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NEW RESULTS ON A GENERALIZED COUPON COLLECTOR PROBLEM USING

MARKOV CHAINS

EMMANUELLE ANCEAUME, YANN BUSNEL AND BRUNO SERICOLA

Abstract. We study in this paper a generalized coupon collector problem, which consists in determining the
distribution and the moments of the time needed to collect a given number of distinct coupons that are drawn
from a set of coupons with an arbitrary probability distribution. We suppose that a special coupon called the
null coupon can be drawn but never belongs to any collection. In this context, we obtain expressions of the
distribution and the moments of this time. We also prove that the almost-uniform distribution, for which all
the non-null coupons have the same drawing probability, is the distribution which minimizes the expected
time to get a fixed subset of distinct coupons. This optimization result is extended to the complementary
distribution of that time when the full collection is considered, proving by the way this well-known conjecture.
Finally, we propose a new conjecture which expresses the fact that the almost-uniform distribution should
minimize the complementary distribution of the time needed to get any fixed number of distinct coupons.

Keywords: Coupon collector problem; Minimization; Markov chains

1. Introduction

The coupon collector problem is an old problem which consists in evaluating the time needed to get a
collection of different objects drawn randomly using a given probability distribution. This problem has given
rise to a lot of attention from researchers in various fields since it has applications in many scientific domains
including computer science and optimization.

More formally, consider a set of n coupons which are drawn randomly one by one, with replacement, coupon
i being drawn with probability pi. The classical coupon collector problem is to determine the expectation or
the distribution of the number of coupons that need to be drawn from the set of n coupons to obtain the
full collection of the n coupons. A large number of papers have been devoted to the analysis of asymptotics
and limit distributions of this distribution when n tends to infinity, see [3] or [6] and the references therein.
In [2], the authors obtain some new formulas concerning this distribution and they also provide simulation
techniques to compute it as well as analytic bounds of it.

We consider in this paper several generalizations of this problem. A first generalization is the analysis, for
c ≤ n, of the number Tc,n of coupons that need to be drawn, with replacement, to collect c different coupons
from set {1, 2, . . . , n}. With this notation, the number of coupons that need to be drawn from this set to
obtain the full collection is Tn,n. If a coupon is drawn at each discrete time 1, 2, . . . then Tc,n is the time
needed to obtain c different coupons also called the waiting time to obtain c different coupons. This problem
has been considered in [7] in the case where the drawing probability distribution is uniform.

In a second generalization, we assume that p = (p1, . . . , pn) is not necessarily a probability distribution,
i.e., we suppose that p1 + · · · + pn ≤ 1 and we define p0 = 1 − (p1 + · · · + pn). This means that there is a
null coupon, denoted by 0, which is drawn with probability p0, but which does not belong to the collection.
In this context, the problem is to determine the distribution of the number Tc,n of coupons that need to be
drawn from set {0, 1, 2, . . . , n}, with replacement, till one first obtains a collection composed of c different
coupons, 1 ≤ c ≤ n, among {1, . . . , n}. These generalizations are motivated by the analysis of streaming
algorithms in network monitoring applications as presented in Section 7.

The distribution of Tc,n is obtained using Markov chains in Section 2, in which we moreover show that this
distribution leads to new combinatorial identities. This result is used to get an expression of Tc,n(v) when
the drawing distribution is the almost-uniform distribution denoted by v and defined by v = (v1, . . . , vn)
with vi = (1 − v0)/n, where v0 = 1 − (v1 + · · · + vn). Expressions of the moments of Tc,n(p) are given in
Section 3, where we show that the limit of E(Tc,n(p)) is equal to c when n tends to infinity. We show in
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Section 4 that the almost-uniform distribution v and the uniform distribution u minimize the expected valueE(Tc,n(p)). We prove in Section 5 that the tail distribution of Tn,n is minimized over all the p1, . . . , pn by
the almost-uniform distribution and by the uniform distribution. This result was expressed as a conjecture
in the case where p0 = 0, i.e., when p1 + · · ·+ pn = 1, in several papers like [1] for instance, from which the
idea of the proof comes from. We propose in Section 6 a new conjecture which consists in showing that the
distributions v and u minimize the tail distribution of Tc,n(p). This conjecture is motivated by the fact that
it is true for c = 1 and c = n as shown in Section 5, and we show that it is also true for c = 2. It is moreover
true for the expected value E(Tc,n(p)) as shown in Section 4.

2. Distribution of Tc,n

Recall that Tc,n is the number of coupons that need to be drawn from set {0, 1, 2, . . . , n}, with replacement,
till one first obtains a collection with c different coupons, 1 ≤ c ≤ n, among {1, . . . , n}, where coupon i is
drawn with probability pi, i = 0, 1, . . . , n.

To obtain the distribution of Tc,n, we consider the discrete-time Markov chain X = {Xm, m ≥ 0} that
represents the collection obtained after having drawn m coupons. The state space of X is

Sn = {J ⊆ {1, . . . , n}}

with transition probability matrix, denoted by Q, given, for every J,H ∈ Sn, by

QJ,H =







pℓ if H \ J = {ℓ}
p0 + PJ if J = H

0 otherwise,

where, for every J ∈ Sn, PJ is given by

(1) PJ =
∑

j∈J

pj ,

with P∅ = 0. It is easily checked that Markov chain X is acyclic, i.e., it has no cycle of length greater than 1,
and that all the states are transient, except state {1, . . . , n} which is absorbing. We introduce the partition
(S0,n, S1,n, . . . , Sn,n) of Sn, where Si,n is defined, for i = 0, . . . , n, by

(2) Si,n = {J ⊆ {1, . . . , n} | |J | = i} .

Note that we have S0,n = {∅},

|Sn| = 2n and |Si,n| =

(

n

i

)

.

Assuming thatX0 = ∅ with probability 1, the random variable Tc,n can then be defined, for every c = 1, . . . , n,
by

Tc,n = inf{m ≥ 0 | Xm ∈ Sc,n}.

The distribution of Tc,n is obtained in Theorem 2 using the Markov property and the following lemma.
For every n ≥ 1, ℓ = 1, . . . , n and i = 0, . . . , n, we define the set Si,n(ℓ) by

Si,n(ℓ) = {J ⊆ {1, . . . , n} \ {ℓ} | |J | = i} .

Lemma 1. For every n ≥ 1, for every k ≥ 0, for all positive real numbers y1, . . . , yn, for every i = 1, . . . , n
and all real number a ≥ 0, we have

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k =

∑

J∈Si,n

YJ (a+ YJ)
k,

where YJ =
∑

j∈J yj and Y∅ = 0.
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Proof. For n = 1, since S0,1(1) = ∅, the left hand side is equal to y1(a+ y1)
k and since S1,1 = {1}, the right

hand side is also equal to y1(a + y1)
k. Suppose that the result is true for integer n − 1, with n ≥ 2, i.e.,

suppose that for every k ≥ 0, for all positive real numbers y1, . . . , yn−1, for every i = 1, . . . , n− 1 and for all
real number a ≥ 0, we have

n−1
∑

ℓ=1

yℓ
∑

J∈Si−1,n−1(ℓ)

(a+ yℓ + YJ)
k =

∑

J∈Si,n−1

YJ(a+ YJ)
k.

We then have

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k =

n−1
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k + yn

∑

J∈Si−1,n(n)

(a+ yn + YJ)
k.

Since Si−1,n(n) = Si−1,n−1, we get

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k =

n−1
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k + yn

∑

J∈Si−1,n−1

(a+ yn + YJ )
k.

For ℓ = 1, . . . , n− 1, the set Si−1,n(ℓ) can be partitioned into two subsets S′
i−1,n(ℓ) and S′′

i−1,n(ℓ) defined by

S′
i−1,n(ℓ) = {J ⊆ {1, . . . , n} \ {ℓ} | |J | = i− 1 and n ∈ J}

and

S′′
i−1,n(ℓ) = {J ⊆ {1, . . . , n} \ {ℓ} | |J | = i− 1 and n /∈ J} .

Since S′′
i−1,n(ℓ) = Si−1,n−1(ℓ), the previous relation becomes

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k

=
n−1
∑

ℓ=1

yℓ





∑

J∈Si−1,n−1(ℓ)

(a+ yℓ + YJ)
k +

∑

J∈S′

i−1,n
(ℓ)

(a+ yℓ + YJ )
k



+ yn
∑

J∈Si−1,n−1

(a+ yn + YJ )
k

=

n−1
∑

ℓ=1

yℓ
∑

J∈Si−1,n−1(ℓ)

(a+ yℓ + YJ )
k +

n−1
∑

ℓ=1

yℓ
∑

J∈Si−2,n−1(ℓ)

(a+ yn + yℓ + YJ)
k + yn

∑

J∈Si−1,n−1

(a+ yn + YJ)
k.

The recurrence hypothesis can be applied for both the first and the second terms. For the second term, the
constant a is replaced by the constant a+ yn. We thus obtain

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ)
k

=
∑

J∈Si,n−1

YJ (a+ YJ)
k +

∑

J∈Si−1,n−1

YJ(a+ yn + YJ )
k + yn

∑

J∈Si−1,n−1

(a+ yn + YJ )
k

=
∑

J∈Si,n−1

YJ (a+ YJ)
k +

∑

J∈Si−1,n−1

(yn + YJ)(a+ yn + YJ )
k

=
∑

J∈Si,n−1

YJ (a+ YJ)
k +

∑

J∈S′

i,n

YJ (a+ YJ )
k,

where S′
i,n = {J ⊆ {1, . . . , n} | |J | = i and n ∈ J}.
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Consider the set S′′
i,n = {J ⊆ {1, . . . , n} | |J | = i and n /∈ J}. The sets S′

i,n and S′′
i,n form a partition of

Si,n and since S′′
i,n = Si,n−1, we get

n
∑

ℓ=1

yℓ
∑

J∈Si−1,n(ℓ)

(a+ yℓ + YJ )
k =

∑

J∈Si,n−1

YJ (a+ YJ )
k +

∑

J∈S′

i,n

YJ(a+ YJ )
k

=
∑

J∈S′′

i,n

YJ(a+ YJ )
k +

∑

J∈S′

i,n

YJ(a+ YJ)
k

=
∑

J∈Si,n

YJ(a+ YJ )
k,

which completes the proof. �

In the following we will use the fact that the distribution of Tc,n depends on the vector p = (p1, . . . , pn),
so we will use the notation Tc,n(p) instead of Tc,n, meaning by the way that vector p is of dimension n. We
will also use the notation

p0 = 1−
n
∑

i=1

pi.

Finally, for ℓ = 1, . . . , n, the notation p(ℓ) will denote the vector p in which the entry pℓ has been removed,
that is p(ℓ) = (pi)1≤i≤n,i6=ℓ. The dimension of p(ℓ), which is n− 1 here, is not specified but will be clear by
the context of its use. We are now able to prove the following result.

Theorem 2. For every n ≥ 1 and c = 1, . . . , n, we have, for every k ≥ 0,

(3) P{Tc,n(p) > k} =

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ)
k,

where PJ is given by (1).

Proof. Relation (3) is true for c = 1 since in this case we haveP{T1,n(p) > k} = pk0 .

So we suppose now that n ≥ 2 and c = 2, . . . , n.
Since X0 = ∅, conditioning on X1 and using the Markov property, see for instance [8], we get for k ≥ 1,

(4) P{Tc,n(p) > k} = p0P{Tc,n(p) > k − 1}+
n
∑

ℓ=1

pℓP{Tc−1,n−1(p
(ℓ)) > k − 1}.

We now proceed by recurrence over index k. Relation (3) is true for k = 0 since it is well-known that

(5)

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)(

n

i

)

= 1.

Relation (3) is also true for k = 1 since on the one hand P{Tc,n(p) > 1} = 1 and on the other hand, using
Relation (4), we haveP{Tc,n(p) > 1} = p0P{Tc,n(p) > 0}+

n
∑

ℓ=1

pℓP{Tc−1,n−1(p
(ℓ)) > 0}

= p0 +

n
∑

ℓ=1

pℓ

= 1.
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Suppose now that Relation (3) is true for integer k − 1, that is, suppose that we haveP{Tc,n(p) > k − 1} =
c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ)
k−1.

Using (4) and the recurrence relation, we haveP{Tc,n(p) > k} = p0

c−1
∑

i=0

(−1)c−1−i

(

n− i − 1

n− c

)

∑

J∈Si,n

(p0 + PJ )
k−1

+

n
∑

ℓ=1

pℓ

c−2
∑

i=0

(−1)c−2−i

(

n− i− 2

n− c

)

∑

J∈Si,n(ℓ)

(p0 + pℓ + PJ)
k−1.

Using the change of variable i := i− 1 in the second sum, we obtainP{Tc,n(p) > k} =

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

p0
∑

J∈Si,n

(p0 + PJ )
k−1

+

c−1
∑

i=1

(−1)c−1−i

(

n− i− 1

n− c

) n
∑

ℓ=1

pℓ
∑

J∈Si−1,n(ℓ)

(p0 + pℓ + PJ)
k−1

=

c−1
∑

i=1

(−1)c−1−i

(

n− i− 1

n− c

)[

p0
∑

J∈Si,n

(p0 + PJ )
k−1 +

n
∑

ℓ=1

pℓ
∑

J∈Si−1,n(ℓ)

(p0 + pℓ + PJ )
k−1

]

+ (−1)c−1

(

n− 1

n− c

)

pk0 .

From Lemma 1, we have
n
∑

ℓ=1

pℓ
∑

J∈Si−1,n(ℓ)

(p0 + pℓ + PJ )
k−1 =

∑

J∈Si,n

PJ (p0 + PJ )
k−1,

that is P{Tc,n(p) > k} = (−1)c−1

(

n− 1

n− c

)

pk0 +
c−1
∑

i=1

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ )
k

=

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ )
k,

which completes the proof. �

This theorem also shows, as expected, that the function P{Tc,n(p) > k}, as a function of p, is symmetric,
which means that it has the same value for any permutation of the entries of p. As a corollary, we obtain the
following combinatorial identities.

Corollary 3. For every c ≥ 1, for every n ≥ c and for all p1, . . . , pn ∈ (0, 1) such that p1 + · · ·+ pn = 1, we
have

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ)
k−1 = 1, for k = 0, 1, . . . , c− 1.

Proof. The random variable Tc,n takes its values on the set {c, c+ 1, . . .}, so we haveP{Tc,n > k} = 1, for k = 0, 1, . . . , c− 1,

which completes the proof thanks to Theorem 2. �
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For every n ≥ 1 and for every v0 ∈ [0, 1], we define the vector v = (v1, . . . , vn) by vi = (1− v0)/n. We will
refer it to as the almost-uniform distribution. We then have, from (3),P{Tc,n(v) > k} =

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)(

n

i

)(

v0

(

1−
i

n

)

+
i

n

)k

.

We denote by u = (u1, . . . , un) the uniform distribution defined by ui = 1/n. It is equal to v when v0 = 0.
The dimensions of u and v are specified by the context.

3. Moments of Tc,n

For r ≥ 1, the rth moment of Tc,n(p) is defined byE(T r
c,n(p)) =

∞
∑

k=1

krP{Tc,n(p) = k}.

It can be obtained in function of the tail distribution of Tc,n(p) by writingE(T r
c,n(p)) =

∞
∑

k=1

krP{Tc,n(p) = k}

=

∞
∑

k=1

krP{Tc,n(p) > k − 1} −
∞
∑

k=1

krP{Tc,n(p) > k}

=

∞
∑

k=0

((k + 1)r − kr)P{Tc,n(p) > k}

=

r−1
∑

ℓ=0

(

r

ℓ

) ∞
∑

k=0

kℓP{Tc,n(p) > k}.

We easily get the first and second moments of Tc,n(p), by taking r = 1 and r = 2 respectively, that is

(6) E(Tc,n(p)) =
∞
∑

k=0

P{Tc,n(p) > k} =
c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

1

1− (p0 + PJ)

andE(T 2
c,n(p)) = E(Tc,n(p)) + 2

∞
∑

k=1

kP{Tc,n(p) > k} =
c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

1 + 2(p0 + PJ )

[1− (p0 + PJ)]2
.

The expected value given by (6) has been obtained in [4] in the particular case where p0 = 0.
When the drawing probabilities are given by the almost-uniform distribution v, we getE(Tc,n(v)) =

1

1− v0

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)(

n

i

)

n

n− i

=
1

1− v0
E(Tc,n(u)).

Using the following two relations
(

n

i

)

=

(

n− 1

i

)

+

(

n− 1

i − 1

)

1{i≥1} and

(

n− 1

i

)

n

n− i
=

(

n

i

)

,
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where 1A is the indicator function of set A, we getE(Tc,n(u)) =

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)(

n

i

)

n

n− i

=

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)(

n

i

)

+

c−1
∑

i=1

(−1)c−1−i

(

n− i− 1

n− c

)(

n− 1

i− 1

)

n

n− i
.

From Relation (5), the first sum is equal to 1. Using the change of variable i := i+ 1 in the second sum, we
obtain E(Tc,n(u)) = 1 +

c−2
∑

i=0

(−1)c−2−i

(

n− i− 2

n− c

)(

n− 1

i

)

n

n− i+ 1

= 1 +
n

n− 1
E(Tc−1,n−1(u)).(7)

Note that the dimension of the uniform distribution in the left hand side is equal to n and the one in the
right hand side is equal to n− 1. Since E(T1,n(u)) = 1, we obtain

(8) E(Tc,n(u)) = n(Hn −Hn−c) and E(Tc,n(v)) =
n(Hn −Hn−c)

1− v0
,

where Hℓ is the ℓth harmonic number defined by H0 = 0 and, for ℓ ≥ 1,

Hℓ =

ℓ
∑

i=1

1/i.

We deduce easily from (7) that, for every c ≥ 1, we have

lim
n−→∞

E(Tc,n(u)) = c and lim
n−→∞

E(Tc,n(v)) =
c

1− v0
.

In the next section we show that, when p0 is fixed, the minimum value of E(Tc,n(p)) is reached when
p = v, with v0 = p0.

4. Distribution minimizing E(Tc,n(p))

The following lemma will be used to prove the next theorem.

Lemma 4. For every n ≥ 1 and r1, . . . , rn ∈ (0, 1) with r1 + · · ·+ rn = 1, we have

n
∑

ℓ=1

1

rℓ
≥ n2.

Proof. We proceed by recurrence. The result is clearly true for n = 1. Suppose that the result is true for
integer n− 1, n ≥ 2. We then have

n
∑

ℓ=1

1

rℓ
=

1

rn
+

n−1
∑

ℓ=1

1

rℓ
=

1

rn
+

1

1− rn

n−1
∑

ℓ=1

1

hℓ

,

where hℓ is given, for ℓ = 1, . . . n− 1, by

hℓ =
rℓ

1− rn
.

Since h1 + · · ·+ hn−1 = 1, we get, using the recurrence hypothesis,

n
∑

ℓ=1

1

rℓ
≥

1

rn
+

(n− 1)2

1− rn
=

(nrn − 1)2

rn(1− rn)
+ n2 ≥ n2,

which completes the proof.
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Theorem 5. For every n ≥ 1, for every c = 1, . . . , n and p = (p1, . . . , pn) ∈ (0, 1)n with p1 + · · · + pn ≤ 1,
we have E(Tc,n(p)) ≥ E(Tc,n(v)) ≥ E(Tc,n(u)),

where v = (v1, . . . , vn) with vi = (1− p0)/n and p0 = 1− (p1 + · · ·+ pn) and where u = (1/n, . . . , 1/n).

Proof. The second inequality comes from (8).
Defining v0 = 1 − (v1 + · · · + vn), we have v0 = p0. For c = 1, the result is trivial since we have from

Relation (6) E(T1,n(p)) =
1

1− p0
=

1

1− v0
= E(T1,n(v)).

For c ≥ 2, which implies that n ≥ 2, summing Relation (4) for k ≥ 1, we getE(Tc,n(p))− 1 = p0E(Tc,n(p)) +

n
∑

ℓ=1

pℓE(Tc−1,n−1(p
(ℓ))).

We then obtain

(9) E(Tc,n(p)) =
1

1− p0

(

1 +

n
∑

ℓ=1

pℓE(Tc−1,n−1(p
(ℓ)))

)

.

We now proceed by recurrence. Suppose that the inequality is true for integer c− 1, with c ≥ 2, i.e., suppose
that, for every n ≥ c, for every q = (q1, . . . , qn−1) ∈ (0, 1)n−1 with q1 + · · ·+ qn−1 ≤ 1, we haveE(Tc−1,n−1(q)) ≥ E(Tc−1,n−1(v)), with v0 = q0 = 1−

n−1
∑

i=1

qi.

Using Relation (8), this implies thatE(Tc−1,n−1(p
(ℓ))) ≥

(n− 1)(Hn−1 −Hn−c)

1− (p0 + pℓ)
.

From Relation (9), we obtain

(10) E(Tc,n(p)) ≥
1

1− p0

(

1 + (n− 1)(Hn−1 −Hn−c)

n
∑

ℓ=1

pℓ
1− (p0 + pℓ)

)

.

Observe now that for ℓ = 1, . . . , n we have

pℓ
1− (p0 + pℓ)

= −1 +
1

(n− 1)rℓ
,

where the rℓ are given by

rℓ =
1− (p0 + pℓ)

(n− 1)(1− p0)

and satisfy r1, . . . , rn ∈ (0, 1) with r1 + · · ·+ rn = 1. From Lemma 4, we obtain

n
∑

ℓ=1

pℓ
1− (p0 + pℓ)

= −n+
1

n− 1

n
∑

ℓ=1

1

rℓ
≥ −n+

n2

n− 1
=

n

n− 1
.

Replacing this value in (10), we obtain, using (8),E(Tc,n(p)) ≥
1

1− p0
(1 + n(Hn−1 −Hn−c)) =

n(Hn −Hn−c)

1− p0
= E(Tc,n(v)),

which completes the proof. �
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5. Distribution minimizing the distribution of Tn,n(p)

For every n ≥ 1, i = 0, 1, . . . , n and k ≥ 0, we denote by N
(k)
i the number of coupons of type i collected at

instants 1, . . . , k. It is well-known that the joint distribution of the N
(k)
i is a multinomial distribution. More

precisely, for every k ≥ 0 and k0, k1, . . . , kn ≥ 0 such that k0 + k1 + · · ·+ kn = k, we have

(11) P{N (k)
0 = k0, N

(k)
1 = k1, . . . , N

(k)
n = kn} =

k!

k0!k1! · · · kn!
pk0

0 pk1

1 · · · pkn
n .

Recall that the coupons of type 0 do not belong to the collection. For every ℓ = 1, . . . , n, we easily deduce
that, for every k ≥ 0 and k1, . . . , kℓ ≥ 0 such that k1 + · · ·+ kℓ ≤ k,P{N (k)

1 = k1, . . . , N
(k)
ℓ = kℓ} =

k!

k1! · · · kℓ! (k − (k1 + · · ·+ kℓ))!
pk1

1 · · · pkℓ

ℓ (1− (p1 + · · ·+ pℓ))
k−(k1+···+kℓ) .

To prove the next theorem, we recall some basic results on convex functions. A function f is said to be
convex on an interval I if for every x, y ∈ I and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Let f be a function defined on an interval I. For every α ∈ I, we introduce the function gα, defined for every
x ∈ I \ {α}, by

gα(x) =
f(x)− f(α)

x− α
.

It is well-known that f is a convex function on interval I if and only if for every α ∈ I, the function gα is
increasing on I \ {α}. The next result is also known but less popular, so we give its proof.

Lemma 6. Let f be a convex function on an interval I. For every x, y, z, t ∈ I with x < y, z < t, we have

(t− y)f(z) + (z − x)f(y) ≤ (t− y)f(x) + (z − x)f(t).

If, moreover, we have t+ x = y + z, we get

f(z) + f(y) ≤ f(x) + f(t).

Proof. It suffices to apply twice the property that function gα is increasing on I \ {α}, for every α ∈ I. Since
z < t, we have gx(z) ≤ gx(t) and since x < y, we have gt(x) ≤ gt(y). But as gx(t) = gt(x) and gt(y) = gy(t),
we obtain gx(z) ≤ gx(t) = gt(x) ≤ gt(y) = gy(t), which means in particular that

f(z)− f(x)

z − x
≤

f(t)− f(y)

t− y
,

that is

(t− y)f(z) + (z − x)f(y) ≤ (t− y)f(x) + (z − x)f(t).

The rest of the proof is trivial since t+ x = y + z implies that t− y = z − x > 0. �

Theorem 7. For every n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with p1+ · · ·+pn ≤ 1, we have, for every k ≥ 0,P{Tn,n(p
′) ≤ k} ≤ P{Tn,n(p) ≤ k},

where p′ = (p1, . . . , pn−2, p
′
n−1, p

′
n) with p′n−1 = λpn−1 + (1 − λ)pn and p′n = (1 − λ)pn−1 + λpn, for every

λ ∈ [0, 1].

Proof. If λ = 1 then we have p′ = p so the result is trivial. If λ = 0 then we have p′n−1 = pn and p′n = pn−1

and the result is also trivial since the function P{Tn,n(p) ≤ k} is a symmetric function of p. We thus suppose
now that λ ∈ (0, 1).

For every n ≥ 1 and k ≥ 0, we have

{Tn,n(p) ≤ k} = {N
(k)
1 > 0, . . . , N (k)

n > 0}.
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We thus get, for k1 > 0, . . . , kn−2 > 0 such that k1 + · · ·+ kn−2 ≤ k, setting s = k − (k1 + · · ·+ kn−2),P{Tn,n(p) ≤ k, N
(k)
1 = k1, . . . , N

(k)
n−2 = kn−2}

= P{N (k)
1 = k1, . . . , N

(k)
n−2 = kn−2, N

(k)
n−1 > 0, N (k)

n > 0}

=
∑

u≥0,v>0,w>0,
u+v+w=s

P{N (k)
0 = u,N

(k)
1 = k1, . . . , N

(k)
n−2 = kn−2, N

(k)
n−1 = v,N (k)

n = w}.

Using Relation (11) and introducing the notation

q0 =
p0

p0 + pn−1 + pn
, qn−1 =

pn−1

p0 + pn−1 + pn
and qn =

pn
p0 + pn−1 + pn

,

we obtainP{Tn,n(p) ≤ k, N
(k)
1 = k1, . . . , N

(k)
n−2 = kn−2}

=
∑

u≥0,v>0,w>0,
u+v+w=s

k!pu0p
k1

1 · · · p
kn−2

n−2 pvn−1p
w
n

u!k1! · · · kn−2!v!w!

=
k!pk1

1 · · · p
kn−2

n−2

k1! · · · kn−2!

∑

u≥0,v>0,w>0,
u+v+w=s

pu0p
v
n−1p

w
n

u!v!w!

=
k!pk1

1 · · · p
kn−2

n−2 (1− (p1 + · · ·+ pn−2))
s

k1! · · · kn−2!s!

∑

u≥0,v>0,w>0,
u+v+w=s

s!

u!v!w!
qu0 q

v
n−1q

w
n

=
k!pk1

1 · · · p
kn−2

n−2 (1− (p1 + · · ·+ pn−2))
s

k1! · · · kn−2!s!
(1− (q0 + qn−1)

s − (q0 + qn)
s
+ qs0) .

Note that this relation is not true if at least one of the kℓ is zero. Indeed, if kℓ = 0 for some ℓ = 1, . . . , n− 2,
we have P{Tn,n(p) ≤ k,N

(k)
1 = k1, . . . , N

(k)
n−2 = kn−2} = 0.

Summing over all the k1, . . . , kn−2 such that k1 + · · ·+ kn−2 ≤ k, we get
(12)P{Tn,n(p) ≤ k} =

∑

(k1,...,kn−2)∈En−2

k!pk1

1 · · · p
kn−2

n−2 (1− (p1 + · · ·+ pn−2))
s

k1! · · · kn−2!s!
(1− (q0 + qn−1)

s − (q0 + qn)
s + qs0) ,

where the set En−2 is defined by

En−2 = {(k1, . . . , kn−2) ∈ (N∗)
n−2 | k1 + · · ·+ kn−2 ≤ k}

and N∗ is the set of positive integers.

Note that for n = 2, since p0+p1+p2 = 1, we have P{T2,2(p) ≤ k} =
(

1− (p0 + p1)
k − (p0 + p2)

k
+ pk0

)

.

Recall that p0 = 1 − (p1 + · · · + pn). By definition of p′n−1 and p′n, we have, for every λ ∈ (0, 1),
p′n−1 + p′n = pn−1 + pn. It follows that, by definition of p′,

p′0 = 1− (p1 + · · ·+ pn−2 + p′n−1 + p′n) = 1− (p1 + · · ·+ pn−2 + pn−1 + pn) = p0.
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Suppose that we have pn−1 < pn. This implies, by definition of p′n−1 and p′n, that pn−1 < p′n−1, p
′
n < pn,

that is qn−1 < q′n−1, q
′
n < qn, where

q′n−1 =
p′n−1

p′0 + p′n−1 + p′n
=

p′n−1

p0 + pn−1 + pn
and q′n =

p′n
p′0 + p′n−1 + p′n

=
p′n

p0 + pn−1 + pn
.

In the same way, we have

q′0 =
p′0

p′0 + p′n−1 + p′n
=

p0
p0 + pn−1 + pn

= q0.

We thus have q0 + qn−1 < q′0 + q′n−1, q
′
0 + q′n < q0 + qn. The function f defined by f(x) = xs is convex on

interval [0, 1] so, from Lemma 6, since 2q0 + qn−1 + qn = 2q′0 + q′n−1 + q′n, we have

(13)
(

q′0 + q′n−1

)s
+ (q′0 + q′n)

s
≤ (q0 + qn−1)

s
+ (q0 + qn)

s
.

Similarly, if pn < pn−1, we have, by definition, pn < p′n, p
′
n−1 < pn−1, that is qn < q′n, q

′
n−1 < qn−1 and thus

we also have Relation (13) in this case. Using Relation (13) in Relation (12), we get, since q′0 = q0,P{Tn,n(p) ≤ k} ≤
∑

(k1,...,kn−2)∈En−2

k!pk1

1 · · · p
kn−2

n−2 (1− (p1 + · · ·+ pn−2))
s

k1! · · · kn−2!s!

(

1−
(

q′0 + q′n−1

)s
− (q′0 + q′n)

s
+ q′0

s)

= P{Tn,n(p
′) ≤ k},

which completes the proof. �

The function P{Tn,n(p) ≤ k}, as a function of p, being symmetric, this theorem can easily be extended to
the case where the two entries pn−1 and pn of p, which are different from the entries p′n−1 and p′n of p′, are
any pi, pj ∈ {p1, . . . , pn}, with i 6= j.

In fact, we have shown in this theorem that for fixed n and k, the function of p, P{Tn,n(p) ≤ k}, is a
Schur-convex function, that is, a function that preserves the order of majorization. See [5] for more details
on this subject.

Theorem 8. For every n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with p1+ · · ·+pn ≤ 1, we have, for every k ≥ 0,P{Tn,n(p) > k} ≥ P{Tn,n(v) > k} ≥ P{Tn,n(u) > k},

where v = (v1, . . . , vn) with vi = (1− p0)/n and p0 = 1− (p1 + · · ·+ pn) and where u = (1/n, . . . , 1/n).

Proof. To prove the first inequality, we apply successively and at most n− 1 times Theorem 7 as follows. We
first choose two different entries of p, say pi and pj such that pi < (1− p0)/n < pj and next to define p′i and
p′j by

p′i =
1− p0

n
and p′j = pi + pj −

1− p0
n

.

With respect to Theorem 7, this leads to write p′i = λpi + (1− λ)pj and p′j = (1− λ)pi + λpj , with

λ =
pj −

1− p0
n

pj − pi
.

From Theorem 7, the vector p′ that we obtain by taking the other entries equal to those of p, i.e., by taking
p′ℓ = pℓ, for ℓ = i, j, is such that P{Tn,n(p) > k} ≥ P{Tn,n(p

′) > k}.

Note that at this point vector p′ has at least one entry equal to (1− p0)/n), so repeating at most n− 1 this
procedure, we get vector v.

To prove the second inequality, we use Relation (11). Introducing, for every n ≥ 1, the set Fn defined by

Fn(ℓ) = {(k1, . . . , kn) ∈ (N∗)n | k1 + · · ·+ kn = ℓ}.
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For k < n, both terms are zero, so we suppose that k ≥ n. We haveP{Tn,n(v) ≤ k} = P{N (k)
1 > 0, . . . , N (k)

n > 0}

=

k−n
∑

k0=0

P{N (k)
0 = k0, N

(k)
1 > 0, . . . , N (k)

n > 0}

=

k−n
∑

k0=0

∑

(k1,...,kn)∈Fn(k−k0)

k!

k0!k1! · · · kn!
pk0

0

(

1− p0
n

)k−k0

=

k−n
∑

k0=0

(

k

k0

)

pk0

0 (1− p0)
k−k0

1

nk−k0

∑

(k1,...,kn)∈Fn(k−k0)

(k − k0)!

k1! · · · kn!
.

Setting p0 = 0, we get P{Tn,n(u) ≤ k} =
1

nk

∑

(k1,...,kn)∈Fn(k)

k!

k1! · · · kn!
.

This leads to P{Tn,n(v) ≤ k} =

k−n
∑

k0=0

(

k

k0

)

pk0

0 (1 − p0)
k−k0P{Tn,n(u) ≤ k − k0}

≤ P{Tn,n(u) ≤ k}
k−n
∑

k0=0

(

k

k0

)

pk0

0 (1− p0)
k−k0

≤ P{Tn,n(u) ≤ k},

which completes the proof. �

To illustrate the steps used in the proof of this theorem, we take the following example. Suppose that
n = 5 and p = (1/16, 1/6, 1/4, 1/8, 7/24). This implies that p0 = 5/48 and (1 − p0)/n = 43/240. In a first
step, taking i = 4 and j = 5, we get

p(1) = (1/16, 1/6, 1/4, 43/240, 19/80).

In a second, taking i = 2 and j = 5, we get

p(2) = (1/16, 43/240, 1/4, 43/240, 9/40).

In a third step, taking i = 1 and j = 3, we get

p(3) = (43/240, 43/240, 2/15, 43/240, 9/40).

For the fourth and last step, taking i = 5 and j = 3, we get

p(4) = (43/240, 43/240, 43/240, 43/240, 43/240) =
43

48
(1/5, 1/5, 1/5, 1/5, 1/5).

6. A new conjecture

In this section, we propose a new conjecture stating that the complementary distribution function of Tc,n

is minimal when the distribution p is equal to the uniform distribution u.

Conjecture. For every n ≥ 1, c = 1, . . . , n and p = (p1, . . . , pn) ∈ (0, 1)n with p1 + · · · + pn ≤ 1, we have,
for every k ≥ 0, P{Tc,n(p) > k} ≥ P{Tc,n(v) > k} ≥ P{Tc,n(u) > k},

where v = (v1, . . . , vn) with vi = (1− p0)/n and p0 = 1− (p1 + · · ·+ pn) and where u = (1/n, . . . , 1/n).

This new conjecture is motivated by the following facts:

• the result is true for the expectations, see Theorem 5.
• the result is true for c = n, see Theorem 8.
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• the result is trivially true for c = 1 sinceP{T1,n(p) > k} = P{T1,n(v) > k} = pk0 ≥ 1{k=0} = P{T1,n(u) > k}.

• the result is true for c = 2, see Theorem 9 below.

Theorem 9. For every n ≥ 2 and p = (p1, . . . , pn) ∈ (0, 1)n with p1+ · · ·+pn ≤ 1, we have, for every k ≥ 0,P{T2,n(p) > k} ≥ P{T2,n(v) > k} ≥ P{T2,n(u) > k},

where v = (v1, . . . , vn) with vi = (1− p0)/n and p0 = 1− (p1 + · · ·+ pn) and where u = (1/n, . . . , 1/n).

Proof. From Relation (2), we haveP{T2,n(p) > k} = −(n− 1)pk0 +
n
∑

ℓ=1

(p0 + pℓ)
k

and P{T2,n(v) > k} = −(n− 1)pk0 + n

(

p0 +
1− p0

n

)k

.

For every constant a ≥ 0, the function f(x) = (a + x)k is a convex on [0,∞[, so we have, taking a = p0, by
the Jensen inequality

(

p0 +
1− p0

n

)k

=

(

1

n

n
∑

ℓ=1

(p0 + pℓ)

)k

≤
1

n

n
∑

ℓ=1

(p0 + pℓ)
k.

This implies that P{T2,n(p) > k} ≥ P{T2,n(v) > k}.
To prove the second inequality, we define the function Fn,k on interval [0, 1] by

Fn,k(x) = −(n− 1)xk + n

(

x+
1− x

n

)k

.

We then have Fn,k(p0) = P{T2,n(v) > k} and Fn,k(0) = P{T2,n(u) > k}. The derivative of function Fn,k is

F ′
n,k(x) = k(n− 1)

[

(

x+
1− x

n

)k−1

− xk−1

]

≥ 0.

Function Fn,k is thus an increasing function, which means that P{T2,n(v) > k} ≥ P{T2,n(u) > k}. �

7. Application to the detection of distributed deny of service attacks

A Deny of Service (DoS) attack tries to progressively take down an Internet resource by flooding this
resource with more requests than it is capable to handle. A Distributed Deny of Service (DDoS) attack
is a DoS attack triggered by thousands of machines that have been infected by a malicious software, with
as immediate consequence the total shut down of targeted web resources (e.g., e-commerce websites). A
solution to detect and to mitigate DDoS attacks it to monitor network traffic at routers and to look for
highly frequent signatures that might suggest ongoing attacks. A recent strategy followed by the attackers
is to hide their massive flow of requests over a multitude of routes, so that locally, these flows do not appear
as frequent, while globally they represent a significant portion of the network traffic. The term “iceberg”
has been recently introduced to describe such an attack as only a very small part of the iceberg can be
observed from each single router. The approach adopted to defend against such new attacks is to rely on
multiple routers that locally monitor their network traffic, and upon detection of potential icebergs, inform
a monitoring server that aggregates all the monitored information to accurately detect icebergs. Now to
prevent the server from being overloaded by all the monitored information, routers continuously keep track
of the c (among n) most recent high flows (modelled as items) prior to sending them to the server, and throw
away all the items that appear with a small probability pi, and such that the sum of these small probabilities
is modelled by probability p0. Parameter c is dimensioned so that the frequency at which all the routers send
their c last frequent items is low enough to enable the server to aggregate all of them and to trigger a DDoS
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alarm when needed. This amounts to compute the time needed to collect c distinct items among n frequent
ones. Moreover, Theorem 5 shows that the expectation of this time is minimal when the distribution of the
frequent items is uniform.
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