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Abstract
Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed.

Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation

known as “noise gain” from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance

study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is

acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the

only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and

in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise

is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modu-

lation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion deter-

mines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise

source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design.

Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more inte-

gral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

1

Introduction
Surface potential imaging in combination with atomic force

microscopy in ultrahigh vacuum is based on the measurement

of electrostatic forces in amplitude modulation Kelvin force

microscopy (AM-KFM) [1] or the measurement of the electro-

static force gradient in FM-KFM [2], in analogy with the FM

mode used in noncontact atomic force microscopy (nc-AFM)

[3]. The FM-KFM mode is often favored either because when a

higher derivative of the probe–sample capacity is used, it is

http://www.beilstein-journals.org/bjoc/bjnano/about/openAccess.htm
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Figure 1: An OpAmp circuit and its equivalent circuit of forward gain A and feedback gain F.

expected to be more sensitive to the very extremity of the tip

[4], or because the use of probes with an increased fundamental

resonance frequency makes the use of higher harmonics for

simultaneous surface potential imaging inaccessible to the

bandwidth of the deflection detector.

Previous studies of noise propagation often retrieve the general

expression of frequency noise of a thermally excited harmonic

oscillator and are not specific to a PLL based setup, and further-

more, do not extend to the noise in the KFM signal. The pioneer

work on nc-AFM, [3] already mentions frequency noise for the

first time in the context of nc-AFM, but takes into account only

thermal probe excitation noise. Fukuma et al. [5] performed a

detailed study on optimizing the probe deflection sensor and

compare the measured noise power spectral density (PSD) at

the PLL frequency output to the theoretical values derived from

both thermal probe excitation and deflection sensor noise.

Kobayashi et al. [6] focus on noise propagation in low quality

factor (low-Q) environments for the application in liquids.

Polesel-Maris et al. [7] studied the noise propagation in both

amplitude and phase feedback loops of a nc-AFM as a function

of the feedback controller settings, and showed that at a weak

probe–surface interaction, the feedback loops can be consid-

ered independently whereas at a strong interaction, they become

coupled. In our work on the dynamic behavior of AM-KFM [8],

we studied the noise propagation from sensor displacement

noise to the Kelvin voltage output. Giessibl et al. [9] compared

qPlus and length-extension resonator (LER) sensors with

respect to four noise sources: thermal excitation, sensor dis-

placement noise, oscillator noise and thermal drift noise. The

impact of all noise sources on frequency noise was discussed.

Finally, Lubbe et al [10] numerically modeled noise propaga-

tion from sensor displacement noise to frequency noise of a

PLL based nc-AFM depending on filter settings.

In this work, the noise propagation of a PLL based FM-KFM is

studied by measuring and analytically modeling noise at

different stages of the setup starting from the beam deflection

signal, via the phase detector and the PLL outputs up to the

Kelvin output voltage. The concept of noise gain allows for

decoupling noise performance from the optimization of band-

width and stability. It is commonly used in designing opera-

tional amplifier circuits. The noise PSD is modeled as if the

bandwidth was unlimited and later, the bandwidth is chosen as a

function of the acceptable signal fluctuation. This approach is

appropriate because (1) increasing the closed loop bandwidth of

a stable feedback loop above a certain frequency does not alter

the noise PSD shape at the onset up to that frequency, and (2)

stability and bandwidth are in many cases, including the

described setup, not the bottleneck, i.e., constant gain can easily

be achieved up to a frequency above the one at which the total

output noise exceeds an acceptable value. The modeled noise

PSD is in agreement with the measured one, showing that no

significant noise contribution is added by the PLL. Since in

FM-KFM the frequency shift signal is shared by both distance

and potential control loops, a design rule for choosing the AC

modulation frequency is proposed that ensures making best use

of the available PLL bandwidth with negligible crosstalk

between the loops and that yields equal bandwidth for both

loops. The Kelvin output noise reduces to a compact analytic

expression in terms of probe merit factors and a criterion for the

transition between dominating detector and thermal excitation

noise is derived. Noise optimization can then be approached via

probe design after identifying the bottlenecks and addressing

the respective parameters. The work is an approach toward a

more integral view of KFM performance. A limit to optimiza-

tion is the complicated interdependence of probe and detector

parameters that for a practical implementation prevent reaching

the ultimate theoretical limit imposed by the uncertainty prin-

ciple.

Gain and noise gain
For studying the noise propagation across the control loops, the

concept of noise gain from OpAmp circuits is adopted. Figure 1
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Figure 2: PLL: in the blue box, the components belonging to the forward gain APLL, i.e., NCO, probe, optical beam detection, and lock-in amplifier
used as phase detector, and in the red box, the PI controller representing the feedback gain FPLL, comparable to Figure 1. At the lower right, the
equivalent circuit similar to Figure 1.

shows an OpAmp in a typical configuration and its decomposi-

tion into forward and feedback gain, adder and noise source.

Later on, each of the KFM control loops will be represented by

a similar equivalent circuit. Generally, the feedback gain F

corresponds to a PI (proportional, integral) controller.

The output signal Out is written as function of the input signal

In, the noise An and the gains:

(1)

In this case the signal gain is equivalent to the noise gain

(2)

Depending on where the noise generator is inserted in the loop,

the gains for signal and noise can be different as will be shown

later. The approximation, although valid only in the operating

bandwidth below the closed loop cutoff frequency, is widely

accepted as the noise gain. The reason will be explained later.

The PLL controller
Figure 2 shows the setup of the PLL and the attribution of its

components to the blocks A and F similar to Figure 1. The input

is the resonance frequency variation Δf of the tip, which is

subject to external influence (van-der-Waals or electrostatic

tip–sample interaction), and which is to be tracked by a numeri-

cally controlled oscillator (NCO) that drives the piezo dither. To

match the oscillator to the resonance frequency of the tip, the

deflection of the tip is detected, and the phase shift with respect

to the drive signal is determined by a lock-in amplifier. The

phase shift is compared to a setpoint, and the error signal is

amplified by a PI controller that controls the NCO with the

objective of keeping the drive frequency matched to the reso-

nance frequency. A perturbation can be injected to an input of a

signal adder (as indicated) to study the loop response, or by

modulating the resonance frequency of the probe, e.g., by

exposing it to an electric field, which shall both yield the same

closed loop response.

Phase detector gain - phase as function of
frequency shift
We shall study the phase difference between a passive oscil-

lator and a frequency modulated drive signal. If a resonator

described by a quality factor Q and a resonance frequency f0 is

excited by a frequency modulated drive force with an excursion

fexc and a modulation frequency fpert:

(3)
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The phase shift is, without any assumptions about frequency

excursion, width of the resonance peak, or modulation

frequency exactly:

(4)

This can be derived heuristically by knowing that the phase is

the integral over frequency difference in the regime of high

modulation frequency fpert, but that the phase shift is capped by

the extrema of the arctan function in the regime of steady exci-

tation since one oscillator is passive. The same result had been

found by Portes et al. [11] by solving the differential oscillation

equation. This general equation yields the approximations for

particular cases below that are so frequently found in the litera-

ture. It is noteworthy that the phase is generally complex, i.e.,

the phase difference is itself dephased with respect to the

frequency modulation at fpert.

For this result, it is irrelevant whether the frequency difference

is the result of applying a perturbation at the entrance of the

NCO or of detuning the cantilever frequency. Since our digital

AFM controller does not provide the option of modulating the

excitation frequency, we will study the PLL response by

perturbing the resonance frequency of the tip by applying a

voltage between tip and sample. The first task is to determine

the frequency shift induced as a function of the voltage and the

fixed tip–sample distance of some tens of nanometers for the

static case fpert = 0.

Figure 3 shows the frequency shift Δf as a function of the

voltage, measured by acquiring a resonance curve per voltage

value (black squares and black solid line parabola fit). It also

shows the static phase shift under excitation at constant

frequency f0 (red squares), which is then shifted from the actual

resonance by Δf due to the influence of the electric field. Then,

Equation 4 reduces to

(5)

The red solid line is an arctan fit according to Equation 5. Note

that the two branches of arctan functions do not intersect

exactly at zero phase. This occurs if the resonance frequency of

the tip drifts above the excitation frequency during the measure-

ment. Consequently, the possible phase excursion may be

higher than 90°.

Figure 3: Resonance frequency shift resulting from applying a voltage
between a retracted tip and sample (black, left scale) and phase shift
resulting of exciting at constant frequency (red, right scale). The
arrows indicate AC and DC bias applied in the dynamic study of the
phase modulation, leading to Figure 4.

Next, the forward response of the PLL, APLL, is studied dynam-

ically. This experiment has to be performed by applying a

frequency modulation indirectly since the integrated lock-in

module does not allow transfer function measurements by intro-

ducing a Δf perturbation. For doing so, the tip is excited at

constant frequency f0 = 61.835 kHz. Then, the resonance

frequency is modulated by applying a bias containing both a DC

and a smaller AC component of 0.8 V and 0.2 V respectively,

and the phase detector output is recorded as function of

modulation frequency of a small AC bias. We set the DC and

the AC voltage components to aim at a frequency excursion of

around fexc ≈ 2 Hz as indicated by the arrow in Figure 3. The

result is the spectrum shown in Figure 4 by black squares,

giving the phase shift as a function of the modulation

frequency.

Figure 4: Phase detector output as function of modulation frequency
(black squares), fitted with Equation 4, using fexc = 1.9 Hz, multiplied
by a Butterworth lowpass function with cutoff at 2.5 kHz. Also shown
(red line), the gain APLL according to Equation 7, and the reciprocal
feedback gain 1/FPLL according to Equation 8.
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It is fitted with Equation 4 multiplied by a lowpass function of

the phase detector output filtering, a 2nd order Butterworth with

fc,LP = 2500 Hz cutoff frequency.

(6)

The best fit is obtained for an excursion of fexc = 1.9 Hz and the

previously found values for f0 = 61.835 kHz and Q = 22800 (see

Experimental section).

For the following, a linear conversion gain of the phase detector

must be defined in terms of phase divided by frequency excur-

sion, as function of modulation frequency. Before we can divide

Equation 4 by fexc, it is compulsory to approach the arctan func-

tion by its argument for small excursion, fexc < f0/(2Q), since

the definition of a gain implies a linear dependence. Then,

Equation 4 simplifies and dividing by the excursion yields:

(7)

The approximation of the arctan function by its argument for

small excursion is at the very limit of validity here because

f0/(2Q) = 1.35 Hz and fexc = 1.9 Hz. However when the phase

detector is ulteriorly used in the closed PLL loop within its

tracking bandwidth, the error is negligible: The closed loop gain

is near unity in this range, meaning that the oscillator follows

the (detuned) resonance frequency, and the frequency error

remains at a fraction of the frequency excursion. The forward

gain Equation 7 will be used to model both the closed loop PLL

response and the shape of frequency noise PSD. It is also shown

on Figure 4 as red curve. At the same time, the reciprocal value

of the feedback gain FPLL is displayed. The feedback circuit is a

PI (proportional, integral) amplifier with the following response

FPLL:

(8)

The controller software automatically sets the time constant of

the phase locked loop PI amplifier equal to the time constant of

the phase detector lowpass function, τPLL = 2Q/2πf0, and the P

gain such that the crossing with the forward gain occurs at the

chosen PLL bandwidth of 1 kHz.

The 2.5 kHz lowpass HLP of the phase detector output is also a

consequence of the choice of 1 kHz PLL bandwidth and auto-

matically set by the controller. In this case, the feedback para-

meters were PPLL = 8.73 Hz/° and τPLL = 112 ms.

PLL noise
First, a noise spectrum is measured at the output of the photode-

tector, without probe excitation. It is shown in Figure 5.

Figure 5: Noise PSD at the photodetector output. Fiteed with
Equation 9 (green) and decomposition into thermal excitation noise
(red) and constant detector noise zn,S (blue).

The deflection noise spectrum Dn(f) contains a component due

to thermal probe excitation plus a component due to detector

output noise. The latter can be assumed to be constant over the

relatively small frequency interval of the spectrum. The respec-

tive power spectral densities (PSD) in units of m/  are

uncorrelated and hence add in quadrature. The noise PSD Dn(f)

is therefore described by a quadrature sum of detector noise

zn,S and a Lorentzian component of the same Q and f0 as the

resonance curve previously determined by the microscope

controller:

(9)

A curve fit with Equation 9 yields k = 1.2 N/m, Q = 22800,

f0 = 61835 Hz and zn,S = 2·10−13 m/ .
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Figure 6: Vector diagram showing the impact of amplitude noise on
phase noise in the complex plain: main vector and a small perturba-
tion of amplitudes D0 and a and at frequencies f0 and f1 respectively
(upper drawing) and their resulting sum in the reference plane rotating
at f0 (lower drawing).

The decomposition is also indicated in Figure 5. The optical

beam deflection conversion gain leading to the scale was cali-

brated by using the method of reduced frequency shift [12] and

was 0.15 nm/mV. The principle of this method is to maintain a

constant reduced frequency shift by varying simultaneously the

excitation amplitude and the frequency shift setpoint of the

noncontact mode following a certain algorithm. Then, the lower

turning point of the tip remains equidistant from the sample

surface, and the motion of the z-piezo represents the shift of

oscillation amplitude as response to varying excitation ampli-

tude.

Next, the noise propagation throughout PLL and Kelvin loop

are studied. In order to be able to model the noise by the ap-

proach of noise gains as in Figure 1, it is necessary to present it

by a noise source inserted between blocks APLL and FPLL. We

shall now calculate how the displacement noise at the photode-

tector output transforms into phase noise at the phase detector

output, which is represented by the phase noise generator of

Figure 2. Figure 6 shows the vector diagram in the complex

plane of a signal D0cos(2πf0t), representing the tip deflection,

plus a spurious small signal acos(2πf1t) as a representation of

the deflection detector noise. If demodulated by a lock-in ampli-

fier at f0, in the reference system rotating at f0, the D0 vector is

stationary and a is rotating around the end of D0 at f1 − f0.

The imaginary projection is then

(10)

The phase is for a << D0

(11)

A small signal vector a at f1 = f0 + fpert causes a phase oscilla-

tion at fpert. If a was rotating at f1 = f0 − fpert, it would also cause

a phase oscillation at f but with opposite sign, and hence two

vectors a at opposite difference frequencies would add arith-

metically and cancel. Regarding the phase noise at a frequency

fpert, the spurious superimposed oscillations are replaced by the

respective noise densities at frequencies Dn(f0 ± fpert)[V/ ].

Since the two noise components are uncorrelated, the densities

add in quadrature:

(12)

The factor 1/2 applies because half of the power spectral density

(PSD) is projected onto each real and imaginary axis in the

complex plane. In analogy with Equation 11, the phase noise

PSD , becomes:

(13)

Due to the symmetry of the Lorentzian with its high quality

factor, it is sufficient to use one branch of the Lorentzian, and

expressed in degrees we obtain:

(14)

This expression gives the phase noise with the use of a lock-in

amplifier. It had been derived in a similar way by Rast et al.

[13]. It may not be valid for other phase comparators, e.g., edge

triggered ones. It is basically a translation by f0 of the deflec-

tion noise PSD. The translation of the Lorentzian component of
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the deflection noise yields a first order lowpass with respect to

fpert with a cutoff frequency f0/(2Q), whereas the constant

detector shot noise zn,S is invariant under translation, yielding

for the total phase noise the quadrature sum:

(15)

Figure 7 shows the measured phase noise at the phase detector

output in open PLL, and in green the fit according to

Equation 15. The parameters zn,S, f0, Q and k were kept iden-

tical to the ones of the curve fit of Figure 5, whereas the oscilla-

tion amplitude had to be adjusted to D0 = 0.85 nm. The red and

blue lines show the fit decomposed into thermal excitation and

detector noise components, respectively.

Figure 7: Phase noise PSD at the lock-in phase detector output in
open PLL loop and under probe excitation at D0 = 0.75 nm: measured
(black squares), fitted according to Equation 15 (green), and decom-
posed into detector noise (blue, constant) and thermal excitation
contribution (red, lowpass) according to the two terms of Equation 15.

PLL closed loop gain
With the known transfer functions APLL from Equation 7 and F

from Equation 8, the closed loop response of the PLL can be

computed. For the equivalent circuit of Figure 2, we find a

signal gain

(16)

which is plotted along with the measured response in Figure 8.

The computation is performed on complex transfer functions

and the plot only shows the modulus of the result. Note that in

Equation 16, APLL and FPLL are complex and only in the end of

the computation, the module is calculated.

Figure 8: Closed loop PLL response: measured (black squares) and
computed (red line) according to Equation 16.

PLL closed loop noise
With the known forward and feedback gains of the PLL loop,

the closed loop noise output spectrum fn of the PLL is modeled.

Since the noise source of Figure 2 is located differently between

blocks A and F than that of Figure 1, the noise gain is different

from the signal gain in contrast to the operational amplifier

example, and writes

(17)

The frequency noise PSD fn at the output of the PLL is

(18)

The PLL phase detector output noise PSD modeled by

Equation 15 is used as  input. The calculation of the noise

gain is also performed on complex gains.

Figure 9 shows the PLL closed loop PSD of noise fn, (black), up

to 500 Hz, the limit of the integrated spectral analyzer, and the

numerically computed noise PSD (green) obtained from phase

noise and gains APLL and FPLL. Furthermore, the noise PSD

decomposed into thermal noise (red) and sensor noise (blue) is

computed according to the approximation of Equation 17 (see

Equation 20 below).
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Figure 9: Output noise PSD of the PLL in closed loop configuration:
measured (black squares) and modeled according to Equation 18
(green) from the previously determined gains and phase noise spec-
trum. The decomposition into thermal excitation contribution (red,
constant) and detector noise (blue, rising) are also shown; the decom-
posed spectra were modeled with simplified noise gains Hnoise,PLL ≈
1/|APLL|.

Regarding the approximation of Equation 17, we note that it is

valid in the range in which the closed loop gain is unity and

|APLLFPLL| >> 1. Hence, the approximation does not predict the

roll-off of the noise PSD beyond the closed loop bandwidth.

Instead, it predicts infinite rise of the noise following the blue

line of Figure 9. To use the approximation 1/APLL, denoted

“noise gain”, rather than the exact computation is the idea of the

noise gain formalism and is justified by the following argu-

ments:

• The roll-off of the noise PSD cannot be exploited

anyway: if the loop is used beyond its cutoff frequency,

it attenuates the signal as much as the noise. The image

acquisition circuitry that samples data into pixels has an

anti-aliasing low-pass filter with a cut-off frequency of

half the sampling rate. There is no interest of using a

loop bandwidth below that cut-off frequency since the

response of the loop would then smooth the image at the

same rate as it would smooth out noise.

• If the loop is inserted into a surrounding loop, then the

closed loop gain of the former becomes the forward gain

of the latter; consequently, the roll-off has two effects

that compensate each other: first, it cuts off the noise

PSD, but second, since the reciprocal of the inner loop

closed loop gain becomes itself the (approximate) noise

gain of the surrounding loop, it would amplify the noise

PSD by as much as it had been attenuated before. There-

fore, it is convenient to neglect the cutoff in noise propa-

gation.

• Last, it is noteworthy that the closed loop cutoff

frequency has no influence on the noise PSD at the onset

below that cutoff frequency, e.g., the noise PSD from

zero to 300 Hz is the same irrespective of whether the

closed loop cutoff frequency is 500 Hz or 1 kHz. There-

fore, it is convenient to first calculate the noise PSD as if

the closed loop bandwidth was infinite, to determine

over which frequency range the noise PSD can be inte-

grated without exceeding an acceptable total signal fluc-

tuation, and to limit bandwidth and sampling rate a

posteriori. It will be discussed later to what extent the ap-

proach is feasible and whether stability issues can

become the bottleneck.

Therefore among engineers the noise gain formalism is widely

used but to our knowledge has not yet been applied to noise

propagation in scanning probe microscopy. The PLL output

noise PSD is now obtained using the noise gain formalism:

(19)

Regarding the PLL forward gain APLL, Equation 7, it is note-

worthy that the open loop gain of the phase as function of

frequency excursion has the same frequency dependence as the

thermal contribution of the phase noise, second term of

Equation 15, i.e., a first order lowpass with cutoff frequency

f0/(2Q). The quotient Equation 19 yields, when inserting the

phase noise PSD from Equation 15 and PLL forward gain APLL

from Equation 7:

(20)

Hence, the thermal part of the frequency noise, is exactly

constant over a range from zero to infinite frequency, which is

the third term. It was derived by theorists and resumed by

Giessibl and Kobayashi that a thermally excited harmonic oscil-

lator is expected to have constant frequency noise PSD [5,14].

Here, we have provided the comprehensive step-by-step evi-

dence for an experimental PLL setup with a driven passive

resonator, yielding the same result. Controversial debate about

the frequency noise of comparable PLL setups is still ongoing

[15,16].

The sensor noise contribution is split into two contributions, the

first term without frequency dependence, the second rising with

fpert above f0/(2Q), meaning above 1.35 Hz in our case, below

which it has a plateau. We state that Equation 20 is identical to
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Figure 10: Kelvin loop and its equivalent circuit: the forward gain AK is the transfer function between Vpert and (Δf)demod and contains the previously
studied closed loop PLL, a Kelvin lock-in amplifier, and a signal adder (components in the blue box). The feedback gain FK is a PI amplifier (red) that
adjusts the tip voltage VK to compensate the CPD. The output noise of the PLL controller is projected onto the X output of the Kelvin lock-in amplifier
to facilitate the representation in an equivalent feedback circuit (lower right) for the calculation of noise in the Kelvin signal.

Equation 18 of reference [6], up to a factor of 2 in front of the

sensor noise contributions. The first frequency independent

term of our sensor noise has been referred to as “oscillator

noise” by Kobayashi which was later also adopted by Giessibl

[9]. Following our approach, it is arising merely from propaga-

tion of sensor noise throughout the PLL. This frequency-inde-

pendent component of sensor noise is only found in modeling if

the PLL forward gain, Equation 7, is derived exactly with the

f0/(2Q) corner frequency, rather than an approximate 1/fpert

behavior. It is generally negligible in high-Q environments as in

our setup. The good agreement between computed noise and

experiment shows that here the frequency noise can be attrib-

uted solely to thermal excitation and sensor noise.

The Kelvin loop
Figure 10 shows the setup of the Kelvin loop. The closed PLL

loop of the previous section now presents a small part of the

forward gain. The AK block further contains a lock-in amplifier

working at a frequency lower than the bandwidth of the PLL

that modulates the gap voltage. It superposes an AC signal Vmod

at a frequency within the operating range of the PLL and detects

the resonance frequency modulation of the tip at this frequency.

The output of block AK is the demodulated frequency shift

Δfdemod, while the input is the VK component of the tip bias.

The tip voltage superposition has two purposes: first to extract

the polarity information of the gap voltage mismatch, and

second to share the PLL bandwidth between Kelvin and dis-

tance controller: van-der-Waals and electrostatic interaction

both shift the resonance frequency. A modulation of Δf at a

frequency within the bandwidth of the distance controller would

cause the distance controller to retract the tip periodically.

Therefore, by modulation and demodulation, the electrostati-

cally induced tip frequency modulation is translated in a range

above the cutoff frequency of the distance controller, but below

the cutoff frequency of the PLL.

The contact potential difference (CPD) between tip and sample

is indicated by a voltage applied to the sample. It may be due to

a work function difference between the sample and the tip or

due to a sample to which a bias is applied. The objective is to

cancel the CPD by applying a Kelvin voltage to the tip such that

CPD − VK = 0.
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Open loop forward gain
The CPD, the Kelvin voltage, VK, and the AC voltage, Vmod,

cause an electrostatic field gradient that alters the resonance

frequency:

(21)

The assumption of a constant d2C/dz2 is an approximation for

oscillation amplitudes smaller than the mean tip–sample dis-

tance. However, the voltage dependence is valid even if this

condition is not exactly met. By expanding the square bracket

of Equation 21, one gets

(22)

The term of interest is the mixed term at fmod since it contains

amplitude and sign of the CPD. It is detected by demodulating

at fmod. The PLL response HPLL(fmod) applies before the

demodulation. The static forward gain AK,DC is:

(23)

The static forward gain is determined with engaged distance

control loop while using a setpoint of Δf = −5 Hz with Vmod =

300 mV, and fmod = 200 Hz. The demodulated error signal is

then measured as a function of ΔVK, shown in Figure 11. The

gain is 25 Hz/V.

Figure 11: Measurement of static forward gain of the open Kelvin loop.

Next, the forward gain is studied dynamically. Therefore, the

DC voltage mismatch CPD − VK is replaced by an AC voltage

Vpertcos(2πfpertt) and Equation 22 becomes

(24)

The mixed term will transform into two satellites at fmod ± fpert

and Equation 23 becomes

(25)

If the PLL response is flat and unity around fmod ± fpert, above

expression is equal to the static gain, multiplied by the output

filtering of the Kelvin lock-in amplifier Hlockin. The validity of

Equation 25 requires that the distance control loop does not

interfere with the Kelvin control loop. First, it must not modify,

by tip–surface interaction, the PLL response, e.g., by modi-

fying Q via dissipation; second, it must not respond periodi-

cally to the frequency modulations caused by the Kelvin loop.

This means that fmod − fpert must be above the cutoff frequency

of the distance control loop. The ranges of PLL bandwidth

occupied by distance and Kelvin loop are indicated by the

arrows in Figure 8. In a range of fpert where the PLL closed loop

has unity gain for fmod ± fpert, Equation 25 can be approximated

as

(26)

Noise projection behind the Kelvin lock-in
amplifier
Concerning the noise, if an equivalent control loop circuit in the

sense of Figure 1 is to be applied, it is required to express the

noise PSD at the interface of block A of Figure 10, meaning in

the X output of the Kelvin lock-in amplifier. Hence the propaga-
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tion of the noise PSD of the PLL output to the output of the

Kelvin lock-in is now calculated. The projection of the PLL

noise to the demodulated X output is the average between the

satellites at fmod ± fpert

(27)

where fn is given by Equation 20.

Kelvin closed loop gain and noise
The loop is closed with a feedback gain FK(fpert) of a PI

controller described by Equation 28:

(28)

The feedback parameters are set to PK = 1 mV/Hz and τK =

200 µs. To understand the choice of the parameters and their

effect on the closed loop response, a schematics depicting both

forward response |AK| and reciprocal of the feedback response,

1/|FK|, is shown in Figure 12.

Figure 12: Schematic forward and reciprocal feedback response, for
illustrating the choice of the Kelvin feedback parameters.

The main point is that the 1/FK responsecurve crosses, with its

slope, the AK responsecurve at a frequency where it is essen-

tially constant. Many combinations of PK and τK are possible

that yield the same closed loop cut-off frequency because only

the frequency of crossing matters, but not the height of the

plateau of the |1/FK| function. In the P–I representation, the IK

component would need to be set to a specific value while the

PK could be varied in a wide range. With the known open loop

forward gain and output noise PSD (Δf)n of the PLL, it is

possible to calculate the closed Kelvin loop signal and noise

gain according to Figure 10 to compare them to the measured

spectra:

(29)

(30)

(31)

The results are shown in Figure 13 and Figure 14 respectively.

The fits have been obtained by using as output filtering of the

Kelvin lock-in, Hlockin(fpert), a second order function with

cutoff at 60 Hz. This cannot be set manually in our case and is

thought to be directly coupled to fmod = 200 Hz.

Figure 13: Measured (black squares) and calculated (red line) Kelvin
closed loop gain of the setup of Figure 10.

The observation that the closed loop Kelvin response measured

with engaged distance control is in agreement with the

modeling based on the PLL response determined with retracted

tip, supports the assumption that the gain and distance control

loops with a setpoint of Δf = −5 Hz do not interfere with the

Kelvin control loop by modifying the forward gain of the PLL.

This situation corresponds to a weak surface interaction in the

sense of [7].

The green curve of Figure 14 shows the numerically computed

noise according to the exact expression of Equation 30 and
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Figure 14: Measured (black squares) and computed (green line)
Kelvin closed loop noise PSD of the setup of Figure 10. Also shown is
the decomposition into thermal (red, constant) and sensor (blue, rising
above 200 Hz) noise, calculated by using the approximate noise gain.

Equation 31 and the demodulated noise of Equation 27. The

red and the blue curves are the decomposed thermal and

sensor noise calculated from the approximate noise gain of

Equation 31 and the demodulated noise of Equation 27. Both

computations do not reflect the little harmonic overshoot of the

spectrum at around 25 Hz. Again, the approximation by using

noise gain is accurate only up to the roll-off of the closed loop

response. The sensor noise component of VK,n is relatively

constant in contrast to the rising sensor noise at the PLL output

because it is the average between the satellites at fmod ± fpert.

Discussion
Up to here, a typical laboratory setup has been treated in order

to validate numerical and analytical treatment of noise propaga-

tion. Here, the cutoff frequency of the Kelvin loop had been set

to 30 Hz by the choice of the feedback parameters as shown in

Figure 12. With a Kelvin noise PSD of around 4 mV/ , the

total noise is expected to be around 22 mV. The bandwidth is an

arbitrary choice and is limited by the acceptable noise level. The

PLL bandwidth could indeed be set to a value in the kHz range,

allowing to increase the AC modulation frequency and band-

width of both distance and Kelvin control loops. In the

following, the constraints with respect to a maximum band-

width to noise performance shall be addressed.

Choice of fmod with respect to bandwidth BW
A design rule for the choice of the different frequencies is given

in Figure 15: the black (solid) curve schematically represents

the gain of the PLL controller. The red (dashed) curve is the

gain of the distance controller. The green (dotted) curve is the

range in terms of PLL frequency occupied by the Kelvin loop,

consisting of two satellites of the Kelvin response around the

AC modulation frequency. It is reasonable to plan the band-

width of the distance control loop to be equal to the one of the

Kelvin controller, fc,AFM = fc,KFM = BW, since usually both

images are sampled at the same rate because it is a one pass

technique and the Kelvin image is typically acquired with the

same resolution as the topography image. If the modulation

frequency is chosen to be fmod ≈ 4fc,AFM, then the Kelvin loop

is using the PLL in a frequency range up to fmod + fc,KFM = 5

BW, which should be at a value such that the total noise

remains acceptable (see section “Kelvin voltage noise PSD”),

and on the other hand, the overlap and hence crosstalk between

topography and KFM image is small since the roll-off of the

distance controller at 1 BW and of the lower PLL frequency

satellite of the Kelvin controller at fmod − fc,KFM = 3 BW are 2

BW apart. The cutoff frequency of the PLL, the AC frequency

and the bandwidth of the Kelvin loop can be set to much higher

values as discussed in the section “Absolute frequency limits

irrespective of noise”. However the effective noise PSD of the

PLL is composed of thermal and detector noise, shown in

Figure 5, Figure 7 and Figure 9 and by Equation 15 and

Equation 20. Care has to be taken that total noise, i.e., the inte-

gral of the noise PSD over the operating range, remains accept-

able.

Figure 15: Design rule for cutoff and modulation frequencies in
FM-KFM: gain of the PLL controller (continuous black), gain of the dis-
tance controller (red dashed), and operating range of the Kelvin loop in
terms of PLL frequency (green dashed).

The 2 BW gap between the roll-off frequencies, together with

the finding that both closed loop responses are second order

systems, ensures that a CPD represented by Vpert varying at fc =

BW causes a response of the distance controller at 3fc at −24 dB

below its response to a static CPD. According to Equation 24,

an AC CPD represented by Vpert, as well as the AC voltage

Vmod, also both introduce a static term. The crosstalk onto the

distance controller of Vpert oscillating at fc introduces an oscilla-

tion of z at 3fc:

(32)
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The first two factors are

(33)

and

(34)

which is highly non-linear and dependent on the Δf setpoint. It

is sufficient to know the product. This can be determined from

the static term:

(35)

It is appropriate to choose a Δf setpoint such that the tip does

not retract considerably in response to the applied value of

Vmod. Equation 24 contains terms that cause a static tip retrac-

tion, and a dynamic tip movement at 3fc and 5fc due to mixed

terms, and at 2fc and 8fc due to squared terms. If amplitudes are

equal, VmodVpert =  = , then the dynamic tip retraction

at 3fc is −24 dB below the sum of the constant terms, or 6%.

The constant tip retraction can be thought to be less trouble-

some because it introduces only an offset in the topography

image while the retraction from varying surface potential intro-

duces a real artifact. Nevertheless, it is favorable to minimize

the tip–sample distance since it deteriorates the lateral resolu-

tion. Setpoint Δf and Vmod should be chosen such that the

topography feedback is still dominated by van-der-Waals inter-

action. However, the tip–sample separation cannot be made

infinitely small by hardening the topography feedback because

of the snap-to-contact phenomenon. The ultimate limit is

discussed below, and constraints between tip–sample sep-

aration, oscillation amplitude, and Vmod enter into a probe merit

factor.

The electrostatic force terms of Equation 24 at 5fc and at 8fc are

even further apart from the distance controller cutoff frequency.

The term at 2fc does introduce some response of the distance

controller, but this has a negligible effect on the Kelvin

controller that demodulates at 4fc. Vice versa, the crosstalk of a

topography varying at fc onto the VK voltage is a variation at 3fc

damped by 24 dB:

(36)

Kelvin voltage noise PSD
The thermal noise PSD of the PLL frequency noise Equation 20

is constant and hence invariant under the frequency translation,

yielding as Kelvin noise PSD, by dividing through the Kelvin

gain Equation 26,

(37)

indicated as red curve in Figure 14. The integrated noise is

(38)

while the sensor noise of Equation 20 contributes to the Kelvin

noise PSD

(39)

(blue curve of Figure 14). The integrated noise due to sensor

noise, still with the condition that fmod = 4 BW, is

(40)

The following treatment supposes that one of the noise sources

is dominant and hence the total integrated noise ΔVK is either

equal to ΔVK,th or to ΔVK,S.

Merit factor and design optimization
We define the merit factor as

(41)

To obtain a merit factor, it is necessary to divide the reciprocal

of the integrated noise ΔVK by the root of the effective probed

surface Seff. It is obvious and a basic rule of statistics that a

potential measurement on a n times bigger surface made in the

same time with the same state of the art of measurement appa-

ratus has a fluctuation of 1/  times the one on a simple

surface.
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We also divide by the AC voltage Vmod since for otherwise

identical conditions, the Kelvin forward gain AK given by

Equation 26 is proportional to it but at the same time this

voltage has the effect of introducing an error on semiconduc-

tors by asymmetric band bending. The subject has been

addressed by several authors [17-20]. If KFM is performed on a

semiconductor, the AC bias applied to the tip causes a response

of the underlying semiconductor that alternates between

majority-carrier depletion and accumulation. The tip–substrate

junction can be thought of as a capacitive voltage divider

formed by the tip–substrate capacitance and the Mott–Schottky

capacitance. We expect this description to be valid over a wide

frequency. The competing process of inversion-layer buildup

has a time constant that is typically on the order of seconds to

minutes for industrial grade semiconductor and hence negli-

gible even in FM-KFM. If charge capture and emission by

defect states is involved, it is imaginable that time constants are

such that frequency dependence or non-linearity can play a role.

Due to the lack of detailed knowledge, we justify dividing the

merit factor by Vmod.

The integrated noise ΔVK is dominated by thermal or detector

noise depending on bandwidth and temperature. We define as

crossover temperature Tcross the temperature above which at a

given bandwidth, the integrated thermal noise of Equation 38

exceeds the integrated sensor noise Equation 40, while the

design rule is respected:

(42)

Regarding the effective probed surface Seff, its absolute value is

not known, but the relation between tip–sample distance and

probed surface, as illustrated in Figure 16, is described by a

power law derived from the second derivative of the capaci-

tance [21]. Here we make the approximation that the probe

oscillates with a small amplitude D0 around a larger average

probe distance z.

(43)

Hence

(44)

Figure 16: Effective probed surface Seff depending on tip–sample sep-
aration z.

For thermal noise domination, Equation 38, the merit factor is

(45)

If it is assumed that the maximum oscillation amplitude D0

cannot exceed a certain fraction of z and hence is proportional

to it, it reduces to

(46)

Furthermore, a relation has to be respected between minimum

tip–sample distance z and spring constant k to avoid snap to

contact.

Figure 17 shows the tip in the attractive part of the van-der-

Waals interaction. The force gradient in this field must not

exceed the spring constant to avoid snap to contact. We take the

attractive range of a Lennard-Jones type of potential

(47)

The force gradient is proportional to the second derivative:

(48)
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Figure 17: Probe in the attractive part of the Van-der-Waals inter-
action.

To avoid snap to contact, the force gradient must be smaller

than the cantilever stiffness

(49)

And hence Equation 46 reduces to

(50)

For comparison, a widely used merit factor for MEMS

resonators is

(51)

and the one of minimum force detection is

(52)

This result, i.e., the maximization of f0Q/k0.69 is positioned

between the usual MEMS benchmark f0Q and a merit factor

f0Q/k found by Albrecht [3] for the minimum detectable force

by noncontact AFM.

If the noise PSD is dominated by detector noise, Equation 40,

then we obtain a merit factor MS instead of Equation 45:

(53)

similarly as above, D0 is a fraction of z and hence

(54)

Using Equation 49 for the relation between z and k yields

(55)

Unsurprisingly, for the case of dominating sensor noise, maxi-

mization of the merit factor requires minimizing the sensor

noise. Both merit factors, Equation 50 and Equation 55, suggest

downsizing both the probe spring constant and mass. If one

considers f0 = , the exponents of k higher than 1/2 in the

denominator yield increasing merit factors for decreasing stiff-

ness. Both merit factors cannot be increased infinitely because

downsizing the probe beyond a certain limit will decrease the

Q-factor and increase sensor noise.

A table of merit factors for thermally dominated noise, sensor

dominated noise and crossover criteria is given in Table 1. The

table lists probe parameters, followed by a crossover criterion,

Equation 42, the crossover temperature for a bandwidth of

50 Hz, the merit factor for dominant thermal noise according to

Equation 50, and the merit factor for dominant detector noise

according to Equation 55. For the stiffness of the Kolibri sensor,

we use 1 MN/m, about the double of what is given in the docu-

ments from Specs [22]. The 540 kN/m is the spring constant of

the entire needle which is suspended in the middle. In SPM

operation, the two prongs are moving oppositely and the

suspension remains stationary. Therefore, for comparison with

the other probes, the effective stiffness of twice the given value

has to be used. The use of the table for comparison of probe

performance consists in first determining the crossover

temperature as function of the desired bandwidth by multi-

plying the value Tcross/BW2 with BW2. If the working tempera-

ture is below the obtained crossover temperature, the merit

factor MS applies and is obtained by dividing the value

MS·BW3/2 through BW3/2. If the working temperature is above

the crossover temperature, the merit factor Mth applies and is

obtained by dividing Mth·  by . The dominating

merit factor among MS and Mth is the one with the lowest value,

due to its definition containing the reciprocal of VK,n, according

to Equation 41. The performance of probes with thermally

dominated noise can be compared directly to others with domi-

nating sensor noise.
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Table 1: Key values, crossover criteria, and merit factors for different probes.

Cantilever
(Nanosensors)

qPlus Sensor
(Giessibl, 2011 [9])

Kolibri Length
Extension Resonator
(Specs [22])

IEMN Disk Resonator
(Algre 2012 [23])

f0 (Hz) 61836 30k 1M 1.45M
Q 22k8 200k 14k 1k6
k (N/m) 1.2 1k8 1M 135k

Zn,S (m/ ) 2e-13 6.2e-14 1e-15 1e-12

Tcross/BW2 (K/Hz2) 6.81e-2 177.5 5.38e-2 594
Crossover Temp (K) at BW = 50 Hz 170 444k 135 1.48M

Mth· 1.71e16 2.83e15 4.89e14 3.97e14

Ms·BW3/2 6.75e16 2.05e14 1.97e15 1.56e13

The table shows that cryogenic cooling is useful only for reduc-

ing the thermal excitation of the Kolibri sensor and to some

extent of cantilevers, whereas the qPlus and disk resonator have

dominant detector noise at all achievable temperatures, recog-

nizable by crossover temperatures in the kilo- or Mega-Kelvin

range. (Detector noise was assumed temperature independent).

The best FM-KFM performance is expected from standard

cantilevers. It can be expected that these probes in combination

with interferometric detection might benefit from cooling to

temperatures even below liquid helium. Despite significant

performance differences, the existence of all compared probe

types seems to be justified. For instance, some environments

require a need for electrical rather than optical deflection detec-

tion, and the performance criteria for topography imaging differ

largely from the FM-KFM merit factor, due to the highly non-

linear probe sample interaction that motivates a wide range of

cantilever stiffness and oscillation amplitudes.

Absolute frequency limits irrespective of
noise
The example treated here seems to have rather low perfor-

mance compared to, e.g., video-rate SPM setups that claim to

image biological processes in real-time (however in topography

mode only). We emphasize that the choice of our bandwidth is

our personal preference of making the compromise between

bandwidth and noise. As stated above, the 30 Hz bandwidth

leads to 22 mV signal fluctuation. Since the sampling circuitry

has an anti-aliasing filter that cuts above half the sampling rate

and it is not justified to smooth the image by slow response of

the Kelvin and topography loop responses, we can acquire at

50 pixel per second, meaning that a line with 256 pixels is

scanned back and forth in 10 seconds and an image at 256 ×

256 resolution takes 45 minutes. We are used to acquire images

with higher resolution over night. Since the output noise has

been tracked down to thermal excitation and displacement

detector noise, said compromise has universal validity. We also

mention here that the exchange of the light source in the optical

beam deflection sensor has already decreased the detector noise

by an order of magnitude with respect to the original value, and

that otherwise for the same choice of bandwidth, the detector

noise would be dominating and the Kelvin signal fluctuation

would be a multiple. In this short paragraph we address the

question to what extent speed can be increased at the expense of

noise and when other limitations apply.

• PLL bandwidth: for phase locked loops, the terms

capture range and lock range denominate the frequency

range in which the PLL can lock on to an incoming

signal and maintain the phase lock. It is given as

percentage of center frequency, depends on the degree of

sophistication of the circuit (phase detection, filters) and

is above 10 percent even for primitive monolithic circuits

that use edge detection and simple filters such as the

NE567 PLL tone decoder. The capture range is always

below the lock range. The given percentage is the

frequency shift of the frequency modulated signal, which

is a function of both the excursion frequency and the

modulation frequency. Without entering PLL theory in

detail, we can say that a PLL bandwidth of 10 percent of

the center frequency is realistic and it has been experi-

mentally confirmed that our PLL bandwidth can be set to

5 kHz.
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• AC frequency fmod and PLL bandwidth BWPLL: these

frequencies have to be chosen such that fmod + BW ≤

BWPLL. Together with the design rule, for our example,

we would obtain fmod = 4 kHz and BW = 1 kHz.

• Distance control: this component is probably the most

limiting. In our setup where the sample is mounted on a

3 axis piezo scanner, the bandwidth is limited to a value

between 100 and 200 Hz.

Consequently, if we had set the PLL bandwidth BWPLL =

5 kHz, the AC frequency fmod = 4 kHz and the bandwidth of the

Kelvin controller BW = 1 kHz, according to Figure 9 the

detector noise would be dominating and due to the power law

with exponent 3/2 of Equation 40, we would expect Kelvin

voltage fluctuation in the volt range. Furthermore, the distance

control would not be able to keep up with the Kelvin loop.

Perspective on the ultimate probe and
detector
It is obvious from the two merit factors that a reduction of both

thermal and detector noise at the same time is difficult. If

thermal excitation is dominant and the effort aims at reducing it,

the frequency range where it dominates becomes smaller, as

can be seen in Figure 9. Mass and spring constant cannot be

reduced infinitely without reducing the Q-factor. Furthermore,

increasing the merit factor in the thermally dominated case is a

simple downsizing of the detector, and with the same type of

sensor, would increase the sensor noise or decrease the Q-factor

of the oscillator by sensor back-action (e.g., radiation pressure).

Similarly, all attempts of improving the detector have a trend to

increase invasiveness and to reduce the Q-factor. As long as one

type of noise is clearly dominant, the remedy is to maximize the

respective merit factor, keeping in mind the above dependen-

cies. Present state of the art for measuring the excursion of

harmonic oscillators consists in optical interferometry [24] or

single electron transistors [25] used as position probe coupled to

oscillators, combined with cooling of the resonator to cryo-

genic temperatures, possibly using laser cooling. These works

aim at the Heisenberg limit and are not specific to scanning

probe microscopy. Practical SPM systems seem to be still

further away from the ultimate limit.

Conclusion
The dynamic behavior of an FM-KFM has been measured and

modeled for a system with characteristics typically obtained in

ultrahigh vacuum implementations. It has been shown that in a

PLL based setup, the two main noise sources, thermal excita-

tion and detector noise, transform into frequency noise exactly

the same way as in a free-running oscillator, and that the PLL

components do not contribute considerable noise, meaning that

the main noise sources are sufficient to derive Kelvin voltage

noise. Feedback parameters for PLL and Kelvin loop have been

set for a stable behavior and been used for the numerical

modeling of the noise propagation, yielding output noise spectra

in agreement with the measurements. The choice of the AC

modulation frequency to be four times the intended bandwidth

has been proposed and justified as design rule. Based on the

acquired knowledge, the KFM performance has been modeled

for three other well-known AFM probes. A crossover criteria

allows one to determine for each probe, depending on tempera-

ture, detector noise PSD, bandwidth and probe parameters,

whether Kelvin output noise is dominated by thermal probe

excitation or by detector noise. Depending on the regime, one of

two merit factors apply to obtain the overall noise performance

from instrument parameters, to suggest improvements and to

allow for a comparison of different probes. Limitations to the

optimization remain due to unresolved interdependent parame-

ters, the trend of entering a thermally limited regime when

improvement is made to detector noise and vice versa, and dete-

riorating one noise source when improving the other, ultimately

merging into the uncertainty relation governing that a system

cannot be measured without changing it by whatever kind of

sensor back-action.

Experimental
The KFM is based on an Omicron ultrahigh vacuum variable

temperature atomic force microscope (UHV-VT-AFM). It is

operated by a Nanonis scanning probe microscopy (SPM)

controller entirely based on digital signal processing (DSP). The

probe that was used in these experiments is a platinum-iridium

coated Nanosensors Point Probe Plus EFM tip with a spring

constant between 1 and 3 N/m. Its resonance frequency f0 =

61.835 kHz and the Q-factor Q = 22800 were determined in

vacuum by recording a resonance curve with the built in func-

tion of the Nanonis controller. The optical beam deflection

detection uses a 20 mW Superluminescent (TM) light emitting

diode that was operated at an intensity of 7 mW. About 0.5 mW

intensity is received by the photodiode, which was estimated

from its known current–intensity characteristics. To compen-

sate the increased intensity of the light source, the gain of the

transimpedance amplifier was reduced accordingly to avoid

output voltage saturation. The sample is a gold coated silicon

substrate (Omicron test sample). KFM measurements are

performed while distance control is enabled.
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