) =S8 — (D w7~ L,

by decomposing w* into normal and tangential parts.
Taking the tangential derivative of this identity (9.38D]), we get:
- 0P’
(9.54) (D23, 7.n) + nai —0,
T

where we used to relation % — k7 with s the local curvature of 9Q(g). Plugging (@54) into ([@.53)
yields the identity:

07 _ 0% . . 9%
0%p;

055) )+ (- m) G2

T on? or
On 99(§), we have with local coordinates:
_ 9% 0p;  0%p;
AG: — i_ J J
YT "on T o2
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Since @; is harmonic and % =0 on 9Q(q), — —%2% on 99(g), and therefore
0%} . 0% 0, 0F
on =Gt gt )5

which is ([@.50). O

9.5. Proof of ([2Z22]). By definition we have
- [ Ve Vil ) de
F(q)

Thus, by Reynold’s formula we infer that

(9.56) DC(q)-p= 2/ \% <8¢ > -V dx + / IV|%uy - nds.
Fa) N4 25(q)
Using integration by parts, we get
o LN

9.57 / V<—-p>-V1/Jda;:/
%50 Fo  \0 25(a) Gy P 4
Gathering ([@.31]) and (@32)) yields

o B o op
(9.58) 5#%@ p=DC(q) p— 5 (0,2)5 (q2)p.  forzedS(g),

Combining ([@.57) and (@.57) we obtain

o N . _ o O 00
/F (q)v( 9 p) Vi de = /é)s(q)(DC(Q) P, d /a s 15, "5, Pds

8<P
9.59 = —-DC(q -p—/ 2 s,
(9.59) (9) st |an| o

thanks to (LI12d).

On the other hand since (g, -) is constant on 9S(q), we get

390
9.60 / Vo |tu -nd.S:/ 2
(00 s 25(a) |5"| on
Gathering (@.50), (@.59), (9.60) and (LI5DL) leads to the result. O

9.6. Energy conservation: Two proofs of Proposition [l

9.6.1. First proof: with the PDE formulation. In the PDE framework, that is (LII), we can introduce
the total kinetic energy £ of the system “fluid+solid” by

s 1 1 1

5::—/ wda + =mb? + = Jw?.

2 JF) 2 2

The conservation of & up to the first collision is a simple energy estimate; we refer to [10] for such
a result in a wider context. Since Theorem [I] establishes that, up to the first collision, the systems
(1) and ([II8) are equivalent, in order to prove that £ defined in (2:21]) is conserved for solutions of
(IR, it is therefore sufficient to prove that, when ¢ € Q, £ coincides with &.
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In order to prove this we use again the decomposition u = u; + ug (see ([@.2))) so that

s 1 1 1
5:—/ u%dx+—/ u%dat%—/ up - ugdx + = Myp - p,
2Jr@ 2 /7@ Fla) 2
1 1
(9.61) =— / uddz + / uy - ugdz + =M(q)p - p,
2Jr@ Fla) 2
thanks to (@.26) and (L9). Moreover we have that
1 1 1
(9.62) = / uida = —’yz/ Vg - Vi de = —242C(q),
2 Jr@ 2" Jr@ 2

by an integration by parts, and
(9.63) / up - ugde =0,
Fla)

by another integration by parts. Gathering (I.61)), (2.62) and (I63) leads to £ = &, which concludes
the proof of Proposition [l O

9.6.2. Second proof: with the ODE formulation. Let us give an alternative proof of Proposition [

which only uses the ODE formulation (LIS]).
We start with the observation that the energy £(q,p) as defined in (Z2I)) has for time derivative

(9.64) (£@p)' = M@ -p+ 5(DM() P p — 57°DC(a) p.
Now, thanks to (II8) and (LI5d), we have
(9.65) M(q)p'-p=—(T(a),p,p) - p+ F(g,p) - p,
and
(9.66) F(q,p)-p=7"E(q) - p.
We introduce the matrix
(9.67) S(q,p) = (Z 1“%((1)1%) :
1<i<3 1<k j<3
so that
(9.68) (T'(q), p,p) = S(g; p)p-
Combining (64), (@55), (I66), @67) and (63) we obtain
(9.69) (£(@.0)) = (E@) ~ 50C@) -+ (3DM(@)-p~ S(a.p))p - p.

The first term of the right hand side vanishes thanks to (2.22)).
The proof of Proposition [ follows then from the following result.

Lemma 43. For any (¢,p) € Q x R3,

1
(9.70) §DM(q) -p—S(q,p) is skew-symmetric.
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Proof of Lemma [{3 We start with the observation that DM(q) - p is the 3 x 3 matrix containing the
entries

Z (Ma)f,](Q)pk, for 1 < 1, <3,
1<k<3

where (M,) (q) is defined in (LIId).
On the other hand, the 3 x 3 matrix S(q,p) contains the entries

> 3 () + (M) — (M) @

1<k<3
for 1 < i, < 3. Therefore, the 3 x 3 matrix DM (q) - p — S(q,p) contains the entries

cilan) = —5 Y (M)~ L)L) (@) p

1<k<3

for 1 < 4,7 < 3. Using that the matrix M (q) is symmetric, we get that c;;j(¢,p) = —cji(¢,p) for
1 < 4,7 < 3, which proves (b). O

APPENDIX: PROOF OF LEMMA

Let us first consider a smooth vector field f := (f1, f2) on Sy and observe that the complex integral
faso (f1—1if2) dz can be obtained by the circulation and flux of the vector field f thanks to the formula:

(9.71) /65 (f1—if2)dz:/68 (f-7—if-n)ds.

In order to prove this, denote by v := (71, 72) a parametrization of Sy such that 7 = (v{,74), then
dz = (74(8) + iv4(s))ds and n = (—~5,~4). Hence (@71 follows from

/ (fo— ife)dz = / (P + fon) ds — i / (—firy + for}) ds.
9S8y 0So 9So

Now observe that z(H;, —iHy) = fi —ifs with f; = - Vot and fo = z- - V445! so that applying

[@7T)) we have that
/ z(Hy —iHs)dz = / Jsa ds,
65() 8SO

i (2 58500) - (2 3580) »

where, for z € 08,

Moreover we have
gse = (v1Hi+z2H2)m + (—22H1 + 21H2)70 — i(201 Hy + m2Ha)ny — i(—2oH1 + x1H2)n2
= z1(H1m + Homo) + xo(Hom — H172) — iz1(Hiny + Hang) — izo(Hany — Hing),
and using that (ny,ng) = (—72,71), we deduce that
goa = 2(V 50 - 1) — iz(Viisg - n).
It is then sufficient to recall that V5 it - 7 = —87’;—‘% and V454 - n = 0 to conclude that

8 —1
/ Z(Hl — iHQ) dz = —/ (l‘l + ’il‘Q) Von ds = (4 +i(o.
S0 250 on
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