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Abstract This paper presents a distributed (Bulk-Synchronous Parallel or BSP) algo-
rithm to compute on-the-fly whether a structured model of a security protocol satisfies
or not a CTL∗ formula. Using the structured nature of the security protocols allows
us to design a simple method to distribute the state-space under consideration in a
need-driven fashion. Based on this distribution of the states, the algorithm for logical
checking of a LTL formula can be simplified and optimised allowing, with few tricky
modifications, the design of an efficient algorithm for CTL∗ checking. Some prototype
implementations have been developed, allowing to run benchmarks to investigate the
parallel behaviour of our algorithms.
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1 Introduction

In a world strongly dependent on distributed data communication, the design of se-
cure infrastructures is a crucial task. At the core of computer security-sensitive ap-
plications are security protocols, i.e., sequences of message exchanges aiming at dis-
tributing data in a cryptographic way to the intended users and providing security
guarantees such as confidentiality of data, authentication of participants, etc. This
leads to search for a way to verify whether a protocol is secure or not [16].

But designing and verifying secure protocols is a challenging problem. In spite of
their apparent simplicity, they are notoriously error-prone. Attacks exploit weaknesses
in the protocol that are due to the complex and unexpected interleaving of different
protocol sessions generated by a malicious intruder which resides in the network. A
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famous example is the “man-the-middle” attack on the Needham-Schroeder public
key protocol. The intruder is assumed to have a complete control on the network and
to be powerful enough to perform potentially dangerous actions such as intercept-
ing messages flowing over the network, or replacing them by new ones using the
knowledge he has previously gained [20].

1.1 Model-checking security protocols

Unfortunately, the question of whether a protocol achieves its security requirements
or not is, in the general case, undecidable or NP-complet in the case of a bounded
number of agents [6]. Even if security protocols should theoretically be checked un-
der an unbounded number of concurrent protocol executions, violating their security
requirements often exploits only a small number of sessions (that is, an execution of
an instance of the protocol) and agents. For these reasons, it is in many cases of in-
terest sufficient to consider a finite number of sessions (in which each agent performs
a fixed number of steps) in order to find flaws (which is distinct from proving the
protocol). Formal methods offer a promising approach for automated security analy-
sis of protocols: the intuitive notions are translated into formal specifications, which
is essential for a careful design and analysis. The development of formal techniques
that can check various security properties is an important tool to meet this challenge
[16]. Enumerative (explicit) model-checking is well-adapted to find flaws in this kind
of asynchronous, non-deterministic systems [6,2]. In particular, when an execution
of the protocol is discovered to violate a security property, it can be presented as a
trace of the protocol execution, that is, an explicit attack scenario.

By focusing on the verification of a bounded number of sessions, model-checking
a protocol can be done by simply enumerating and exploring all traces of the exe-
cution of the protocol and looking for a violation of some of the requirements. Ver-
ification through model-checking consists in defining a formal model of the system
to be analysed and then using automated tools to check whether the expected prop-
erties (generally expressed in a temporal logic) are met or not on the state-space of
the model. To do so, all the different configurations of the execution of the agents
evolving in the protocol need to be computed [6].

In this paper, we consider the problem of checking in a distributed way formu-
las expressed in the temporal logic CTL∗ over labelled transition systems (LTS) that
model security protocols. Checking a logical formula over a protocol is not new [6,
1] and has the advantage over dedicated tools for protocols (such as PROVERIF [9]
or SCYTHER [18] to cite the most known) to be easily extensible to non standard
behaviour of honest principals (e.g., contract-signing protocols in which participants
are required to make progress toward an agreement) or to check some security goals
that cannot be expressed as reachability properties, e.g., fair exchange [6].

1.2 Distributed model-checking: problematic and contribution

But the greatest problem with explicit model checking in general (and for security
protocols in particular) is the so-called state explosion: the fact that the number of



A BSP algorithm for on-the-fly checking CTL* formulas on security protocols 3

states typically grows exponentially with the number of agents and sessions. This
is especially true when complex data-structures are used in the model such as the
knowledge of an intruder in a security protocol. Checking a CTL∗ formula over a
security protocol may thus be expensive both in terms of memory and execution time.

Because explicit model-checking can cause memory crashing on single or mul-
tiple processor systems, it has led to consider exploiting the larger memory space
available in distributed systems [24], which also gives the opportunity to reduce the
overall execution time. Parallelizing the state-space construction on several machines
is thus done in order to benefit from each machine’s complete storage and computing
resources. One of the main technical issues is to partition the state space, i.e. each
subset of states is “owned” by a single machine.

To have efficient parallel algorithms for this state-space construction, it is com-
mon to have the following requirements. First, how states are partitioned across the
processors must be computed quickly. Second, the successor function (of a state)
must be defined so that successors states are likely mapped to the same processor as
its predecessor; otherwise the computation will be overwhelmed by inter-processor
communications (the so-called cross transitions) which obviously implies a drop of
the computation locality and thus of the performances. Third, balancing the workload
is obviously needed [33] in order to fully profit from available computational power
and to achieve the expected speedup. In the case of state-space construction, the prob-
lem is hampered by the fact that future size and structure of the undiscovered portion
of the state-space are unknown and cannot be predicted in general. Moreover, during
the state-space construction, all the explored states may need to be kept in memory
in order to avoid multiple exploration of a same state. This can lead to fill the main
memories and induce swapping which is known to significantly slow machines.

Furthermore, one may identify two basic approaches to model-checking. The first
one uses a global analysis to determine if a system satisfies or not a formula; the en-
tire state-space of the system is constructed and subjected latter to analysis. However,
these algorithms may be used to perform unnecessary work because in many cases
(especially when a system does not satisfy a specification), only a subset of the sys-
tem states needs to be analysed in order to determine whether the system satisfies a
formula or not. It is thus rarely necessary to compute the entire state-space before
finding a path that invalidates the logic formula (a flaw in a protocol). On the other
hand, on-the-fly (or local) approaches to model-checking attempt to take advantage
of this observation by constructing the state-space in a demand-driven fashion: on-
the-fly algorithms are designed to build the state-space and check the formula at the
same time which is thus generally more efficient.

By exploiting the well-structured nature of security protocols, we propose a so-
lution to simplify the writing of an efficient on-the-fly model-checking distributed
algorithm for finite scenarios. The structure of the protocols is exploited to partition
the state-space, to reduce cross transitions while increasing computation locality, to
keep only a sub-part of the state-space in the main memories (to avoid swapping on
external/disk memories) and to load balance the computations. At the same time, the
BSP model of computation [8] (defined later in this paper) allows us to simplify the
detection of the algorithm termination and to further load-balance the computations.
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Our work is based on the sequential algorithm of [7] which mainly combines the
construction a proof-structure (a graph) together with a Tarjan’s depth-first-search
based SCC (Strongly Connected Components) algorithm for detecting on-the-fly a
reachable accepting cycle in the underlying graph.

1.3 Outline

First, we briefly review in Section 2 the context of our work that is the BSP model,
models of security protocols and their state-space representation as LTS, as well as the
formal definition of two temporal logics LTL and CTL∗ together with their verification.

Section 3 is dedicated to the description of our new state-space algorithm con-
structed in a step-wise manner from a sequential one. Section 4 is dedicated to the
design of a BSP algorithm for verification of a LTL formula on a security protocol and
Section 5 is the generalisation of the above algorithm for CTL∗. For all the algorithms,
we briefly describe a prototype implementation and apply it to some typical protocol
sessions, giving benchmarks to demonstrate the benefits of our approach.

Finally, related works are discussed in Section 6 while a conclusion and future
works are presented in Section 7.

2 Context and general definitions

2.1 The BSP model of parallel execution

A BSP computer is seen as a set of uniform processor-memory pairs connected
through a communication network allowing the inter-processor delivery of messages
[8]. Clusters of PCs, multi-core, etc., can be considered as BSP computers.

local
computations

p0 p1 p2 p3

communication

barrier

next super-step
...

...
...

...
Fig. 1 A BSP super-step.

A BSP program is logically executed as a
sequence of super-steps (see Fig. 1), each of
which is divided into three successive disjoint
phases: (1) Each processor only uses its lo-
cal data to perform sequential computations
and to request data transfers to other nodes;
(2) The network delivers the requested data;
(3) A global synchronisation barrier occurs,
making the transferred data available for the
next super-step. The execution time (cost) of

a super-step is the sum of the maximum of the local processing, the data delivery and
the barrier times. The cost of a program is the total sum of the cost of its super-steps.

The BSP model considers communication actions en masse. This is less flexible
than asynchronous messages, but easier to debug since there are many simultaneous
communication actions in a classical parallel program, and their interactions are usu-
ally complex. Bulk sending also provides better performances since it is faster to send
a block of data rather than individual data because of less network latency.
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This structured model of parallelism enforces a strict separation of communica-
tion and computation: during a super-step, no communication between the proces-
sors is allowed but only transfer requests, only at the synchronisation barrier infor-
mation is actually exchanged. However, for better performances, a BSP library can
send messages during the computation phase of a super-step, but this is hidden to
programmers. On most cheaper distributed architectures, barriers often become more
expensive when the number of processors increases. However, dedicated architec-
tures make them much faster and they have also a number of attractions. In partic-
ular, this execution policy has the main advantage that it removes non-determinism
and guarantees the absence of deadlocks since barriers do not create circular data de-
pendencies. This is also merely the most visible aspects of a parallel model that shifts
the responsibility for timing and synchronisation issues from the applications to the
communications library. This can be used at runtime to dynamically make decisions,
for instance choose whether to communicate in order to re-balance data, or to con-
tinue an unbalanced computation. BSP libraries are generally implemented using MPI
or low level routines of the given specific architectures.

2.2 Security protocols and their state-space

2.2.1 Brief overview of the security protocols

Security protocols1 specify an exchange of cryptographic messages between prin-
cipals, i.e., the agents (users, hosts, servers, etc.) participating in the protocol. Each
instance of the protocol is called a session and an agent can participate to more than
one session, sequentially or concurrently. A scenario is a particular choice of arrange-
ment for different sessions involving a particular choice of agents. Messages are sent
over open networks, such as the Internet, that are not secured. As a consequence,
protocols should be designed to work fine even if messages may be eavesdropped
or tampered with by an intruder — e.g., a dishonest or careless agent. Finally, each
protocol is aimed to provide security guarantees such as authentication of principals
or secrecy of some pieces of information (e.g., a key, a value that can crypt/decrypt
a message or a nonce, a value that is new for each session) or non-repudiation and
fairness for commercial protocol with a contract.

Agents perform “ping-pong” data exchanges and some well-known strategies that
an intruder might employ are: man-in-the-middle, the intruder imposing itself in the
communications between the sender and receiver; replay, the intruder monitors a run
of the protocol and at some later time replays one or more of the messages; etc.

We assume the use of keys sufficiently long of the best-known cryptographic al-
gorithms to prevent a brute force attack in a feasible time. This is the well-known
perfect cryptography assumption. The idea is that an encrypted message can be de-
crypted only by using the appropriate decryption key, i.e., it is possible to retrieve
M from the message encrypted {M}K only by using K−1 as decryption key and it is
hopeless to compute K−1 from K or to guess one of these keys.

1 More details on their modelling, semantics and attacks can be found in [16,6].
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Alice Bob
〈A,Na〉Kb

〈Na,Nb〉Ka

〈Nb〉Kb

Alice Mallory Bob

〈A,Na〉Km

〈A,Na〉Kb

〈Na,Nb〉Ka

〈Na,Nb〉Ka

〈Nb〉Km

〈Nb〉Kb

Fig. 2 The NS protocol (left) and the well-known “man-in-the-middle” attack (right).

Fig 2 (left) illustrates the standard Needham-Schroeder (NS) protocol which in-
volves two agents Alice (A) and Bob (B) who want to mutually authenticate — Na
and Nb are nonces and Ka, Kb are the public keys of respectively Alice and Bob. The
idea of the protocol is that each agent sends a challenge to the other under the form of
a nonce (unguessable by nature) encrypted with the receiver’s public key who is this
the only one able to decrypt the nonce and send it back. In the right of Fig 2, we show
the well known flaw of the NS protocol when initiated with a malicious third party
Mallory (M); it involves two parallel sessions, with M participating in both of them;
Mallory authenticates as Alice with Bob. This is called a logical attack because both
sessions of the protocol are correct but the overall security goals are not achieved.

In this paper, we thus consider that a Dolev/Yao attacker [20] resides on the net-
work. An execution of such a model is thus a series of message exchanges as follows.
(1) An agent sends a message on the network. (2) This message is captured by the
attacker that tries to learn from it by recursively decomposing the message or decrypt-
ing it when the key to do so is known. Then, the attacker forges all possible messages
from newly as well as previously learnt informations (i.e., attacker’s knowledge). Fi-
nally, these messages (including the original one) are made available on the network.
(3) The agents waiting for a message reception accept some of the messages forged by
the attacker, according to the protocol rules. The Dolev/Yao threat model is a worst-
case model in the sense that the network, over which the participants communicate,
is thought as being totally controlled by an omnipotent intruder. Therefore, there is
no need to assume the existence of multiple attackers, because they together do not
have more abilities than the single Dolev/Yao intruder.

Model-checking attempts to find a reachable state or trace where a security prop-
erty fails – e.g., secret term is learnt by the intruder or an incorrect authentication
occurs. To ensure termination, these tools usually bound the maximum number of
sessions. To model-check a security protocol, one must construct its state-space (all
executions of the sessions) and check the property usually expressed in a temporal
logic. We now formally define these steps.

2.2.2 State-space construction

The state-space construction problem is the problem of computing the explicit rep-
resentation of a given model from the implicit one. In most cases, this space is con-
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structed by exploring all the states reachable through a successor function from an
initial state. The state-space of a protocol thus includes all the executions of the ses-
sions considering all the messages built by the intruder. The state-space (noted S)
construction consists in constructing a LTS:

Definition 1 (Labelled Transition System, LTS) It is a tuple (S,T,L) where S is the
set of states, T ⊆ S×S is the set of transitions, and L is an arbitrary labelling on S∪T .

Given a model implicitly defined by its initial state s0 and its successor function succ,
the corresponding explicit LTS (s0,succ) is defined as the smallest LTS (S,T,L) such
that s0 ∈ S, and if s ∈ S, then for all s′ ∈ succ(s) we also have s′ ∈ S and (s,s′) ∈ T .
The labelling may be arbitrarily chosen, for instance to define properties on states
and transitions with respect to which model checking is performed. Now assuming a
set A of atomic propositions, we have:

Definition 2 (Kripke structure) A Kripke structure is a LTS (S,T,L) whose la-
belling is L : S→ 2A .

Mainly a Kripke structure is a LTS adjoining whose labelling function associates
truth-values to the states.

Definition 3 (Path and related notions) Let M df
= (S,T,L) be a Kripke structure.

1. A path in M is a maximal sequence of states 〈s0,s1, . . .〉 such that for all i ≥ 0,
(si,si+1) ∈ T .

2. If x = 〈s0,s1, . . .〉 is a path in M then x(i) df
= si and xi df

= 〈si,si+1, . . .〉.
3. If s ∈ S then ΠM(s) is the set of paths x in M such that x(0) = s.

2.2.3 Properties of the state-spaces of security protocols

In this paper, we model security protocols as LTS such that any state can be repre-
sented by a function from a set of locations to an arbitrary data domain. For instance,
locations may correspond to local variables of agents, buffers, etc.

As a concrete formalism to model protocols, we have used an algebra of coloured
Petri nets called ABCD [42] (not presented in this paper) allowing easy and structured
modelling. This algebra is part of the SNAKES library [42] which is a general Petri
net library that allows to model and execute PYTHON-coloured Petri nets: tokens are
PYTHON objects and net inscriptions are PYTHON expressions. We refer to [26] for
more details and examples of models of security protocols using ABCD.

However, our approach is largely independent of the chosen formalism and it is
enough to assume that the following properties (P1) to (P4) hold.

(P1) locations can be partitioned into two sets R and L , and LTS function succ
can be partitioned into two functions succR and succL such that: for all state s and
all s′ ∈ succ(s), denoting by s|R the state s restricted to the locations from R, we
have that s′|R = s|R =⇒ s′ ∈ succL (s), and s′|R 6= s|R =⇒ s′ ∈ succR(s). Intu-
itively, succR corresponds to transitions upon which an agent (except the attacker)
receives information and stores it, and R are the locations where these agents store
the information they receive.
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(P2) there is an initial state s0 and there exists a function slice from states to natu-
ral numbers (a measure) such that if s′ ∈ succR(s) then there is no path from s′ to any
state s′′ such that slice(s) ≤ slice(s′′) and slice(s′) = slice(s)+1. This is often called
a sweep-line progression and corresponds to the fact that agents perform irreversible
actions. In particular, a reception by an agent corresponds to an irreversible step in
the sequence of messages forming the protocol.

(P3) there exists also a hash function cpuR from states to natural numbers such
that for all state s if s′ ∈ succL (s) then cpuR(s) = cpuR(s′). This is to say that
only information in R is taken into account to compute the hash of a state, and in
particular, the knowledge of the intruder is not involved.

(P4) if s1,s2 ∈ succR(s) and cpuR(s1) 6= cpuR(s2) then there is no possible path
from s1 to s2 and vice versa. This means that the receptions of two distinct messages
lead to distinct executions of the protocol, which is the case for instance when agents
permanently store the information they have received (this always holds in practice).

On concrete models, it is generally easy to distinguish syntactically the transitions
that correspond to a message reception in the protocol with information storage. Thus,
is it easy to partition succ as above and, for virtually all models of classical protocols
protocol, it is also easy to check that the above properties are satisfied. This is the case
in particular for us using the ABCD formalism. However, protocols involving poten-
tially unbounded loops (i.e., while loops) in the behaviour of agents cannot usually
be modelled so that (P2) and (P4) hold. Fortunately, such protocols are actually rare,
but considering them is one of our perspectives.

Note that our approach is compatible with the use of partial order reductions
as in [23] where the main idea is that the knowledge of the intruder always grows
and thus it is safe to prioritise the sending transitions with respect to receptions and
local computations of agents. A simple modification of the successors functions is
sufficient to achieve this.

2.3 Proof-structure and temporal logical checking

Many security properties such as secrecy (confidentiality), authentication, integrity,
anonymity can usually be expressed only using a state-space computation since these
properties only force to a reachability analysis, i.e., finding a single state that breaks
one on the above properties. However, more complex property may involve distin-
guishing several steps in an execution and thus require to resort to temporal logics.

2.3.1 Temporal logics

Temporal logics have mainly two kinds of operators: logical operators and modal
operators. Logical operators are the usual operators such as∧,∨, etc. Modal operators
are used to reason about time such as “until”, “next-time”, etc. Quantifiers can also be
used to reason about paths e.g., “a formula holds on all paths starting from the current
state”. In LTL, one can encode formulae about the future of paths, e.g., a condition will
eventually be true, a condition will be true until another fact becomes true, etc. CTL
is a branching-time logic, which means that its model of time is a tree-like structure
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in which the future is not determined; there are different paths in the future, any one
of which might be an actual path that is realised.

We now give the formal definition of CTL∗, that subsumes both LTL and CTL.
Without loss of generality, we assume that relation T is total and thus all paths in M
are infinite. This is only a convenience to define the algorithms, but may be easily re-
moved. We fix a set A of atomic propositions, which will be ranged over by a,a′, · · · .
We sometimes call literals formulas of the form a or ¬a; the set of all literals will
be ranged over by l, l1, . . . We use p, p1,q, . . . , to range over the set of state formulas
and φ ,φ1,γ, . . . , to range over the set of path formulas — both formally defined in
the following. We also call path quantifiers A (“for all”) and E (“exists”), and path
modalities X (“next”), U (“until”) and R (“release”).

Definition 4 (Syntax of CTL∗) The following grammar describes the syntax of CTL∗:

S ::= a | ¬a | S ∧S | S ∨S | AP | EP
P ::= S | P ∧P | P ∨P | XP | PUP | PRP

We refer to the formulas generated from S as state formulas and those from P as
path formulas. We define the CTL∗ formulas to be the set of state formulas.

Note that we use a particular construction on the formulas by putting the nega-
tion only adjoining to the atoms, which is a usual canonical form of CTL∗ formulas
that is always possible to obtain. CTL consists of those CTL∗ formula in which every
occurrence of a path modality is immediately preceded by a path quantifier and LTL
are CTL∗ formula of the form Aφ , where the only state sub-formula of φ are literals.

Definition 5 (Semantic of CTL∗) Let M = (S,R,L) be a Kripke structure with s ∈ S
and x a path in M. Then the satisfaction relation � is defined inductively as follows:

– s � a if a ∈ L(s) (recall a ∈A );
– s � ¬a if s 2 a;
– s � p1∧ p2 if s � p1 and s � p2;
– s � p1∨ p2 if s � p1 or s � p2;
– s � Aφ if for every x ∈ΠM(s), x � φ ;
– s � Eφ if there exists x ∈ΠM(s) such that x � φ ;
– x � p if x(0) � p (recall p is a state formula);
– x � p1∧ p2 if x � p1 and x � p2;
– x � p1∨ p2 if x � p1 and x � p2;
– x � Xφ if x1 � φ ;
– x � φ1Uφ2 if there exists i≥ 0 such that xi � φ2 and for all j < i,x j � φ1;
– x � φ1Rφ2 if for all i≥ 0, xi � φ2 or if there exists i≥ 0 such that xi � φ1 and for

every j ≤ i, x j � φ2.

The meaning of most of the constructs is straightforwards. A state satisfies Aφ

(resp. Eφ ) if every path (resp. some path) starting from the state satisfies φ , while a
path satisfies a state formula if the initial state in the path does. X represents a “next-
time” operator in the usual sense of “one transition forward”, while φ1Uφ2 holds of a
path if φ1 remains true until φ2 becomes true. The modal operator R may be thought
of as a “release” operator: a path satisfies φ1Rφ2 if φ2 remains true until both φ1 and
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s ` A(Φ ,φ)

true (R1)
s ` A(Φ ,φ)

s ` A(Φ)
(R2)

s ` A(Φ ,φ1 ∨φ2)

s ` A(Φ ,φ1,φ2)
(R3)

s ` A(Φ ,φ1 ∧φ2)

s ` A(Φ ,φ1) s ` A(Φ ,φ2)
(R4)

if s � φ if s 2 φ

s ` A(Φ ,φ1Uφ2)

s ` A(Φ ,φ1,φ2) s ` A(Φ ,φ2,X(φ1Uφ2))
(R5)

s ` A(Φ ,φ1Rφ2)

s ` A(Φ ,φ2) s ` A(Φ ,φ1,X(φ1Rφ2))
(R6)

s ` A(Xφ1, ...,Xφn)

s1 ` A(φ1, ...,φn) sm ` A(φ1, ...,φn)
(R7)

if succ(s) = {s1, ...,sm}
Fig. 3 Proof rules for LTL checking [7].

φ2 (φ1 releases the path from the obligations) or φ2 is always true. For two examples
of security properties:

1. Fairness is a CTL formula: AG(recv(c1,d2)⇒ EFrecv(c2,d1)) if we assume two
agents c1 and c2 that possess items d1 and d2, respectively, and wish to exchange
them; it asserts that if c1 receives d2, then c2 has always a way to receive d1.

2. The availability of an agent can be a LTL formula that requires that all the mes-
sages m received by this agent a will be processed eventually, which can be for-
malised as: AG(rcvd(a,m)⇒ (F¬rcvd(a,m)))

where the two syntaxic sugars are: (1) G(p) is for “globally” and is equal to f alseR p;
(2) F(p) is for “finally” and is equal to true U p.

2.3.2 Checking a LTL formula

In [7], the authors give an efficient algorithm for model-checking LTL then CTL∗

formula. The algorithm is based on a collection of top-down proof rules for inferring
when a state in a Kripke structure satisfies a LTL formula. It is close to a Tableau
method [25]. These rules are reproduced in Fig. 3, they work on assertions of the
form s ` AΦ where s ∈ S and Φ is a set of path formula.

Semantically, s ` AΦ holds if s � A(
∨

φ∈Φ φ). We write A(Φ ,φ1, · · · ,φn) to rep-
resent A(Φ∪{φ1, · · · ,φn}) and we consider A( /0) = /0. If σ is an assertion of the form
s `AΦ then we use φ ∈ σ to denote that φ ∈Φ . We may also drop A and write s `Φ

for an assertion if the context allows it.

Definition 6 (Proof structure [7]) Let Σ be a set of nodes, Σ ′ df
= Σ ∪ true, V ⊆ Σ ′,

E ⊆V×V and σ ∈V . Then 〈V,E〉 is a proof structure for σ if it is a maximal directed
graph such that for every σ ′ ∈V , σ ′ is reachable from σ , and the set {σ ′′ | (σ ′,σ ′′) ∈
E} is the result of applying some rule to σ ′.

Intuitively, a proof structure for σ is a direct graph that is intended to represent an
(attempted) “proof” of σ . In what follows, we consider such a structure as a directed
graph and use traditional graph notations for it. Note that in contrast with traditional
definitions of proofs, proof structures may contain cycles. In order to define when a
proof structure represents a valid proof of σ , we use the following notion:
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Definition 7 (Successful proof structure [7]) Let 〈V,E〉 be a proof structure.

– σ ∈V is a leaf iff there is no σ ′ such that (σ ,σ ′)∈ E. σ is successful iff σ ≡ true.
– An infinite path π = 〈σ0,σ1, · · · 〉 in 〈V,E〉 is successful iff some assertion σi

infinitely repeated in π satisfies the following: there exists φ1Rφ2 ∈ σi such that
for all j ≥ i,φ2 /∈ σ j.

– 〈V,E〉 is partially successful iff every leaf is successful. 〈V,E〉 is successful iff it
is partially successful and each of its infinite paths is successful.

Roughly speaking, an infinite path is successful if at some point a formula of the
form φ1Rφ2 is repeatedly “regenerated” by application of rule R6, i.e., the right-hand
sub-goal of this rule application appears each time on the path. Note that after φ1Rφ2
occurs on the path, φ2 should not, because, intuitively, if φ2 was true then the success
of the path would not depend on φ1Rφ2, while if it was false then φ1Rφ2 would not
hold. Note also that if no rule can be applied (i.e., Φ = /0) then the proof-structure is
unsuccessful and thus the formula does not hold. We now have the following result:

Theorem 1 (Proof-structure and LTL [7]) Let M be a Kripke structure with s ∈ S
and Aφ an LTL formula, and let 〈V,E〉 be a proof-structure for s`A{φ}. Then s�Aφ

iff 〈V,E〉 is successful.

One consequence of this theorem is that if σ has a successful proof-structure, then
all proof-structures for σ are successful. Thus, it turns out that the success of a finite
proof-structure may be determined by looking at its strongly connected components
(SCCs, we recall that a SCC of a directed graph is a maximal component in which
every vertex can be reached from every other) or any accepting cycle. The efficient
algorithm of [7] (described later) combines the construction of a proof-structure with
the process of checking whether the proof-structure is successful using a Tarjan like
algorithm for SCC computation (and a recursive decomposition of a CTL∗ formula
into several LTL formula) but a NDFS [28] one could be used equally.

Call a SCC O of 〈V,E〉 nontrivial if there exist (not necessary distinct) v,v′ ∈ O
such that there is a path containing a least one edge from v to v′. For any V ′ ⊆V we
may define the success set of V ′ as follows:

Success(V ′) df
= {φ1Rφ2 | ∃σ ∈V ′ : φ1Rφ2 ∈ σ and ∀σ ′ ∈V ′ : φ2 6∈ σ

′}.
We say that V ′ is successful if and only if Success(V ′) 6= /0 we have the following:

Theorem 2 (SCC and LTL [7]) A partially successful proof structure 〈V,E〉 is suc-
cessful if and only if every nontrivial SCC of 〈V,E〉 is successful.

For example, Fig. 4 gives the successful proof-structure of the checking of s1 �
A(bRa) for a Kripke structure with three states such that atomic proposition a is
always true and b is only true for state s2.

3 BSP state-space construction of security protocols

Based on the properties defined in section 2.2.3, we have designed, in an incremental
manner, a BSP algorithms for efficiently computing the state-space of security proto-
cols. In order to explain our parallel algorithm, we start with a generic and sequential
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s1 � a

s2 � a ∧ b s3 � a

s1 ⊢ A(bRa)

s1 ⊢ A(a) s1 ⊢ A(b,X(bRa))

true s1 ⊢ A(X(bRa))

s2 ⊢ A(bRa) s3 ⊢ A(bRa)

s2 ⊢ A(a) s2 ⊢ A(b,X(bRa)) s3 ⊢ A(a) s3 ⊢ A(b,X(bRa))

true true true s3 ⊢ A(X(bRa))

Fig. 4 Proof-structure (right) of s1 ` A(bRa) for a simple Kripke structure (left).

algorithm that corresponds to the usual construction of a state-space and we also
give a generic (in the sence of independant of succ) parallel algorithm for state-space
computing which will the basis for the parallel version. Successive improvements
will result in a parallel algorithm that remains quite simple in its expression but that
actually relies on a precise use of a consistent set of observations and algorithmic
modifications. We will show that this algorithm is efficient despite its simplicity.

3.1 Usual generic sequential algorithm

The algorithm given in 5 involves a set todo of states that is used to hold all the states
whose successors have not been constructed yet; initially, it contains only the initial
state s0. Then, each state s from todo (taken using the pick routine) is processed in
turn and added to a set known while its successors are added to todo unless they are
known already. At the end of the computation, known holds all the states reachable
from s0, that is, the state-space S. Note that this algorithm could be made strictly
depth-first by using todo as a stack, and breadth-first by using todo as a fifo queue.
This has not been considered here.

We now show how the sequential algorithm can be parallelised in BSP and how
several successive improvements can be introduced.

3.2 A naive and generic BSP algorithm for state-space computation

One of the main technical issues in the distributed-memory state-space construction
is to partition the state-space among the participating machines. Most of approaches

1 def seq construction() is
2 todo ←{s0}
3 known ← /0
4 while todo 6= /0 do
5 s ← todo.pick()
6 known ←known ∪ {s}
7 todo ← todo ∪ (succ(s) \ known)
8 done

Fig. 5 Sequential construction of the state-space.
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1 def par construction() is =
2 total ←1
3 known ← /0
4 if cpu(s0)=mypid
5 then todo ←{s0}
6 else todo ← /0
7 while total> 0 do
8 tosend ← local successors(known,todo)
9 exchange(todo,total,known,tosend)

10 done

1 def exchange (todo,total,known,tosend) is
2 rcv,total ←BspExchange(tosend)
3 todo ← rcv \ known

1 def local successors (known,todo) is
2 tosend ← [ /0, · · · , /0]
3 while todo 6= /0 do
4 s ← todo.pick()
5 known ←known ∪ s
6 for s′ in ((succ s) \ known) do
7 tgt=cpu(s′)
8 if tgt=mypid
9 then todo ← todo ∪ s′

10 else tosend[tgt] ← tosend[tgt] ∪ s′

11 done
12 done
13 return tosend

Fig. 6 Generic and naive BSP algorithm for state-space construction.

to the distributed memory state-space construction use a partitioning mechanism that
works at the level of states which means that each single state is assigned to a ma-
chine. This assignment is made using a function cpu that partitions the state-space
into subsets of states. Each such subset is then “owned” by a single machine. The
partition function cpu returns for each state s a processor identifier, i.e., the proces-
sor numbered cpu(s) is the owner of s. Usually, this function is simply a hash of the
considered state modulo the number of processors in the parallel computer.

We now show how the sequential algorithm can be parallelised in a BSP fashion
and how several successive improvements can be introduced in the next subsections.
The idea is that each process computes the successors for only the states it owns.
This is rendered as algorithm called “Naive” in Fig.6; notice that we assume that
arguments are passed by references so that they may be modified by sub-programs.

This is a SPMD (Single Program, Multiple Data) algorithm and so, processor ex-
ecutes it. Sets known and todo (and all other variables) are strictly local to each
processor and thus provide only a partial view on the ongoing computation. Initially,
only state s0 is known and only its owner puts it in its todo set. This is performed in
lines 4–6, where mypid evaluates locally to each processor to its own identifier.

Function local successors is essentially the same as the sequential exploration,
except that each processor computes only the successors for the states it actually owns
and send other states to other processors. That is, function local successors compute
the successors of the states in todo and each computed state that is not owned by the
local processor is recorded in the array of sets tosend together with its owner number.
Array tosend is thus of size nprocs, the number of processors of the BSP machine:
at processor j, tosend[i] represents the set of states that will be send by processor j
to processor i. This partitioning of states is performed in lines 6–11. To finish, the
function returns the states to be sent.

Then, function exchange is responsible for performing the actual communications
between processors. It assigns to todo the set of received states that are not yet known
locally together with the new value of total. The routine BspExchange performs a
global (collective) synchronisation barrier which makes data available for the next
super-step so that all the processors are now synchronised. The synchronous routine
BspExchange sends each state s from the set tosend[i] to the processor i and returns
the set of states received from the other processors, together with the total number of
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exchanged states — it is mainly the MPI’s alltoall primitive. Notice that, by postpon-
ing communication, this function allows buffered sending and forbids sending several
times the same state. More formally, at processor mypid:

BspExchange(tosend) =

{
total = ∑

nprocs−1
k=0 ∑

nprocs−1
i=0 |tosend[[k]][i]|

rcv =
⋃nprocs−1

i=0 tosend[[i]][mypid]

where tosend [[i]] represents the array tosend at processor i.
In order to terminate the algorithm, we use the additional variable total in which

we count the total number of sent states i.e., total is an upper sum of the sizes of
all the sets todo after the synchronisation. We have thus not used any complicated
methods as the ones presented in [24]. It can be noted that the value of total may be
greater than the total number of states in the todo sets. Indeed, it may happen that
two processors compute a same state owned by a third processor, in which case two
states are exchanged but only one is kept upon reception. Moreover, if this state has
been also computed by its owner, it will be ignored. This not a problem in practise
because in the next super-step, this duplicated count will disappear. In the worst case,
the termination requires one more super-step during which all the processors will
process an empty todo, resulting in an empty exchange and thus total=0 on every
processor, yielding the termination.

We now consider how to incrementally optimise this BSP algorithm for the case
of security protocols using their specific properties. An interesting point of this work
is that the main loop of the BSP algorithm will be kept unchanged, i.e., only functions
local successors and exchange will be modified.

3.3 Dedicated BSP algorithm for state-space construction of security protocols

3.3.1 Increasing local computation time

Using the above naive parallel algorithm, function cpu distributes evenly the states
over the processors. However, each super-step is likely to compute very few states
because only too few computed successors are locally owned. This results in a bad
balance of the time spent in computation with respect to the time spent in commu-
nication. If more states can be computed locally, this balance improves but also the
total communication time decreases because more states are computed during each
call to function local successors.
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Fig. 7 Peculiarity of the state-space.

To achieve this goal, we consider a peculiar-
ity of the models we are analysing that is depicted
in Fig. 7. The learning phase of the attacker is
computationally expensive, in particular when a
message can be actually decomposed, which leads
to recompose a lot of new messages. Among the
many forged messages, only a (usually) small pro-
portion are accepted for reception by agents. Each
such reception gives rise to a new state.

This whole process can be kept local to the
processor and so without cross-transition. To do

so, we need to design our partition function cpuR such that it respects property (P1),
i.e., for all states s1 and s2, if s1|R = s2|R then cpuR(s1) = cpuR(s2). This can be
obtained by using cpu but employing only the locations from R, i.e., those locations
where the honest agents store received information.

In this first improvement of the algorithm, when the function local successors is
called, then all new states from succL are added in todo (states to be proceeded) and
states from succR are sent to be treated at the next super-step, enforcing an order of
exploration of the state-space that matches the progression of the protocol in slices.
Another difference is that no state could be sent twice due to this order. The new
function local successors is given at the left of Fig. 8.

With respect to the previous algorithm, this one splits the local computations,
avoiding calls to cpuR when they are not required. This may yield a performance
improvement, both because cpuR is likely to be faster than cpu and because we only
call it when necessary. But the main benefits in the use of cpuR instead of cpu is to
generate less cross transitions since less states are need to be sent. Finally, notice that,
on some states, cpuR may return the number of the local processor, in which case the
computation of the successors for such states will occur in the next super-step. We
now show how this can be exploited.

1 #An exploration to improve local computations
2 def local successors (known,todo) is
3 tosend ← [ /0, · · · , /0]
4 while todo 6= /0 do
5 s ← todo.pick()
6 known ←known ∪ s
7 todo ← todo ∪ (succL (s) \ known)
8 for s′ in succR(s) do
9 tgt ←cpuR(s′)

10 tosend[tgt] ← tosend[tgt] ∪ s′

11 done
12 done
13 return tosend

1 #Sweep−line implementation
2 def exchange (todo,total,known,tosend) is
3 dump(known)
4 todo,total ←BspExchange(tosend)

1 #Balancing strategy
2 def exchange (todo,total,known,tosend) is
3 dump(known)
4 todo,total ←BspExchange(balance(tosend))
5

6 def balance(tosend) is
7 histoL ←{(i, ]{(i,s) ∈ tosend })}
8 compute histoG from BspMulticast(histoL)
9 return BinPack(tosend,histoG)

Fig. 8 Dedicated BSP algorithms for state-space construction of security protocols.
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3.3.2 Decreasing local storage

One can observe that the structure of the computation now matches the structure of
the protocol execution: each super-step computes the executions of the protocol until
a message is received. As a consequence, from the states exchanged at the end of a
super-step, it is not possible to reach states computed in any previous super-step. This
corresponds to property (P2).

This kind of progression in a model execution is the basis of the sweep-line
method [14] that aims at reducing the memory footstep of a state-space computation
by exploring states in an order compatible with progression. It thus becomes possible
to regularly dump from the main memory all the states that cannot be reached any-
more — a disk-based backup can also be made if it is necessary to restore the trace
of a forbidden computation. Thus, in Fig. 8, statement dump(known) resets known
to an empty set, possibly saving its content to disk if this is desirable. The rest of
function exchange is simplified accordingly.

Enforcing such an exploration order is usually made by defining on states a mea-
sure of progression slice as stated in property (P2). In our case however, such a mea-
sure is not needed explicitly because of the match between the protocol progression
and the super-steps succession. So we can apply the sweep-line method by making a
simple modification of the exploration algorithm. This algorithm is as before except
that we empty known at the end of each super-step, just before the next one. The
corresponding new function exchange is given at the top-right of Fig. 8.

3.3.3 Balancing the Computations

During our benchmark, we have found that using cpuR can introduce a bad balance
of the computations due to a lack of information when hashing only on R. Thus,
the final optimisation step aims at rebalancing the workload. To do so, we exploit
the following observation: for all the protocols we have studied so far, the number
of computed states during a super-step is usually closely related (proportional actu-
ally) to the number of states received at the beginning of the super-step. So, before to
exchange the states themselves, we can first exchange information about how many
states each processor has to send and how they will be spread onto the other proces-
sors. Using this information, we can anticipate and compensate balancing problems.

Fig. 9 Distribution of the sets of states.

To compute the balancing information, we use
a new partition function cpuB that is equivalent
to cpuR without modulo. This function defines
classes of states for which cpuB returns the same
value. Those classes are like “bag-of-tasks” [31]
that can be distributed over the processors inde-
pendently, see Fig. 9. To do so, we compute a his-
togram of these classes on each processor, which
summarises how cpuR would dispatch the states.
This local histograms are then exchanged, yield-
ing a global histogram that is exploited to com-

pute on each processor a better dispatching of the states it has to send. This is made
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by placing the classes according to a simple heuristic for the bin packing problem:
the largest class is placed onto the less charged processor, which is repeated until all
the classes have been placed. It is worth noting that this placement is computed with
respect to the global histogram, but then, each processor dispatches only the states it
actually holds, using this global placement. Moreover, if several processors compute
a same state, these identical states will be in the same class and so every processor
that holds such states will send them to the same target. So there is no possibility of
duplicated computation. We call this algorithm “Balance”.

These operations are detailed in the bottom-right part of Fig 8, where variables
histoL and histoG store respectively the local and global histograms, and function
BinPack implements the dispatching method described above. In function balance,
]X denotes the cardinality of set X . Function BspMulticast is used to allow each
processor to send its local histogram to every processor and receive in turn their his-
tograms, allowing to build the global one. It thus involves a synchronisation barrier.

It may be remarked that the global histogram is not fully accurate since several
processors may have a same state to be sent. Nor the computed dispatching is optimal
since we do not want to solve a NP-hard bin packing problem. But, as shown in
our benchmarks below, the result is yet fully satisfactory. Finally, it is worth noting
that if a state found in a previous super-step may be computed again, it would be
necessary to known which processor owns it: this could not be obtained efficiently
when dynamic remapping is used. But that could not happen thanks to our sweep-line
compatible exploration order. Our dynamic states remapping is thus correct because
states classes match the locality of computation.

3.4 Experimental results

In order to evaluate our algorithms, we have implemented a prototype version in
PYTHON, using SNAKES for the Petri net part (which also allowed for a quick mod-
elling of the protocols, including the inference rules of the Dolev-Yao attacker) and a
BSP-PYTHON library [27] for the BSP routines (which are close to a MPI’s “alltoall”).
We actually used the MPI version (with mpich) of the BSP-PYTHON library. While
largely suboptimal (PYTHON programs are interpreted and there is no optimisation
about the representation or computation of the states in SNAKES), this prototype nev-
ertheless allows and accurate comparison of the various algorithms — execution
times of PYTHON programs are very stable over several execution and not depend
of code placement in the main memory or of unpredictable underlying optimizations
of the compiler/processor. The benchmarks presented below have been performed
using the cluster of the first author’s laboratory that is 20 PCs connected through a
1 Gigabyte Ethernet network; Each PC is equipped with a 2Ghz Intel R© Pentium R©
dual core CPU, with 2GB of physical memory; This allowed to simulate easily a BSP
computer with at most 40 processors equipped with 1GB of memory each.

Our cases study involved the following five protocols: (1) Needham-Schroeder
(NS) public key protocol for mutual authentication; (2) Yahalom (Y) key distribution
and mutual authentication using a trusted third party; (3) Otway-Rees (OR) key shar-
ing using a trusted third party; (4) Woo and Lam Pi (WLP) authentification protocol
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with public keys and trusted server; (5) Kao-Chow (KC) key distribution and au-
thentication. All are documented at the Security Protocols Open Repository (SPORE)
(http://www.lsv.ens-cachan.fr/Software/spore).

For each protocol, we have built a modular model allowing for defining easily
various scenarios involving different numbers of each kind of agents. We note our
scenarios NS x-y indicating x instances of Alice and y instances of Bob with one
unique sequential session; Y (resp. OR, KC, WLP)-x-y-z n indicating x instances of
the Server, y of Alice, z of Bob, involved in n sequential sessions.

We give the total time of computation and note SWAP when at least one proces-
sor has started to swap to disk due to a lack of main memory for storing its part of the
state-space. We also note COMM when a similar situation happens during commu-
nication: the system is unable to received data since not enough memory is available.
We also give the number of states. For the Needham-Schroeder protocol, we have:

Scenario Naive Balance Nb states
NS 1-2 0m50.222s 0m42.095s 7807
NS 1-3 115m46.867s 61m49.369s 530713
NS 2-2 112m10.206s 60m30.954s 456135

For the Yahalom protocol:

Scenario Naive Balance Nb states
Y 1-3-1 12m44.915s 7m30.977s 399758
Y 1-3-1 2 30m56.180s 14m41.756s 628670
Y 1-3-1 3 481m41.811s 25m54.742s 931598
Y 2-2-1 2m34.602s 2m25.777s 99276
Y 3-2-1 COMM 62m56.410s 382695
Y 2-2-2 2m1.774s 1m47.305s 67937

For the Otway-Rees protocol:

Scenario Naive Balance Nb states
OR 1-1-2 38m32.556s 24m46.386s 12785
OR 1-1-2 2 196m31.329s 119m52.000s 17957
OR 1-1-2 3 411m49.876s 264m54.832s 22218
OR 1-2-1 21m43.700s 9m37.641s 1479

For the Woo and Lam Pi protocol:

Scenario Naive Balance Nb states
WLP 1-1-1 0m12.422s 0m9.220s 4063
WLP 1-1-1 2 1m15.913s 1m1.850s 84654
WLP 1-1-1 3 COMM 24m7.302s 785446
WLP 1-2-1 2m38.285s 1m48.463s 95287
WLP 1-2-1 2 SWAP 55m1.360s 946983

For the Kao-Chow protocol:

Scenario Naive Balance Nb states
KC 1-1-1 4m46.631s 1m15.332s 376
KC 1-1-2 80m57.530s 37m50.530s 1545
KC 1-1-3 716m42.037s 413m37.728s 4178
KC 1-1-1 2 225m13.406s 95m0.693s 1163
KC 1-2-1 268m36.640s 159m28.823s 4825

We can see that the overall performance of our dedicated “Balance” algorithm is
always very good compared to the naive and general one. This holds for large state-
spaces as well as for smaller ones. Furthermore, the naive implementation can swap,
which never happens for the “Balance” one.
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By measuring the memory consumption of our “Balance” algorithm, we could
confirm the benefits of our sweep-line implementation when large state-spaces are
computed. For instance, in a NS scenario with 5M states, we observed an improve-
ment of the peak memory usage from 97% to 40% (maximum among all the proces-
sors). Similarly, for a Y scenario with 1M states, the peak decreases from 97% to 60%
(states in Y use more memory that states in NS). Similarly, for the WLP 1-2-1 2, the
peak decreases so that the computation does not swap. For Y 3-2-1, “Balance” used
a little less memory but this is enough to avoid crashing the whole machine. We also
observed, on very large state-spaces, that the naive implementation exhausts all the
available memory and some processors start to use the swap, which causes a huge
performance drop. This never happened using our sweep-line implementation.

As a last observation about our algorithm, we would like to emphasise that we
observed a linear speedup with respect to the number of processors. In general, most
parallel algorithms suffer from an amortised speedup when the number of processors
increases. This is almost always caused by the increasing amount of communication
that becomes dominant over the computation. Because our algorithm is specifically
dedicated to reduce the number of cross transitions, and thus the amount of commu-
nication, this problem is largely alleviated and we could observe amortised speedup
only for very small models (less than 100 states) for which the degree of intrinsic par-
allelism is very reduced but whose state-space is in any way computed very quickly.

4 BSP on-the-fly LTL checking of security protocols

4.1 A sequential imperative algorithm for generic on-the-fly LTL checking

[7] gives a recursive algorithm for LTL checking. It is mainly the recursive Tarjan
algorithm for a SCC decomposition but working on proof-structures and finding on-
the-fly a successful SCC to validate or not the formula: it combines the construction of
a proof-structure with the process of checking whether it is successful; as soon as it
is determined that the partially constructed structure cannot be extended successfully,
the routine halts the construction of the structure and returns anwser False.

To be close to our previous distributed algorithms, we have chosen to derecursify
this algorithm using, as usual, an explicit stack to record the recursive calls. Instead
of the recursive procedure, we use procedures call ltl, loop ltl, up ltl and ret ltl and
an additional stack todo (which contains initially the initial state) to achieve a dere-
cursification of the traditional recursive Tarjan’s algorithm. Note the definition of
subroutines in the main procedure without their body which are given separately.
This notation is used to define the scope of variables and to decompose the algorithm
into several routines. Fig. 10 gives this algorithm which operates as follows.

Roughly speaking, a break of the procedure loop ltl resumes the nested explo-
ration by popping the stack todo in which we have placed the next state to explore.
The backtracking is done by the procedure ret ltl which restores the control to its
parent call, that in turn may possibly resume the exploration of its children.

Additional informations are stored in each assertion (a vertex) σ of the proof-
structure that enable the detection of unsuccessful SCC. We use an implicit mapping
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1 def modchkLTL Seq() is
2 σ0=s0 ` φ

3 return SeqChkLTL(σ0)
4

5 def SeqChkLTL(σ) is
6 var dfn ←0
7 var stack ← ε

8 var todo ← [σ ]
9 def init(σ ,valid) is (...)

10 def loop ltl(σ) is (...)
11 def up ltl(σ ,σ ′) is (...)
12 def ret ltl(σ) is (...)
13 def subgoals(σ) is (...)
14 while todo 6= ε

15 σ ← todo.pop()
16 call ltl(σ)
17 done
18 return σ .flag

1 def subgoals(σ) is
2 case σ

3 s ` A(Φ , p) : (R1−R2)
4 if (s � p) then subg←{True}
5 elif Φ = /0 then subg← /0
6 else subg← A(Φ)
7 s ` A(Φ ,φ1 ∨φ2) : (R3)
8 subg←{s ` A(Φ ,φ1,φ2)}
9 s ` A(Φ ,φ1 ∧φ2) : (R4)

10 subg←{s ` A(Φ ,φ1),s ` A(Φ ,φ2)}
11 s ` A(Φ ,φ1Uφ2) : (R5)
12 subg←{s ` A(Φ ,φ1,φ2),
13 s ` A(Φ ,φ2,X(φ1Uφ2))}
14 s ` A(Φ ,φ1Rφ2) : (R6)
15 subg←{s ` A(Φ ,φ2),
16 s ` A(Φ ,φ1,X(φ1Rφ2))}
17 s ` A(Xφ1, ...,Xφn) : (R7)
18 subg←{s′ ` A(φ1, ...φn) | s′ ∈ succ(s)}
19 return subg

1 def init(σ ,valid) is
2 dfn ←dfn+1
3 σ .dfsn ←σ .low ←dfn
4 σ .valid ←{〈φ1Rφ2,sp〉 | φ2 /∈ σ

5 ∧(φ1Rφ2 ∈ σ ∨X(φ1Rφ2) ∈ σ)
6 ∧ sp=(sp′ if 〈φ1Rφ2,sp′〉 ∈ valid else dfn)}

1 def call ltl(σ) is
2 if σ .parent = ⊥
3 valid ← /0
4 else
5 valid ←σ .parent.valid
6 init(σ ,valid)

7 σ .V ←True
8 σ .instack ←True
9 stack.push(σ)

10 σ .children ← subgoals(σ)
11 case σ .children
12 {True} :
13 σ .flag ←True
14 ret ltl(σ)
15 /0 :
16 σ .flag ←False
17 ret ltl(σ)
18 otherwise :
19 loop ltl(σ)

1 def loop ltl(σ) is
2 while σ .children 6= /0 and σ .flag != False
3 σ ′ ←σ .children.pick()
4 if σ ′.V
5 if not σ ′.flag
6 σ .flag ←False
7 elif σ ′.instack
8 σ .low ←min(σ .low, σ ′.low, σ ′.dfsn)
9 σ .valid ←{〈φ1Rφ2,sp〉 ∈ σ .valid

10 | sp≤ σ ′.dfsn}
11 if σ .valid = /0
12 σ .flag ←False
13 else
14 σ ′.parent ←σ

15 todo.push(σ ′)
16 return
17 done
18 if σ .dfsn = σ .low
19 var top ←⊥
20 while top 6= σ

21 top ← stack.pop()
22 top.instack ←False
23 if not σ .flag
24 top.flag ←False
25 done
26 ret ltl(σ)

1 def ret ltl(σ) is
2 if σ .parent 6= ⊥
3 up ltl(σ .parent,σ)

1 def up ltl(σ ,σ ′) is
2 σ .flag ←σ ′.flag
3 if σ ′.low ≤ σ .dfsn
4 σ .low ←min(σ .low, σ ′.low, σ ′.dfsn)
5 σ .valid ←σ ′.valid
6 loop ltl(σ)

Fig. 10 Sequential imperative algorithm for LTL model checking.
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from the pairs 〈state,AΦ〉 (as keys) to fields of assertions that are assigned appropri-
ately when assertions are first visited. These fields are the following:

– The algorithm of [7] maintains two sets of assertions: V (for visited), which
records the assertions that have been encountered so far, and F, which contains
assertions that have been determined to be False (by abuse of language, we say
that the anwser of the assertion is invalid). To implement this, σ has two boolean
fields .V (initially False) and .flag. The latter determines the validity of the asser-
tion if σ .V is true. Initially flag is True, and it becomes False either if the set of
subgoals of an assertion is empty or if one of these two conditions is satisfied:

– one of the subgoals of the assertion is already visited and its flag is False (this
case will actually occur when we will check CTL∗ formulas);

– an unsuccessful nontrivial strongly component is found by testing if the set
valid is empty or not.

– The field .parent is a set of assertions σ ′ such that (σ ′,σ) ∈ E that is there is
a edge from σ ′ to σ in the proof-structure (direct graph); it is mainly used for
backtracking the results of nested computations; in the same manner, the field
.children is also a set of assertions such that (σ ,σ ′) ∈ E.

– As the algorithm consists of a depth-first exploration of the proof-structure, σ

has two specific fields used to detect SCCs: .dfsn (the depth-first search number
of σ ) and .low (the record of the dept-first search number of the “oldest” ancestor
of σ that is reachable from σ ), both expressing respectively the depth-first search
number (by incrementation of the dfn variable) and the smallest depth-first search
number of a state that is reachable from the considered state. The detection that a
state belongs to a SCC is made by testing if a successor is in the global stack. A
SCC is found at a certain point if at the end of a some course of the proof-structure,
the field .low coincides with the field .dfsn.

– We associate the field .valid which is the set of pairs of the form 〈φ1Rφ2, sp〉.
Intuitively, the formula component of such a pair may be used as evidence of the
success of the SCC that σ might be in, while sp records the “starting point” of the
formula, i.e., the depth-first number of the assertion in which this occurrence of
the formula first appeared.

– We also need a test of membership of assertions in the global stack. In order to
have a constant time test avoiding to actually explore the stack, we add another
field .stack that is a Boolean answering whether the assertion in the stack or not.

For model-checking LTL formulas, we begin by the procedure modchkLTL Seq
which initiates the variables dfn and stack and start the depth-first exploration by
putting the initial assertion in todo (lines 6–13). The main loop over todo is to con-
struct a successful proof structure (lines 14–17).

Procedure call ltl proceeds as follows. The successors of the current assertion
are computed by subroutine subgoals (line 10): it applies the rules of Fig. 3 and
when no subgoal is found an error occurs (this is an unsuccessful proof structure).
If the children (subgoals) of σ are all True (valid) then it backtracks to the parent
call (using procedure ret ltl). Else there is no child and thus it is an unsuccessful
proof structure, the assertion is not-valid and it again backtracks to the parent call.
Otherwise, we need to iterate over the children using a call to loop ltl.
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Procedure loop ltl proceeds as follow. If subgoal σ ′ has already been examined
(i.e., field V is true in line 4) and found to be False (line 5) then the proof structure
cannod be successul, and we terminate the processing in order to return False: we
pop all the assertions from the stack and if they are in the same SCC, they are marked
to be False (lines 19–23). If σ ′ has not been found False, and if σ ′ is in the stack
(meaning that its SCC is still being constructed), the σ and σ ′ will be in the same SCC:
we reflect this by updating σ .low accordingly. We also update σ .valid by removing
formulas whose starting points occur after σ ′; as we show below, these formulas
cannot be used as evidence for the success of the SCC containing σ and σ ′ (lines 8–
14). Once the subgoal processing is completed, loop ltl checks to see whether a new
SCC component has been detected; if no, it removes it from the stack (lines 18–23)
and finally backtracks to the parent call (line 25).

Procedure ret ltl is just a call to up ltl if the assertion has no “parent”. Procedure
up ltl update the field .low and .dfsn as the traditional Tarjan algorithm and restarts
the exploration of the other children by a call to loop ltl.

Notice that using “proof-structures” is not common, LTL checking is traditionally
perform by the test of emptiness of a Büchi automaton which is the product of the LTS
and of the formula translated to an automaton. Generally, a NDFS algorithm checks
the presence of an accepting cycle. Our approach “simplifies” the use of our two suc-
cessors functions and allows us to check CTL∗ formula without using any (alternative
hesitant) automaton which are slow to compute.

4.2 BSP on-the-fly checking a LTL formula over security protocols

As explained in the previous sections, we use two LTS successor functions for con-
structing the Kripke structure: succR ensures a measure of progression “slice” that in-
tuitively decomposes the Kripke structure into a sequence of slices S0, . . . ,Sn where
transitions from states of Si to states of Si+1 come only from succR and there is
no possible path from states of S j to states Si for all i < j. In this way, we have
used a distribution of the Kripke structure across the processors using the cpuB func-
tion, we thus naturally extend this function to assertions σ using only the state field.
Then, with this distribution, the only possible accepting cycles or SCCs are local
to each processor. Thus, because proof-structures follow the Kripke structure (rule
R7), accepting cycles or SCCs are also only locals. Call this sequential algorithm
SeqChkLTL (the only difference with the previous one is the subprocedure subgoal
due to the two successors functions) which takes an assertion σ ≡ s ` AΦ . It also
modifies the set of assertions to be sent (for the next super-step). Now, we can de-
sign our BSP algorithm which is mainly an iteration over the independent slices, one
slice per super-step and, on each processor, working on independent sub-parts of the
slice by calling SeqChkLTL. This SPMD (this executed by each processor executes)
algorithm is given in Fig. 11.

The main procedure ParChkLTL first initialises so that one processor owns the
initial assertion and saves it in its todo list. The variable total stores the number of
states to be processed at the beginning of each super-step; V and E store the proof-
structure (in fact we manipulate an implicit mapping of assertions through the fields
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1 def modchkLTL Par() is
2 return ParChkLTL(σ0)
3

4 def ParChkLTL((s `Φ) as σ0) is
5 super step,dfn,tosend,todo←0,0, /0, /0
6 flag,total←⊥,1
7 def SeqChkLTL(σ) is (as previously)
8 def subgoals(σ) is (...)
9 def exchange() is (...)

10 if cpu(σ0)=mypid
11 todo← todo∪{σ0}
12 while flag=⊥ ∧ total>0
13 tosend← /0
14 while todo 6= /0 ∧ flag=⊥
15 σ ← todo.pick()
16 if not σ .V
17 flag←SeqChkLTL(σ)
18 done
19 if flag6=⊥
20 tosend← /0
21 exchange()
22 done
23 case flag
24 | ⊥ =⇒ return "OK"

25 | σ =⇒ return Build trace(σ)
26

27 def exchange() is
28 dump (V,E) at super step
29 super step← super step+1
30 tosend← tosend∪{(i,flag) | 0≤ i < p}
31 rcv,total←BspExchange(balance(tosend))
32 flag,todo←filter flag(rcv)
33

34 def subgoals(σ) is
35 case σ

36 | s ` A(Φ , p) =⇒ subg← if s � p then {True}
37 else {s ` A(Φ)} (R1,R2)
38 | (R3), (R4), (R5) , (R6) =⇒ (as previously)
39 | s ` A(Xφ1, ...,Xφn) =⇒
40 subg←{s′ ` A(φ1, ...φn) | s′ ∈ succL(s)}
41 send←{s′ ` A(φ1, ...φn) | s′ ∈ succR(s)}
42 E←E∪{σ 7→R σ ′ | σ ′ ∈ send }
43 if subg= /0 ∧ send 6= /0
44 subg←{True}
45 tosend← send∪ tosend (R7)
46 V←V∪ subg
47 E←E∪{σ 7→L σ ′ | σ ′ ∈ subg }
48 return subg

Fig. 11 A BSP algorithm for LTL checking of security protocols.

but it is sometime more readable to refer to V and E directly); super step stores the
current super-step number; flag is used to check whether the formula has been proved
false (flag sets to the violating states) or not (flag=⊥).

The main loop processes each σ in todo using the sequential SeqChkLTL, which
is possible because the corresponding parts of the proof-structure are independent
(property P4). SeqChkLTL uses subgoals to traverse the proof-structure. For rules
(R1) to (R6), the result remains local because SCC can only be locals. However, for
rule (R7), we compute separately the next states for succL and succR : the former
results in local states to be processed in the current step, while the latter results in
states to be processed in the next step. If no local state is found but there exists remote
states, we set subg←{True} which indicates that the local exploration succeeded
(P2) and allows to proceed to the next super-step in the main loop. When all the
local states have been processed, states are exchanged, which leads to the next slice,
i.e., the next super-step. In order to terminate the algorithm as soon as one processor
discovers a counterexample, each locally computed flag is sent to all the processors
and the received values are then aggregated using function filter flag that selects the
non-⊥ flag with the lowest dfn value computed on the processor with the lowest
number, which allows to ensure that every processor chooses the same flag and then
computes the same trace. If no such flag is selectable, filter flag returns⊥. To balance
the computation, we use the number of states as well as the size of the formula — on
which the number of subgoals directly depends.

Notice also that at each super-step, each processor dumps V and E to its local disk,
recording the super-step number, in order to be able to reconstruct a trace. When a
state σ that invalidates the formula is found, a trace from the initial state to σ is
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1 def Build trace(σ) is
2 def Local trace ...
3 def Exchange trace ...
4 end←False
5 repeat
6 π← ε

7 my round← (cpu(σ)=mypid)
8 end← (σ=σ0)
9 send← /0

10 if my round
11 dump (V,E) at super step
12 super step← super step−1
13 undump (V,E) at super step
14 σ ,π←Local trace(σ ,π)
15 π←Reduce trace(π)
16 F←F ∪ set of trace(π)
17 print π

18 σ←Exchange trace(my round,σ)
19 until ¬end

20

21 def Exchange trace(my round,tosend,π) is
22 if my round
23 tosend← tosend∪{(i,σ) | 0≤ i < p}
24 {σ}, ←BspExchange(tosend)
25 return σ

26

27 def Local trace(σ ,π) is
28 if σ = σ0
29 return (σ ,π)
30 tmp←prec(σ)\ set of trace(π)
31 if tmp= /0
32 σ ′←min dfsn(prec(σ))
33 else
34 σ ′←min dfsn(tmp)
35 π←π.σ ′

36 if σ ′ 7→R σ

37 return(σ ′,π)
38 return (σ ′,π)

Fig. 12 BSP algorithm for building the trace after an error.

constructed. The data to do so is distributed among processors into local files, one
per super-step. We thus use exactly as many steps to rebuild the trace as we have
used to reach σ . Fig. 12 gives this algorithm. A trace π whose “oldest” state is σ

is reconstructed following the proof-structure backward. The processor that owns σ

invokes Local trace to find a path from a state σ ′, that was in todo at the beginning of
the super-state, to σ . Then it sends σ ′ to its owner to let the reconstruction continue.
To simplify things, we print parts of the reconstructed trace as they are locally com-
puted. Among the predecessors of a state, we always choose those that are not yet
in the trace π (set of trace(π) returns the set of states in π) and selects one with the
minimal dfsn value (using function min dfsn), which allows to select shorter traces.

4.3 Experiments

As before, we have implemented a prototype of this algorithm using PYTHON and
SNAKES again. While suboptimal comparing to a traditional model-checker, this pro-
totype nevertheless allows an accurate comparison for speedup.

In order to evaluate our algorithm, we have used two common formulas for ver-
ifying security protocols of the form φ U deadlock, where deadlock is an atomic
proposition that holds iff a state has no successor and φ is a formula that checks for
an attack on the considered protocol: Fml1 is the classical “secrecy” (φ is authR learn
where auth is an atomic proposition of authentification of the agents and learn the
fact that the intruder has broken the secrecy) and Fml2 is the “availability” formula
(presented above) [1]. The chosen formula globally hold so that the whole proof-
structure is computed. Indeed, on several instances with counterexamples, we have
observed that the sequential algorithm can be faster than the parallel version when a
violating state can be found quickly: our parallel algorithm uses a global breadth-first
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Fig. 13 Benchmark results of our BSP algorithm for LTL checking apply to four protocols where Fml1 is
“secrecy” and Fml2 is “availability”.

search while the sequential exploration is depth-first, which usually succeeds earlier.
But when all the exploration has to be performed, which is widely acknowledged as
the hardest case, our algorithm is always much faster. Moreover, we sometimes could
not compute the state-space sequentially while the distributed version succeeded.

Fig. 13 gives the speed-up for each of the two formulas and two sessions of each
protocol. For the Yahalom protocol, the computation fails due to a lack of main mem-
ory if less that four nodes are used: so we could not give the speedup but only execu-
tion times. We observed a relative speed-up with respect to the number of processors.

5 BSP on-the-fly CTL* checking of security protocols

As for LTL, we first present a sequential algorithm and then specialised parallel al-
gorithms for security protocols. The first parallel algorithm called “naive” is a first
attempt to extend the parallel algorithm for LTL checking to CTL∗ formulas whereas
the second one optimises the communications and reduces the number of super-steps.

5.1 A sequential algorithm for CTL* checking

The algorithm of [7] (named SeqRecChkCTL∗ and presented in Fig. 14) processes a
formulae P either by recursively call SeqChkLTL appropriately when it encounters
assertions of the form s ` AΦ or s ` EΦ , or by decomposing the formulae P into
sub-formulas. Note the use of an equivalence of an exits-formula with the negation
of the corresponding forall-formula to check the latter.
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1 def SeqRecChkCTL∗(σ) is
2 def SeqChkLTL(σ) is (as previously)
3 if not σ .V
4 σ .V ←True
5 case σ

6 s ` p where p ∈ {a,¬a}, a ∈A
7 σ .flag ← s |= p
8 s ` p1 ∧ p2
9 σ .flag ←SeqRecChkCTL∗(s ` p1)

10 ∧ SeqRecChkCTL∗(s ` p2)
11 s ` p1 ∨ p2
12 σ .flag ←SeqRecChkCTL∗(s ` p1)
13 ∨ SeqRecChkCTL∗(s ` p2)
14 s ` Aφ

15 σ .flag ←SeqChkLTL(σ)
16 s ` Eφ

17 σ .flag ←not SeqChkLTL(s ` neg(Eφ))
18 return σ .flag

Fig. 14 Sequential recursive algorithm for CTL∗ model checking.

Note also a slight but important modification to procedure subgoals: when it en-
counters an assertion of the form s ` A(p,Φ) (notably where p is Aφ or Eφ ), it
recursively invokes SeqRecChkCTL∗ (s ` p) to determine if s � p and then decides
if rule R1 or rule R2 (of Fig. 3) needs to be applied. In other words, by extending the
atomic test in subgoals (and by using SeqRecChkCTL∗ for these sub-formula), we
have a double recursivity of SeqRecChkCTL∗ and SeqChkLTL.

Also note, that each call to SeqChkLTL creates a new empty stack and a new
dfn (depth-first number) since a new LTL checking is run: by abuse of language,
we will named them “LTL sessions” (or just sessions). These sessions can share as-
sertions which thus share their validity (is in F or not). Take for example formula
A(pU(E(rUp))). There will be two sessions, one for the global formula and one for
the sub-formula E(rUp))). It is clear that the atomic proposition p need thus to be
tested twice on the states of the Kripke structure. But the two sessions need only to
share atomic propositions.

More subtly, LTL sessions do not share their depth-first numbers (low and dfsn
fields) and their valid fields — except for literal. This is due to the rules of Fig. 3
that force that any recursive call of SeqRecChkCTL∗ within a session (for checking
a sub-formula that is not LTL and thus generating another session) is only performed
on a sub-part of the original assertion that is strictly smaller. That guarantee their is
no intersection of the proof-structures of the parent sessions and disjoint SCCs.

The double recursion would be a problem to have an efficient coarse-grain par-
allel algorithm: it is not easy to stop and backup recursive calls. As for LTL, we have
thus made the choice to derecursify the above algorithm in order to have an iterative
algorithm. This allows to have only one main loop that has the advantage to easily
stop the computation whereas results of other processors are expected in parallel al-
gorithms. For sake of conciseness, we do not give this purely technical algorithm and
we refer to [26] where all the algorithms are fully described.

5.2 A naive BSP algorithm for CTL* checking

We give here a first and naive attempt to parallalelise the imperative algorithm for
CTL∗ model-checking. It is naive because it could imply a number of super-steps
equal to the number of states in the underlying Kripke structure.
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5.2.1 General idea

Fig. 15 Naive generation of the LTL sesssions.

The algorithm works as follow. A first
step is to recursively decomposing the for-
mulae for finding the first assertion of the
form s � A(φ). Then a main loop is used
to proceed the received assertions: for each
of them, an exploration is used to decom-
pose the formulae and run SeqChkCTL∗ ad-
equately to check for an unsuccessful SCC
in the proof-structure. Recall that we name
this computation a “LTL session” and con-
sidering it as a distinguished object. During

the generation of the proof-structure, when a sub-formulae beginning by A or E is
found (case of rules R1 and R2), the ongoing session is paused (see Fig. 15), pushed
onto a stack of waiting sessions and is kept their until the result of a new session to
check the validity of s � p is available.

There are three main problems. (1) different processors can throw sessions. (2)
a session can induce several super-steps (slices) if it is a path formula. This is due
to the double recursion of the CTL∗ checking. (3) the different sessions are not fully
disjoints: states of the Kripke structures as well as assertions can be shared, that
happens when the same sub-parts of the Kripke structure are generated and when
sets of formula in the assertions are not disjoints. This results in an embarrassingly
parallel computation on this set of sessions. A naive solution is to globally select one
of these generated sessions (the other still remain in a distributed global stack) and
to entirely compute this session until another session is thrown or an answer is found
(validity of a s � p). A part of this algorithm called ParNaiveChkCTL∗ is given in
Fig. 16 and the full algorithm is available in [26].

5.2.2 Main loop

The initial recursive decomposition is performed in lines 9–23. Then, calls to the
main loop main ParNaive∗ are performed in lines 21 and 23. The following variables
are used during the computation of the main loop:

– out stack (initially empty) manages the exploration “depth” of the sessions by
storing the LTL sessions;

– answer ltl saves the answer/validity (True or False) when a session is finished;
– flag list contains the assertions infringing the computation and is used for the

backtracking;
– mck represents the session currently used (exploration, recovery, backtracking).

The main loop proceeds, until the stack of sessions is empty, by creating a session
for the assertion if it is new (line 30); then by performing the exploration (.explore)
and by pushing this session at the top of the stack. The flags are assertions that are not
valid for the session (which does not induces that the overall formula is invalid if the
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1 #σ0=s0 ` φ

2 var slice ←0
3 var V ← /0
4 var F ← /0
5

6 #First recursive decomposition for
7 #finding an assertions of the form s ` Aφ

8 def ParNaiveChkCTL∗(σ0) is
9 if not σ .V

10 σ .V ←True
11 case σ

12 s ` p where p ∈ {a,¬a}, a ∈A :
13 σ .flag ← s |= p
14 s ` p1 ∧ p2 :
15 σ .flag ←ParNaiveChkCTL∗(s ` p1)
16 ∧ ParNaiveChkCTL∗(s ` p2)
17 s ` p1 ∨ p2:
18 σ .flag ←ParNaiveChkCTL∗(s ` p1)
19 ∨ ParNaiveChkCTL∗(s ` p2)
20 s ` Aφ :
21 σ .flag ←main ParNaive∗(σ)
22 s ` Eφ :
23 σ .flag ←not main ParNaive(s ` neg(Eφ))
24 return σ .flag

25

26 def main ParNaive(σ) is
27 out stack ← ε

28 answer ltl, flag list, mck
29 repeat
30 if σ 6= ⊥
31 mck ←new LTL SESSION(σ)
32 flag list,σ ←mck.explore()
33 out stack.push(mck)
34 else
35 if flag list 6= /0
36 answer ltl ←False
37 mck ←out stack.top()
38 mck.updateF(flag list)
39 else
40 answer ltl ←True
41 out stack.pop()
42 if out stack 6= ε

43 mck ←out stack.top()
44 flag list,σ ← (
45 mck.recovery(answer ltl))
46 until out stack = ε

47 return answer ltl

Fig. 16 Main procedures for the naive algorithm for parallel CTL∗ model-checking.

session is run from within a E quantifier). In this case (line 35), the answer is poten-
tially false and we must backtrack using method .updateF on the last pushed object.
Otherwise, the answer of the session is true (line 38) and method .updateF works in
the same manner as the procedure Build trace of LTL (Fig. 12) for computing all the
assertions that are not valid from the given flag list — except that the full trace is not
computed but instead we gather all the assertions that are not valid.

5.2.3 Methods of the LTL sessions

The method .explore of a “LTL session” generates in a parallel way the proof-structure
whose initial assertion is σ and stop when (line 17) either:

– a sub-formulae φ ∈ σ of an assertion σ ≡ s ` {Φ ,∗φ} where ∗ ∈ A or E is found
(line 23), then the return value is ([], s ` ∗φ ). This first case corresponds to a
halting of the current session;

– or, if the assertion is checked to be true, then the return value will be ([], ⊥),
else some assertions σ1, ...,σk invalidate the ongoing computation, i.e., the initial
assertion is not valid; The return value will be thus ([σ1, ...,σk], ⊥).

In this method, next slice (line 23) and previous slice (line 26) are used to dump and
undump the current proof-structure when changing of slice according to the progres-
sion of our state-space construction.

We also recall that during the call to subgoals (computations of the SCCs i.e.
ParChkLTL procedure) when a sub-formulae beginning by A or E is found, the
computation needs to be paused to begin a new session. To achieve this, we make
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a straightforward modification of subgoal by returning an empty set of successors
and a flag that indicates if this is due to an invalid formulae or to the need for pausing
the current computation. In the latter case, the ongoing “session” is paused and is set
waiting for the answer of the new session based on the appropriate assertion.

Finally, method .recovery resumes a paused computation by passing as an argu-
ment the flag value corresponding to the validity of the assertion previously returned
— and awaiting to test. This flag is an answer corresponding of the validity required
on the assertion returned by .explore. Thus, as for method .explore, if the assertion is
not checked then method .recovery returns the assertions that invalidating the ongoing
computation. More precisely, the backtracking was already performed during the last
computed slice, in accordance to the state-space algorithm. It remains to continue the
backtracking from the assertions on the previous slices until the initial slice, i.e., the
slice of the initial assertion of the ongoing session. This recovery of the backtracking
is performed by the method .updateF which, as its name indicates, updates the set F
of the false assertions. The method also uses the variable σhalted which represent the
last assertion computed before the computation of the session was halted. All these
methods and a full example are fully available in [26].

5.2.4 Drawbacks of this naive algorithm

This naive approach suffers of three main drawbacks. First, each time a session is
thrown, it can traverse all the state-space in several super-steps. The number of super-
steps would be proportional to the number of states in the Kripke structure. This
can happen when the session has been thrown by a formulae which contains modal
operators, e.g., a formulae of the form AAp. This is due to the fact that the algorithm
works as follow for this formulae: for each state, test if Ap is valid; thus, run each
time a LTL session which would implies several super-steps to test Ap (if literal p
is valid on all the states of the Kripke structure). This can thus generate too much
barriers and induce very poor performance.

Second, the sweep-line strategy used in the previous section cannot be applied:
each slice does not correspond to a super-step and thus during backtracking of the an-
swers, the date dumped on disks must be loaded back into the main memory (work of
next and previous slice). This can be very costly. The alternative is to keep everything
in the main memory but with a serious risk of swapping.

Third, the balance of the assertions over the processors is done dynamically at
each slice of each session: that ensures that two assertions for the same Kripke state
are held by the same processor, which avoids duplication of computation. But if two
sessions are run in sequence, the first one will balance some assertions and the second
session, if some states are shared, must balance the assertions using this first partial
scheme of balance which is complicated and largely suboptimal. The alternative to
re-balance all the assertions would be too costly.
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1 class LTL Session is
2 #member variables
3 var stack, tosend, dfn
4 var σ , σhalted , todo
5

6 #constructor
7 LTL Session(σ) is
8 self.σ←σ

9 σhalted , stack, tosend ←⊥, ε, /0
10 dfn, todo ←0, /0
11

12 method explore() is
13 total, flag, ←1, ⊥
14 flag list, σtotest ← /0, ⊥
15 if cpu(σ)=my pid
16 todo← todo ∪ {σ}
17 while not flag list and total>0
18 and σtotest 6=⊥
19 tosend, σtotest ← /0, todo.pick()
20 flag←SeqChkCTL∗(σtotest )
21 if flag 6=⊥
22 next slice()
23 flag list,total← (
24 BspExchange(balance(tosend)))

25 done
26 previous slice()
27 if φ 6= /0 and (σtotest ≡ s ` Aφ

28 or σtotest ≡ s ` Eφ)
29 σhalted←σtotest
30 if σtotest ≡ s ` Eφ

31 σtotest← s ` neg(Eφ)
32 return flag list,σtotest
33

34 method recovery(answer ltl) is
35 if σhalted = p ` Eφ and answer ltl = True
36 F ←F ∪ {σhalted}
37 V ←V ∪ {σhalted}
38 var σtotest ←⊥
39 flag ←⊥
40 flag list ← /0
41 if cpu(σhalted) = my pid
42 todo← todo ∪σhalted
43 while todo and not flag and σtotest 6=⊥
44 (the rest as for .explore but with
45 a test of membership ofσtotest ∈V )
46

47 method updateF(flag list) is (...)

Fig. 17 LTL session for the naive CTL∗ BSP algorithm.

5.3 A “purely breadth” BSP algorithm for CTL* checking

To avoid these problems we will take into account the “nature” of proof-structures
that include an explicit decomposition of the logical formulae which can help to
choose where a parallel computation is needed or not. The main idea of the algorithm
is to consider rules R1 and R2 of Fig. 3 and compute s � φ together with s ` A(Φ).
This way, we will able to choose which rule (R1 or R2) must be applied.

More precisely, in the case of rules R1 and R2 of the decomposition of a LTL
formulae, φ is an atomic proposition, which can thus be sequentially computed. But
in the case of CTL∗, φ can be any formulae. In the naive algorithm, we thus run
another LTL session and pause the current computation until a result is provided. The
approach proposed for the new algorithm is to compute both s � φ and s ` A(Φ),
which provides the information to decide whether R1 or R2 must be applied. As
previously, the computation of s � φ can be performed by a kind of LTL session while
the computation of s ` A(Φ) can be performed following the execution of the SCC
computation. In a sense, we anticipate the result of s � φ by computing the validity
of the assertion s ` A(Φ).

We see three main advantages. First, as we can compute both s � φ and s `A(Φ)
in parallel, we can aggregate the super-steps of the both computations and thus reduce
the overall number of super-steps to the maximal number of slices of the model (slice
progression). Second, we also aggregate the computations and the communications
without loosing their balance: we have in the same place all the assertions of each
slice, which allows a better balancing than the use of the partial balances in the naive
algorithm. Third, the computation of the validity of s ` A(Φ) can be used later in
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different LTL sessions. On the other hand, the pre-computation of s ` A(Φ) may
generate unnecessary work. If we assume a sufficient number of processors, this is
not a problem concerning scalability, and the exploration is performed in a breadth
fashion that brings a higher degree of parallelism.

5.3.1 Main loop

Fig. 18 gives the main loop of the algorithm. The computation is performed until
the answer of the initial assertion σ0 is found, which is recorded in variable finish.
The computation works as follows and can be divided into three phases. First (lines
11–18), the current exploration of received assertions (processed one by one in lines
13–17) is performed. Secondly (lines 22–24), the propagation of the backtracks of
the answers (not equal to ⊥) found especially on other machines is performed. Note
that in the first stage some backtracks of answers can also be performed but they
are local and done during the ongoing exploration. Between these two phases, an
exchange between the machines is performed (line 20). Finally (line 25), dump from
the main memory all the assertions that are no more used for the computation due to
slice progression (sweep-line method described latter).

We have thus the overall stack (initially empty) due to our derecursification of the
Tarjan algorithm and to the recursive decomposition of the CTL∗ formulae. dfn is the
“deep first number” that can be intuitively shared by all SCC decompositions. For the
management of the sending assertions, we use two distinct sets of messages. The first
one (snd todo) is to store the assertions which are used to continue the exploration
of the distributed proof-structure; The second one (snd back) is for backtracking an-
swers (for the case of rules R1/R2 expecting the answer about a s � φ ). This way, at
the beginning of a super-step, we first read answers regarding paused sessions (stored
in a stack) which could then continue their SCC computations. Then, the algorithm
explores the sub-parts of the proof-structures for the received assertions. All these
works are done until the initial assertion (of the first session) gets its answer. In the
case of a flaw, we rebuild the trace as for LTL checking. This requires a minor change
in the global exchange function which also sends answers and globally compute if
one processor has finally reached an answer for σ0.

We thus also modify the function subgoals (see Fig. 18) to take into account the
management of the sends, like in our algorithm for LTL checking. Also, we add arcs
between the assertions, via the field .pred for each assertion to know its parents, which
implicitly gives the graph of the proof-structure. We will use them to backtrack the
answers. The function call ctlstar is modified consequently to manage field .pred.
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1 def modchkCTL∗() is
2 σ0=s0 ` φ

3 return ParBreadthChkCTL∗(σ0)
4

5 def ParBreadthChkCTL∗(σ0) is
6 dfn,stack,snd todo,snd back ←0,ε, /0, /0
7 rcv,back,finish,todo ← /0, /0,False, /0
8 def all sub-procedures(...)
9 if cpu(σ0)=mypid

10 rcv← rcv∪{σ0}
11 while not finish
12 for σ in rcv while not finish
13 if not σ .V
14 todo ← [σ ]
15 while todo 6= ε and not finish
16 σ ← todo.pop()
17 call ctlstar(σ)
18 done
19 done
20 finish,back,rcv ←BspExchange(
21 finish, snd back,balance(snd todo))
22 while back6= ε and not finish

23 σ , child ←back.pop()
24 up trace(σ , child)
25 sweep()
26 done
27 return σ0.flag
28

29 def subgoals(σ) is
30 case σ

31 s ` A(Φ , p), p ∈A or p = Aφ or p = Eφ

32 subg← {s ` p∨A(Φ)}
33 | (R3), (R4), (R5) , (R6) =⇒ (as usual)
34 | s ` A(Xφ1, ...,Xφn) :
35 subg←{s′ ` A(φ1, ...φn) | s′ ∈succL(s)}
36 tosend←{s′ ` A(φ1, ...φn) | s′ ∈succR(s)}
37 σ ′.pred ←σ ′.pred∪{σ} ∀σ ′ ∈ tosend
38 if subg= /0 ∧ tosend 6= /0
39 subg←{⊥}
40 snd todo← snd todo∪ tosend (R7)
41 if subg 6= {True}
42 for all σ ′ ∈ subg
43 σ ′.pred ←σ ′.pred∪{σ}
44 return subg

Fig. 18 Main procedure of the breadth CTL∗ model-checking algorithm.

Fig. 19 Breath LTL session generation.

The difficulty in this algorithm is to correctly
manage the answers. Indeed, we do not know the
answer to an assertion when we compute the va-
lidity of s � φ or when it has been send to an-
other processor. Thus, we need to modify back-
tracking when an answer is unknown by consid-
ering a third possibility of answer: ⊥, the case
when we cannot conclude. This way, the LTL ses-
sion is paused until an actual Boolean answer is
computed, mainly in the next slice (and thus in
the next super-step). This is illustrated in Fig. 19
where we have classes of assertions among which
some need to start another LTL session (in grey).
But in the same classes, we also need to continue
the SCC decomposition of the proof-structure in

order to keep our slice progression. The development of a new LTL session means
that we initiate the generation of a new proof-structure (LTL session) for the checking
of an assertion (rules R1/R2). We thus start the new session together with the other
sessions whose exploration is in progress, which increases the parallelism.

5.3.2 Iterative CTL* decomposition

The backtracking between the LTL sessions and CTL∗ is performed using two new
fields: .parentCTL∗ and .parentLTL. Each sent assertion has its fields .parentLTL
and .parentCTL∗ set to ⊥ since these assertions are not called by their parents, in the
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sens that their parents do not put them onto the stack todo of assertions awaiting for
exploration. Note also that procedure call ctlstar can call procedure call ltl (line 19)
of Fig. 20 which corresponds to starting another LTL session.

We modify the functions call ctlstar and up ctlstar accordingly by adding an ad-
ditional field for each disjunctive and conjunctive assertion: .wait — see Fig. 20. Ini-
tially .wait is a set containing the two children of the assertion, like the field .children.
If the children of a conjunctive or disjunctive assertion return an answer equal to ⊥,
i.e., each one has an unknown answer, then the child assertion will be removed from
the field .children but retained in the field .wait so we know that this assertion has not
its answer yet. This trick provides us the answer (possibly⊥) for the parent assertion.

Take for example the assertion σ ` φ1 ∨ φ2 which has for children σ1 ` φ1 and
σ2 ` φ1. Initially, σ .children = σ .wait = {σ1,σ2}. Assume that σ first calls σ1, then
σ1 is removed from field σ .children but is kept in σ .wait. Field σ .wait will contain
the children assertions for which the answer is not yet known. After some computa-
tion, the answer for σ1 is returned, say ⊥. Therefore we cannot conclude about σ .
Assume now that σ now calls σ2. σ1 is thus removed from field σ .children. After
some computation, the answer for σ2 is returned, say True. σ2 is thus removed from
field .wait, because its answer is now known. But the field .wait of σ , containing σ1
ensures that we can do not conclude, we first have to wait for the answer about σ1.
The procedures work as follows:

– call ctlstar decomposes the assertions, builds the graph of calls, adds the children
into field .wait and finally calls loop ctlstar (lines 16 and 24 to continue to com-
pute over those assertions) or ret ctlstar (we have an answer about the assertion)
if it is an atomic proposition (line 8);

– loop ctlstar processes the children by putting them (lines 3–5) in the set of asser-
tions to process (todo), or finishes the computation by a call (line 7) to ret ctlstar
if all the children have been processed;

– ret ctlstar returns an answer to the appropriate parent if there is one, other-
wise,the answer is backtracked using ret trace (line 7) to all the assertions that
expect it (even on other machines by putting the answer in snd back);

– up ctlstar computes the answer of an assertion with respect to the answer for its
children, possibly concluding even if there are still answers awaited in field .wait.
For instance, for logical operator ∧, if field .flag of one of the children is False
(line 11) then the assertion is invalid regardless of other answers that could come
later, and so, we can backtrack this new answer by a call to ret ctlstar (line 14).
However, if the answer for a child is True, we have to wait for other answers,
until .wait is empty which means that all the children answers have been True.

Note that for procedure call ctlstar and up ctlstar, the answer for quantifier E is the
opposite as for A (we use function neg). The iterative procedures call ltl, loop ltl,
ret ltl and up ltl for SCC decomposition (LTL sessions) and up trace, ret trace (for
backtracking) are also modified accordingly to take into account the new fields and
are fully described and available in [26].
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1 def call ctlstar(σ) is
2 if σ .V
3 return σ .flag
4 else
5 σ .V ←True
6 case σ

7 | s ` p where p ∈ {a,¬a}, a ∈ A :
8 σ .flag ← s |= p
9 ret ctlstar(σ)

10 | s ` φ1 ∧φ2 :
11 σ1 ← s ` φ1
12 σ2 ← s ` φ2
13 σ1.pred ←σ1.pred∪{σ}
14 σ2.pred ←σ2.pred∪{σ}
15 σ .wait ←σ .children ←{σ1, σ2}
16 loop ctlstar(σ)
17 | s ` φ1 ∨φ2 : (as for ∧ case)
18 | s ` A(φ) :
19 call ltl(σ)
20 | s ` E(φ) :
21 σ1 ← s `neg(Eφ)
22 σ1.pred ←σ1.pred∪{σ}
23 σ .children ←{σ1}
24 loop ctlstar(σ)

1 def loop ctlstar(σ) is
2 if σ .children 6= /0
3 child ←σ .children.pop()
4 child.parentCTL∗ ←σ

5 todo.push(child)
6 else
7 ret ctlstar(σ)

1 def ret ctlstar(σ) is
2 if σ .parentCTL∗ 6= ⊥

3 up ctlstar(σ .parentCTL∗, σ)
4 elif σ .parentLTL 6= ⊥
5 ret ltl(σ)
6 else
7 ret trace(σ)

1 def up ctlstar(σ ,child) is
2 case σ

3 | s ` φ1 ∧φ2 :
4 if child.flag = True
5 σ .wait.pop(child)
6 if σ .wait = /0
7 σ .flag = True
8 ret ctlstar(σ)
9 else

10 loop ctlstar(σ)
11 elif child.flag = False
12 σ .wait = /0
13 σ .flag ←False
14 ret ctlstar(σ)
15 else
16 if σ .children = /0
17 σ .flag = ⊥
18 ret ctlstar(σ)
19 else
20 loop ctlstar(σ)
21 | s ` φ1 ∨φ2 : (as for ∧ case)
22 | s ` Aφ :
23 σ .flag ←flag
24 ret ctlstar(σ)
25 | s ` Eφ :
26 σ .flag = not child.flag
27 ret ctlstar(σ)

Fig. 20 CTL∗ decomposition part for the breath BSP CTL∗ model-checking algorithm.

5.3.3 Sweep line technique

The previous sweep-line strategy cannot work directly here because some assertions
do not have their answers (equal to⊥) during a slice. So, we cannot dump them when
changing slice. In order to adapt to this new situation and be able to dump assertions
that are no longer needed (i.e., those for which we have the answers and that belong
to a previous slice), we use a variable CACHE that contains all the assertions. At each
end of the treatment of a session, we iterate on CACHE to dump all the unnecessary
assertions, thus freeing memory for the next sessions. This methods avoids a complex
traversal of the proof-structures and can be compared to a garbage collection.
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Fig. 21 Speedup results for three of the protocols.

Naive Breath Naive Breath
0

20

40

60

80

100

120 Needham-Schroeder

Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500

600

700

800 Yahalom

Secrecy Fairness

Naive Breath Naive Breath
0

1000

2000

3000

4000 Otway-Rees

Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500 Kao-Chow

Secrecy

Fairness

Fig. 22 Timing of the two algorithms (“Naive CTL∗” and “Pure Breadth”) with respect to formulas Secrecy
and Fairness, for the four studied protocols. Times are given in seconds and decomposed as computation
time in black, communication time in grey and waiting time in white.

5.4 Experiments

In order to evaluate our two algorithms in PYTHON/SNAKES, we have tested two
formulas: the first one is the LTL formula [1] for secrecy, whereas the second one is
the CTL formula for fairness [29] (as presented above). As previously, the formulas
globally hold so that the whole proof-structure is computed.

In Fig. 21, we give the speedup of the two latter algorithms (“Naive CTL∗” and
“Pure Breadth”) for three different protocols and for the two formula (as previously,
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results for Yahalom cannot be computed with low number of processors so we have
not speedup to show). As we could expect, the naive algorithm scales less for both
formula. Note that for Kao-Chow, both algorithms do not scale well. This is mainly
due to a lack of possible attacks which implies less classes of states: executions are
almost not branching and so the protocol provides very few intrinsic parallelism.

Fig. 22 shows the execution times for our two formulas for each protocol, using
32 processors. In the figure, the total execution time is split into three parts: the com-
putation time (black) that essentially corresponds to the computation of successful
SCC of the proof-structures on each processor; the global and thus collective commu-
nication time (grey) that corresponds to assertions exchange; the waiting time, i.e.,
latencies (white) that occur when processors finish their computation early and are
forced to wait for the others before to enter the communication phase of each super-
step. We can see on these graphs that the overall performance of our “Breath” algo-
rithm is always good compared to the naive one. As expected, the “Breath” algorithm
reduce both latencies due to less super-steps and a better balance of communications
— since they are more en masse. Fairness needs more computation since it is a more
complicated formulae: the bigger the formulas and the model, the better is “Breath”
algorithm performs.

6 Related work

6.1 Tools and methods for security protocols

Gavin Lowe has discovered the now well-known attack on the Needham-Schroeder
public-key protocol using the model-checker FDR [36]. In spite of this, over the last
two decades, a wide variety of security protocol analysis tools have been developed
that are able to detect attacks on protocols or, in some cases, establish their correct-
ness. We distinguish three classes: tools that attempt verification (proving a protocol
correct), those that attempt falsification (finding flaws, i.e., counterexamples), and hy-
brids that attempt to provide both proofs and counterexamples. In the first category,
we find the use of theorem provers [40] and dedicated tools such as PROVERIF [9] or
SCYTHER [18], etc., falsification is the domain of model-checking [6,1] — such as
the lazy intruder of AVISPA [2].

Paper [19] presents different cases study of verifying security protocols with var-
ious standard tools. To summarise, there is currently no tool that provides all the
expected requirements.

6.1.1 Theorem proving for security protocols

To the best of our knowledge, the first work using theorem proving for verifying se-
curity protocols is [40]. And now different researches have been conducted in this
way. Using a theorem prover, one formalises the system (the agents running the pro-
tocol along with the attacker) as a set of possible communication traces. Afterwards,
one can state and prove theorems expressing that the system has certain desirable
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properties, The proofs are usually carried out under strong restrictions, e.g., that all
variables are strictly typed and that all keys are atomic.

The main drawback of this approach is that verification is quite time consum-
ing and requires considerable expertise [3]. Moreover, theorem provers provide poor
support for error detection when the protocols are flawed, even with the work on
integrating automatic methods in theorem provers for security protocols as in [12].

6.1.2 Dedicated tools

The first class of tools that focus on verification typically rely on encoding protocols
as Horn clauses and applying resolution — without termination guarantee. The most
known tool is certainly PROVERIF [9]. The system can handle an unbounded number
of sessions of the protocol but performs some approximations — e.g., on random
numbers. As a consequence, when the system claims that the protocol preserves the
secrecy of a value, this is correct. This tool is thus needed when no flaw has been
found in the protocol (with model-checking) and one wants to have a test for an
unbounded number of sessions.

Most of dedicated tools limit possible kinds of attacks or limit in their modelling
language how agents can be manipulated in ad-hoc protocols. The three main draw-
backs of these tools are thus (1) the restricted language used for modelling the pro-
tocols; (2) the lack of building traces in case of a flaw (this is not the case using a
model-checking method); (3) the limitation of their verification to simple properties
(e.g., fairness is generally not taken into account [32]) and of their models essentially
limited to “ping-pong” protocols.

6.1.3 Model-checking of security protocols

On the contrary, our approach is based on model-checking [6] that is not tied to
any particular application domain. Using CTL∗, we can also express many complex
properties that some dedicated tool cannot. But that also restrict our approach to finite
scenario. There are many paper about model-checking of security protocols and the
reader can find a gentle survey in [6]. For example, in [38], the authors have used the
MURPHI modelling language and different distributed model-checkers for MURPHI
now exist. Even if those programs would clearly outperform our prototype tool (due
to the use of PYTHON), the algorithm [43] uses a naive random hash function.

For finite scenarios checking (and enumerative state-space construction), the most
well known tool is certainly AVISPA [2] that uses dedicated modelling language and
algorithms. In contrast, our approach is based on a general modelling framework
(algebras of Petri nets) with explicit state-space construction, that is not tight to any
particular application domain. Using PYTHON in our implementation allows us to
manipulate any kind of data-structures that could be used by agents in protocols.
This is a well-desired feature for complex protocols like P2P security protocols in
[13]. We believe that our observations and the subsequent optimisations are general
enough to be adapted to the model-checkers dedicated to protocol verification: we
worked in a very general setting of LTS, defined by an initial state and a successor
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function. Our only requirements are four simple conditions (P1 to P4) that can be
easily fulfilled within most concrete modelling formalisms.

6.2 Distributed and parallel model-checking

6.2.1 Distributed and parallel state-space construction

The main idea of most known approaches to the distributed memory state-space gen-
eration is similar to the “naive” algorithm of [24] which usually introduces too many
cross-transitions. More references can be found in [22].

Examples from the literature is the various techniques used in order to avoid send-
ing a state away from the current processor if its 2nd-generation successors are local.
This is complemented with a mechanism that prevents from re-sending already sent
states. The idea is to compute the missing states when they become necessary for
model-checking, which can be faster than sending it. That clearly improves commu-
nications but our method achieves similar goals, in a much simpler way, without ig-
noring any state. Close to our hashing technique, [41] presents a hashing function that
ensures that most of the successors are local: the partition function is computed by a
round-robin on the successor states. This improves the locality of the computations
but can duplicate states. Moreover, it only works well when network communication
is substantially slower than computation, which is not the case on modern parallel
architectures. We can also find a balancing strategy in [15] where a balance is per-
formed each time the system detects too many states on a node. That is not needed
and would imply too much communication in our case.

In [34], a distributed state-space algorithm derived from the SPIN model-checker
is implemented using a master/slave paradigm. Several SPIN-specific partition func-
tions are experimented, the most advantageous one being a function that takes into
account only a fraction of the state vector, similarly to cpuR . The algorithm performs
well on homogeneous networks of machines, but does not outperform the standard
implementation, except for problems that do not fit into the main memory of a single
machine. Moreover, no clue is provided about how to choose correctly the fraction
of states that has to be considered for hashing, while we have relied on reception
locations from R. SPIN has also been used for verifying security protocols [37].

In [39], an user-defined abstract interpretation is used to reduce the size of the
state-space, and so it allows to distribute the abstract graph; the concrete graph is then
computed in parallel for each part of the distributed abstract graph. In contrast, our
distribution method is fully automated and does not require input from the user.

In [10] authors used complex distributed file systems or shared databases to op-
timise the sending of the states, especially when complex data-structure are used
internally in the states — as ours. That can improve our implementation but not the
idea of the method. In [21], the authors used heuristics for the sweep-line method
with the drawback that these heuristics can fail. In our case of security protocols, no
such heuristic is necessary since the structured model gives the progression.
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6.2.2 Distributed and parallel temporal logic verification

If model-checking of LTL formula has been the more studied, works for CTL can be
found in [11] and in [35] for the µ-calculus (which is more expressive than CTL∗).

Close to our idea of localising cycles, we can cite [4] which both used partition
functions that enable cycles to be local only — as for us. The limits of the method
are the cost of their functions as well as the number of SCCs which is not sufficient to
scale. [5] presents distributed algorithms for SCC computation. In our work, all SCCs
are purely local, which is easier to handle and more efficient.

A kind of tree (hesitant) Büchi automata is used in [30] where parallel SCC com-
putations are performed. The automaton is hesitant is the sense that as for rules R1
and R2, it cannot conclude and thus initiates the two possible computations. That
generated what they call “games” (close to our “sessions”) and the algorithm has
to manage how to store partial results of games. Shared memory computations and
heuristics are used here to simplify this management. The algorithm has also expen-
sive management of invalid SCCs, which seems not feasible for a distributed archi-
tecture. These algorithms have also been tested to check security protocols in [29].

7 Conclusion and future work

Designing security protocols is complex and error prone: various attacks are reported
in the literature to protocols thought to be “correct” for many years. There are now
many tools that check the security of cryptographic protocols and model-checking is
one solution. It is mainly used to find flaws in finite scenario (bounded number of
agents) but not to prove the correctness of a protocol. To check if scenario contains
flaw or not, we thus propose to resort to explicit distributed model-checking, using an
algebra of coloured Petri nets to model the protocol, together with security properties
that could be expressed as reachability properties, LTL, or CTL∗ formulas. Reacha-
bility properties lead us to construct the state-space of the model (i.e., the set of its
reachable states). LTL and CTL∗ involve the construction of the state graph (i.e., the
reachable states together with the transitions from states to others) which is com-
bined with the formula under analysis into a so-called proof-structure. In both cases,
on-the-fly analysis allows to stop states explorations as soon as a conclusion is drawn.

Using a distributed algorithm is a common solution to benefit from more mem-
ories and computations units. But, the critical problem of state-space construction is
to determine whether a newly generated state has been explored before. In a serial
implementation this question is answered by organizing known states in a specific
data-structure, and looking for the new states in that structure. As this is a centralized
activity, a parallel or distributed solution must find an alternative approach. The com-
mon method is to assign states to processors using a static partition function which
is generally a hashing of the states. After a state has been generated, it is sent to its
assigned location, where a local search determines whether the state already exists.
Applying this method to security protocols fails in two points. First the number of
cross-transitions (i.e., transitions between two states assigned to distinct processors)
is too high and leads to a too heavy network use. Second, memorizing all of them in
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the main memory is impossible without crashing the whole parallel machine and is
not clear when it is possible to put some states in disk and if heuristics (e.g., a caching
strategy) would work well for complex protocols.

Our parallel algorithm for the state-space computation (basis of model-checking)
of the finite scenario of protocols, use the well-structured nature of the protocols in
order to choose which part of the state-space is really needed for the partition func-
tion and to empty the data-structures in each super-step of the parallel computation.
The state-space is thus distributed in such a way that there is no roll-back in the
super-step, which allows to divise the state-space into slices and ensures that there is
no cross-transitions during local computations. Our algorithms also entail automated
classification of states into classes, and the dynamic mapping of classes to proces-
sors. We find that both our methods execute significantly faster than the traditional
one and achieve a better network use, memory balance and computation time.

With these properties in mind, we have designed two algorithms for verifying
temporal logical formula over finite scenario of protocols, one for LTL checking and
another one for CTL∗ checking. Both are parallelisation of an existing algorithm based
on building proof-structures and computating strongly connected components (SCCs)
using a Tarjan like method. The structure of state-space exploration is thus preserved
but enriched with the construction of the proof-structure and its on-the-fly analysis.
This allows parallel machines to apply automated reasoning techniques, to perform
a formal analysis of security protocols. In the case of LTL, we have seen that no
cross-transition occurs within a SCC, which is crucial to conclude about formula truth
value. In the case of CTL∗ however, local conclusions may need to be delayed until a
further recursive exploration is completed, which might occur on another processor.
Rather than continuing such an exploration on the same processor, which would limit
parallelism, we designed a way to organise the computations so that inconclusive
nodes in the proof-structure can be kept available until a conclusion is drawn from
a recursive exploration, allowing to dump them immediately from the main memory.
This more complex bookkeeping appears necessary due to the recursive nature of
CTL∗ checking that can be regarded as nested LTL analysis.

The fundamental message is that for parallel model-checking, exploiting certain
characteristics of the system and structuring the computation is essential. We have
demonstrated techniques that proved the feasibility of this approach and demon-
strated its potential. Key elements to our success were: (1) an automated classification
that reduces cross-transitions and memory use and growth locality of the computa-
tions; (2) using global barriers (which is a low-overhead method) to compute a global
remapping and thus balancing workload and achieved a good scalability for the state-
space generation of security protocols; (3) careful extension of this state-space algo-
rithm to handle the case of LTL first, then CTL∗.

Future works will be dedicated to build an efficient implementation from our
prototypes. Using it, we would like to run benchmarks in order to compare our ap-
proach with existing tools such as AVISPA, which is currently meaningless due to our
PYTHON implementations. Using BSP-PYTHON is good for a short developpement
cycle of the prototypes but that generates inefficient parallel programs. We would
like also to test our algorithms on parallel computers with more processors in order
to confirm the scalability observed on 40 processors. More practically: we would like
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to have a tool able to translate HSPSL models [1] (a standard language for describing
security protocols) to ABCD ones since HSPSL is mainly used by the community.

Finally, we would like to generalise our present results by extending its applica-
tion domain to more complex protocols with branching and looping structures, as well
as complex data types manipulations as in protocols for secure storage distributed
through peer-to-peer communication [13], secured routing protocols [17], etc.
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4. Barnat, J., Brim, L., Cëerná, I.: Property driven distribution of nested dfs. In: M. Leuschel, U. Ultes-
Nitsche (eds.) Workshop on Verification and Computational Logic (VCL), vol. DSSE-TR-2002-5, pp.
1–10. Dept. of Electronics and Computer Science, University of Southampton (DSSE), UK, Technical
Report (2002)

5. Barnat, J., Chaloupka, J., Pol, J.V.D.: Distributed Algorithms for SCC Decomposition. Journal of
Logic and Computation 21(1), 23–44 (2011)

6. Basin, D., Cremers, C., Meadows, C.: Model Checking Security Protocols, chap. 24. Springer (2011)
7. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for ctl*. In: Proceedings

of the 10th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 388–398. IEEE
Computer Society (1995)

8. Bisseling, R.H.: Parallel Scientific Computation. A structured approach using BSP and MPI. Oxford
University Press (2004)

9. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: IEEE CSFW’01.
IEEE Computer Society (2001)

10. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed state-space gener-
ation. J. Log. Comput. 21(1), 45–62 (2011)

11. Boukala, M.C., Petrucci, L.: Distributed model-checking and counterexample search for ctl logic.
IJCCBS 3(1/2), 44–59 (2012)
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