
HAL Id: hal-00950415
https://hal.science/hal-00950415

Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A BSP algorithm for on-the-fly checking CTL* formulas
on security protocols

Frédéric Gava, Michael Guedj, Franck Pommereau

To cite this version:
Frédéric Gava, Michael Guedj, Franck Pommereau. A BSP algorithm for on-the-fly checking CTL* for-
mulas on security protocols. 13th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2012), Dec 2012, Beijing, China. pp.79–84, �10.1109/PD-
CAT.2012.12�. �hal-00950415�

https://hal.science/hal-00950415
https://hal.archives-ouvertes.fr

A BSP algorithm for on-the-fly checking CTL* formulas on security protocols

Frédéric Gava

University of Paris-East

frederic.gava@univ-paris-est.fr

Michaël Guedj

University of Paris-East

Franck Pommereau

University of Évry

franck.pommereau@ibisc.univ-evry.fr

Abstract—This paper presents a distributed algorithm to
compute on-the-fly whether a structured model of a security
protocol satisfies or not a CTL* formula. The design of this
simple and still efficient algorithm is possible by using the struc-
tured nature of security protocols. A prototype implementation
has been developed, allowing to run benchmarks.

Keywords-BSP; CTL*; Security Protocols;

I. INTRODUCTION

Security protocols are small distributed programs which

aim at guaranteeing security properties such as confidential-

ity of data, authentication of participants, etc. It has long

been a challenge to determine whether a given protocol is

secure or not [1]. Model-checking is common solution to

find flaws [2]. In this paper, we consider the problem of

checking a CTL* formulae over labelled transition systems

(LTS) that model security protocols.

The problem of checking a CTL* formula is that the gen-

eration of large discrete state spaces of security protocols is

so a computationally intensive activity with extreme memory

demands, highly irregular behaviour, and poor locality of

references: this is a case of the so-called state explosion

problem. It has thus led to consider exploiting the larger

memory space available in distributed systems [3] and to

reduce the overall execution time. One of the main technical

issues is to partition the state space: each subset of states

is thus “owned” by a single machine. Also, it is rarely

necessary to compute the entire state space before finding a

path that invalidates the logic formula (a flaw in a protocol):

on-the-fly (local) algorithms are designed to build the state

space and check the formula at the same time. Depth First

Search is the common solution but hard to parallelize [4].

In this paper, we exploit the well-structured nature of

security protocols to have a specialized partition func-

tion and we used a model of parallel computation called

BSP [5] to simplify the design of our algorithm which is

a parallelisation of the algorithm of [6]. It combines the

construction a proof-structure (a graph whose nodes states of

the underlying Kripke structure together with sets of logical

formulas) with a Tarjan’s depth-first-search algorithm.

II. CONTEXT AND DEFINITIONS

A. The BSP model

A BSP computer is a set of uniform processor-memory

pairs connected through a communication network [5]. A

BSP program is executed as a sequence of super-steps

(see Fig. 1), each one divided into three successive disjoint

phases: (1) each processor only uses its local data to perform

a sequential computation and to request data transfers to

other nodes; (2) the network delivers the requested data; (3) a

global synchronisation barrier occurs, making the transferred

data available for the next super-step.

B. State space of security protocols [7]

We models security protocols as a labelled transition

system (LTS) where agents send messages over a network

which contains a Dolev-Yao attacker [8]. The intruder can

overhear, intercept, and synthesise any message and is only

limited by the constraints of the cryptographic methods

used. As a concrete formalism to model protocols, we have

used an algebra of coloured Petri nets called ABCD [9,

Sec. 3.3] but our approach is largely independent of the

chosen formalism. It is enough to assume that the following

properties hold: (P1) LTS function succ can be partitioned

into two successor functions succR and succL that cor-

respond respectively to transitions upon which an agent

(except the intruder) receives information (and stores it), and

to all the other transitions; (P2) there is an initial state s0 and

there exists a function slice from states to natural numbers

(a measure) such that if s′ ∈ succR(s) then there is no

path from s′ to any state s′′ such that slice(s) = slice(s′′)
and slice(s′) = slice(s) + 1 (it is often call a sweep-line

progression); (P3) there exists a function cpu from states

to natural numbers (a hashing) such that for all state s if

s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the knowledge

of the intruder is not taken into account to compute the hash

of a state; (P4) if s1, s2 ∈ succR(s) and cpu(s1) 6= cpu(s2)
then there is no possible path from s1 to s2 and vice versa.

C. BSP computing of the state space [7]

Based on the following properties, we have designed in

[7] a BSP algorithm (in a SPMD fashion) for computing

the state space of security protocols as shown in Fig. 2.

In this algorithm, “BSP EXCHANGE” is a primitive that

allows processors to globally exchange data: a set of pairs

(pid,value) is used to define values to be sends. Mainly:

(1) states are distributed across the processors using the

cpu function; (2) the algorithm finishes when no states are

exchanged; (3) function Successor is called to compute the

local computations

p0 p1 p2 p3

communication

synchronisation barrier
next super-step...

...
...

...
Figure 1. A BSP super-step.

def bsp state space() is
todo,known←∅,∅
total←1
if cpu(s0) =mypid

todo←todo∪{s0}
while total>0

tosend←Successor(known,todo)
todo,total←Exchange(known,tosend)

return known

def Successor(known,todo) is
tosend←∅
while todo6= ∅

pick s from todo
known←known∪{s}
todo←(todo ∪ succL(s)) \ known
for s′ ∈ succR(s)

tosend←tosend ∪{ (cpu(s′),s′)}
return tosend

def Exchange(known,tosend) is
dump(known)
return BSP EXCHANGE(Balance(tosend))

def Balance(tosend) is
histoL←{(i, ♯{(i, s) ∈ tosend})}
compute histoG from BSP EXCHANGE(histoL)
return BinPack(tosend,histoG)

Figure 2. BSP computing the state space of protocols.

successors of the states, then all new states from succL
are added in todo (states to be proceeded) and states from

succR are sent to be treated at the next super-step, enforcing

an order of exploration of the state space that match the

progression of the protocol; (4) It thus becomes possible

at the beginning of each super-step, to dump from the main

memory all the known states because they cannot be reached

anymore due to the sweep-line progression; (5) States to

be sent are first balanced across the processors using an

histogram histoG (which is first totally exchanged to be the

same on each processor and enforce consistent decisions

on all the processors: each processor send its own local

histogram histoL) and according to a simple heuristic for

the bin packing problem, classes of states (consistent with

partition function cpu) are grouped on processors so there

is no possibility of duplicated computation. This algorithm

gives better performances than a naive distributed one and

is able to dump all the known states at the beginning of

each super-step allows to use less memory. Partial-order

reductions [10] can also be trivially introduced.

D. Proof-structure and LTL/CTL* checking [6]

The CTL* logic permits users to characterise many prop-

erties both linear and branching time. Syntax and informal

semantics are giving on Fig. 3 where A and E are path

Syntax of CTL* formulas:
State S ::= a | ¬a | S ∧ S | S ∨ S | AP | EP
Path P ::= S | P ∧ P | P ∨ P | XS | SUS | SVS

Informal semantics of modal operators :
Xφ : • → •φ → • → • → • → · · ·

φ1Uφ2 : •φ1 → •φ1 → •φ1 → •φ2 → • → · · ·

φ1Vφ2 : •φ2 → •φ2 → •φ2 → •φ2 → •φ2 → · · ·
or •φ2 → •φ2 → •φ2 → •φ1∧φ2 → • → · · ·

Figure 3. Syntax and informal semantics of modal operators.

quantifiers i.e. forAll paths in the LTS, resp. Exists a path.

Two important sublogics are CTL (every path modality is

immediately preceded by a path quantifier) and LTL —

formulas AP where the only state sub-formulas of P are

propositions. CTL* checking can done using a collection of

top-down proof rules for inferring when a state in a Kripke

structure satisfies an LTL formula [6].

We define M = (S,R,L) to be a Kripke structure where

S is the set of states, R ⊂ S × S the LTS relation which

is assumed to be total (thus all paths in M are infinite)

and L ∈ S → 2A the labelling. The (only) seven proof-

rules are fully available in [6] (Fig. 4 only presents rules

that are used in this work) and they operate on assertions

of the form s ⊢ AΦ where s ∈ S and Φ is a set of path

formulas. Semantically, s ⊢ AΦ holds if s � A(
∨

φ∈Φ φ).
We write A(Φ, φ1, · · · , φn) to represent a formula of the

form A(Φ∪ {φ1, · · · , φn}). If σ is an assertion of the form

s ⊢ AΦ, then we use φ ∈ σ to denote that φ ∈ Φ. Proof-rules

are used to build proof-structures that are defined as follows:

Definition 1. Let Σ be a set of nodes, Σ′ = Σ∪ true, V ⊆
Σ′, E ⊆ V ×V and σ ∈ V . Then 〈V,E〉 is a proof structure

for σ if it is a maximal directed graph such that for every

σ′ ∈ V , σ′ is reachable from σ, and the set {σ′′|(σ′, σ′′) ∈
E} results from applying some rule to σ′.

Definition 2. Let 〈V,E〉 be a proof structure. Then: (1) σ ∈
V is a leaf iff there is no σ′ such that (σ, σ′) ∈ E. A leaf σ is

successful iff σ ≡ true; (2) an infinite path π = σ0, σ1, · · ·
in 〈V,E〉 is successful iff for some assertion σi infinitely

repeated on π there exists φ1Vφ2 ∈ σi such that for all

j ≥ i, φ2 /∈ σj; (3) 〈V,E〉 is successful iff all its leaves and

infinite paths are successful.

Roughly speaking, an infinite path is successful if at some

point a formula of the form φ1Vφ2 is repeatedly “regener-

ated” by application of rule R6; that is, the right subgoal (and

not the left one) of this rule application appears each time on

the path. Note also that if no rule can be applied (i.e., Φ = ∅)

then the proof-structure and thus the formula is unsuccessful.

Theorem 1. Let M be a Kripke structure with s ∈ S and

Aφ an LTL formula, and let 〈V,E〉 be a proof structure for

s ⊢ A{φ}. Then s � Aφ iff 〈V,E〉 is successful.

It turns out that the success of a finite proof structure

s ⊢ A(Φ, φ)

true
(R1)

s ⊢ A(Φ, φ)

s ⊢ A(Φ)
(R2)

s ⊢ A(Φ, φ1 ∨ φ2)

s ⊢ A(Φ, φ1, φ2)
(R3)

if s � φ if s 2 φ

s ⊢ A(Φ, φ1Vφ2)

s ⊢ A(Φ, φ2) s ⊢ A(Φ, φ1,X(φ1Vφ2))
(R6)

s ⊢ A(Xφ1, ...,Xφn)

s1 ⊢ A(φ1, ..., φn) sm ⊢ A(φ1, ..., φn)
(R7)

if succ(s) = {s1, ..., sm}

Figure 4. Proof rules for LTL checking [6].

may be determined by looking at its strongly connected

components (SCC) for any accepting cycle. A Tarjan’s like

algorithm is used in [6] and let us name it SeqChkLTL.

Now for CTL* checking, [6] remarks that an efficient

algorithm (let name it SeqChkCTL*) could simplify be a re-

cursive decomposition of the state formulas into subformulas

until reaches assertions and calls SeqChkLTL appropriately

when it encounters assertions of the form s ⊢ AΦ or

s ⊢ EΦ. SeqChkLTL is also modified as follows: each time

the SCC computation of the proof-graph found an assertion

of the form s ⊢ A(Φ) where Φ is not an LTL sub-formula

then it recursively calls SeqChkCTL* on Φ to determine if

s � Φ (semantically valid for s) and then decides if rule R1

or rule R2 (of Fig. 4) needs to be applied. We have thus

a double-recursively of SeqChkLTL and SeqChkCTL* as

the syntax of CTL* suggests.

III. BSP ON-THE-FLY CTL* CHECKING

For lack of space, all the algorithms are available in [11].

A. BSP on-the-fly LTL checking

As explained in the previous section, we use two LTS

successors functions for constructing the Kripke structure:

succR ensures a measure of progression “slice” that intu-

itively decomposes the Kripke structure into a sequence of

slices S0, . . . , Sn (n is the maximal number of possible

protocol sessions) where transitions from states of Si to

states of Si+1 come only from succR and there is no possible

path from states of Sj to states Si for all i < j. Also

after succR transitions (with different hashing partition cpu),

there is no possible common paths which is due to different

knowledge of the agents — honest and intruder.

In [12], we have show that using the distributed state

space generation of Section II-C, states and thus assertions

of the proof-structures are distributed such as a SCC (if

exists) can only be local on a processor and on a slice: we

compute separately the next states for succL and succR; the

former results in local states to be processed in the current

step, while the latter results in states to be processed in the

next step. That is, it is sufficient to perform sequential SCC

computations on each processor and for each super-step to

found flaws — an unsuccessful SCC.

Between each super-step, assertions are distributed ac-

cording to the balance function of states and thus our BSP

algorithm for LTL checking is mainly an iteration over the

independent slices, one slice per super-step and, on each

processor, working on independent sub-parts of the slice by

calling SeqChkLTL each time for the received assertions

— furthermore, in the case of multi-core processors, these

computations can also be done purely in parallel. Notice

that at each super-step, each processor dumps V and E to

its local disk, recording the super-step number, in order to

be able to reconstruct a trace: when a state σ that invalidates

the formula is found, a trace from the initial state to σ
is constructed by reconstructed traces as they are locally

computed and by following the proof-structure backward

even on distant sending— see [12] for the details.

B. A naive BSP algorithm for CTL* checking

The algorithm works as follow. As in Fig. 2, a main

loop is used to compute over received assertions and for

each of them, a SeqChkCTL* is used to decompose the

formulae and run SeqChkLTL adequately to check for

an unsuccessful SCC in the proof-structure. We name this

computation a “session”. During the generation of the

proof-structure, when a sub-formulae beginning by A or E

is found (case of rules R1 and R2), the ongoing “session”

is halting and is now waiting the result of a new “session”

which is running for checking the validity of s � p —

where p could be any CTL* formulae. The ongoing session

is push on a stack of waiting sessions.

The main problems are: (1) different processors can throw

sessions; (2) a session can induce several super-steps (slices)

if it is a path formulae (use of modal operators); this is due to

the double recursion of the CTL* checking; (3) the different

sessions are not fully disjoints; states of the Kripke structures

as well as assertions can be shared: this happens when the

same sub-parts of the Kripke structure are generated and

when sets of formulas in the assertions are not disjoints.

There is thus not possibility of embarrassingly parallel

computations on this set of sessions. A naive solution is to

select, by all the processors, one of these generated sessions

(the other remaining in a distributed global stack) and to

entirely compute this session until another (child) session is

throw or an answer is find — validity of s � p. But this

naive approach has many drawbacks.

First, each time a session is throw, this session can

traverse all the state-space — in several super-steps. This

can happen when the session has been throwed by a

formulae which contains model operators. This can thus

generated too much barriers and inducees a poor latency.

Second, the sweep-line technical used in the previous

section could not holds: each slice does not correspond to

a super-step and thus during backtracking of the answers,

the save on disks assertions must be entered in the main

memory: this can be also costly. Otherwise, we can keep

them all in the main memory but with a risk of swapping.

Third, the balance of the assertions over the processors is

done dynamically at each slice of each session: this ensures

that two assertions for the same Kripke’s state would be

hold by the same processor. That ensures no duplication of

the computations. But if two sessions are run in sequence,

the first one will balance some assertions and the second

session if shared the same states (but for a different set of

logical formulas) must balance the assertions depending of

this first partial balance: this is not optimal. A naive solution

is to re-balance the assertions but it would be too costly.

Fortunately, in our experience, the number of classes and

the small number of assertions in each class are sufficient to

not have too poor balancing even using partial informations.

C. A “purely breadth” BSP algorithm for CTL* checking

To avoid these problems we will take into account the

“nature” of the proof-structures: having an explicit decom-

position of the logical formulae which can help to choose

where a parallel computation is needed or not. The main idea

of the algorithm is based on the rules R1 and R2: computing

s � φ together with s ⊢ A(Φ). In this way, we will able to

choice which rule (R1 or R2) can be applied. As above, the

computation of s � φ would be performed by a LTL session

while the computation of s ⊢ A(Φ) would be performed by

following the execution of the sequential Tarjan algorithm

— SCC computation. In a sense, we expect the result of

s � φ by computing the validity of the assertion s ⊢ A(Φ).
We see three main advantages. First, as we computed

“simultaneously” both s � φ and s ⊢ A(Φ), we would

aggregated the super-steps of the both computations and

thus reduced to the maximal number of slices of the model.

Second, we also aggregated the computations and the com-

munications without unbalanced them; similarly, we would

have all the assertions (and more) of each slice, which

implies a better balance of the computations than the use

of the partial balances of the naive algorithm. Third, the

computation of the validity of s ⊢ A(Φ) can be used

latter in different LTL sessions. On the other side, the pre-

computation of s ⊢ A(Φ) may generated unnecessary works,

but, if we suppose a sufficient number of processors, this is

not a problem for scalability: the exploration is in a breadth

fashion that allows us a highest degree of parallelization.

The algorithm works as this of Fig. 2 [11]: performed

until the answer of the initial assertion is computed and

each super-step corresponds to a slice. The difficulty in this

algorithm is the management of the answers. Indeed, we

do not know, a priori, the answer of an assertion when

we computed the validity of s � φ or where it has been

send to another processor. Thus, we need to modify the

backtracking when an answer is unknown by considering a

third possibility of answers: ⊥ (and the following equation

¬⊥ = ⊥) for the case when we cannot conclude. In this

manner, the “session” is halting until a theu boolean answer

be computed — mainly in the next slice i.e. next super-

step. For the management of the sending assertions, we use

two distinct sets, one to store the assertions to continue

the exploration of the distributed proof-structure and the

second for backtracking answers. In this way, at the begin

of a super-step, we first read for answers to possibly unlock

halting sessions (store in a stack) which could now continue

their works — SCC computations. Then, the algorithm

explores the sub-parts of the proof-structures of the received

assertions. All these works are done until the initial assertion

(of the first session) has its answer. In the case of a flaw,

we rebuild the trace as for LTL checking [12].

For the sweeping of assertions we have that states and

thus assertions do not overlap between different slices. But

this does not still work since some assertions do not have

their answers (equal to ⊥) during a slice. We can thus not

sweep them into disks when changing of slice. To continue

to sweep assertions that are no longer needed (they have

their answers and are belong to a previous slice), we used

a variable CACHE which contains all the assertions — the

implicit graph for proof-structures and LTL sessions is mem-

orised by additional fields in assertions, thus there is no over-

cost of memory. At each end of treatment of a session, we

iterate on CACHE to sweep into disk unnecessary assertions

making more main memory available for the next sessions.

IV. EXPERIMENTAL RESULTS

We have implemented a prototype version in Python,

using SNAKES [9] for the Petri net part and the BSP Python

library for the BSP routines (which are close to an MPI

“alltoall”). While largely suboptimal (Python programs are

interpreted and there is no optimisation about the represen-

tation of the states in SNAKES and the implementation of

the attacker is not optimal at all), this prototype neverthe-

less allows an accurate comparison for acceleration. The

benchmarks presented below have been performed using

a cluster with 20 PCs connected through a 1 Gigabyte

Ethernet network. Each PC is equipped with a 2GHz Intel®

Pentium® dual core CPU, with 2GB of physical memory.

Our case studies involved the following four security

protocols: Needham-Schroeder, Yahalom, Otway-Rees and

Kao-Chow, all described in http://www.lsv.ens-cachan.fr/Software/

spore/. In order to evaluate our two algorithms, we have used

two formulas: the first is a LTL formula [2] for testing se-

crecy of the protocols whereas the second is CTL and is for

fairness — both are common formulas for verifying security

protocols. On several simple instances of the protocols with

counterexamples, we have observed that the sequential algo-

rithm can be faster than the parallel version when a violating

state can be found quickly: our parallel algorithm uses a

global breadth-first search while the sequential exploration is

depth-first, which usually succeeds earlier. Thus, the chosen

formulas globally hold so that the whole proof-structure is

computed so that our parallel algorithms always run faster

— and this is widely acknowledged as the hardest case.

0

5

10

15

20

25

30

35

2 4 8 16 32

S
p

ee
d

-u
p

Number of processors

Needham-Schroeder protocol

Linear

Secrecy (Naive)

Fairness (Naive)

Secrecy (Breadth)

Fairness (Breadth)

0

5

10

15

20

25

30

35

2 4 8 16 32

S
p

ee
d

-u
p

Number of processors

Otway-Rees protocol

Linear

Secrecy (Naive)

Fairness (Naive)

Secrecy (Breadth)

Fairness (Breadth)

0

5

10

15

20

25

30

35

2 4 8 16 32

S
p

ee
d

-u
p

Number of processors

Kao-Chow protocol

Linear

Secrecy (Naive)

Fairness (Naive)

Secrecy (Naive)

Fairness (Naive)

Figure 5. Speedup results for three of the protocols.

Naive Breath Naive Breath
0

20

40

60

80

100

120 Needham-Schroeder
Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500

600

700

800 Yahalom
Secrecy Fairness

Naive Breath Naive Breath
0

1000

2000

3000

4000 Otway-Rees
Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500 Kao-Chow

Secrecy

Fairness

Figure 6. Timing of the two algorithms (Naive and Breadth) and formula
(Secrecy and Fairness) for the protocols in seconds where times for the
computations are in black, communications in gray and waiting in white.

In Fig. 5, we give the speedup of the two algorithms

presented above (“Naive” and “Breadth”) for three different

protocols and for the two formulas — for the Yahalom

protocol, the computation fails due to a lack of main memory

if less that 4 nodes are used. As we might expect, the naive

algorithm less scales for both formulas. Note that for Kao-

Chow, both algorithms do not scale well: this is mainly due

to a lack of possible attacks (even if one win); the protocol

is less parallelized which implies less classes of states.

Fig. 6 shows the execution times for our two formulas

for each protocol for 32 processors. In the figure, the total

execution time is split into three parts: the computation time

(black) that essentially corresponds to the computation of

successful SCC of the proof-structures on each processor;

the global and thus collective communication time (gray)

that corresponds to assertions exchange; the waiting time,

i.e. latencies (white) that occur when processors are forced

to wait the others before to enter the communication phase

of each super-step. Notice that because of the BSP model,

these costs are obtained by considering the maximum times

among the processors within each super-step, accumulated

over the whole computation. We can see on these graphs that

the overall performance of our “Breath” algorithm is always

good compared to the naive one. As expected, the “Breath”

algorithm reduce both latencies (due to less super-steps and

a better balance) and communications — since they are

more en masse. Fairness needs more computations since it

is a more complicated formulae: the more the formulae and

the model are bigger, the more the “Breath” algorithm is

better. Finally, measuring the memory consumption of our

algorithms, we could also confirm the benefits of our sweep-

line strategy when large state spaces are computed.

V. RELATED WORKS

There are many tools dedicated to the modelling and

verification of security protocols [1]. Most of them limit

possible kinds of attacks or limit in their model language

how addresses of agents can be manipulated in ad-hoc

protocols — using arithmetic operations. Paper [13] presents

different cases study of verifying security protocols with

various standard tools. To summarise, there is currently no

tool that provides all the expected requirements. On the

contrary, our approach is based on model-checking that is

not tied to any particular application domain. Using CTL*,

we can also express many complex properties that some

dedicated tool cannot. But that also restrict our approach to

finite scenarios and bound number of agents.

The main idea of most known approaches to the dis-

tributed memory state space generation is similar to the naive

algorithm [3]. More references can be found in [14] for LTL

checking. Close to our idea, we can cite [15] which used a

partition function that enables cycles for a parallel NDFS

algorithm to be only local. The limits of the method are the

cost of this function and furthermore the number of SCCs

which is not enough to scale.

A kind of tree (hesitant) Büchi automata is used in [16]

where parallel SCC computations are perform. The automata

is hesitant is the sense that as for rules R1 and R2, it cannot

conclude and thus initiates the two possible computations.

That thus generated what they call “games” (close to our

“sessions”) and the algorithm has to manage how to store

partial results of games. A shared memory computation and

heuristics are used here to simplify this management. The

algorithm has also expensive management of invalid SCCs

which is seems not feasible for a distributed architecture.

VI. CONCLUSION AND FUTURE WORK

Designing security protocols is complex and often error

prone: various attacks are reported in the literature to proto-

cols thought to be “correct” for many years. There are now

many tools that check the security of cryptographic proto-

cols. But none is sufficient and adaptable for complicated

scenarios. The use of CTL* can help to check non trivial

property (e.g. fairness) but is computationally intensive.

Distributed computation is one of the solution to reduce this

overall time. Our solution is to use the well-structured nature

of security protocols to choose which part of the state and

formulas is really needed for the partition function and to

empty as much as possible the data-structures at each super-

step of the parallel computation. We thus a trick to precom-

puted the partial validity of logical assertions to force a more

breadth search which is clearly more coarse-grained even if

it induces more communications. Our solution also entails

automated classification of states and dynamic mapping of

classes to processors which simplifies the research of logical

flaws and improve balancing workload.

In future work we want to improve our implementation

using compilation and not Python byte-code interpretation

which is too slow for comparison with other tools as AVISPA

[17]. We also want to develop tools to automatically trans-

form standard representations of security protocols (e.g. the

one of [17]) into ABCD. To optimise the performance, using

a specific library as Divine [18] will also be considered.

Finally, in the security domain, we will consider more

complex protocols with branching and looping structures, as

well as complex data types manipulations. In particular, we

will consider protocols for secure storage distributed through

peer-to-peer communication [19] because it is currently

model using ABCD and generates large state spaces.

REFERENCES

[1] H. Comon-Lundh and V. Cortier, “How to prove security of
communication protocols? a discussion on the soundness of
formal models w.r.t. computational ones,” in STACS, 2011,
pp. 29–44.

[2] A. Armando, R. Carbone, and L. Compagna, “LTL model
checking for security protocols,” Applied Non-Classical Log-
ics, 2009.

[3] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel state
space construction for model-checking,” in Workshop on
Model Checking of Software SPIN, May 2001.

[4] J. H. Reif, “Depth-first search is inherrently sequential,”
Information Processing Letters, vol. 20, no. 5, pp. 229–234,
1985.

[5] R. H. Bisseling, Parallel Scientific Computation. A structured
approach using BSP and MPI. Oxford University Press,
2004.

[6] G. Bhat, R. Cleaveland, and O. Grumberg, “Efficient on-the-
fly model checking for CTL*,” in Logic in Computer Science
(LICS). IEEE Computer Society, 1995, pp. 388–398.

[7] F. Gava, M. Guedj, and F. Pommereau, “A BSP algorithm for
the state space construction of security protocols,” in PDMC.
IEEE Computer Society, 2010, pp. 37–44.

[8] D. Dolev and A. C. Yao, “On the security of public key pro-
tocols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198–208, 1983.

[9] F. Pommereau, Algebras of coloured Petri nets. Lambert
Academic Publisher, 2010, iSBN 978-3-8433-6113-2.

[10] M. Torabi Dashti, A. Wijs, and B. Lisser, “Distributed partial
order reduction for security protocols,” ENTCS, vol. 198, pp.
93–99, 2008.

[11] M. Guedj, “Bsp algorithms for LTL & CTL* model checking
of security protocols,” Ph.D. dissertation, University of Paris-
East, 2012. [Online]. Available: \url{http://www.lacl.fr/gava/
guedj thesis.pdf}

[12] F. Gava, M. Guedj, and F. Pommereau, “A BSP algorithm for
on-the-fly checking LTL formulas on security protocols,” in
ISPDC. IEEE, 2012.

[13] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala, “A comparative
analysis of tools for verification of security protocols,” Int. J.
Communications, Network and System Sciences, vol. 3, pp.
779–787, 2010.

[14] J. Barnat, “Distributed memory LTL model checking,” Ph.D.
dissertation, University of Brno, 2004.

[15] J. Barnat, L. Brim, and I. Cëerná, “Property driven dis-
tribution of nested dfs,” in Workshop on Verification and
Computational Logic (VCL), 2002, pp. 1–10.

[16] C. P. Inggs and H. Barringer, “CTL* model checking on
a shared-memory architecture,” Formal Methods in System
Design, vol. 29, no. 2, pp. 135–155, 2006.

[17] A. Armando and et al., “The AVISPA tool for the automated
validation of Internet security protocols and applications,” in
Computer Aided Verification (CAV), ser. LNCS, vol. 3576,
2005, pp. 281–285.

[18] J. Barnat, L. Brim, M. Černá, and P. Ročkai, “DiVinE: Par-
allel Distributed Model Checker,” in Parallel and Distributed
Methods in Verification (PDMC). IEEE, 2010, pp. 4–7.

[19] S. Sanjabi and F. Pommereau, “Modelling, verification, and
formal analysis of security properties in a P2P system,” in
Workshop on Collaboration and Security (COLSEC). IEEE,
2010, pp. 543–548.

