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Abstract

We propose a parsimonious extension of the classical latent class model to
cluster categorical data by relaxing the class conditional independence as-
sumption. Under this new mixture model, named Conditional Modes Model,
variables are grouped into conditionally independent blocks. The correspond-
ing block distribution is a parsimonious multinomial distribution where the
few free parameters correspond to the most likely modality crossings, while
the remaining probability mass is uniformly spread over the other modality
crossings. Thus, the proposed model allows to bring out the intra-class de-
pendency between variables and to summarize each class by a few character-
istic modality crossings. The model selection is performed via a Metropolis-
within-Gibbs sampler to overcome the computational intractability of the
block structure search. As this approach involves the computation of the
integrated complete-data likelihood, we propose a new method (exact for the
continuous parameters and approximated for the discrete ones) which avoids
the biases of the bic criterion pointed out by our experiments. Finally, the
parameters are only estimated for the best model via an em algorithm. The
characteristics of the new model are illustrated on simulated data and on two
biological data sets. These results strengthen the idea that this simple model
allows to reduce biases involved by the conditional independence assumption
and gives meaningful parameters. Both applications were performed with
the R package CoModes1 where the proposed model is implemented.
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1. Introduction

Clustering [1] is an important tool for practitioners confronted with a
complex data set. Indeed, this method allows to extract main information
from data by grouping individuals into homogeneous classes. This paper
focuses on categorical variables clustering. Even if these variables are lit-
tle informative, they are present in many different fields (biology, sociology,
marketing...) because they are usually easily accessible.

Clustering methods can be split into two approaches: the geometrical
ones based on the distances between individuals and the probabilistic ones
which model the data generation.

If these first approaches are generally simpler and faster than the oth-
ers, they are sensitive to the used distance between individuals. Geometrical
approaches, to cluster categorical data, either define a metric in the ini-
tial variable space like the k-means [2], either compute their metric on the
axes of the multiple correspondence analysis [3, 4]. Indeed, these approaches
consider that the classes are homogeneous when the distance between the
individuals of the class and its center is small. However, lots of geometrical
approaches can be interpreted as probabilistic ones [5] revealing probabilistic
hidden assumptions made by the geometrical ones. Moreover, the proba-
bilistic approaches allow to solve difficult questions, like the class number
selection, in a rigorous mathematical framework.

The probabilistic approaches consider that the classes are homogeneous
when the individuals of a class are drawn from the same distribution. Thus,
finite mixture models, which are the most classical of the probabilistic ap-
proaches, meet this objective by approaching the data distribution with a
finite mixture of parametric distributions [6]. In addition, the obtained par-
tition is meaningful since each class is described by the parameters of the
corresponding component.

The most widely used mixture model to cluster categorical data sets is
the latent class model [7, 8, 9], which assumes the conditional independence
between variables. In this article, we refer to this model as Conditional In-
dependence Model (further mentioned as cim). In this model, as the classes
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are explicitly described by the probability of each modality for each variable,
the interpretation is easy. Moreover, the sparsity caused by the conditional
independence assumption is a great advantage since it circumvents the curse
of dimensionality. In practice, this model obtains good results in lots of
applications [10, 11, 12]. However, applications [13] can show that cim over-
estimates the class number when the conditional independence assumption
is violated (see also our experiments presented in Section 5). Furthermore,
the larger is the number of variables, the higher is the risk to observe condi-
tionally correlated variables in a data set, and consequently the higher is the
risk to involve such biases by using cim.

Different models relax the conditional independence assumption. Among
them, the multilevel latent class model [14, 15] assumes that the conditional
dependency between the observed variables can be explained by other unob-
served variables. This model has connections with the approach modeling the
intra-class dependencies by using a latent continuous variable and a probit
function [16]. Recently proposed, the mixture of latent trait analyzers [17, 18]
is a good challenger for cim since it assumes that the categorical variable
distribution depends on many latent variables: one categorical variable (the
class) and many continuous latent variables (modeling the intra-class depen-
dencies between the observed categorical variables). However, the parame-
ters are hardly estimated directly, so the authors use a variational approach.
Furthermore, the intra-class dependencies can be hardly interpretable by the
practitioner, since the correlations are interpreted according to relationships
with unobserved continuous variables.

The log-linear models [19, 20] purpose is to model the individual log-
probability by selecting interactions between variables. Thus, the most gen-
eral mixture model is the log-linear mixture model where all the kinds of
interactions can be considered. It has been used for a long time [21] and it
obtains good results in many applications like the clustering of radiographic
cross-diagnostics [22] or in a market segmentation [13]. However this model
family is huge and the model selection is a real challenge. In the literature,
authors fix by advance the modeled interactions or they perform a determin-
istic search like the forward method which is sub-optimal. Furthermore, the
number of parameters increases with the conditional modality crossings, so
there is an over-fitting risk and the interpretation becomes harder.

In this paper, we propose a sparse mixture model relaxing the conditional
independence assumption to overcome the biases caused by cim. This new
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model, named Conditional Modes Model (refered in this article by cmm),
groups the variables into conditionally independent blocks, allowing to con-
sider the main conditional dependencies. Such an idea was already proposed
to cluster continuous and categorical data in the Multimix software [23, 24].
However, the specific distribution of the block that we adopt here is a multi-
nomial per modes distribution which assumes that few modality crossings,
named modes, are characteristic and that the other ones follow a uniform
distribution. Thus, the associated multinomial distribution is parsimonious,
its free parameters being limited to the few parameters of the modes.

This simple mixture model (cmm) is a good challenger for the mixture
model with conditional independence assumption (cim), since it preserves the
sparsity and avoids many biases through modeling of the main conditional
correlations. It can be also interpreted as a parsimonious version of the log-
linear mixture model. Indeed, the repartition of the variables into blocks
defines the considered interactions while the mode distribution into blocks
defines a specific distribution for each interaction. Furthermore, resulting
classes are meaningful since the intra-class dependencies are brought out
at two complementary levels: the block variable interaction level and the
associated mode interaction level (through locations and probabilities). Note
that cmm is a comprehensive approach since it includes cim and a part of
its parsimonious versions [8].

For a fixed model (class number, repartition of the variables into blocks
and mode numbers), the maximum likelihood estimate is obtained via an
em algorithm. The model selection is performed via a Metropolis-within-
Gibbs sampler generating a new block variable repartition into blocks and
new mode numbers by a Metropolis-Hastings step. It is performed for a
fixed number of classes and avoids combinatorial problems involved by the
selection of the blocks of variables and of the mode number. It is based
on the fact that the integrated complete-data likelihood, required for the
acceptance probability computation of the Metropolis-Hastings inside the
Gibbs sampler, is accessible and non ambiguous through weekly informative
conjugate prior. Finally, this approach has two main advantages. It allows
to reduce the bias of the bic-like approach (the overestimation of the number
of modes by this approach is illustrated during our numerical experiments).
Furthermore, it allows to perform an efficient model selection in a reasonable
computational time since the parameters are only estimated for the unique
selected model. Thus, this approach is a possible answer to the combinatorial
model selection problem which is known to be a real challenge for a log-linear
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mixture model.

This paper is organized as follows. Section 2 presents the Conditional
Modes Model. Section 3 is devoted to maximum likelihood estimation via
an em algorithm. Section 4 presents the Metropolis-within-Gibbs sampler
performing the model selection through the integrated complete-data like-
lihood. In Section 5, we show that the proposed approach computing the
integrated complete-data likelihood sharply reduces the biases of the bic-
like approach and we numerically underline both the good behavior of the
Metropolis-within-Gibbs sampler and the flexibility of cmm on simulated
data. Section 6 presents two clusterings of biological data sets performed by
the R package CoModes2. A conclusion is drawn and future extensions are
discussed in Section 7.

2. Conditional modes model

2.1. Conditional modes model framework

Observations are described with b categorical variables x = (x1, . . . ,xb)
using the complete disjunctive coding, where x

b has mb modalities. Let a
partition σ = (σ1, . . . ,σd) of {1, . . . ,b} determining a repartition of variables
in d blocks. The j-th block is also denoted by

xj = {xb; b ∈ σj}. (1)

We still adopt the disjunctive coding xjh = 1 if the individual takes the
modality crossing h and xjh = 0 otherwise, where h ∈ {1, . . . ,mj}. Thus, xj

corresponds to a new categorical variable having mj modalities, mj being the
number of modality crossings of the initial variables affected into the block
j determined by mj =

∏

b∈σj
mb.

The proposed model, below refered as Conditional Modes Model (cmm),
assumes that data arise independently from a mixture of g components of in-
dependent blocks of initial variables, the intra-block distribution being multi-
nomial per modes. In each class, the multinomial distribution of xj is also
assumed to have few free parameters in comparison to the number of modal-
ities mj and corresponding to the modes of the distribution. More precisely,
they are defined as the locations of the largest probabilities, while the other

2Downloadable at https://r-forge.r-project.org/R/?group id=1809

5



parameters are equal. A particular model is denoted by ω = (g,σ, ℓ) where
ℓ = (ℓ1, . . . , ℓg) groups all the mode numbers with ℓk = (ℓk1, . . . , ℓkd), ℓkj
being the number of modes of xj for the class k (0 < ℓkj < mj).

2.2. Probability distribution functions of the conditional modes model

Using p(.; .) as a generic notation for the probability distribution function
(pdf), for a known model ω, the cmm’s pdf can be written as

p(x;θ,ω) =

g
∑

k=1

πkp(x;αk,σ, ℓk), (2)

where θ = (π,α) denotes the whole mixture parameters: π = (π1, . . . , πg) is
the vector of class proportions with 0 < πk ≤ 1 and

∑g
k=1 πk = 1, and α =

(α1, . . . ,αg) groups the parameters of the multinomial distributions with
αk = (αk1, . . . ,αkd) and αkj = (αkj1, . . . , αkjmj

), αkjh being the probability
that xjh = 1 conditionally to the component k.

We also define the mapping τkj from {1, . . . ,mj} to {1, . . . ,mj} which
orders the modalities of xj by decreasing values of the probabilities αkjh. For
instance, τkj(1) gives the modality of xj having the largest probability αkjh.
By using the shorter notation αkj(h) = αkjτkj(h), we have αkj(h) ≥ αkj(h+1)

(1 ≤ h < mj). Furthermore, since the multinomial distribution of xj has ℓkj
modes then αkj is defined in the constrained simplex S(ℓkj,mj) where

S(ℓkj,mj) =

{

αkj :

mj
∑

h=1

αkjh = 1, αkj(ℓkj+1) = . . . = αkj(mj)

}

. (3)

In other words, uniformity holds for non-mode modalities. By using the other
shorter notation xj(h)k = xjτkj(h), the conditional independence assumption
between blocks involves the following pdf for the component k

p(x;αk,σ, ℓk) =
d
∏

j=1

mj
∏

h=1

(αkjh)x
jh

=
d
∏

j=1

mj
∏

h=1

(

αkj(h)

)xj(h)k
. (4)

Thus, cim is included in ccm, since the conditional independence assumption
between the initial variables is defined by putting d = b and ℓkj = mj − 1.
Indeed, in such case, each variable built a block, so σ = ({1}, . . . , {b}).

6



2.3. Conditional modes model characteristics

cmm is meaningful with its two levels of interpretation. Firstly, the intra-
class dependencies of variables (equal between classes) are brought out by
the repartition of the variables into blocks given by σ. Secondly, the intra-
class and intra-block dependencies of modalities (possibly different between
classes) are summarized by the modes (locations and probabilities). A shorter
summary for each distribution is also available by using the following compact
terms, defined on [0, 1] and respectively reflecting the complexity and the
strength of the intra-class and intra-block dependencies

κkj =
ℓkj

mj − 1
and ρkj =

ℓkj
∑

h=1

αkj(h). (5)

For instance, the smaller is κkj and the larger is ρkj, the more massed in
few characteristic modality crossings is the distribution, since the modes are
interpreted as an over-contribution at the uniform distribution among all the
modality crossings.

Note that the repartition of the variables into conditionally independent
blocks identical between classes assures the model generic identifiability. In-
deed, with this constraint, the results of [25] can be applied to prove the
generic identifiability of the cmm (details are given in Appendix A). De-
spite the constraint of the same repartition of the variables into blocks for all
the classes, the model stays flexible because of the specific block distribution.

The main idea of the former sparse versions of cim (classical conditional
independence model) proposed by [8] is to estimate only one mode for each
multinomial distribution of the initial variable. Different constraints of equal-
ity are then added between the variables and/or classes. In fact, many of
these models are included in the model family of cmm by putting d = b and
ℓkj = 1. In addition, as cmm needs ν = (g − 1) +

∑g
k=1

∑d
j=1 ℓkj param-

eters, models of cmm’s family can need less parameters than cim—having
(g − 1) + g ×

∑

b

b=1(mb − 1) parameters—although it takes into account the
conditional dependencies.

2.4. New parametrization of the block distribution

The parsimonious versions of cim introduced by [8] are meaningful since
each multinomial is written with two parameters: one discrete giving the loca-
tion of the mode of the distribution and one continuous giving its probability.

7



By using the same idea, we propose a new parametrization of the block dis-
tribution, denoted by (δkj,akj), which facilitates the interpretation and the
writing of the prior and posterior distributions of the block parameters (see
Section 4). The discrete parameter δkj = {δkjh;h = 1, . . . , ℓkj} determines
the mode locations, since δkjh indicates the modality crossing where the mode
h is located, with δkjh 6= δkjh′ if h 6= h′ and δkjh ∈ {1, . . . ,mj}. The continu-
ous parameter akj = (akjh;h = 1, . . . , ℓkj+1) determines the probability mass
of the ℓkj modes by its first ℓkj elements (akjh with h = 1, . . . , ℓkj) and the
probability mass of the non-mode by its last element (akjℓkj+1). This param-

eter is defined on the truncated simplex involving akjh ≥
akjℓkj+1

mj−ℓkj
(h ≤ ℓkj).

The parameter αkj and the couple (δkj,akj) are linked by

αkjh =

{

akjh′ if ∃h′ such that δkjh′ = h
akjℓkj+1

mj−ℓkj
otherwise.

(6)

3. Maximum likelihood estimate

The whole data set consisting of n independent and identically distributed
individuals is denoted by X = (x1, . . . ,xn). Remark that X denotes the
whole observed sample and not a random variable. The observed-data log-
likelihood of cmm is also defined as

L(θ;X,ω) =
n
∑

i=1

ln p(xi;θ,ω). (7)

Since we use cmm to cluster, the indicator vector of the g classes denoted by
Z = (zi; i = 1, . . . , n) with zi = (zi1, . . . , zig) where zik = 1 if the individual
xi arises from the class k and zik = 0 otherwise, is considered as a missing
variable. The complete-data log-likelihood of cmm is then defined by

L(θ;X,Z,ω) =
n
∑

i=1

g
∑

k=1

zik ln
(

πkp(xi;αk,σ, ℓk)
)

. (8)

For the mixture models, the direct optimization on θ to obtain the max-
imum likelihood estimate (mle), denoted by θ̂, involves solving equations
having no analytical solution. So, we perform the parameter’s estimation via
an em algorithm [26, 27], which is often simple and efficient for the missing
data situation. It is an iterative algorithm which alternates between two
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steps: the computation of the complete-data log-likelihood conditional ex-
pectation (e step) and its maximization (m step). At the iteration [r], this
algorithm is written as:

E step: conditional probabilities computation

tik(θ[r]) =
π
[r]
k p(xi;α

[r]
k ,σ, ℓk)

∑g
k′=1 π

[r]
k′ p(xi;α

[r]
k′ ,σ, ℓk′)

. (9)

M step: maximization of the complete-data log-likelihood

π
[r+1]
k =

n
[r]
k

n
and α

[r+1]
kj(h) =











n
[r]
kj(h)

n
[r]
k

if (1 ≤ h ≤ ℓkj)

1−
∑ℓkj

h′=1
α
[r+1]

kj(h′)

mj−ℓkj
otherwise,

(10)

by using the notations n
[r]
k =

∑n
i=1 tik(θ[r]) and n

[r+1]
kjh =

∑n
i=1 tik(θ[r])xjh

i .
Note that, at the M step of iteration [r], the function τkj is redefined as the

decreasing ordering function of the n
[r+1]
kjh and allows to define n

[r+1]
kj(h) with

n
[r+1]
kj(h) ≥ n

[r+1]
kj(h+1).

4. Model selection via Metropolis-within-Gibbs sampler

The aim is to obtain the model ω̂ having the largest posterior probability.
We assume that p(g) = 1

gmax
for g = 1, . . . , gmax and that p(σ) (remind that

g and σ are independent) and p(ℓ|g,σ) follow uniform distributions. Let
the gmax models denoted by ω(g) = (g,σ(g), ℓ(g)), for g = 1, . . . , gmax, where
(σ(g), ℓ(g)) = argmax

σ,ℓ
p(σ, ℓ|X, g). The best model is argmax

g
p(ω(g)|X) and

it is found by applying the bic approximation among those gmax selected
models. However, an exhaustive search strategy is not feasible for two corre-
lated reasons: firstly, the number of couples (σ, ℓ) can be excessively huge,
and, secondly, the estimation of the mle for each of them is an unneces-
sary waste of time computing. A Metropolis-within-Gibbs sampler strategy
overcomes these two drawbacks at the same time, as we now describe.

For a fix value of g, the couple (σ(g), ℓ(g)) is estimated by the follow-
ing Metropolis-within-Gibbs sampler [28] having p(σ, ℓ|g,X) as stationary
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distribution and whose the iteration [s] is written as

θ
[s+1] ∼ p(θ|ω[s],X,Z[s]) (11)

Z[s+1] ∼ p(Z|ω[s],X,θ[s+1]) (12)

(σ[s+1], ℓ[s+1]) ∼ p(σ, ℓ|ω[s],X,Z[s+1]), (13)

where ω[s] = (g,σ[s], ℓ[s]). As the observed data are independent, the full
conditional distribution of Z is classical and is written as

p(Z|ω,X,θ) =
n
∏

i=1

p(zi|ω,xi,θ) with p(zi|ω,xi,θ) =

g
∏

k=1

(tik(θ))zik . (14)

In this section, we firstly detail the full conditional distributions sampling the
parameters (denoted by instrumental elements) by using block parametriza-
tion given in Section 2.4, and we secondly detail the sampling of (σ, ℓ) (con-
sidered as the interest elements).

4.1. Sampling of the instrumental elements

We now detail the sampling according to p(θ|ω[s],X,Z[s]) defined in (11).

Prior assumption. We assume the independence a priori between the class
proportions and the block distribution parameters, involving that the prior
of the whole parameter is written as

p(θ|ω) = p(π|ω)

g
∏

k=1

d
∏

j=1

p(αkj|ω). (15)

Note that this property of conditional independence is preserved for the dis-
tribution of θ conditionally on (ω,X,Z), thus

p(θ|ω,X,Z) = p(π|ω,X,Z)

g
∏

k=1

d
∏

j=1

p(αkj|ω,X,Z). (16)

Prior and posterior distributions of π. The Jeffreys non informative prior
distribution, for a multinomial, is a conjugate Dirichlet distribution [29]. So,
the prior and the posterior distributions of π [9] are respectively defined by

π|ω ∼ Dg

(1

2
, . . . ,

1

2

)

and π|ω,X,Z ∼ Dg

(1

2
+ n1, . . . ,

1

2
+ ng

)

, (17)

where nk =
∑n

i=1 zik (not equal to n
[r]
k ).

10



Prior distribution of αkj. We now use the parametrization of the block dis-
tribution (δkj,akj) (defined in Section 2.4). We assume the independence
between the prior of δkj and of akj, so

p(αkj|ω) = p(δkj|ω)p(akj|ω). (18)

We use a uniform distribution among all the mode locations and a conjugate
truncated Dirichlet distribution3 as prior of akj, so

p(δkj|ω) =

(

mj

ℓkj

)−1

and akj|ω ∼ Dt
ℓkj+1

(

γkj1, . . . , γkjℓkj+1; mj

)

, (19)

where the γkjh are the parameters of the truncated Dirichlet distribution. In
Appendix B, we justify why we now fix γkjh = 1. The proposed prior is also
weakly informative since it is an uniform distribution.

Posterior distribution of αkj. The posterior distribution of αkj is written as

p(αkj|ω,X,Z) = p(δkj|ω,X,Z)p(akj|ω, δkj,X,Z). (20)

The distribution of δkj|ω,X,Z is a multinomial one with too many values
to be computable. Let the set δ̃kj = {δ̃kjh;h = 1, . . . , ℓkj} containing the

indices of the ℓkj largest values of nkjh =
∑n

i=1 zikxjh
i ordered such as

∀h ∈ {1, . . . , ℓkj − 1}, nkjδ̃kjh
≥ nkjδ̃kjh+1

. (21)

We assume that the difference between the mode probabilities and the non-
mode probabilities are significant. So, we can approximate the full condi-
tional distribution of δkj by a Dirac in δ̃kj. This approximation is strength-
ened by the fast convergence speed of the discrete parameters [30]. Concern-
ing now akj, as its prior is conjugated, its conditional distribution is explicitly
defined as

akj|ω, δkj,X,Z ∼ Dt
ℓkj+1

(

1 + nkj(1), . . . , 1 + nkj(ℓkj), 1 + n̄
ℓkj
kj ; mj

)

, (22)

where nkj(h) is the hth larger value of the set {nkjh;h = 1, . . . ,mj} and

n̄
ℓkj
kj = nk −

∑ℓkj
h=1 nkj(h).

3
p(akj |ω) ∝

∏ℓkj+1

h=1
(akjh)

γkjh−1
1{

akjh≥
akjℓkj+1

mj−ℓkj

}.
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4.2. Sampling of a new model according to p(σ, ℓ|ω[s],X,Z[s+1])

The sampling of ω[s+1] = (g,σ[s+1], ℓ[s+1]) according to Equation (13) is
performed in two steps. Firstly, a new repartition of the variables into blocks
and the mode number of the modified blocks, respectively denoted by σ[s+1]

and ℓ
[s+1/2], are sampled by one iteration of a Metropolis-Hastings algorithm.

Secondly, the mode number of each block is sampled by one mcmc iteration.
Thus, the sampling of ω[s+1] is decomposed into the two following steps

(σ[s+1], ℓ[s+1/2]) ∼ p(σ, ℓ|ω[s],X,Z[s+1]) (23)

ℓ
[s+1] ∼ p(ℓ|ω[s+1/2],X,Z[s+1]), (24)

where ω[s+1/2] = (g,σ[s+1], ℓ[s+1/2]). Thus, this chain has p(σ, ℓ|g,X,Z[s+1])
as stationary distribution.

4.2.1. Metropolis-Hastings algorithm to sample ω[s+1/2]

The sampling of ω[s+1/2] is performed by one iteration of the Metropolis-
Hastings algorithm divided into two steps. Firstly, the proposal distribution
q(.;ω[s]) generates a candidate ω⋆ = (g,σ⋆, ℓ⋆). Secondly ω[s+1] is sampled
according to the acceptance probability µ[s] defined by

µ[s] = 1 ∧
p(X,Z[s]|ω⋆)

p(X,Z[s]|ω[s])

q(ω[s];ω⋆)

q(ω⋆;ω[s])
. (25)

The computation of µ[s] involves to compute the integrated complete-data
likelihood. In Section 4.2.3, we described how to solve this problem without
using the biased bic approximation or using too much time computing mcmc

methods. The sampling of ω[s+1/2] is written as

ω
⋆ ∼ q(.;ω[s]) (26)

ω
[s+1/2] =

{

ω⋆ with a probability µ[s]

ω[s] otherwise.

The proposal distribution q(.;ω[s]) samples ω⋆ in two steps. The first step
changes the block affectation of one variable. In practice, σ⋆ is uniformly
sampled in V (σ[s]) = {σ : ∃!b as b ∈ σ

[s]
j and b /∈ σj}. The second step

uniformly samples the mode numbers among all its possible values for the
modified blocks while ℓ⋆kj = ℓ

[s]
kj for non-modified blocks (i.e. j as σ

[s]
j = σ⋆

j).
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4.2.2. MCMC algorithm to sample ℓ
[s+1]

This step allows to increase or decrease the mode number of each block by
one at each iteration. So, ℓ

[s+1]
kj is sampled according to p(ℓkj|ω

[s+1/2],X,Z[s])
defined by

p(ℓkj|ω
[s+1/2],X,Z[s+1]) ∝







p(Xj|Z[s+1], ℓkj) if |ℓkj − ℓ
[s+1/2]
kj | < 2

and ℓkj /∈ {0,mj}.
0 otherwise.

(27)

Thus, this algorithm needs the value of p(Xj|Z, ℓkj) defined by

p(Xj|Z, ℓkj) =

∫

S(ℓkj ,mj)

mj
∏

j=1

(αkjh)nkjhdαkj. (28)

That we have to detail now.

4.2.3. The integrated complete-data likelihood

The integrated complete-data likelihood is defined as

p(X,Z|ω) = p(Z|ω)

g
∏

k=1

d
∏

j=1

p(Xj|Z, ℓkj), (29)

where Xj = (Xj
i ; i = 1, . . . , n). Note that the quantities p(X,Z|ω) and

p(Xj|Z, ℓkj) are respectively needed to compute the acceptance probability
of the Metropolis-Hastings algorithm (see Equation (25)) and to sample the
number of modes (see Equation (27)) and can be evaluated by bic-like ap-
proximations [31, 32]. For instance, the integrated complete-data likelihood
is approximated by

ln p(X,Z|ω) = ln p(X,Z|θ⋆,ω) −
ν

2
lnn + O(1), (30)

θ
⋆ begin the maximum complete-data likelihood estimate. However, this kind

of approximation is only asymptotically true and over-estimates the mode
numbers (see Section 5.1). As Z|ω follows a uniform distribution among all
the possible partitions, we propose to compute each p(Xj|Z, ℓkj) to obtain
p(X,Z|ω). This computation is not easy since αkj is defined on S(ℓkj; mj)
and not on the whole simplex of size ℓkj (except when ℓkj = mj − 1, in such
case we can use the approach of cim [9]). An explicit formula is given in the
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following proposition whose the proof is given in Appendix B by performing
an exact computation of the integral over the continuous parameters and an
approximation on the discrete ones.

Proposition 1. The integrated complete-data likelihood is approximated, by
neglecting the sum over the discrete parameters of the modes locations and
by performing the exact computation on the continuous parameters, by

p(Xj|Z, ℓkj) ≈

(

1

mj − ℓkj

)

n̄

ℓkj
kj

ℓkj
∏

h=1

Bi
(

1
mj−h+1

; nkj(h) + 1; n̄h
kj + 1

)

mj − h
, (31)

where Bi(x; a, b) = B(1; a, b)−B(x; a, b), B(x; a, b) being the incomplete beta
function defined by B(x; a, b) =

∫ x

0
wa(1 − w)bdw.

From the previous expression, its is straightforward to obtain p(X,Z|ω).

5. Simulations

5.1. Integrated complete-data likelihood: comparison of both approaches

Aim. During this experiment, we highlight the biases of the bic criterion for
the selection of the number of modes and the gain provided by the proposed
computation of the integrated complete-data likelihood.

Data generation. As we want to compare both approaches for the selection
of the number of modes, we simulate samples composed by n i.i.d individuals
arisen from a multinomial distribution per modes Ms(r, r, r,

1−3r
s−3

, . . . , 1−3r
s−3

)
with s modalities and three modes having a probability r. For different sizes
of sample, 105 samples are generated with different values of (r, s).

Results. Figure 1 gives a comparison between the proposed approach and
the bic-like approximation for the selection of the number of modes. The
proposed criterion obtains best results than the bic criterion in the four
studied situations for the large size of sample. Furthermore, it allows to
never overestimates the mode number. Finally, its variability is smaller than
the bic criterion one. We enter now into more specific comments.

In case (a), modes have a large probability mass and they are easily
detected since there are few modalities. Thus, both criteria have the same
behavior since they find the true number of modes with a probability close
to one even for small samples.
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Figure 1: Probability that the bic criterion (represented in fine black lines) and the
proposed approach (represented in bold red lines) select the true number of modes (rep-
resented in plain line) and over-estimate (represented in dotted line) (a) r=0.3, s=9; (b)
r=0.2, s=9; (c) r=0.2, s=18; (d) r=0.1, s=27.

When the mode probabilities decrease (case (b)), it is more difficult to
identify them. In such case, the bic criterion allows to better find the true
number of modes with a moderate overestimation risk, for the small samples
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(size lower than 150), than the proposed approach which can underestimates
the number of modes. When the sample size is larger than 200, the proposed
approach obtains better results since it finds a true number of modes almost
always while the bic criterion keeps an overestimation risk.

If the number of modalities increases (case (c)), then the problem be-
comes harder and the proposed approach also shows its interest since the
bic criterion is strongly biased in such case. The bic criterion keeps this
bias even for a large data set while the proposed approach almost always
finds the true number of modes when the sample size is larger than 100.

Finally, note that in the more complex situations like in case (d) (few
probability mass for the modes and large number of modalities), the proposed
approach underestimates the number of modes when the sample size is small
then converges to the true mode values when the sample size increases. Note
that, in such case, the bias of the bic criterion keeps significant even for a
large data set.

Based on this experiment, the proposed criterion seems most relevant
since its asymptotic behavior is better than the bic criterion, it never over-
estimates the mode number and its variability the smaller than the bic cri-
terion.

5.2. Simulation with well specified model

Aim. During this experiment, we highlight the good behavior of the algo-
rithms (Metropolis-within-Gibbs sampler and em algorithm) for performing
the model selection and the estimation of the mle. Thus, data are generated
according to cmm, then the model and the mle are estimated. The quality
of the estimation is determined by the Kullback-Leibler divergence. We show
that this divergence converges to zero when the sample size increases. So,
we conclude to the good behavior of both algorithms.

Data generation. A data set of six variables with three modalities is gen-
erated according to a bi-component cmm with the following parameters:
σ = ({1, 2}, {3, 4}, {5, 6}), ℓkj = 2, π = (0.5, 0.5), αkj = (0.4, 0.4, 0.2/7),
where the modes are located at different modality crossings for both classes.

Results. For different values of n = (50, 100, 200, 400, 800), 100 samples are
generated. The Kullback-Leibler divergence is computed between the true
and the estimated parameters. Table 1 presents the mean of this divergence.
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n 50 100 200 400 800
mean 0.656 0.117 0.061 0.028 0.015

sd 0.636 0.052 0.018 0.007 0.003

Table 1: Mean and standard deviation of the Kullback-Leibler divergence computed be-
tween the true parameters of the specified model and the maximum likelihood estimates
associated to the model selected by the Metropolis-within-Gibbs algorithm for different
sample size.

As the Kullback-Leibler divergence converges to zero, when the sample
size increases, we claim that the estimated distribution converges to the true
one. Thus, we conclude to the good behavior of the estimation algorithm.

5.3. Simulation with misspecified model

Aim. During this experiment, we underline that the flexibility of cmm allows
it to keep good results even if the model is misspecified. Thus, we simulate
samples according to a bi-component mixture model where the intra-class
dependencies are different for both components. A tuning parameter allows
us to modify the strength of the intra-class dependencies and the class over-
lapping. The results of cmm are compared to those of cim.

Data generation. A data set of size 100 is sampled from the following bi-
component mixture model of dimension six

p(x;θ) = 0.5

3
∏

h=1

p(x2h−1
,x

2h;θ) + 0.5 p(x1;θ)p(x6;θ)

2
∏

h=1

p(x2h
,x

2h+1;θ), (32)

with p(xj,xj+1;θ) = p(xj;θ)
(

λ1{xj=xj+1}+(1−λ)p(xj+1;θ)
)

and with xj ∼
M3(1/3, 1/3, 1/3). Thus, when λ = 0, the sample is generated by a uniform
distribution and classes are confused. The larger is the tuning parameter λ,
the larger are the intra-class dependencies and the class separation. Note
that cmm is not the good model since the conditionally correlated variables
are not the same in both classes.

Results. For different values of λ = (0.2, 0.4, 0.6, 0.8), 100 samples are gen-
erated. The Kullback-Leibler divergence associated to the model with the
best number of classes (selected by the bic criterion among g = 1, 2, 3, 4) is
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λ 0.2 0.4 0.6 0.8
cmm 0.09 (1.00) 0.25 (1.16) 0.53 (2.08) 0.87 (2.10)
cim 0.11 (1.00) 0.27 (1.00) 1.67 (1.12) 5.79 (1.40)

Table 2: Kullback-Leibler divergence and mean of the class number obtained by cmm and
cim.

computed. Table 2 presents the results obtained by cmm and cim.

The larger is λ, the larger is the Kullback-Leibler divergence for both
models. However, the flexibility of cmm allows to keep an acceptable value
of the Kullback-Leibler divergence while this divergence grows dramatically
faster with cim. Furthermore, when the classes are well separated (large
value of λ), cmm finds more often the true class number than cim.

6. Applications

For both applications, the estimation of cmm was performed by the R
package CoModes. Both data set are available in CoModes developed by the
authors. Appendix C displays the R code of the second application and can
be used as a tutorial of CoModes.

6.1. Seabirds clustering

Data. We study a biological data set describing 153 puffins (seabirds) by
five plumage and external morphological characteristics presented in Table 3
[33]. These seabirds are divided into three subspecies dichrous (84 birds),
lherminieri (34 birds) and subalaris (35 birds).

variables mj modalities
collar 5 none ... ... ... continuous

eyebrows 4 none ... ... very pronounced
sub-caudal 4 white black black and white BLACK and white

border 3 none ... many
gender 2 male female

Table 3: Presentation of the five plumage and external morphological variables describing
the puffins.
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Experimental settings. The subspecies memberships of the individuals are
blinded. For g = 1, . . . , 6, the mle of cim is obtained by 25 initializations
of an em algorithm while 25 chains of 3000 iterations are performed for the
model selection of cmm followed by 25 initializations of em algorithm to find
the mle.

Results. Table 4 presents the values of the bic criterion for both models
and different class numbers. Even if both models select two components, the
values of the bic criterion are better for cmm than for cim for all the number
of classes. Thus, cmm better fits the data than cim.

g 1 2 3 4 5 6
cmm -711 -691 -701 -709 -721 -727
cim -711 -706 -722 -745 -775 -805

Table 4: Values of the bic criterion for different class numbers and for cmm and cim.
Boldface indicates the best values of this criterion.

According to Table 5 displaying the confusion matrix between the esti-
mated partitions and the subspecies, we claim that the Subalaris are more
different than the two other subspecies. Indeed, both models affect all the
Subalaris in class 2. If the estimated partitions by both models are similar,
we remark that cmm affects less other subspecies in this class than cim.

cmm cim

class 1 class 2 class 1 class 2
Dichrous 52 32 48 36

Lherminieri 23 11 22 12
Subalaris 0 35 0 35

Table 5: Confusion tables between the subspecies and estimated partition into two classes.

Figure 2(a) displays the seabirds on the first correspondence analysis plan
and indicates the subspecies. We note that all the Subalaris are in the same
location (bottom left) for the first principal correspondence map. We display
the partition corresponding to the best model (cmm with two components)
in Figure 2(b). Note that, for both model, the first principal correspondence
axe allows to define a classification rule.
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Figure 2: Seabirds on the first principal correspondence analysis map (a) with the sub-
species and (b) with the best cmm estimated partition. The bold triangles indicate the
individuals affected in class 1 for cmm and in class 2 for cim. An i.i.d. uniform noise on
[0, 0.1] has be added on both axes for each individual in order to improve visualization.

We now describe the best bi-component model of cmm. Even if the es-
timated model assumes the conditional independence between the variables,
this model is of interest because of its sparsity. Indeed, it is more parsimo-
nious than cim since a small number of modes is estimated as shown by the
summary proposed by κkj and ρkj defined in (5) and presented in Table 6.
Thus, the first variables are characterized by few modalities with a high prob-
ability. As the variables are conditionally independent, the κkj indicates the
number of modalities having a probability upper than the uniform distribu-
tion. For example the multinomial distribution of the variable sub-caudal
has two modes for both classes (so κkj = 2/3).

collar eyebrows sub-caudal border gender
class 1 0.75 (0.93) 0.67 (0.91) 0.67 (0.88) 1.00 (1.00) 1.00 (0.55)
class 2 0.75 (0.98) 0.67 (0.77) 0.67 (0.99) 0.50 (0.97) 1.00 (0.57)

Table 6: Summary of the CMM with three classes: κkj is displayed in plain and ρkj is
displayed in parenthesis.

The maximum likelihood estimates of the component parameters are dis-
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Figure 3: Class parameters of the bi-components cmm estimated on the Seabirds data.
The black color (respectively the gray color) corresponds to the probability mass of the
modes for the class 1 (respectively to the class 2).

played in Figure 3. Each sub-figure corresponds to a block of variable, thus
we note again that the estimated model assumes the conditional indepen-
dence. For each block of variables, the modality crossings where one mode is
estimated for at least one component are focused. For these modality cross-
ings, we display their cumulated probability masses for each component (the
component are identifiable by different colors). These modality crossings are
presented by decreasing order of cumulated probability mass. Note that the
mode locations are discriminative since the modality black (resp. white) has
a probability of 0.64 (resp. 0.24) for the class 1 while the modality white
(resp. BLACK and white) has a probability of 0.94 (resp. 0.05).

Finally, the conditional independence assumption seems realistic since the
conditional Cramer’s V measures, presented in Table 7, are small. We also
perform a bootstrap test of the global nullity of the Cramer’s V by generating
1000 samples. We obtain a p-value of 0.91, so the conditional independence
assumption is validated.
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1 0.14 0.15 0.23 0.21
1 0.36 0.20 0.13

1 0.13 0.19
1 0.01

1
(a) Class 1

1 0.14 0.09 0.11 0.28
1 0.24 0.21 0.26

1 0.02 0.07
1 0.17

1
(b) Class 2

Table 7: Matrix of the Cramer’s V measures computed according to the estimated classes.

6.2. Acute inflammations clustering

A tutorial of the R package CoModes performing the clustering of the
Acute inflammations data set is presented in Appendix C.

Data. We want to cluster 120 patients [34] described by five binary variables
(occurrence of nausea (Nau), lumbar pain (Lum), urine pushing (Pus), mic-
turition pains (Mic) and burning of urethra (Bur)) and by one three modali-
ties variables (temperature of the patient (Tem): T < 37C, 37C ≤ T < 38C
and 38C ≤ T ). We know that some patients have one of the following dis-
eases of the urinary system: inflammation of urinary bladder and Nephritis
of renal pelvis origin.

Experimental conditions. We use the same experimental conditions as the
Seabirds clustering.

Results. Table 8 presents the values of the bic criterion for both models and
different class numbers. For each class number, the bic criterion value of
cmm is better than for cim. Futhermore, cmm selects three classes while cim
selects four classes. This phenomenon can be due to the violated conditional
independence assumption of cim.

g 1 2 3 4 5 6
cmm -510 -351 -338 -345 -399 -401
cim -527 -478 -439 -407 -412 -418

Table 8: Values of the bic criterion for different classes number and for cmm and cim.
Boldface indicates the best values of this criterion.

Note that the estimated distributions of cim and cmm are different. The
obtained partition are also different. Table 9 displays the confusion matrices
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between the best model of cmm and the models of cim with three and four
classes. Thus, if 29 individuals constitute a group which is well separated
of the other individuals (class 3) for the three models, the other individuals
have a class membership determined by the selected model.

cmm

c1 c2 c3
cim c1 40 0 0
cim c2 10 41 0
cim c3 0 0 29

cmm

c1 c2 c3
cim c1 40 0 0
cim c2 10 20 0
cim c3 0 21 0
cim c4 0 0 29

Table 9: Confusion matrices between the best model of cmm and the models of cim with
three and four classes.

Figure 4 displays the individuals on the 1-5 principal correspondence anal-
ysis map where the estimated classes are well separated.
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Figure 4: Individuals on the 1-5 principal correspondence analysis map with the best cmm
estimated partition. An i.i.d. uniform noise on [0, 0.1] has be added on both axes for
each individual in order to improve visualization. Colors and symbols indicate the class
membership.

The model cmm with three classes has the following repartition of the
variables into blocks: σ = ({Tmp, Pus, Mic, Bur}, {Nau}, {Lum}). As shown
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by the summary ρkj and κkj displayed in Table 10, the three classes are con-
centrated in few modality crossings for the block one and in one location
with a probability close to one for the two other blocks.

Tmp, Nau, Lum, Mic Pus Bur
Class 1 0.41 (1.00) 1.00 (1.00) 1.00 (0.99)
Class 2 0.33 (0.99) 1.00 (1.00) 1.00 (1.00)
Class 3 0.25 (0.99) 1.00 (1.00) 1.00 (1.00)

Table 10: Summary of the CMM with three classes: κkj is displayed in plain and ρkj is
displayed in parenthesis.

The following class interpretation is based on the class parameters dis-
played by Figure 5. Note that the variables urine pushing and burning of
urethra are the most discriminative ones.

• The majority class (42%) groups individuals having no nausea and no
lumber pain.

• The second class (34%) groups individuals having no nausea but lumber
pain.

• The third class (24%) groups individuals having nausea and lumber
pain. Furthermore, these individuals have some fiever and micturition
pain.

7. Conclusion

In this article, we have presented a new mixture model (cmm) to cluster
categorical data. Its strength is to relax the conditional independence as-
sumption and to stay parsimonious. A summary of the distribution is given
by κkj and ρkj while each class can be summarized by the mode locations.
As shown by the Seabirds application, cmm can improve the results of the
classical latent class model even if the conditional independence assumption
is true, thank’s to its sparsity.

The combinatorial problems of the block detection and of the modes
number selection is solved by a Metropolis-within-Gibbs algorithm and use
the computation of the integrated complete-data likelihood. Thus, this ap-
proach can be used to select the interactions of the log-linear mixture model
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Figure 5: Estimated parameters of the tri-component cmm displayed by the barplot func-
tion of the package CoModes. Black color corresponds to class 1, black gray color corre-
sponds to class 2 and pale gray color corresponds to class 3.

per block. The R package CoModes allows to perform the model selection
and the parameter’s estimation. Both data sets presented in this article
are included in this package. To efficiently reduce the computing time, the
functions of this package will be soon implemented in C++.

However, the model is hardly estimated if the data set has a large number
of variables. Some constraints on the block variables repartition could also
be added (for instance the number of variables into blocks could be limit
at three variables). Another solution could be to estimate the model by a
forward/backward strategy but it is know that these method are sub-optimal.

Finally, we imposed the equality of the repartition of the variables into
blocks for all the classes. This property allows us to prove the generic identi-
fiability of cmm. This lack of flexibility is counterbalanced by flexible block
distribution. However, one could try to relax the class-equality of σ with the
model no-identifiability risk.
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Appendix A. Generic identifiability of CMM

We demonstrate that cmm is generically identifiable, i.e. the parameter
space where the model is not identifiable has a Lebesgue measure equal to
zero. To do this, we adapt the demonstration of the generic identifiability
of cmm given by [25] and based on the Kruskal theorem [35, 36]. By using
the conditional independence between the blocks of variables, we present a
sufficient condition for the generic identifiability of cmm which is a relation
between the class number and the mode number. As this demonstration is
just an adaptation of the proof given by [25], some technical details are not
reminded here. The demonstration is cut into three steps: we start by a
reminder of the Kruskal results for the three-way tables, then we show the
generic identifiability of cmm with three blocks of variables and we finish by
an extension to cmm with more than three blocks.

Kruskal results. For a matrix M , the Kruskal rank of M , denoted by rankK M
is the largest number I such that every set of I rows of M are linearly inde-
pendent.
Theorem 1 (Kruskal [35, 36]). Let Ij = rankK Mj. If

I1 + I2 + I3 ≥ 2g + 2,

then the tensor [M1,M2,M3] uniquely determines the Mj, up to simultaneous
permutation and rescaling rows.

Generic identifiability of CMM with three blocks. Let k0 = argmin
k

ℓkj and

the matrix Mj where
Mj(k, h) = αkjτk0j(h)

. (A.1)

By denoting by ξj = min
k

ℓkj + 1, generically, we have

rankK Mj = min(g, ξj).
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Corollary 1 The parameters of cmm with three blocs are generically iden-
tifiable, up to label swapping, provided:

min(g, ξ1) + min(g, ξ2) + min(g, ξ3) ≥ 2g + 2.

Generic identifiability of cmm with more than three blocks. In the same way
that [25], we generalize the result with d blocks by observing that d blocks of
categorical variables can be combined into three categorical variables. Thus,
we can apply the Kruskal theorem.
Corollary 2 We consider a cmm with d blocks where d ≤ 3. If there exists
a tri-partition of the set {1, . . . , d} into three disjoint non empty subsets S1,
S2 and S3, such that γi =

∏

j∈Si
ξj with

min(g, γ1) + min(g, γ2) + min(g, γ3) ≥ 2g + 2, (A.2)

then the model parameters are generically identifiable up to label swapping.

Appendix B. Proof of Proposition 1

In this Section, a proof of Proposition 1 is given. We firstly define a new
parametrization of the block distribution facilitating the integrate complete-
data likelihood computation. We secondly define the prior distribution of the
new block parametrization according to the other parametrization. Thirdly,
we underline the relation between the embedded models. We conclude by the
integrate complete-date likelihood computation, which is the target result.

Appendix B.1. New parametrization of the block distribution

Without loss of generality, we assume that the elements of δkj are or-
dered by decreasing values of the probability mass associated to them and
we introduce the new parametrization of akj denoted εkj where εkj ∈ Ekj =
[

1
mj

; 1
]

×, . . . ,×
[

1
mj−ℓkj

; 1
]

and where εkjh is defined by

εkjh =

{

akjδkjh if h = 1
akjδkjh

∏h−1
h′=1

(1−εkjh′ )
otherwise.

Lemma 1. The conditional probability of Xj is

p(Xj|Z, ℓkj, δ̃kj, εkj) =

ℓkj
∏

h=1

(εkjh)nkj(h)(1 − εkjh)n̄
h
kj , (B.1)
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Proof.

p(Xj|Z, ℓkj, δ̃kj, εkj) = p(Xj|Z, ℓkj,αkj)

=

mj
∏

h=1

(αkjh)nkjh

=





ℓkj
∏

h=1

(αkj(h))
nkj(h)



α
n̄
ℓkj
kj

kj(ℓkj+1)

= ε
nkj(1)

kj1

ℓkj
∏

h=2

[

ε
nkj(h)
kjh

(

h−1
∏

h′=1

(1 − εkjh)nkj(h)

)]

ℓkj
∏

h=1

(1 − εkjh)n̄
ℓkj
kj

=

ℓkj
∏

h=1

(εkjh)nkj(h)(1 − εkjh)n̄
h
kj .

Appendix B.2. Prior distribution

Lemma 2. The prior distribution of εkj is

p(εkj|ω, δkj) =
mj

mj − ℓkj
. (B.2)

Proof. We remind that akj|ω ∼ Dt
ℓkj+1

(

1, . . . , 1; mj

)

and that

p(akj, δkj|ω) = p(α|ω) = p(εkj, δkj|ω). (B.3)

So, we deduce the pdf of the prior distribution of εkj

p(εkj|δkj,ω) =

∏ℓkj
h=1(εkjh)γkjh−1(1 − εkjh)

∑ℓkj+1

h′=h+1
(γkjh′−1)

∫

εkj∈Ekj

∏ℓkj
h=1(εkjh)γkjh−1(1 − εkjh)

∑ℓkj+1

h′=h+1
(γkjh′−1)dεkj

. (B.4)

Thus, each εkjh follows a truncated Beta distribution on the parameters

space
[

1
mj−h+1

, 1
]

denoted by Be(γkjh,
∑ℓkj+1

h′=h+1(γkjh′ − 1) + 1). To assure

the positivity of the parameters of the truncated Beta distributions, we put
γkjh = 1, so

p(εkj|δkj,ω) =
mj

mj − ℓkj
. (B.5)
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Appendix B.3. Relation between embedded models

Lemma 3. Let the model with ℓ⊖kj modes and the parameters (δ̃
⊖

kj, ε
⊖
kj) and

let the model with ℓkj modes and the parameters (δ̃kj, εkj). Both modes are
defined as such that ℓ⊖kj = ℓkj − 1, that the ℓ⊖kj modes having the largest

probabilities have the same locations (∀h ∈ δ
⊖
kj, h ∈ δkj) and the same

probability masses (ε⊖kjh = εkjh, h < ℓkj). These embedded models follow this
relation

p(Xj|Z, ℓkj, δ̃kj, εkj)

p(Xj|Z, ℓ⊖kj, δ̃
⊖

kj, ε
⊖
kj)

=
(mj − ℓkj + 1)n̄

ℓkj−1

kj
−1

(mj − ℓkj)
n̄

ℓkj
kj

(εℓkj)
nkj(ℓkj)(1 − εℓkj)

n̄

ℓkj
kj .

(B.6)

Proof. We start by the following relation

p(Xj|Z, ℓkj,αkj)

p(Xj|Z, ℓ⊖kj,α
⊖
kj)

=
α
nkj(ℓkj)

kjℓkj
(αkjℓkj+1)

n̄
ℓkj
kj

α
⊖n̄

ℓkj−1

kj

kjℓkj

. (B.7)

Note that, εkjh = ε⊖kjh when (h = 1, . . . , ℓkj − 1), since αkj(h) = α⊖
kj(h) and

τ̃ℓkj(h) = τ̃ℓkj−1(h) when (h = 1, . . . , ℓkj − 1). Then, by using the reparama-
trization in εkj, the proof is completed.

Appendix B.4. Integrated complete-data likelihood

The integrated complete-data likelihood is finally approximated, by ne-
glecting the sum over the discrete parameters of the modes locations and by
performing the exact computation on the continuous parameters, by

p(Xj|Z, ℓkj) ≈

(

1

mj − ℓkj

)n̄
ℓkj
kj

ℓkj
∏

h=1

Bi
(

1
mj−h+1

; nkj(h) + 1; n̄h
kj + 1

)

mj − h
, (B.8)

where Bi(x; a, b) = B(1; a, b) − B(x; a, b), B(x; a, b) being the incomplete
beta function defined by B(x; a, b) =

∫ x

0
wa(1 − w)bdw. From the previous

expression, its is straightforward to obtain p(X,Z|ω).

Proof of Proposition 1. If, for the model with ℓkj − 1 modes, the best modes

locations are known and given by δ̃
⊖

kj then the conditional probability of Xj
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for a model with ℓkj modes is

p(Xj|Z, ℓkj, δ̃
⊖

kj, εkj) =
1

mj − ℓkj + 1

∑

τ∈{1,...,mj}\{δ̃
⊖

kj}

p(Xj|Z, ℓkj, {δ̃
⊖

kj, τ},α
⊖
kj, εkj),

(B.9)
Thus, by approximating this sum by its maximum element, we obtain that

p(Xj|Z, ℓkj, δ̃
⊖

kj, εkj) ≈
1

mj − ℓkj + 1
p(Xj|Z, ℓkj, δ̃kj,α

⊖
kj, εkj). (B.10)

By using the proposition 3, we obtain that:

p(Xj|Z, ℓkj, δ̃
⊖

kj, εkj)

p(Xj|Z, ℓ⊖kj, δ̃
⊖

kj, ε
⊖
kj)

≈
(mj − ℓkj + 1)n̄

ℓkj−1

kj
−1

(mj − ℓkj)
n̄
ℓkj
kj

(εℓkj)
nkj(ℓkj)(1 − εℓkj)

n̄
ℓkj
kj .

(B.11)
As p(Xj|Z, ℓkj = 0) = (mj)

−nk , by applying recursively the previous expres-
sion, we obtain that

p(Xj|Z, ℓkj, εkj) ≈

(

1

mj − ℓkj

)n̄
ℓkj
kj

ℓkj
∏

h=1

(εkjh)nkj(h)(1 − εkjh)n̄
h
kj

mj − h + 1
. (B.12)

Appendix C. Acute inflammation data set clustering with the R

package CoModes

# Package loading
> require(CoModes)

# Loading of the data set Acute
> data(acute)

# Discretization of the first variable to obtain categorical variables
> acute[acute[,1]<37,1] <- 1

> acute[acute[,1]>38,1] <- 3

> acute[acute[,1]>3,1] <- 2

> acute[,1] <- factor(acute[,1],levels=1:3,
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labels=c("cold","normal","fiever"))

# Model selection and parameter estimation of CMM
>res.CoModes <- CoModescluster(acute[,1:6],2)

# Summary of the model
# Table like Table 10
>summary(res.CoModes)

# Plot of the parameters
# Barplot like Figure 5
>barplot(res.CoModes)

# Plot of the individuals in a multiple correspondence analysis map,
# the colors and symbols indicate the class membership estimated by cmm.
# Plot like Figure 4
>plot(res.CoModes,c(1,5))
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