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Abstract 
For short- to medium-span bridges, truck gross vehicle weights (GVW) and axle loads are 
of great importance to assess extreme load effects, as extreme load events are obtained by 
combining the extremes of GVWs or axle loads. In this paper, three known prediction 
methods are applied, a normal distribution fitting to the sample distribution upper tail, the 
block maxima method and the peaks-over-threshold method, to extrapolate extreme traffic 
loads. Moreover, two methods, the delta method and the profile likelihood method, are 
introduced to assess the confidence in these extrapolations. Results show that generalized 
Pareto distribution based peaks-over-threshold method is the best among these three 
methods to assess the extreme traffic loads. 
Keywords:  WIM data, gross vehicle weight, return period, return level, confidence 
interval, delta method, profile likelihood method, generalized extreme value distribution, 
generalized Pareto distribution. 
 
Résumé 
Pour les ponts de courte ou moyenne portée, le poids total et le poids par essieu des camions 
sont cruciaux pour déterminer les sollicitations extrêmes induites dans la structure. En effet, 
les cas de charges extrêmes sont obtenus en combinant les maxima de ces deux types de 
charges. Trois méthodes classiques, un ajustement de gaussienne sur la queue de la 
distribution d’échantillon, la méthode des maxima de blocs et celles les pics au-dessus d’un 
seuil, sont appliquées pour extrapoler les charges extrêmes. En outre deux méthodes, la 
méthode Delta et la méthode de vraisemblance de profil, sont introduites pour déterminer le 
niveau de confiance de l’extrapolation. Les résultats montrent que la distribution de Pareto 
généralisée issue de la méthode des pics au-dessus d’un seuil est la mieux adaptée pour 
extrapoler les charges du trafic.  
Mots-clés: Données de pesage en marche, poids total, période de retour, intervalle de 
confiance, méthode Delta, méthode de vraisemblance de profil, la distribution des valeurs 
extrêmes généralisées, distribution de Pareto généralisée. 



1. Introduction 

Bridges need to provide safe crossing for all vehicles, with respect to ultimate and 
serviceability limit states. Thus accurately assessing traffic loads on existing bridges during 
their lifetime is important. However, using the load models of the current design standards, 
like Eurocode 1991-2 (CEN, 2003) in Europe, which are made for designing new structures, 
may often lead to the conclusion that the bridge will fail. Indeed, these load models include a 
safety margin, which has been designed to take into account any possible future modification 
in the traffic (weights and dimensions of the trucks for example). Therefore, site-specific 
traffic loads and corresponding load effects are required to assess an existing bridge 
(O’Connor et al., 2002). There is considerable potential for reducing the assessed traffic 
actions by considering actual traffic loads which can be obtained by weigh-in-motion (WIM) 
or bridge weigh-in-motion (B-WIM) systems. 
 
The yearly maximum or lifetime maximum distribution function is a major component to 
build the limit state function in reliability assessment, which is provided by extreme value 
theory (EVT). However, it is usually more convenient to interpret extreme value models in 
terms of quantiles or return levels relative to individual parameter values. The standard 
statistical method adopted to assess traffic load or traffic load effect return levels assumes that 
the distribution of yearly maximum traffic load effects can be approximated by a Gumbel 
distribution (O’Connor et al. 2002; Caprani, 2005), a Weibull distribution (Bailey, 1996) or a 
generalized extreme value distribution (GEVD) (Caprani, 2005). The R-year return level 
estimation is then a certain quantile of the underlying distribution corresponding to this R-
year return period, commonly referred as 1000-year return level in Eurocode 1991-2 (CEN, 
2003), which is the quantile corresponding to a 10% probability of exceedance during 100 
years. 
 
Since the observations are drawn from random variables, repetitions of the measurements 
would generate different observations, e.g. different traffic load effects, and hence different 
estimates of the R-year return level. Thus, the sampling process induces randomness in the 
estimator. Quantifying estimate accuracy can usually be made more explicit by calculating a 
confidence interval (CI) in statistics. 
 
This paper focuses on applying fitting distribution method to upper tail, block maxima, and 
peaks-over-threshold (POT) approach to obtain maximum-likelihood (ML) estimates for 
GVW return levels. Their variability is investigated by delta method and profile likelihood 
method to build confidence intervals. 
 
Section 2 introduces the two sets of WIM data used in the analysis. Section 3 describes the 
theory of the three extrapolation methods and of the two methods used in the part about the 
methods of building confidence intervals, giving their advantages and drawbacks. Section 4 
provides comparison and comments based on the 1000-year return level of GVW for two sets 
of WIM data. 

2. WIM Data 

Traffic load data were collected from January to May 2010 by a piezo-ceramic WIM system 
on the A9 motorway at Saint-Jean-de-Védas, near Montpellier in South-East of France (0). 
The motorway has 4 traffic lanes (2 in each direction) but only the north bound traffic lanes 
were recorded. 846,019 trucks (GVW>3.5 t) were recorded, which gives an average daily 



truck traffic (ADTT) of 6,130 trucks. Some suspicious data (outliers) were eliminated 
according to accepted criteria (Sivakumar, 2010) such as axle spacing greater than 20 m. 
Finally 835,468 trucks were kept for the analysis. Another set of WIM data was recorded 
from April to May 2010 on the A31 motorway near Loisy, in the East of France, for 
comparison. This sample contains 374,119 trucks after filtering the outliers. 
 

 

Figure 1 -  The measurement locations 

(a)   

(b)  

Figure 2 - Proportion of vehicle types (a) 
Saint-Jean-de-Vedas, (b)Loisy 

 
Table 1 - Gross vehicle weight statistics 
 

Statistics 
Location of WIM station 

Saint-Jean-de-Vedas Loisy 
All Weekdays All Weekdays 

Number of surveyed days 138 98 61 43 
Total number of trucks 835,468 656,974 374,119 323,470 
Maximum of GVWs (tons) 74 74 74 74 
Mean of daily maxima (tons) 57.5 58.5 57.5 60.9 
COV of daily maxima (%) 12.7 12.2 13.4 10.5 
Mean of top 1% trucks (tons) 44.9 44.8 44.9 45.0 
COV of top 1% trucks (%) 7.8 8.0 7.7 8.1 
Mean of top 0.5% trucks (tons) 46.7 46.7 46.7 47.0 
COV of top 0.5% trucks (%) 9.0 9.2 8.8 9.2 
 
Nearly 75% of the trucks are 5-axle articulated trucks in both sites (0). Both samples have 
similar statistics on GVW: maximum, mean value, and coefficient of variation (COV) (0 and 
0), although the sample sizes are quite different. The statistics of the whole samples or of the 
week day only are different, above all for small sample size. 
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Figure 3 - Single vehicle GVW relative frequencies (a) St. Jean de Vedas, (b) Loisy 

3. Theory of Extrapolation 

3.1 Methods for extrapolating R-year Level 

In bridge engineering, the GVW of heavy trucks is particularly important to assess load 
effects on structures, as single-heavy-truck combined with common trucks governs the traffic 
loading scenarios for short- to medium-span bridges. The R-year return period level of GVW 
based upon a set of samples can be extrapolated with the maximum distribution of the sample.  
Let X  be a random variable and F  its cumulated distribution function. Let’s denote 1, , nx x  

an identically and independent distributed sample ofF . The maximum value over the "n-

observation" period is 1max , ,n nM x x , and the distribution of nM  is Pr
n

nM F z . 

 
The distribution of nM  can be exactly derived according to the parent distribution function F
of the sample (Coles, 2001). However, only the upper tail of parent distribution function 
really contributes to the distribution function of the maximum, obtained by rising F  to the 
power n. Thus, (Nowak, 1994) fits Normal distribution to the upper tail of the ratio of load 
effect to HS20 load effect to extrapolate average 75-year maximum load effect. (Jacob and 
Maillard, 1991) adopts half-Normal distribution and Gumbel distribution, which were used in 
the background study of the Eurocode 1991-2 (Flint and Jacob, 1996).  
 
It is noticed that very small discrepancies in the estimate of F  can lead to substantial 
discrepancies for nF . Statisticians have found that nF  asymptotically approximates to the 
three extreme value distributions (EVD): Gumbel, Frechet and Weibull, which makes it 
possible to avoid rising power of parent distribution function. But a decision needs to be made 
on selecting the distribution type of EVD. A unification of the three families of EVD into a 
single family known as GEVD, was widely used in recent years to avoid choosing which of 
the three families is the most appropriate for the data (Coles, 2001). Periodic maxima 
consisting of the largest values drawn from blocks which are defined by measurement 
periods, day or month, are recorded, and this block maximum method is very practical to fit 
GEVD, if the block length is sufficient, and if enough blocks can be obtained.  
 
In recent years, especially in hydrology, finance and wind engineering, it was agreed that the 
discard of some of the largest observation in the block, given that only the block maximum is 
considered, represents a loss of information if the maximum values of other blocks are lower 
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than these rejected values. Peaks-over-threshold method is an approach that avoids having to 
decide the distribution type and efficiently using upper tail data. Indeed the excess over the 
threshold conforms to generalized Pareto distribution (GPD). (Crespo-Minguillon and Casas, 
1997) uses POT approach to study weekly maximal traffic load effects. 
 
Therefore these three methods of fitting distribution to upper tail data, i.e. block maxima 
method for daily maxima, peaks-over-threshold method for excesses over high threshold, and 
extrapolating extreme values have been applied on the WIM data observed to calculate the 
extreme traffic loads. 

3.2 Confidence Intervals for Return Period Levels 

Practically, a finite number of samples are used to estimate the distribution parameters. The 
question is to know how close the estimates are to the real-values. Quantifying the accuracy 
of an estimator can usually be made by calculating a confidence interval. For theory purpose 
(Shao 2003) wrote: 

       X X , X 1P C                                   (1) 

where X , X  is the confidence interval, for the 1  confidence level. The lower 

and upper bounds of this confidence interval must be determined. All parameters of the above 
considered prediction methods are estimated by maximum likelihood estimation (MLE) 
methods, while delta method and profile likelihood function based method are commonly 
used for building confidence intervals of ML estimates (Coles, 2001). 
 
The delta method is a common technique to determine confidence intervals for functions of 
ML estimates, when direct evaluation of that function variance is not feasible. Generally, the 

ML estimate, denoted bŷ, follows an asymptotic Normal distribution: 
 

 
 
The principle of the profile likelihood method is to invert a likelihood-ratio test to obtain a CI 
for the considered parameter. Let a statistical model with parameter  that can be partitioned 
into two component, (1) (2), , of which (1)  is the k-dimensional vector of interest and (2)  

is the remaining parameters in the model. Maximizing the log-likelihood function (1) (2),l  

with respect to (2)  for fixed (1)  leads to the profile log-likelihood 

(2)

(1) (1) (2)max ,pl l , and (1) (1)
0̂2p pD l l , where 0̂l  denotes the 

maximized log-likelihood, conforms to Chi-square distribution with k-degree of freedom 
according to the statistical theory (Coles 2001). For the concerned variable, 

(1) (2),z G G , a function of , the re-parameterization of the parameters of interest 
(1) 1 (2),G z  is obtained. The profile likelihood, zpl , for z  is then obtained by 

maximizing the 1 (2) (2), ,l G z with respect to the remaining (2) , and the CI for z  is 

constructed with the asymptotic 21  distribution. 



4. Comments and Comparison 

In this section, we present the results of our calculations: in 0, you may find the 1000-year 
return period level of the GVW of the WIM data of the two locations we presented earlier. 
For each location, the three methods are applied and in the last column you may find the 
results of the return period level. In table 3, you will find the corresponding confidence 
intervals for this 1000-year return period level, assessed for each location and with the two 
methods explained in the previous section. Indeed, 
 
General comments can be made: 

 The results for the two WIM sites show that larger sample size ensures more reliable 
estimates (narrower CI); moreover, using only the weekday data leads to narrower CI.  

 A simple fitting of a normal distribution to the data upper tail provides much higher 
estimates than the other two extreme value theory based methods. This is surely due to 
the selected normal distribution: the shape parameters (0) of the two EVT based 
methods are negative, which means that the underlying parent distribution has a 
bounded tail, while the normal shape has an exponential infinite bound. 

 The slightly larger mean and COV causes larger estimates. Using data excluding 
weekend days induce smaller estimates of return levels (0 and 0). The same 
phenomenon occurs with the confidence interval length. 

 Among the three prediction methods, the block maxima method (GPD) mostly has 
much larger length of confidence intervals than the other methods. It must be caused 
by the larger COV of the daily maxima than of initial data, and less data are involved 
in estimation. 

  The estimated confidence interval from delta method is greater than the one obtained 
by the profile likelihood method; this demonstrates the statement by Coles (2001) that 
profile likelihood method usually gives more accurate estimates than delta method. 

 
Table 2 - 1000-year return period level of GVW (in tons) 
 

Site Method 
Distribution parameter 

Return level 
Shape,  Scale,  Location,  

Saint-
Jean-de-
Vedas 

Normal  8.72 (7.56) 47.29 (51.61) 100.70 (97.60) 
GEVD -0.22 (-0.27) 6.90 (6.96) 54.76 (55.97) 84.24 (79.09) 
GPD -0.20 (-0.19) 5.57 (5.33)  81.63 (82.25) 

Loisy 
Normal  10.53 (10.88) 40.99 (39.41) 105.49 (105.79) 
GEVD -0.16 (-0.26) 6.91 (6.15) 54.40 (58.64) 91.70 (81.50) 
GPD -0.17 (-0.17) 6.37 (6.39)  84.99 (85.16) 

Note: numbers in brackets denote the result based on weekdays’ data, as in the table below. 
 



Table 3 - 95% confidence interval for 1000-year return level of GVW (in tons) 
 

Site CI 
Normal GEVD GPD 

Delta Profile Delta Profile Delta Profile 

Saint-
Jean-de-
Vedas 

Lower 
90.62 

(90.28) 
92.69 

(91.53) 
71.27 

(71.25) 
76.51 

(75.06) 
68.93 

(64.18) 
76.08 

(76.05) 

Length 
20.15 

(14.65) 
18.75 

(15.36) 
25.94 

(19.92) 
35.22 

(15.92) 
25.40 

(36.14) 
23.37 

(29.76) 

Loisy 
Lower 

91.79 
(92.73) 

94.89 
(95.48) 

56.79 
(66.84) 

75.73 
(74.40) 

57.70 
(56.83) 

76.38 
(76.45) 

Length 
27.39 

(26.12) 
24.64 

(23.52) 
69.83 

(29.31) 
172.83 
(52.30) 

54.58 
(56.66) 

42.80 
(43.26) 

(a) Return level (b) Length of confidence interval 

Figure 4 - Comparison (J-A: Saint-Jean-de-Vedas all days, J-W: Saint-Jean-de-Vedas 
weekdays; L-A: Loisy all days, L-W: Loisy weekdays) 

 

5. Conclusion 

Various prediction methods are applied to extrapolate GVW 1000-year return levels, for two 
sets of WIM data measured on two different motorway sites, and different period lengths. 
Comparison of these methods requires a careful choice of the distribution type to extrapolate 
the remote future value, and the two EVT based methods should be the better approach to 
extrapolation as they give quite similar findings. However, the difference between the two 
EVT based methods has been revealed through building confidence intervals. Small 
discrepancy between the block maxima, excluding weekend, generates noticeable changes, 
while POT method adopting a more realistic technique to draw data from the sample leads to 
more stable results. Thus, the threshold model is the better extrapolation approach among the 
studied methods, and the profile likelihood approach provides narrower confidence interval 
length than the delta method. 
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