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Convergence of finite volume scheme

for degenerate parabolic problem

with zero flux boundary condition

Boris Andreianov and Mohamed Karimou Gazibo

Abstract This note is devoted to the study of the finite volume methods used in the

discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary

condition. The notion of entropy-process solution, successfully used for the Dirich-

let problem, is insufficient to obtain a uniqueness and convergence result because of

a lack of regularity of solutions on the boundary. We infer the uniqueness of entropy-

process solution using the tool of the nonlinear semigroup theory by passing to the

new abstract notion of integral-process solution. Then, we prove that numerical so-

lution converges to the unique entropy solution as the mesh size tends to 0.

1 Introduction

Our goal is to study convergence of a finite volume scheme for a degenerate

parabolic equation with zero-flux boundary condition in a regular bounded domain

Ω ∈ Rℓ arising, e.g., in sedimentation and traffic models:







ut +div f (u)−∆φ(u) = 0 in Q = (0,T )×Ω ,
u(0,x) = u0(x) in Ω ,

( f (u)−∇φ(u)).η = 0 on Σ = (0,T )×∂Ω .
(P)

Here φ is a non-decreasing Lipschitz continuous function, moreover, there exists

uc ∈ [0,umax] with umax > 0 such that φ |[0,uc] ≡ 0 but φ ′|[uc,umax] > 0. The case uc =
umax was understood in [7]. In the range [0,uc] of values of u, (P) degenerates into
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a hyperbolic problem, and admissibility criteria of Kruzhkov type are needed to

single out the unique and physically motivated weak solution (see, e.g., [13, 7]). We

require that the flux function f is Lipschitz, genuinely nonlinear on [0,uc]; moreover,

[0,umax] is an invariant domain for the evolution of (P) due to assumption

f (0) = f (umax) = 0, u0(x) ∈ L∞(Ω ; [0,umax]) (H1)

(the latter means the space of measurable on Ω functions with values in [0,umax]). In

the work [4], inspired by [7] we proposed a new entropy formulation of (P) saying

that u ∈ L∞(Q; [0,umax]) is an entropy solution of (P) if u ∈ C([0,T ];L1(Ω)) with

u(0) = u0, φ(u) ∈ L2(0,T ;H1(Ω)) and ∀k ∈ [0,umax]

|u− k|t +div
(

sign(u− k)
[

f (u)− f (k)−∇φ(u)
])

≤ | f (k).η |dH
ℓ−1 (1)

in D ′((0,T )× Ω), where η is the exterior unit normal vector to the boundary

Σ = (0,T )× ∂Ω and the last term is taken with respect to the Hausdorff measure

H ℓ−1 on Σ . Contrary to the Dirichlet case (cf. [9]) where the boundary condition

is relaxed, (1) implies that zero-flux condition in (P) holds in the weak sense.

Existence of an entropy solution to (P) can be obtained by standard vanishing

viscosity method, relying in particular on the strong compactness arguments derived

from genuine nonlinearity of f |[0,uc] and non-degeneracy of φ |[uc,umax], see [12]. But

in order to prove uniqueness, one faces a serious difficulty (not relevant in the case

uc = umax, [7]) related to the lack of regularity of the flux

F [u] := f (u)−∇φ(u)

and specifically, to the weak sense in which the normal component F [u].η of the

flux annulates on Σ . Techniques of nonlinear semigroup theory (see, e.g., [6, 5]) can

be used to circumvent this regularity problem in some cases (see [3, 4]) and to prove

well-posedness for (P) in the sense (1). Let us present the key arguments: indeed,

they are also important for study of convergence of the Finite Volume scheme for

(P), which is the goal of this note. The standard doubling of variables method based

upon formulation (1) readily leads to the uniqueness and L1 contraction property

∀t ∈ [0,T ] ‖u(t, ·)− û(t, ·)‖L1 ≤ ‖u0 − û0‖L1 (2)

if we compare two solutions u, û such that the strong (in the sense of L1 convergence,

see [13, 11]) trace of the normal flux F [u].η at the boundary exists. In the sequel,

we call such solutions trace-regular. Every entropy solution is trace-regular in the

case of the pure hyperbolic problem (case uc = umax, see [13, 11, 7]). The idea of

symmetry breaking in the doubling of variables (see [3]) permits an extension of (2)

to a kind of weak-strong comparison principle where u is a general solution and û is

a trace-regular solution. When a sufficiently large family of trace-regular solutions

is available, uniqueness of general solution and principle (2) may follow by density

arguments. A closely related technique consists in exploiting the above weak-strong

comparison arguments using the idea of integral solution and somewhat stronger
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regularity properties of stationary solutions. E.g., for the pure parabolic one (uc = 0,

see [3]) every entropy solution of the stationary problem

û+div f (û)−∆φ(û) = g in Ω , ( f (û)−∇φ(û)).η = 0 on ∂Ω (S)

with g ∈ L∞(Ω) is trace-regular if f ◦φ−1 ∈ C0,γ , γ > 0 (see [3]). This observation,

in conjunction with the use of integral solutions ([6]) of abstract evolution problem

u′+Au ∋ h, u(0) = u0 (3)

for suitably defined operator A f ,φ (problem (S) taking the form (Id+A f ,φ )u ∋ g)

permits to get uniqueness of entropy solution in [3], for the parabolic case uc = 0.

Let us stress that the question of uniqueness for (P) with uc /∈ {0,umax} and ℓ > 1

remains open. The one-dimensional hyperbolic-parabolic case (ℓ = 1, Ω = (a,b)
with arbitrary uc ∈ [0,umax]) has been treated by the authors in [4], using the above

abstract approach along with the elementary observation that yields trace-regularity:

(

f (û)−φ(û)x

)

x
= g−u ∈ L∞((a,b)) ⇒ F [u] =

(

f (û)−φ(û)x

)

∈ C([a,b]).

Another essential aspect of the study of (P) is to justify convergence of numer-

ical approximations. The difference with the existence proof is that, for numeri-

cal approximations, the use of strong compactness arguments is very technical,

and weak compactness methods are often preferred. Such study relying on non-

linear weak-∗ compactness technique of [8, 9] is our goal in this note. We study

a finite volume scheme discretization in the spirit of [9] for (P) on a family of

admissible meshes (Oh)h with implicit time stepping. According to the standard

weak compactness estimates, as for the Dirichlet problem ([9]) approximate solu-

tions uh := uOh,δ th
converge up to a subsequence, as the discretization size h goes

to zero, towards an entropy-process solution ν . This notion closely related to Young

measures’ techniques (see [8] and references therein) incorporates dependence on a

additional variable α ∈ [0,1] which may represent oscillations in the family (uh)h.

It remains to prove the uniqueness of entropy-process solution which implies the

independence of ν(t,x,α) on α so that u(t,x)≡ ν(t,x,α) is an entropy solution of

(P). As for the proof of uniqueness of entropy solution discussed above, we face the

major difficulty due to the lack of regularity of F [u].η . Hence, we found it useful

to define the new notion of integral-process solution in the framework of abstract

problem (3). Following the pattern of the uniqueness proofs in [3, 4], we compare

entropy-process solution of (P) and trace regular solution of (S), then we prove than

entropy-process solution of (P) is an integral-process solution of (3) defined for an

appropriate m-accretive operator A f ,φ . The convergence result holds due to the fact

that the integral-process solution coincides with the unique integral solution of (3);

and the latter one coincides with the unique entropy solution of (P) in the sense (1).

The remainder of this note is organized as follows. In Section 2 we present our

scheme. In Section 3 we present the standard steps of convergence arguments for

problem (P), obtained as for Dirichlet problem ([9]). In Section 4, we achieve the

convergence result using classical and new tools of the nonlinear semigroup theory.
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In Remark 1, we sketch a convergence argument for Finite Volume schemes based

upon a direct use of integral-process solutions, bypassing the entropy-process ones.

2 Description of the finite volume scheme for (P)

Let us begin with considering an admissible mesh O of Ω (see [8, 9]) for space

discretization and using the conventional notation present in the main literature. Be-

cause we consider the zero-flux boundary condition, we don’t need to distinguish

between interior and exterior control volumes K, only inner interfaces σ between

volumes are needed in order to formulate the scheme. For K ∈ O and σ ∈ εK , we

denote by τK,σ the transmissivity coefficient. For the approximation of the convec-

tive term, we consider the numerical convection fluxes FK,σ : R2 −→ R that are

consistent with f , monotone, Lipschitz regular, and conservative (see [8, 9]).

The values of the discrete unknowns un+1
K for all control volume K ∈ O , and

n ∈N are defined thanks to the following relations: first we initialize the scheme by

u0
K =

1

m(K)

∫

K
u0(x)dx ∀K ∈ O, (4)

then, we use the implicit scheme for the discretization of problem (P):

∀n > 0, ∀K ∈ O ,

m(K)
un+1

K −un
K

δ t
+ ∑

σ∈εK

(

FK,σ (u
n+1
K ,un+1

K,σ )− τK,σ

(

φ(un+1
K,σ )−φ(un+1

K )
)

)

= 0. (5)

If the scheme has a solution (un
K)K,n, we will say that the approximate solution to

(P) is the piecewise constant function uO,δ t(t,x) defined by:

uO,δ t(t,x) = un+1
K for x ∈ K and t ∈ (nδ t,(n+1)δ t]. (6)

A weakly consistent discrete gradient ∇Oφ(uO,δ t) is defined “per diamond”; we re-

fer to [10] for details. Let us stress that the zero-flux boundary condition is included

in the scheme, since the flux terms on ∂K ∩∂Ω are set to be zero in equations (5).

3 Analysis of the approximate solution: classical arguments

Following the guidelines of [8, 9], we can justify uniqueness of discrete solutions,

obtain several uniform estimates (confinement of values of uO,δ t in [0,umax], weak

BV estimate for uO,δ t , discrete L2(0,T ;H1(Ω)) estimate of φ(uO,δ t)), and derive

existence of uO,δ t . We refer to the PhD thesis [10] of the second author for details,

with a particular emphasis on the treatment of boundary volumes. It follows that the

discrete solution uO,δ t satisfies the approximate continuous entropy formulation.
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Theorem 1. Let uO,δ t be the approximate solution of the problem (P) defined by

(4),(5),(6). Then the following approximate entropy inequalities hold:

for all k ∈ [0,umax], for all ξ ∈ C ∞([0,T )×Rℓ), ξ ≥ 0,
∫ T

0

∫

Ω

{

|uO,δ t − k|ξt + sign(uO,δ t − k)
[

f (uO,δ t)− f (k)−∇Oφ(uO,δ t)
]

.∇ξ
}

dxdt

+
∫ T

0

∫

∂Ω
| f (k).η(x)|ξ (t,x)dH

ℓ−1(x)dt +
∫

Ω
|u0 − k|ξ (0,x)dx ≥−υO,n(ξ ), (7)

where ∀ξ ∈ C ∞([0,T )×Rℓ), υO,n(ξ )→ 0 when h → 0.

In order to pass to the limit in (7) using only the L∞ bound on uO,δ t , one can adapt

the notion of entropy-process solution to problem (P) in the entropy sense (1).

Definition 1. Let µ ∈ L∞(Q × (0,1)). The function µ = µ(t,x,α) is called an

entropy-process solution to the problem (P) if ∀k ∈ [0,umax], ∀ξ ∈C ∞([0,T )×Rℓ),
with ξ ≥ 0, the following inequalities hold:

∫ T

0

∫

Ω

∫ 1

0

{

|µ − k|ξt + sign(µ − k)
[

f (µ)− f (k)
]

.∇ξ
}

dxdtdα

−
∫ T

0

∫

Ω
∇|φ(u)−φ(k)|.∇ξ dxdt +

∫ T

0

∫

∂Ω
| f (k).η(x)|ξ (t,x)dH

ℓ−1(x)dt

+
∫

Ω
|u0 − k|ξ (0,x)dx ≥ 0, where u(t,x) :=

∫ 1

0
µ(t,x,α)dα.

From Theorem 1 we derive the following result which, however, will not be conclu-

sive. In the sequel, we will upgrade (or circumvent, see Remark 1) this claim.

Proposition 1. Let uO,δ t be the approximate solution of problem (P) defined by (4),

(5). There exists an entropy-process solution µ of (P) in the sense of Definition 1

and a subsequence of (uO,δ t)O,δ t , such that:

• The sequence (uO,δ t)O,δ t converges to µ in the nonlinear weak-∗ sense.

• Moreover, (φ(uO,δ t))O,δ t converges strongly in L2(Q) to φ(u), u=
∫ 1

0 µ(t,x,α)dα ,

and (∇Oφ(uO,δ t))O,δ t ⇀ ∇φ(u) in (L2(Q))ℓ weakly, as h,δ t → 0.

Proof. The proof is essentially the same as in main reference papers dealing with

finite volume scheme for degenerate parabolic equations (see [9, 2]). ⊓⊔

4 Reduction of entropy-process solution: semigroup arguments

In the context of the Dirichlet problem (see [8, 9]) there holds the uniqueness and

reduction result stating that an entropy-process solution µ is α-independent, so that

it reduces to an entropy solution. The lack of regularity of the fluxes at the boundary

makes it difficult to prove the analogous result with zero-flux conditions. Here, we

show how this difficulty can be bypassed, using classical tools and a new notion of

integral-process solution in the abstract context of nonlinear semigroup theory ([6]).
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4.1 Notion of integral-process solution and equivalence result

Given a Banach space X and an accretive operator A ⊂ X ×X , u ∈ C([0,T ];X) is

called integral solution (see Bénilan et al. [6, 5]) of the abstract evolution problem

(3) if, ‖ · ‖ being the norm and [u,v] := limλ↓0
‖u+λv‖−‖u‖

λ the bracket on X , one has

u(0) = u0 and the following family of inequalities holds:

∀(û, ẑ) ∈ A ‖u(t)−û‖−‖u(s)−û‖ ≤
∫ t

s
[u(τ)−û,h(τ)−ẑ], 0 ≤ s ≤ t ≤ T.

For m-accretive operators the classical in the nonlinear semigroup theory notion of

mild solution coincides with the notion of integral solution, so that we have

Proposition 2. Assume that A is m-accretive, with Dom(A)
‖·‖X

= X. Then for any

h ∈ L1((0,T );X), u0 ∈ X there exists a unique integral solution of (3).

We refer to [6] for the proof of uniqueness of an integral solution and to [5] for a gen-

eralization relevant to our case: continuity of u : [0,T ]→ X can be relaxed, cf. (9).

We propose a variant of the above notion that we call integral-process solution. This

notion is motivated by an application in the setting where X is a Lebesgue space on

Ω ⊂ Rℓ and ν is a nonlinear weak-∗ limit (see [8]) of approximate solutions.

Definition 2. Let A be an accretive operator on X , h∈ L1(0,T ;X) and u0 ∈ X . An X-

valued function ν of (t,α) ∈ [0,T ]× [0,1] is an integral-process solution of abstract

problem u′+Au ∋ h on [0,T ] with datum ν(0, ·,α)≡ u0(·), if for all (û, ẑ) ∈ A

∫ 1

0

(

‖ν(t,α)− û‖−‖ν(s,α)− û‖
)

dα ≤
∫ 1

0

∫ t

s

[

v(τ,α)− û,h(τ)− ẑ
]

dτdα (8)

for 0 < s ≤ t ≤ T and the initial condition is satisfied in the sense

ess- limt↓0

∫ 1
0 ‖ν(t,α)−u0‖dα = 0. (9)

The main fact concerning integral-process solutions is the following result ([10]).

Theorem 2. Assume that A is m-accretive in X and u0 ∈D(A). Then ν is an integral-

process solution of (3) if and only if ν is independent on α and for all α , ν(.,α)
coincides with the unique integral and mild solution u(·) of (3).

4.2 Convergence of the scheme

Let us define the operator A f ,φ on L1(Ω ; [0,umax])⊂X = L1(Ω) endowed with ‖·‖1:

(v,z)∈ A f ,φ =
{

v such that v is a trace regular solution of (S), with g = v+ z
}

(instead of L1(Ω) we can work in L1(Ω ; [0,umax]) due to the confinement principle

for solutions of (S)). The main result of this paper is the following theorem.
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Theorem 3. Assume operator A f ,φ on L1(Ω ; [0,umax]) is m-accretive densely de-

fined, then any entropy-process-solution of (P) is its unique entropy solution. In

particular, the scheme (4),(5) for discretization of (P) in the sense (1) is convergent:

∀p ∈ [1,+∞) uO,δ t −→ u in Lp(0,T ×Ω) as max(δ t,h)−→ 0.

Proof. First, in Proposition 1 we prove that the approximate solutions uO,δ t con-

verge towards an entropy-process solution µ . Then, with the technique of [3, 4] we

compare the entropy-process solution µ and a trace-regular solution û of stationary

problem (S). We find that µ is also an integral-process solution. By Theorem 2, µ is

independent on the variable α . Therefore µ(·,α) coincides with the unique integral

solution of the abstract evolution problem (3) governed by operator A f ,φ ; we know

from the analysis of [3, 4] that it is also the unique entropy solution of (P). ⊓⊔

Theorem 3 is applicable in the following three cases where trace-regularity for the

solutions of (S) can be justified, at least for a dense set of source terms.

Proposition 3. Assume that ℓ ≥ 1, and uc = umax (i.e., (P) is purely hyperbolic).

Then A f ,φ is m-accretive densely defined on L1(Ω ; [0,umax]).

Proposition 4. Assume that ℓ≥ 1 and uc = 0 (i.e. (P) is non-degenerate parabolic).

Then A f ,φ is m-accretive densely defined on L1(Ω ; [0,umax]) if f ◦φ−1∈C 0,γ ,γ > 0.

Proposition 5. Assume that Ω = (a,b) (thus, ℓ = 1). Then A f ,φ is m-accretive

densely defined on L1(Ω ; [0,umax]).

Prop. 3 follows by the strong trace results of [13, 11] (cf. [7]), Prop. 4 is justified

like in [3], while Prop. 5 was an ingredient of the uniqueness proof in [4].

Remark 1. Actually, the use of entropy-process solutions can be circumvented. Ob-

serve that the stationary problem (S) can be discretized with the scheme analogous

to the time-implicit scheme used for the evolution problem (P). Consider the situa-

tion where strong compactness (and convergence to û ∈ Dom(A f ,φ )) can be proved

for approximate solutions ûO of (S) but only nonlinear weak-∗ compactness for

approximate solutions uO,δ t of (P) is known (this occurs when ℓ = 1, where com-

pactness of ûO(xi), for all xi ∈ Q, is immediate: see the arguments developed in

[1]). Then convergence of the stationary scheme is easily proved, moreover, one

infers inequalities (8) for the limit ν(·,α) of uO,δ t . Then, the result of Theorem 2

proves convergence of the scheme for the evolution problem. In a future work, this

argument will be applied to a large variety of one-dimensional degenerate parabolic

conservation laws with boundary conditions or interface coupling conditions.

5 Numerical experiments

We conclude with 1D numerical illustrations presented in Fig. 1(a),(c), obtained

with the explicit analogue of the scheme (4),(5) under the ad hoc CFL restrictions.
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On this occasion, we use the scheme to highlight the importance of hypothesis (H1).

In the test of Fig. 1(b) assumption (H1) fails, and a boundary layer appears. If one

refines the mesh one observes convergence of uOh,δ th
towards a function bounded by

‖u0‖∞ while the sequence (uOh,δ th
)h seems unbounded. However, the condition of

zero flux imposed in (5) is relaxed in the limit, making formulation (1) inappropri-

ate outside the framework (H1). Introduction of appropriate boundary formulation

satisfied by the limit of the scheme, in absence of (H1), is postponed to future work.
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