
HAL Id: hal-00950508
https://hal.science/hal-00950508

Submitted on 13 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agent-based Architecture and Situation-based Scenario
for Consistency Management

Phuong Thao Pham, Mourad Rabah, Pascal Estraillier

To cite this version:
Phuong Thao Pham, Mourad Rabah, Pascal Estraillier. Agent-based Architecture and Situation-based
Scenario for Consistency Management. Federated Conference on Computer Science and Information
Systems 2013, Sep 2013, Kraków, Poland. pp.1041-1046. �hal-00950508�

https://hal.science/hal-00950508
https://hal.archives-ouvertes.fr


Agent-based Architecture and Situation-based

Scenario for Consistency Management

Thao Phuong Pham

L3i Laboratory

University of La Rochelle, France

Email: phuong-thao.pham@univ-lr.fr

Mourad Rabah

L3i Laboratory

University of La Rochelle, France

Email: mourad.rabah@univ-lr.fr

Pascal Estraillier

L3i Laboratory

University of La Rochelle, France

Email: pascal.estraillier@univ-lr.fr

Abstract—During interactions, system actors may face up to
misunderstandings when their local visions contain inconsistent
data about a same fact. Misunderstandings in interaction are
likely to reduce interactivity performances (deviation or deadlock)
or even affect overall system behavior. In this paper, we present
agent-based architecture and scenario-structuring approach to
deal with such misunderstandings and consistency. It is based
on the notion of “situation” that is an elementary building
block dividing the interactions between actors into contextual
scenes. This model not only supports the scenario execution,
but the consistency management as well. In order to organize
and control the interactions, a “situation” contextualizes system’s
actors’ interaction and activity, and includes prevention and
tolerances mechanisms to deal with the misunderstandings and
their causes. We also simulation experimentation on an Online
Distance Learning case study.

Keywords—Interactive system; adaptation; misunderstanding;
situation- based scenario; consistency management

I. INTRODUCTION

IN INTERACTIVE SYSTEMS, as games and simulators,
the users and the internal agents can modify systems content

and progress in real time through input adjustments. The
interactive systems may adapt the system execution not only
to user’s actions, but also to user’s profile and behavior,
making these systems adaptive... In order to perform the adap-
tativity, the system must capture users’ behaviors from their
interactions. Then, according to system’s logic and designer’s
logic, the system adjusts its execution to what it perceives of
user’s logic. Du to user’s actions unpredictability, the execution
process of an interactive system is also not predictable.

One of the important problems in interactive system is
the potential misunderstanding between the users and the
system and more generally between system’s actors, virtual or
physical. If the system does not capture correctly or confuses
user’s actions, or if the users do not understand what the system
expects, that may lead to an erroneous interpretation of their
behavior and an erroneous adaptation of system execution.
This misunderstanding may concern user-system interactions,
but it can also appear in any kind of interaction between
any system’s actors. It can be due to the incomplete actors’
data or the non-determinism of actors’ behavior and cause the
interaction deadlock or application failure.

In our recent works, [1], [2], we have defined the mis-
understanding in interaction as: when two or more system’s
actors have incoherent data in their local visions about the

same fact f and these data is used during their interaction, that
can cause an interaction deviation from the planned scenario.
An actor may be human user or virtual system’s agent. The
local vision is actor’s own knowledge about its external world
(virtual environment, system’s resources...), its relations with
the others actors (subset of their states) and its own profile
(internal state). So, our work focuses on the management of
the consistency between the actor’s behaviour logic and the
system’s logic and the consistency between the actor’s local
visions in order to handle the potential misunderstandings in
interactions.

To handle misunderstandings we propose to contextually
structure the application execution into interaction sequences
called “situations” and including misunderstanding prevention
and tolerance mechanisms. Each situation corresponds to a
contextual resource-centered sequence of activities and events
and is characterized by preconditions and postconditions. That
allows the system to control the execution and to establish the
casual links between the situations. This model confines actor’s
interactions in a given context in order to control them and
manage the execution consistency. The consistency handling
mechanisms, are inspired by techniques from dependability do-
main since there is an analogy between the misunderstandings
in interactive systems and the errors handled in fault tolerant
systems [7].

II. MISUNDERSTANDING IN INTERACTIONS AND RELATED

WORK

In the recent research, we can find several works dealing
with the user-system dialogue where the communication is
done through a real human language [3]–[5]. According to
Rapaport [5], negotiation is the key to understanding. A cog-
nitive agent understands by negotiating with the interlocutor
or by hypothesizing the meaning of an unknown word from
the context... A cognitive agent can negotiate with itself about
something external by comparing it perception and internal
knowledge in order to change or correct its own misunder-
standings. Other works propose to use confidence scores to
measure the reliability of each word in a recognized sentence
[6]. Besides, Lopez-Cozar proposed to implement a frame cor-
rection module, which is independent of speech recognizer [4].
This module corrects misunderstandings in a sentence, caused
by the errors in speech recognition, by replacing the incorrect
frame with an adequate one. Karsenty and Botherel applied the
adaptable and adaptive transparency strategies to TRAVELS
project with the goal of helping the users to understand and



react appropriately to system rejections and misunderstandings
[3]. The ability of making system’s interpretations explicit
and informing the users on how to correct misunderstandings
are two ways to help users handle them. This strategy is
very effective in misunderstanding detection and raises the
rate of appropriate user responses after system rejections. All
of these works deal with the problem in speech dialogue
where the misunderstandings are the more frequent. But the
misunderstanding can be found in other forms of interaction
like actions, gesture...

Our purpose is to define how we can treat the mis-
understandings between the actors themselves, besides the
user-system misunderstandings. It is not easy to recognize
such class of misunderstandings. In the dependability domain
[7], we find the inconsistency problem between systems and
operators. The “automation surprise” is inconsistency error
occurring when the system behaves differently than its op-
erators expect [8]. It may be due to a mismatch between
the actual system behavior and the operator’s mental model
of that behavior [9], and it can lead to “confusion mode”
and sometimes critical failures. In general, misunderstandings
come from the gap between user’s logic and designer’s logic,
all along action planning between the actors. Many works, par-
ticularly in interactive storytelling, have been done to solve the
mismatch between users’ behaviors and system logic [10]–[12]
by predicting the user’s future actions and detecting the invalid
ones that deviate the execution from the planned objectives. In
general, prediction approach cost is very expensive, such as a
short-term player behavior modeling module implanted in [10]
to simulate how the world would change to player’s actions.
Moreover, this approach seems not well suited to a real-time
interactive systems, nor to systems in which user’s behaviors
cannot be modeled easily by a set of rules.

Our approach will focus on software and component
design model to integrate simple prevention and treatment
mechanisms. Our solution relies on three points. First, we
build robust agent-based architecture with specific additional
components in charge of misunderstandings in interaction
management. Second, we organize the actors’ interactions as
a situation-based scenario to facilate the interaction control.
Third, we integrate into situations’ dynamic execution the
consistency management, including data synchronization, mis-
understanding detection and treatment inspired and adapted
from fault-tolerance techniques. These mechanisms do not
try to predict users’ behavior but will take into account
users’ state to adapt the system execution in order to avoid
misunderstandings between actors. The system observes and
analyzes users’ states, detect the misunderstandings or their
consequences and act to keep the consistency between actors’
logics at the beginning and at the end of interaction sequences.

III. AGENT-BASED GENERAL ARCHITECTURE FOR

INTERACTIVE ADAPTATIVE SYSTEM

Several architecture models for interactive systems have
been proposed according to the specific purpose of each
work. We chose the approach of multi-agent system in [16]
as a starting point to build our model. The advantage of
this approach is that each agent can be organized and work
autonomously and strategically. We added a special agent

Fig. 1: General agent-based architecture for interactive system

called script agent besides the adaptation unit to manage the
consistency. Figure 1 shows our overall architecture.

Observer agent: It observes user’s behaviors and state,
formalizes, normalizes and transfers them to the scenario
agent.

Scenario agent: It makes decisions about scenario orienta-
tion according to user’s state, planned scenario and permanent
objective defined by the designer. This agent tries to find
the best way to orientate the application execution. Scenario
agent takes charge of a library of “situations” planned by the
designer. These “situations” (defined in section IV) represent
scenario components and are the interaction and the activity
sequences that can take place in the application as, for instance,
all possible scenes in a theater play.

Director agent: This agent receives the decision taken by
the scenario agent. He takes in charge the production of the
adaptive scenario and realizes a modification, an answer or an
action adapted to the users.

Script agent: Its task is to track inconsistency in 3 steps:

• Detection: Detect, confine or partition the inconsis-
tency between situation’s actors in order to identify
the causes of the misunderstanding.

• Treatment: Apply the handling mechanism or strat-
egy to remove the inconsistency and to correct the
deflected state that causes the incoherence.

• Evaluation: Estimate the efficiency of the treatments
in order to improve the applied mechanism for the
next time.

IV. SITUATION-BASED SCENARIO

A. Approach of interactive storytelling

Our proposition is inspired from the interactive story-
telling domain that focuses on scenario execution management.



Interactive storytelling is the unfolding of a story that the
player’s decisions impact [13], [17]. It also refers to how to
generate stories which are both interesting and coherent. We
consider that the interactions in an interactive application can
be organized, strongly or weakly, as a story scenario. That
allows us to adapt ideas from storytelling domain to organizing
the interactions.

The scenario in interactive storytelling is represented by
a series of actions/events linked together by cause and effect
as in [14] or by ordered link as in [10], [15] or by Hierar-
chical Task Network planning as in [12] where each task is
decomposed into subtasks until the primitive actions. But all
of these scenario structurings are not suited to built complex
interaction sequences where the user’s actions are free, non
predictable and depending on a great amount of context data.
Hence, we propose the notion of “situation” that can be seen
as a scene encompassing not only interactions execution but
also interactions management and resources use. The situations
are the basic narrative elements that facilitate interactions’
planning and management by characterizing, contextualizing
and confining them.

B. Scenario organizing with situations

1) Situation model: The interactions are split into a set of
situations. Each situation is a sequence of interactions between
two or more actors in a precise context to achieve a predictive
objective, as shows the figure 2. It is characterized by: the
preconditions, the postconditions, a set of participating actors
and a set of resources. Due to the fact that actors’ behav-
iors, especially human behaviors, are not always precisely
modeled, and due to the influence of external events, the
progression of a situation can be considered as an execution
and adaptation “black box” where the interactions are executed
in a non-predictable way. Furthermore, the situation includes
consistency management. Itrepresents a set of mechanisms
devoted to the prevention, detection and treatment solutions,
in order to redress and adjust situation’s progression in spite
of misunderstanding and inconsistency problems. Consistency
management is carried out all along the situation progression

Fig. 2: Elementary Situation Structure

from the local context initialization to the post-condition
completion.

2) Situation Graph and Application Execution: The situa-
tions are considered as the plot structuring elementary blocks.
Each application provide a set of situations defining all the
possible interaction sequences that can happen during the
application execution. They can be grouped and linked together
in order to build the overall application scenario. The scenario
is then represented by a directed graph of situations. Each
node is a situation and each edge is a transition from one
situation to another. The situations graph shows the causal
relationships between scenario situations. A scenario may have
several beginnings and also some possible endings.

The situation-based scenario approach favorizes the ex-
ecution control and interaction adaptation. The application
progression becomes a scenario unfolding from one starting
node to one final node on the predefined situation graph
(it is taken in charge by the scenario agent in the global
architecture). When there is more than one possible situation,
the most pertinent one will be chosen by the scenario agent.
To increase the adaptability, we can avoid the definition of
a predefined graph. In that case, the situation choice is made
according to the pre-conditions that best satisfy the global state
and decision criteria. This method is flexible, adaptive, and
applicable in “real time” during application execution, but it
can lead to uncontrollable situation order or infinite loop, if
the post-conditions and pre-conditions do not contain sufficient
data.

V. CONSISTENCY MANAGEMENT MODEL WITHIN

SITUATIONS

A. Handling Mechanisms

The consistency management that we propose consists of a
set of specific methods, techniques and mechanisms that aim
to handle the misunderstanding problem and to obtain data
consistency all along the interactions. They are similar to the
dependability techniques [7].

1) Prevention mechanisms: try to suppress misunderstand-
ings occurrence conditions in order to avoid misunderstand-
ings. To avoid data inconsistency, the proposed technique is
the explicit declaration of all shared data before situation’s
interaction sequence start. It aims to identify and share actors’
local visions in order to decrease the possibility of interaction
deviation. Once the actors have collected the necessary data,
they can start the interactions. The data synchronization is an-
other method intending to compare the actors’ local visions at a
given moment during the interaction sequence in order to avoid
the inconsistency of new perceived data. The synchronization
can delay the interactions, so it should be done fast and not
too frequently to disturb them as less as possible.

2) Tolerance mechanisms: aim to assure interaction con-
tinuation despite misunderstanding occurrence via misunder-
standing detection and interaction recovery.

Detection: regular check of i) the shared data used during
the interactions and ii) the deviation between actors’ logics.

Recovery: once a misunderstanding is detected, the system
apply one or several of the following techniques : rollback



- bringing the system back to a stable state, exempt from
misunderstanding, to retry the interactions; rollforward -
bringing the system to a new misunderstanding free state from
which the interactions can go on; reinforcement - requiring
from one or from all participant actors to do some additional
interactions.

3) Removal mechanisms: involve misunderstanding de-
tection and correction, followed by reinitialisation of the
concerned interaction sequence, or of the whole execution
process. The detected misunderstandings will be diagnosed to
determine their causes: which data are inconsistent? Which
ambiguities exist in the interaction context? Are there protocol
faults? After that, an appropriate correction method will be
applied to eliminate the related misunderstanding. Finally, the
interactions have to be restarted from the last stable point or
from the beginning.

B. Inclusion into the Situation Structure

Our situation-based architecture allows the integration of
misunderstanding management mechanisms inside the situ-
ation in order to control the misunderstandings and their
consequences all along situation execution. We define three
phases (figure 3).

a) Prologue phase: The explicit declarations of inter-
acting content and data are performed, to synchronize actors’
local visions before they start to interact. If the initial data
of all actors are identical from the beginning, the possibility
of misunderstanding is reduced. If the inconsistency exists, a
negotiation step will be performed between the inconsistent
actors. Then, one or several of them will modify its/their
data, or the divergent data will be isolated/removed and not
considered during the interactions.

b) Interaction or Dialogue phase: when the interactions
are carried out, the actors will update their local data step by
step, as they continuously observe and perceive each other.
Despite the initial local vision agreement, misunderstanding
may nevertheless occur during the interactions. This is why
their local knowledge is synchronized all along the interaction
sequence in order to avoid that local data about same facts
diverge in actors’ local visions. One or several techniques of
reinforcement, rollback, rollforward can be alternatively used.

c) Epilogue phase: All the interactions are done in the
previous phase. If the post-conditions are fulfilled, we can
exit the situation with the expected results. But if, for some
reason, we do not reach the expected post-condition, the script

Fig. 3: Consistency management mechanisms

agent has to detect and settle the existing incoherency in order
to avoid the propagation of the misunderstandings to other
situations. The system may also require actors to do some
reinforcing interactions, or if necessary, make a rollback to a
last stable state (in this case there must be systematic state
saving mechanism), or, even a restart of the whole situation.
The main goal of this phase is to quit the situation with
the appropriate post-conditions and without latent or active
misunderstanding. But, the rollback or reinforcing interactions
may not lead the actors towards the planned post-conditions.
Therefore, we add in the situation model a special exit point
called “exception” that allows the current situation to be
stopped at anytime without expected post-conditions and that
leads to exception handling situations.

VI. EXPERIMENT ON ONLINE DISTANCE LEARNING CASE

STUDY

To validate our approach we applied our situation-based
methodology in our current online distance learning (ODL)
project [2]. The project is devoted to the development of an
online distributed platform that simulates a real classroom:
teachers and learners carry out learning sessions as in a real
life but by interacting through a virtual class environment.
The platform integrates an interactive numeric board, camera,
microphone and pedagogic tools (as file sharing system or
virtual notebook) to support the courses...The figure 4 shows
an example of courses scenario based on 6 situations. How-
ever, the users may face many difficulties: class supervision,
course quality assessment, misunderstandings due to the weak
system’s interfaces and mechanisms to catch and manage user
behaviors. The interactions between the actors in ODL contains
numerous factors that may lead to misunderstandings as: multi-
meaning or implicit behaviors; supervision tools’ observation
and interpretation imperfection; system component failures;
incomplete, missing, implicit or wrong consigns...

Fig. 4: Situation-based scenario example

A. “Individual Work” Situation Description

To deal with these various misunderstandings, we applied
our situation-based solution including consistency management
to a particular situation: “Individual Work” (SU - IW in
figure 4). Each learner will work individually and has to do
the exercises distributed by the system. The system provides
additional exercises each time the learners send the previous
exercises report. The expected post-condition is that all the
learners reach a required knowledge level “MaxKnowledge”.

Because of the long test duration and development for
the real platform prototype, we chose to experiment our
misunderstanding management mechanisms and agent-based
architecture through a multi-agent simulation with the GAMA



platform1. We have 4 types of agents : “Teacher”, “Learner”,
“Observer” and “ODL System”. The Observer’s role is to
observe the state of sent exercises in order to evaluate learners’
accumulated knowledge level. The distribution mechanism
based on these observations and learners’ skill level evalu-
ations is taken in charge by “ODL System” agent that is a
combinaison of 3 other agents in our model: scenario, script
and director agent (figure 1). Potential misunderstandings in
this situation occur when the system distributes the exercises
that are incoherent given the learners’ skill and expectation.
They can result from wrong learners’ exercise state observation
or from inappropriate distributed exercise level. The misunder-
standing handling is done inside the situation during its 3-phase
progression (figure 5).

Prologue phase: The system checks each learner’s connec-
tion status to begin the exercise series distribution.

Dialogue phase: In this situation, the interactions con-
tent refers to the exercises distribution and reporting. During
learners’ work, each observer agent supervises his associated
learner’s working state and his exercise report to collect data:
partial or total termination, work duration, correctness rate. To
avoid the wrong estimation of learner’s skill and knowledge
level, these data have to be synchronized between the observer
and his learner after the exercise report is sent and before a
new exercise is distributed.

Epilogue phase: To finish the situation the lerners must
reach a given skill level after a given number of exercises.
If a learner reaches this number without reaching the required
skill level, the series will be stopped after a session deadline to
avoid an abnormal long series. The system sends a StopSignal
message to all learners to confirm the end of the exercise series
after a predefined timeout. It refers to the exception treatment.

B. Experimentation Results

We run the simulation of “Individual Work” situation
with the following parameters: 50 learners, 1 teacher, max
knowledge level = 25, max difficulty level = 20, session
deadline = 250 steps of simulation. We will measure a set of

1https://code.google.com/p/gama-platform/

Fig. 5: Agents main interactions in the simulation

important factors influenced by potential misunderstandings:
Ne: total number of distributed exercises;
Nnotend: total number of real non-finished exercises;
Nbad: number of bad observation by all observers;
Ncor: number of system observation corrections while detect-
ing the wrong observed states (it refers to the synchroniaation
times where consistency management is performed to remove
inconherent data);
LI: learners’ interest level that increases when the learners
succeed and that decreases when they fail their exercises;
Ttotal: total session times (in steps) until the last learner has
finished his series.

The data are recorded and calculated for the average values
from 10 simulations lauching times in each measure. We
compare these data between two cases: “with” and “without”
the consistency management. The results are summarized in
the table I. The total distributed exercises number Ne is twice
more in “without” case compared to the “with” case. The
average number of not finished exercises in “without” series
is higher than in “with” series: 747.4 vs 363.4 also depicted
in the figure 6(a). It is obvious that the session duration in
“without” case is almost 2 times longer than in “with” case.

(a) Number of distributed exercices.

(b) Number of learners finishing exercise series.

Fig. 6: Comparason between 2 cases “With” et “Without”.

The figure 6(b) shows the number of learners that have
finished their whole series during the situation execution in
the “with” and “without” consistency management cases. The
lines shows that the learners work with more exercises and with
longer duration Ttotal in the “without” case. We can make the
same observation with the average measure values in table I.

Why do we have this difference result? When the consis-
tency management is integrated in the situation execution to
handle the potential misunderstandings, the observers have to
adjust their observed data according to learners’ “disagree”
acknowledgments. Hence, the learner’s skill level estimation
will converge faster to the real value, and the difficulty level
of the distributed exercises is more appropriate to his skill.
The result is that learners can finish all the exercises and with
higher correctness rate. In contrast, if no mechanism is added
to control the inconsistency between learners and observers,



TABLE I: Statistical data comparason between 2 cases: With (Wi) et Without (Wo) the consistency management

Ne Nnotend Nbad Nobsnon Ncor LI Ttotal

Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo

1 330 735 23 64 83 103 93 114 83 0 78.98 66.1 988 2692

2 363 692 45 28 87 76 110 88 87 0 77.73 76.41 1104 2640

3 361 744 44 55 94 97 114 114 94 0 76.35 69.06 1076 2700

4 383 768 47 73 110 99 129 118 110 0 77.31 65.18 1160 2724

5 347 744 32 60 87 99 109 115 87 0 77.94 67.31 1024 2688

6 360 806 37 65 111 117 122 135 111 0 77.55 64.68 1108 2760

7 392 737 66 59 93 92 118 108 93 0 73.06 66.88 1188 2692

8 379 752 42 66 117 100 131 112 117 0 77.65 65.88 1140 2712

9 353 722 37 69 96 100 111 111 96 0 77.49 67.55 1048 2672

10 361 774 40 62 93 115 117 134 93 0 74.18 65.92 1084 2728

Ave. 363.4 747.4 42.4 60.1 97.1 99.8 115.9 114.9 17.8 0 76.82 67.71 1092 2641

a non-finished exercise can be perceived as finished, and vice
versa. The skill estimation is less correct: higher or lower than
the real one. There is a higher probability that the ODL system
gives to the learners too difficult or too easy exercises. That
delays the skill level progression and explains why the learners
take more time to terminate the series.

VII. CONCLUSION

In this paper, we have presented the situation-based design
methodology and consistency management mechanisms to
handle the misunderstanding in interactions. Our approach is
to contextualize the interactions between actors into “situa-
tions” and add to these basic narrative blocks consistency
management mechanisms split into 3 steps: the prologue,
data declaration and consistency verification, the dialogue,
the interaction unfolding, local visions synchronization and
misunderstanding treatment, and the epilogue, data update and
agreement attainment. We do not seek to find a universal
algorithm or a solution to deal with all types of misunder-
standings in interaction. Our aim is to provide a management
pattern that could be systematically used by the application
designers or developers and that allow them to incorporate their
own verification, synchronization, prevention and tolerance
mechanisms adapted to the specific misunderstandings of their
applications.

We have applied our methodology to a case study from an
Online Distant Learning project. We have built a simulation
of the “Individual Work” situation and integrated into it the
proposed solutions to show how the consistency management
operates on a simulation example. From the experimentation
results, we have found out that our mechanisms reduce the in-
coherent data between learners and observers and improve the
performance of exercise distribution: shorter session duration,
lower exercise number, faster required level attainment... Even
if the simulation is simple and does not cover exhaustively
all the possible interactions that can occur in such situation, it
illustrates the benefits of misunderstanding management during
interaction progression.

The next step of our work is to perform the same experi-
mentation and measures on the prototype under development
with live case study and to check the relevance of our approach
in other e-Learning “situations”.

REFERENCES

[1] P. T. Pham, M. Rabah and P. Estraillier, “Handling the Misunderstanding
in Interactions : Definition and Solution,” in The Annual Int. Conf. on

Software Engineering & Applications SEA 2011, 2011, pp. 47–52.

[2] F. Trillaud, P. T. Pham, M. Rabah, P. Estraillier, and J. Malki, “Online
Distant Learning Using Situation-based Scenario,” in the Int. Conf. on

Computer Supported Education CSEDU2012, 2012.

[3] L. Karsenty and V. Botherel, “Transparency strategies to help users
handle system errors,” in Speech Communication, vol. 45, no. 3, Mar.
2005, pp. 305–324.

[4] R. Lopez-cozar, Z. Callejas, N. Abalos, G. Espejo, and D. Griol, “Using
Knowledge about Misunderstandings,” in Speech Communication, 2010,
pp. 523–530.

[5] W. J. Rapaport, “What Did You Mean by That? Misunderstanding,
Negotiation, and Syntactic Semantics,” in Journal Minds and Machines,

2000, pp. 397–427.

[6] H. Jiang, “Confidence Measures for Speech Recognition: A survey,” in

Speech Communication, vol. 45, no. 5, 2005, pp. 455–470.

[7] J. C. Laprie, B. Randell, C. Landwehr, and S. Member, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” in IEEE Trans-

actions on Dependable and Secure Computing, vol. 1, no. 1, 2004, pp.
11–33.

[8] S. Combefis, P. S. Barbe, and C. Pecheur, “A Bisimulation-Based
Approach to the Analysis of Human-Computer Interaction Categories
and Subject Descriptors,” in EICS ’09 Proceedings of the 1st ACM

SIGCHI symposium on Engineering interactive computing systems,

2009, pp. 101–110.

[9] G. G. King, “General Aviation Training for “Automation Surprise” ,”
in International Journal of Professional Aviation Training & Testing

Research, vol. 5, no. 1, 2011.

[10] B. Magerko and J. E. Laird, “Mediating the Tension between Plot and
Interaction,” in AAAI Workshop Series: Challenges in Game Artificial

Intelligence, 2004.

[11] H. Barber and D. Kudenko, “Generation of Dilemma-based Interactive
Narratives with a Changeable Story Goal,” in the 2nd Int. Conf. on

INtelligent TEchnologies for interactive enterTAINment, 2008.

[12] R. Paul, D. Charles, M. McNeill, and D. McSherry, “Adaptive Story-
telling and Story Repair in a Dynamic Environment,” in The Fourth Int.

Conf. on Interactive Digital Storytelling ICIDS, 2011.

[13] R. Champagnat, G. Delmas, and M. Augeraud, “A Storytelling Model
For Educational Games : Heros Interactive Journey,” in International

Journal of Technology Enhanced Learning 2, 2010, pp. 4–20.

[14] B. Karlsson, A.E.M. Ciarlini, B. Feijo, and A.L. Furtado, “Applying
a Plan-Recognition / Plan-Generation Paradigm to Interactive Story-
telling,” in Workshop on AI Planning for Computer Games and Synthetic

Characters, 2006.

[15] A. Silva, G. Raimundo, and A. Paiva, “Tell me that bit again...’ Bringing
interactivity to a virtual storyteller,” in Int. Conf. on Virtual Storytelling,

2003, pp. 1–10.

[16] K. Sahaba, P. Estraillier, and D. Lambert, “Interactive educational games
for autistic children with agent-based system,” in 4th Int. Conf. on

Entertainment Computing (ICEC’05), 2005, pp. 422–432.

[17] J. Lebowitz and C. Klug, “Interactive Storytelling for Video Games:
A Player-Centered Approach for Creating Memorable Character and
Stories”, Focal Press, 2011


