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Abstract We propose a parsimonious extension of the classical latent class
model to cluster categorical data by relaxing the conditional independence as-
sumption. Under this new mixture model, named Conditional Modes Model
(CMM), variables are grouped into conditionally independent blocks. Each
block follows a parsimonious multinomial distribution where the few free pa-
rameters model the probabilities of the most likely levels, while the remaining
probability mass is uniformly spread over the other levels of the block. Thus,
when the conditional independence assumption holds, this model defines par-
simonious versions of the standard latent class model. Moreover, when this
assumption is violated, the proposed model brings out the main intra-class de-
pendencies between variables, summarizing thus each class with relatively few
characteristic levels. The model selection is carried out by an hybrid MCMC
algorithm that does not require preliminary parameter estimation. Then, the
maximum likelihood estimation is performed via an EM algorithm only for
the best model. The model properties are illustrated on simulated data and
on three real data sets by using the associated R package CoModes1. The re-
sults show that this model allows to reduce biases involved by the conditional
independence assumption while providing meaningful parameters.

Keywords categorical data · clustering · integrated complete-data likelihood ·
MCMC algorithm · mixture models · model selection.
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1 Introduction

Clustering (Jajuga et al., 2002) is a worthwhile method for analysing complex
data sets. It aims to extract the main information from the data by group-
ing individuals into homogeneous classes. This paper focuses on the cluster
analysis of categorical variables which occurs in many different fields (biology,
sociology, marketing...). Clustering methods can be split into two approaches:
the geometric ones based on distances between individuals and the probabilistic
ones which model the data generation.

Geometric approaches are generally simpler and faster than the probabilis-
tic ones, but they are sensitive to the choice of the distance between indi-
viduals. For the categorical data analysis, either they define a metric in the
initial variable space like the k-means (Huang et al., 2005), or they compute a
metric on the factorial axes (Chavent et al., 2010). Note that lots of geometric
approaches can be interpreted as probabilistic ones (Govaert, 2010) revealing
probabilistic hidden assumptions. Moreover, the probabilistic approaches al-
low to solve difficult questions, like the class number selection, in a rigorous
mathematical framework.

The probabilistic approaches define a homogeneous class as the subset of
the individuals arisen from the same distribution. In this context, the most
classical approach models the data distribution by a finite mixture model of
parametric distributions (McLachlan and Peel, 2000). The resulting partition
is meaningful since each class is described by the parameters of one mixture
component.

The latent class model (Goodman, 1974) which assumes the conditional
independence between variables (further referred as CIM for conditional inde-
pendent model) is a popular probabilistic approach to cluster categorical data.
Its interpretation is easy since classes are explicitly described by the probabil-
ity of each modality for each variable. Moreover, the sparsity involved by the
conditional independence assumption is a great advantage since it circumvents
the curse of dimensionality. In practice, this model obtains good results in lots
of applications (Hand and Yu, 2001). However, it leads to severe biases when
its main assumption is violated (see Section 5), like an overestimation of the
number of components (Van Hattum and Hoijtink, 2009). Furthermore, the
larger the number of variables, the higher the risk to observe conditionally cor-
related variables in a data set, and consequently the higher the risk to involve
such biases by using CIM.

Different models relax the conditional independence assumption. Among
them, the multilevel latent class model (Vermunt, 2003) assumes that condi-
tional dependency between the observed variables can be explained by other
unobserved variables. Another approach considers the intra-class dependen-
cies by using a single latent continuous variable and a probit function (Qu
et al., 1996). Recently proposed, the mixture of latent trait analyzers (Gollini
and Murphy, 2014; Bartholomew et al., 2011) is a good challenger for CIM.
It assumes that the distribution of the observed variables depends on many
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latent variables: one categorical variable (the class) and many continuous la-
tent variables (modeling the intra-class dependencies between the observed
categorical variables). However, its parameter inference is not so easy, so the
authors advise to use a variational approach but they also propose to use the
Gauss-Hermite quadrature to assess the log-likelihood. Although this model
is very flexible, intra-class dependency is hardly interpretable since the intra-
class correlations are interpreted throughout relationships with unobserved
continuous variables.

The log-linear models’ (Agresti, 2002) purpose is to model the individ-
ual log-probability by selecting interactions between variables. Thus, the most
general mixture model is the log-linear mixture model where all the kinds of
interactions can be considered. It has been used for a long time (Hagenaars,
1988) and it obtains good results in many applications (Espeland and Han-
delman, 1989; Van Hattum and Hoijtink, 2009). However this model family is
huge and the model selection stays a real challenge. In the literature, authors
either fix the considered interactions in advance or they they perform a deter-
ministic search like the forward method which is sub-optimal. Furthermore,
the number of parameters increases with the conditional modality crossings,
so there is an over-fitting risk and interpretation becomes harder.

This paper presents the conditional modes model (referred by CMM) which
groups the variables into conditionally independent blocks in order to consider
the main conditional dependencies. Note that this idea was introduced in the
Multimix software by Jorgensen and Hunt (1996) to cluster continuous and
categorical data. Indeed, this software splits the variables into conditionally in-
dependent blocks but each block is allowed to contain one categorical variable
at most (and a free number of continuous variables). Moreover, the categorical
variable of a block is modelled by a full multinomial distribution. The CMM
approach is developed only for categorical variables and considers blocks with
more than one categorical variable. Moreover, each block of CMM follows
a multinomial distribution per modes which assumes that few levels, named
modes, are characteristic whereas the other ones follow a uniform distribution.
Thus, the resulting multinomial distribution is parsimonious since its free pa-
rameters are limited to these few modes. Finally, the Multimix software carries
out the model selection with a forward procedure while the model selection
of CMM is achieved by a hybrid MCMC algorithm, inheriting thereby some
optimality properties.

The resulting model is a good challenger for CIM since it preserves the spar-
sity and avoids many biases by considering the main conditional correlations.
This model can also be interpreted as a parsimonious version of the log-linear
mixture model. Indeed, the repartition of the variables into blocks defines the
considered interactions while the multinomial distribution per modes defines
specific intra-block interactions. In this way, it produces meaningful classes
since the intra-class dependencies are brought out at two complementary lev-
els: the block variable interaction level and the associated mode interaction
level (through both locations and probabilities). Note that even if CMM can



4 Matthieu Marbac et al.

model some intra-class dependencies, it can also assume the conditional inde-
pendence between variables. In this way, it generalizes lots of the parsimonious
versions of CIM (Celeux and Govaert, 1991).

For a fixed number of components, the model selection (repartition of the
variables into blocks and mode numbers) is the most challenging problem
since the number of competing models is huge. Therefore, the model selec-
tion is carried out by an MCMC algorithm whose the mode of the stationary
distribution corresponds to the model having the highest posterior probabil-
ity. This algorithm performs a random walk in the model space and requires
the computation of the integrated complete-data likelihood. This quantity is
not approximated by BIC-like methods since their results are biased (see our
numerical experiments). Indeed, the integrated complete-data likelihood is ac-
cessible and non ambiguous through weakly informative conjugate prior. This
approach provides an efficient model selection in a reasonable computational
time since the parameters are estimated via an EM algorithm only for the
single selected model. Thus, this approach is a possible answer to the combi-
natorial model selection problem which is known to be a real challenge for a
log-linear mixture model.

This paper is organized as follows. Section 2 presents the new mixture
model. Section 3 presents the hybrid MCMC algorithm which performs the
model selection. Section 4 presents the EM algorithm used to perform the
maximum likelihood inference. In Section 5, numerical experiments show the
relevance of the proposed criterion for model selection and the properties of
the estimation algorithms. Section 6 presents three clusterings of real data sets
performed by the R package CoModes. A conclusion is given in Section 7.

2 Conditional modes model

2.1 Mixture model of conditionally independent blocks

Observations x = (x1, . . . ,xn) consist of n individuals xi = (x1
i , . . . ,x

p
i ) de-

scribed by p categorical variables, called thereafter initial variables.

Running example The Alzheimer data set (Moran et al., 2004) indicates the
presence (yes) or absence (no) of six symptoms of Alzheimer’s disease (AD)
for n = 240 patients diagnosed with early onset AD conducted in the Mercer
Institute in St. James’s Hospital, Dublin. The p = 6 binary symptoms are,
in this order: hallucination (Hal), activity (Act), aggression (Agg), agitation
(Agi), diurnal (Diu) and affective (Aff).

The conditional modes model (CMM) assumes that individuals arise in-
dependently from a mixture with g components where variables are grouped
into d conditionally independent blocks of variables. The repartition of the
variables into the d blocks2 is defined by the partition s = (s1, . . . , sd) of

2 Note that the repartition of the variables into blocks is identical between classes. This
choice is motivated by reasons of identifiability and interpretation that we will detail later.
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{1, . . . , p}. The new variable resulting from the concatenation of the initial
variables affiliated to block j (i.e. {xbi ; b ∈ sj}) is itself a categorical variable
whose levels are defined by the Cartesian product of the variables affiliated to
block j. This new (block dependent) categorical variable defined for block j

is denoted by xji = (xjhi ;h = 1, . . . ,mj), such as xjhi = 1 if individual i has

level h and xjhi = 0 otherwise, where mj is the number of levels for block
j. Since this mapping of the variables is bijective, defining a probability on
xi = (x1

i , . . . ,x
p
i ) is equivalent to defining a probability on xi = (x1

i , . . . ,x
d
i ).

The running example below provides an illustration of the relations between
the initial variables xbi and the new (block dependent) variables xji .

Running example If s = ({1}, {2}, {3, 5}, {4}, {6}), then the mixture compo-
nents consider the dependency between the variable aggression and the vari-
able diurnal (initial variables 3 et 5) while the other variables are conditionally
independent. The repartition of the variables into blocks given by s provides
five new categorical (block dependent) variables xji (with j = 1, . . . , 5). Only
one variable is affiliated to blocks 1, 2, 4 and 5, so the variables of these blocks
are binary ones, the variable of block 3 takes 4 levels described in Table 1.

observed variables block 3
x3
i x5

i x3
i

yes yes level 1
yes no level 2
no yes level 3
no no level 4

Table 1: Example of the new 4-level variable associated to block 3 and com-
posed of two initial binary variables.

The distribution of the (variables associated to the) block j under com-
ponent k has ukj degrees of freedom and is parametrized by (δkj ,αkj), k
designating the index of the component among the g ones. We detail in Sec-
tion 2.2 the exact expression of this distribution and in particular the specific
definition of its two important parameters δkj and αkj . The probability dis-
tribution function (pdf) of CMM is

p(xi|m,θ) =

g∑
k=1

πk

d∏
j=1

p(xji |ukj , δkj ,αkj), (1)

where m = (g, s,u) specifies the model with u = (ukj ; k = 1, . . . , g; j =
1, . . . , d), and where θ = (π, δ,α) denotes the parameters with δ = (δkj ; k =
1, . . . , g; j = 1, . . . , d),α = (αkj ; k = 1, . . . , g; j = 1, . . . , d) and π = (π1, . . . , πg)
groups the mixture proportions with 0 < πk ≤ 1 and

∑g
k=1 πk = 1.
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2.2 Block of multinomial distribution per modes

The CMM model considers that each block follows a so-called multinomial
distribution per modes. This distribution has only few free parameters corre-
sponding to its modes, while the other parameters are equal. Thus, the free
parameters are those of the levels having the greatest probabilities whereas uni-
formity holds for non-mode levels. The distribution of block j for component
k has ukj degrees of freedom (so ukj modes) with 0 ≤ ukj < mj , and its mode
locations are defined by the discrete parameter δkj = {δkjh;h = 1, . . . , ukj}
with δkjh ∈ {1, . . . ,mj} and δkjh 6= δkjh′ if h 6= h′. Its probabilities are given
by αkj = (αkjh;h = 1, . . . , ukj+1) where αkjh denotes the probability of mode
h for h = 1, . . . , ukj and where αkjukj+1 corresponds to the remaining proba-
bility mass. So, αkj is defined on a truncated simplex denoted by S(ukj ,mj)
with

S(ukj ,mj) =

αkj :

ukj+1∑
h=1

αkjh = 1 and for 1 ≤ h ≤ ukj , αkjh ≥
αkjukj+1

mj − ukj
> 0

 . (2)

Therefore, the pdf of block j for component k is

p(xji |ukj , δkj ,αkj) =

(ukj∏
h=1

(αkjh)
x
j(k,h)
i

)(
αkjukj+1

mj − ukj

)1−
∑
h∈δkj

x
j(k,h)
i

, (3)

where the implicit notation x
j(k,h)
i = x

jδkjh
i is used.

Running example We consider the CMM model defined by m = (g, s,u)
where g = 2, s = ({1}, {2}, {3, 5}, {4}, {6}) and where u is defined by Ta-
ble 2. For instance, for component 1, uniformity holds in block 2 since ukj = 0

Block 1 Block 2 Block 3 Block 4 Block 5
Component 1 1 0 1 1 0
Component 2 1 1 1 0 1

Table 2: Example of the number of modes for the Alzheimer data set.

while the distribution of block 3 has one mode and can be summarized by
Table 3.

block 3 observed variables probability
x3
i aggression diurnal α13h

level 4 no no 0.82
level 1 yes yes 0.06
level 2 yes no 0.06
level 3 no yes 0.06

Table 3: Summary of the distribution of block 3 for component 1.
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2.3 Model characteristics

The proposed model has two levels of interpretation. First, the intra-class
dependencies of variables (equal over the mixture components) are brought out
by the repartition of the variables into blocks given by s. Second, the intra-class
and intra-block dependencies are summarized by the modes (possibly different
over the mixture components) where the locations are given by δkj and where
the probabilities are given by αkj . The modes are interpreted as an over-
contribution in comparison to the uniform distribution, since the probability of
each mode is greater than the probability of the other locations (see constraints
of (2)). A shorter summary for each distribution is also available by using the
following two compact terms defined on [0, 1] and which reflect respectively the
complexity and the strength of the intra-class and intra-block dependencies:

ūkj =
ukj

mj − 1
and αkj• =

ukj∑
h=1

αkjh (4)

Thus, the smaller is ūkj and the larger is αkj•, the more massed in few char-
acteristic levels is the distribution.

Running example For block 3 of component 1, ū13 = 1/3 and α13• = 0.82, so
this block distribution is strongly concentrated on one level.

The CIM model and its parsimonious versions implemented in Rmixmod
(Lebret et al., 2014) belong to the family of CMM. Indeed, if each block
of CMM is composed by a single observed variable then the CMM model
considers independence between all the variables within class (often called
local independence). Table 4 presents the link between both model families

(notations [εjhk ] and [εjk] designate models used in Lebret et al. (2014); see
more details in this paper). It is also very interesting to notice that CMM

Rmixmod model CMM
d s ukj ūkj αkj•

Free [εjhk ] p ({1}, . . . , {p}) mj − 1 1 [1− 1
mj

; 1]

Constrained [εjk] p ({1}, . . . , {p}) 1 1
mj−1

[ 1
mj

; 1]

Table 4: Link between models of Rmixmod and CMM.

can be more parsimonious than the locally independent model although it
takes into account the conditional dependencies. Finally, note that a sufficient
condition for the generic identifiability of CMM (see Appendix A) results from
the property of the generic identifiability of CIM (Allman et al., 2009).
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3 Model selection by a hybrid MCMC algorithm

3.1 Model selection by integrated likelihood

The number of mixture components for the competing models is usually bounded
by a value gmax. The goal of model selection is to find, among the set of com-
peting modelsM, the model m̂ having the largest posterior probability. Thus,

m̂ = arg max
m∈M

p(m|x). (5)

We denote by Mg the space of the models having g components, therefore

m̂ = arg max
g∈{1,...,gmax}

p(mg|x) with mg = arg max
m∈Mg

p(m|x). (6)

By assuming that the model prior follows a uniform distribution,

p(m|x) ∝ p(x|m) with p(x|m) =

∫
p(x|m,θ)p(θ|m)dθ, (7)

where p(x|m,θ) =
∏n
i=1 p(xi|m,θ) is the likelihood function and p(θ|m)

is the parameter distribution of the parameters. We assume independence
between the prior distributions of the parameters, so

p(θ|m) = p(π|m)

g∏
k=1

d∏
j=1

p(δkj |m)p(αkj |m). (8)

The conjugate prior distribution of a multinomial distribution is a Dirich-
let distribution. Thus, the Jeffreys non informative prior of the mixture pro-
portions is the Dirichlet distribution Dg( 1

2 , . . . ,
1
2 ). Moreover, δkj |m follows

a uniform distribution over the subset of {1, . . . ,mj} of size ukj . Finally,
αkj |m follows a Dirichlet distribution Dukj+1(1, . . . , 1) restricted on the space
S(ukj ,mj). Note that parameters of this last distribution are chosen equal
to one in order to facilitate the computation of the integrated complete-data
likelihood (see Section 3.4).

The number of competing models is huge, so an exhaustive approach is not
doable. Therefore, the estimation of mg is performed by an MCMC algorithm
for g = 1, . . . , gmax.

3.2 Model selection via an ideal Gibbs sampler

For any g, the estimation of mg is equivalent to the estimation of the couple
(s,u) maximizing p(s,u|x, g). This aim can be achieved by a Gibbs sampler
having p(s,u|x, g) as marginal stationary distribution. Thus, we return the
most generated couple (s,u).

We introduce the instrumental variable z = (zi; i = 1, . . . , n) which indi-
cates the class membership of the individuals, where zi = (zik; k = 1, . . . , g)
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with zik = 1 if individual i belongs to component k and zik = 0 otherwise.
The Gibbs sampler alternates between the conditional sampling of the parti-
tion z and the conditional sampling of the couple (s,u). Thus, its stationary
distribution is p(s,u, z|x, g). Its iteration [q] is written as

z[q+1] ∼ p(z|g, s[q],u[q],x) (9)

(s[q+1],u[q+1]) ∼ p(s,u|g,x, z[q+1]). (10)

Both previous steps are performed with difficulty because independence
between individuals does not hold in (9) and because the space of (s,u) is
huge in (10). Thus, an hybrid algorithm derived from this Gibbs sampler is
used. The mode of its marginal stationary distribution stays located at mg.
The samplings from (9) and (10) are detailed in Section 3.3 and Section 3.4
respectively.

3.3 Gibbs algorithm for partition sampling

In this section, we show that the sampling from (9) can be achieved by a
Gibbs sampler which alternates between both following samplings: z|m,x,θ
and θ|m,x, z. Both previous samplings can be easily defined by introducing
the complete-data likelihood function, which is written as

p(x, z|m,θ) =

g∏
k=1

πnkk

d∏
j=1

ukj∏
h=1

(αkjh)nkj(h)
(
αkjukj+1

mj − ukj

)n̄kj
1{αkj∈S(ukj ;mj)},

(11)

where nk =
∑n
i=1 zik, nkj(h) =

∑n
i=1 zikx

j(k,h)
i and n̄kj = nk −

∑ukj
h=1 nkj(h).

The sampling from z|m,x,θ is performed by n independent samplings of the
multinomial distributions Mg(ti1(θ|m), . . . , tig(θ|m)) where

tik(θ|m) =
πk
∏d
j=1 p(x

j
i |ukj , δkj ,αkj)∑g

k′=1 πk′
∏d
j=1 p(x

j
i |uk′j , δk′j ,αk′j)

. (12)

The sampling from θ|m,x, z is performed as follows. The distribution of

π|m,x, z is the Dirichlet Dg
(

1
2 + n1, . . . ,

1
2 + ng

)
and the posterior distri-

bution of (δkj ,αkj) is written as

p(δkj ,αkj |m,x, z) = p(δkj |m,x, z)p(αkj |m,x, z, δkj). (13)

The distribution of δkj |m,x, z is a multinomial one with too many values to
be computable. Let the set δ?kj = {δ?kjh;h = 1, . . . , ukj} containing the indices

of the ukj largest values of nkjh =
∑n
i=1 zikxjhi such as

∀h ∈ δ?kj ,∀h′ ∈ {1, . . . ,mj} \ δ?kj , nkjh ≥ nkjh′ . (14)

We assume now that the difference between the mode probabilities and the
non-mode probabilities are significant. So, the distribution of δkj |m,x, z can
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be approximated by a Dirac in δ?kj . This approximation is strengthened by the
fast convergence speed of the discrete parameters (Choirat and Seri, 2012). Fi-

nally,αkj |m,x, z, δ?kj follows the Dirichlet distributionDukj+1

(
1+n?kj(1), . . . , 1+

n?kj(ukj), 1 + n̄?kj

)
truncated on S(ukj ; mj), where n?kj(h) = nkjδ?kjh and where

n̄?kj = nk −
∑ukj
h=1 n

?
kj(h).

3.4 MCMC algorithm for model sampling

The sampling from (10) requires the computation of the integrated complete-
data likelihood p(x, z|m) =

∫
p(x, z|m,θ)p(θ|m)dθ, since

p(s,u|g,x, z) ∝ p(x, z|m). (15)

The integrated complete-data likelihood is written as

p(x, z|m) =
Γ ( g2 )

∏g
k=1 Γ (nk + 1

2 )

Γ ( 1
2 )gΓ (n+ g

2 )

g∏
k=1

d∏
j=1

Ikj(ukj), (16)

where Ikj(ukj) is the integral related to block j of component k defined by

Ikj(ukj) =
∑
δkj

∫
S(ukj ,mj)

(ukj∏
h=1

(αkjh)
nkjδkj(h)

)(
αkjukj+1

mj − ukj

)nk−∑h∈δkj
nkjh

dαkj .

(17)
The integral Ikj(ukj) has not a closed form. A BIC-like method could eval-

uate it by approximating the sum over the discrete parameters with its largest
term and by approximating the integral with Laplace method. However, we
propose an alternative which still neglects the sum over the discrete parameters
of the modes locations but which now performs the exact computation on the
continuous parameters. This approach is more precise and avoids the bias of
the BIC criterion (see Section 5). The value of Ikj(ukj) is finally approximated
by (proof is in Appendix B)

Ikj(ukj) ≈
(

1

mj − ukj

)n̄?kj ukj∏
h=1

Bi
(

1
mj−h+1 ;n?kj(h) + 1; n̄?kjh + 1

)
mj − h

, (18)

where n̄?kjh = nk −
∑h
h′=1 n

?
kj(h′) and Bi(x; a, b) = B(1; a, b) − B(x; a, b),

B(x; a, b) denoting the incomplete beta function defined byB(x; a, b) =
∫ x

0
wa(1−

w)bdw.
It is not doable to compute the integrated complete-data likelihood for each

(s,u) since the number of competing models is too huge. Thus, the sampling
from (10) is performed by an MCMC algorithm, detailed in Appendix C,
which has p(s,u|g,x, z) as stationary distribution and which also requires the
computation of integral Ikj defined by (17).
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4 Maximum likelihood estimate

When model m̂ has been assessed, its parameters θ̂m̂ maximizing the likeli-
hood function have to be obtained

θ̂m̂ = arg max
θ

p(x|m̂,θ). (19)

The direct optimization of the likelihood function involves to solve equa-
tions having no analytical solution. So, the parameter estimation is performed
via an EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997),
which is often simple and efficient for missing data. This iterative algorithm al-
ternates between two steps: the computation of the complete-data log-likelihood
conditional expectation (E step) and its maximization (M step). Its iteration
[r] is written as:

E step: computation of the conditional probabilities t
[r]
ik = tik(θ[r]|m̂).

M step: maximization of the complete-data log-likelihood

π
[r+1]
k =

t
[r]
•k
n
, δ

[r+1]
kj = arg max

δkj s.c. card(δkj)=ûkj

∑
h∈δkj

n∑
i=1

t
[r]
ik x̂jhi ,

α
[r+1]
kjh =

 1

t
[r]
•k

∑n
i=1 t

[r]
ik x̂

jδ
[r+1]
kjh

i if h = 1, . . . , ûkj

1−
∑ûkj
h=1 α

[r+1]
kjh if h = ûkj + 1,

where x̂ji = (x̂jhi ;h = 1, . . . ,mj) is the variable resulting from the concatena-

tion of the variables affiliated into block j by ŝ and where t
[r]
•k =

∑n
i=1 t

[r]
ik .

5 Simulations

5.1 Challenge of the mode number selection: Integrated likelihood vs BIC

Experiment design This experiment compares two approximations of Ikj(ukj):
the proposed method defined by (18) and the BIC method (Schwarz, 1978)
defined by

BIC(Ikj(ukj)|z) =

n∑
i=1

g∑
k=1

zik ln
(
p(xji |ukj , δ

?
kj ,α

?
kj)
)
− ukj

2
lnnk, (20)

where α?kjh = 1
nk

∑n
i=1 zikx

jδ?kjh
i if h = 1, . . . , ukj , and α?kjukj+1 = 1−

∑ûkj
h=1 α

?
kjh.

Note the approximations of Ikj(ukj) should be precise, since this quantity is
used in the Gibbs sampler carrying out the model selection.

Samples composed of n i.i.d individuals are drawn from a multinomial dis-
tribution per modes Mmj

(
αkj•

3 ,
αkj•

3 ,
αkj•

3 ,
1−αkj•
mj−3 , . . . ,

1−αkj•
mj−3 ) with mj levels

and three modes having probability
αkj•

3 . For different sizes of sample, 105

samples are generated with different values of (αkj•,mj).
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Results Figure 1 gives a comparison between (18) and the BIC-like approx-
imation for the selection of the number of modes. The proposed criterion
outperforms the BIC criterion in the four studied situations for large sample
sizes. Indeed, its asymptotic behavior is better than the BIC criterion, since
it rarely overestimates the mode number and since its variability is smaller
than the BIC criterion. Since exact criteria are more efficient than approxi-
mated criteria (see Biernacki et al. (2010)), this behavior was expected because
the proposed criterion is closer to the exact value of the integrated likelihood
than the BIC criterion. Indeed, the approximation of the integrated likelihood
made by the proposed criterion is only made on the discrete parameters while
the BIC criterion performs an approximation on both the discrete and the
continuous parameters. We present now more specific comments.
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(c) αkj• = 0.6, mj=18.
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(b) αkj• = 0.6, mj=9.
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(d) αkj• = 0.3, mj=27.

Fig. 1: Probability that the BIC criterion selects the true mode number (plain
black line) and overestimates it (dotted black line) and probability that the
proposed approach selects the true mode number (plain red line) and overes-
timates it (dotted red line).
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In case (a), modes have a large probability mass and they are easily de-
tected since there are few levels. Both criteria are efficient since they find the
true number of modes with a probability close to one even for small samples.
When the mode probabilities decrease (case (b)), it is more difficult to identify
them. In such a case, the BIC criterion selects more often the true mode num-
ber with a moderate overestimation risk, for the small samples (size lower than
150), while the proposed approach can underestimate the number of modes.
When the sample size is larger than 200, the proposed approach obtains bet-
ter results since it finds a true number of modes almost always while the BIC
criterion keeps an overestimation risk.

When the number of levels increases (case (c)), the problem is more com-
plex and our approximation of the integrated complete-data likelihood given
by (18) shows more clearly its interest. Indeed, the BIC criterion is strongly
biased even for a large sample while the proposed approach almost always finds
the true number of modes when the sample size is larger than 100. Finally,
note that in the more complex situations like in case (d) (few probability mass
for the modes and large number of levels), the approximation defined by (18)
underestimates the mode number when the sample size is small. However, it
converges to the true mode number when the sample size increases whereas
the BIC criterion keeps significant bias even for a large data set.

5.2 Estimation accuracy with well specified model

Experiment design During this experiment, we highlight the relevance of the
selected model m̂ and of its parameter estimate θ̂m̂. For different values of
n = (50, 100, 200, 400, 800), 25 data sets of six variables with three levels each
are sampled from a bi-component CMM with the following parameters:

s = ({1, 2}, {3, 4}, {5, 6}), ukj = 2, ∀(k, j)

π = (0.5, 0.5), αkj = (0.4, 0.4, 0.2), δ1j = {2, 4} and δ2j = {6, 8}.

The estimation of the CMM model is performed with the R package CoModes
(using the default option). Finally, the computing times are obtained on a 30
cores Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz.

Results Table 5 presents the simulation results. The model selection works
well since the true model is selected with a probability tending to one when n
grows toward infinity. Moreover, the Kullback-Leibler divergence vanishes also
when the sample size increases. Thus, the estimated distribution converges to
the true one.

5.3 Estimation accuracy with misspecified model

Experiment design During this experiment, we underline the robustness of
CMM. Thus, 25 samples of size 100 are generated by the following bi-component
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n 50 100 200 400 800
Model accuracy ŝ = s 100 100 100 100 100

û = u 36 60 80 84 90
Parameter accuracy KL mean 0.38 0.20 0.07 0.03 0.03

KL sd 0.68 0.23 0.02 0.03 0.01
Time (min) 0.85 0.95 1.26 1.56 1.83

Table 5: Percentage (over the 25 samples) where ŝ corresponds to s and where
û corresponds to u. Mean and standard deviation (sd) of the Kullback-Leibler
(KL) divergence of the true model from the estimated distribution.

mixture model of dimension six where the intra-class dependencies are different
for both components

p(xi; θ) = 0.5

3∏
h=1

p(x2h−1
i ,x2h

i ; θ) + 0.5 p(x1
i ; θ)p(x6

i ; θ)

2∏
h=1

p(x2h
i ,x2h+1

i ; θ), (21)

with p(xji ,x
j+1
i ;θ) = p(xji ;θ)

(
λ1{xj+1

i =xji}
+(1−λ)p(xj+1

i ;θ)
)

and with xji ∼
M3(1/3, 1/3, 1/3). Thus, when λ = 0, the sample is generated by a uniform
distribution and classes are confused. The larger is the tuning parameter λ,
the larger are the intra-class dependencies and the class separation.

Results Table 6 presents the Kullback-Leibler divergence of the model defined
by (21) from CMM and CIM with their best number of classes (with gmax = 4).

λ 0.2 0.4 0.6 0.8
CMM KL-mean 0.08 0.24 0.44 0.64

KL-sd 0.02 0.01 0.07 0.11
g = 1 0.89 0.78 0.18 0.00
g = 2 0.11 0.22 0.72 0.68
g = 3 0.00 0.00 0.05 0.24
g = 4 0.00 0.00 0.05 0.08

CIM KL-mean 0.11 0.27 0.59 1.09
KL-sd 0.02 0.02 0.02 0.15
g = 1 1.00 1.00 0.89 0.44
g = 2 0.00 0.00 0.11 0.56
g = 3 0.00 0.00 0.00 0.00
g = 4 0.00 0.00 0.00 0.00

Table 6: Mean (KL-mean) and standard deviation (KL-sd) of the Kullback-
Leibler divergence of the model defined by (21) from CMM and CIM and
means of the selected number of classes (g).

The larger is λ, the larger is the Kullback-Leibler divergence for both mod-
els. However, the flexibility of CMM allows to keep an acceptable value of the
Kullback-Leibler divergence while this divergence grows dramatically faster
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with CIM. Furthermore, when the classes are well separated (large value of
λ), CMM finds more often the true class number than CIM.

6 Applications

This section illustrates the CMM model on three real data sets. Its results are
obtained by the R package CoModes (using the default options) and are com-
pared with the results of the CIM model obtained by the R package Rmixmod
(Lebret et al. (2014), using the default options too). Since, the first exam-
ple is a real clustering problem, the partitioning accuracy of the competing
models cannot be evaluated. For the other two data sets, a partition among
the individuals is known and is used to compare the partitioning accuracy of
the competing models. Finally, the computing times of CMM are obtained
on a 30 cores Intel(R) Xeon(R) CPU E5-4627 v2 @ 3.30GHz. The computing
times of CIM is not provided since it is very low compared to CMM (CIM is
implemented in C++ for Rmixmod, CMM is only implemented in R).

6.1 Alzheimer clustering

Data We consider the Alzheimer data set introduced in the running example
(see Section 2). We recall that this data set describes 240 patients with six
binary variables (absence:no, presence:yes) indicating relevant symptoms of
the Alzheimer disease.

Model comparison Table 7 summarizes the clustering results obtained by the
CIM and the CMM models on the six features of the Alzheimer data set.
The CMM model obtains a greater value of the BIC criterion than the CIM
model independently of the number of components. These results were ex-
pected since the CIM model is included in the CMM model. Thus, the CMM
fits the data better than the CIM model. Both models select two compo-
nents but the CMM model also considers intra-component dependencies be-
tween the variables agression and diurnal. Table 8 shows that modelling the
intra-component dependencies and introducing parsimonious constraints on
the multinomial distributions can strongly impact the partition.

number of components
1 2 3 4 5 6

CIM BIC -789.37 -785.13 -801.86 -818.02 -834.94 -855.88
CMM BIC -779.22 -772.57 -785.38 -796.48 -810.81 -815.68

Time 0.78 1.16 1.70 2.11 2.61 2.92

Table 7: Results of CMM and CIM on the Alzheimer data set: BIC criterion
(BIC) and computing time in minutes (Time). Values of the best model are
in bold.
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CIM-class 1 CIM-class 2
CMM-class 1 84 1
CMM-class 2 51 104

Table 8: Confusion matrix between the partitions resulting from the CMM
and the CIM models obtained on the Alzheimer data set.

Best model interpretation The model selected by the BIC criterion is the
model described in the running example (see Section 2): i.e. bi-component
CMM model with s = ({1}, {2}, {3, 5}, {4}, {6}). Its parameters are summa-
rized in Table 9. The model splits the population into two equally balanced
classes (π1 = 0.45 and π2 = 0.55). The class 1 groups the individuals hav-
ing few symptoms. Indeed, all the modes in this class indicate an absence of
symptoms. Note that in this class, two blocks which are composed with a sin-
gle variable (activity and affective) follow a uniform distribution. The class
2 contains the individuals presenting more symptoms. Indeed, two modes in-
dicate a presence of symptoms activity and affective. However, the modes of
blocks 1 and 3 are the same for both classes. However, their probabilities in
class 2 are smaller than in class 1 (e.g. α13• = 0.82 and α13• = 0.44). Thus,
the CMM model overall splits the population between two classes according
to the stage of the disease.

Class Block 1 Block 2 Block 3 Block 4 Block 5
Hall αkjh Act αkjh Agg Diu αkjh Agi αkjh Aff αkjh

1 no 0.94 no no 0.82 no 0.86
ū1j α1j• 1.00 0.93 0.00 0.00 0.33 0.82 1.00 0.86 0.00 0.00

2 no 0.90 yes 0.78 no no 0.44 yes 0.96
ū2j α2j• 1.00 0.90 1.00 0.78 0.33 0.44 0.00 0.00 1.00 0.96

Table 9: Parameters of the best CMM model for the Alzheimer data set. For
each class, the first row gives the mode description (names of the levels h of the
block j associated to their probabilty αkjh) and the last row gives the indices
of the block distribution. We recall that ūkj and αkj• stand respectively for
the complexity and the strength as defined in (4).

6.2 Seabirds clustering

Data The Seabirds data set is a biological data set describing 153 puffins
(seabirds) by five plumage and external morphological characteristics pre-
sented in Table 10 (Bretagnolle, 2007). These seabirds are divided into three
subspecies dichrous (84 birds), lherminieri (34 birds) and Subalaris (35 birds).
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variables levels
collar none trace dashed almost continuous (al.cont.) continuous

eyebrows none trace visible (vis.) pronounced (pron.)
sub-caudal white black black&white BLACK&white

border none few many
gender male female

Table 10: Presentation of the five plumage and external morphological vari-
ables describing the puffins.

Model comparison Table 11 summarizes the clustering results obtained by the
CIM and the CMM models on the five features of the Seabirds data set. Results
show that the CMM model allows to fit the data distribution better than the
CIM model since it obtains greater values of the BIC criterion. Note that the
parameter estimation of the CIM model is computed immediately but that
the estimation of the CMM model is performed in a reasonable computing
time (less than ten minutes for the whole analysis). Finally, the values of the
adjusted Rand Index (Hubert and Arabie, 1985) indicates that the partition
resulting from the best CMM model (according to the BIC criterion) is closer
to the partition defined by the subspecies than the partition resulting from
the best CIM model. Table 12 presents the confusion matrices between the
partitions resulting form the best CIM and CMM models and the subspecies.
It shows that the Subalaris are more different than the two other subspecies.
Indeed, both models assign all the Subalaris into the same class. Finally note
that, the first principal correspondence axis allows to well-visualize the parti-
tion provided by the CMM model (see Figure 2).

number of components
1 2 3 4 5 6

CIM BIC -711.59 -707.14 -725.21 -749.64 -782.26 -811.15
ARI 0.00 0.13 0.19 0.30 0.27 0.26
BIC -701.98 -677.37 -693.74 -697.08 -705.46 -716.05

CMM ARI 0.00 0.21 0.10 0.07 0.04 0.04
Time 0.56 0.95 1.30 1.64 1.93 2.22

Table 11: Results of CMM and CIM on the Seabirds data set: BIC criterion
(BIC), adjusted Rand Index (ARI) and computing time in minutes (Time).
Values of the best model are in bold.

Best model interpretation The best CMM model and its parameters are dis-
played in Table 13. Thus, the variables collar, border and gender are considered
as conditionally independent while the intra-component dependencies between
the variables eyebrows and sub-caudal are modelled. Note that the block com-
posed by these last two variables is strongly discriminative, since its modes
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CMM CIM
class 1 class 2 class 1 class 2

Dichrous 25 59 34 50
Lherminieri 11 23 12 22

Subalaris 35 0 35 0

Table 12: Confusion matrices between the subspecies and partitions with re-
spect to the best CMM and CIM models.
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model.

Fig. 2: Seabirds on the first principal correspondence analysis map where an
i.i.d. uniform noise on [0, 0.1] has be added on both axes for each individual
to improve visualization.

are different over the components and since they group a large probability
mass for both components. Moreover, the variable gender follows a uniform
distribution under each component (since there is an absence of mode), so it is
not discriminative (the variable follows the same distribution over the mixture
component). This results was expected since the gender should not provide
any discriminative information regarding to the sub-specie of a seabird.

6.3 Acute inflammations clustering

Data The Acute data set (Czerniak and Zarzycki, 2003) describes 120 patients
by six features. The first variable is continuous and indicates the temperature
of the patient (Temp), so only its integer part is used in order to set into a
categorical variable with seven levels (integer from 36 to 42). The remaining
five binary variables indicate the occurrence of nausea (Nau), the lumbar pain
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Class Block 1 Block 2 Block 3 Block 4
col. αkjh eye. sub. αkjh bor. αkjh gen. αkjh

1 none 0.52 vis. white 0.76 none 0.96
dash 0.24 pron. white 0.10

al.cont. 0.21
ū1j α1j• 0.75 0.97 0.13 0.86 0.50 0.96 0.00 0.00

2 trace 0.46 vis. black 0.43 none 0.74
dash 0.31 trace white 0.21 few 0.25

al.cont. 0.18 trace black 0.16
ū2j α2j• 0.75 0.95 0.20 0.80 1.00 0.99 0.00 0.00

Table 13: Parameters of the best CMM model for the seabirds data set. For
each class, the first rows give the mode description (names of the levels h of the
block j associated to their probabilty αkjh) and the last row gives the indices
of the block distribution. We recall that ūkj and αkj• stand respectively for
the complexity and the strength as defined in (4).

(Lum), the urine pushing (Pus), the micturition pains (Mic) and the burning
of urethra (Bur). Moreover, many patients have one of the following diseases
of the urinary system: inflammation of urinary bladder (Uri) and Nephritis of
renal pelvis origin (Ren). Therefore, there are three known partitions among
the individuals: two two-group partitions defined by the variables Uri and Ren
and one four-group partition defined by the Cartesian production between the
variables Uri and Ren designed now by Uri/Ren.

Model comparison Table 14 summarizes the clustering results obtained by the
CIM and the CMM models on the six features of the Acute data set. The
CMM model fits better the distribution of the observed variables since its BIC
criterion is greater than this one of the CIM model. About the partitioning
accuracy, both models provide relevant partitions and their interpretations are
complementary. The best CIM model produces a partition strongly similar to
the partition in four groups defined by the variable Uri/Ren (ARI=0.85). On
the other hand, the best CMM model produces a partition more similar to
the two-group partition defined by the absence/presence of Nephritis of renal
pelvis origin (ARI=0.56).

Best model interpretation According to the BIC criterion, the best model is
the bi-component CMM model composed of two blocks where the first one
only contains the variable Temp while the second one contains all the other
variables. For both components, the block 1 follows a multinomial distribu-
tion with three modes while the block 2 follows a multinomial distribution
with six modes. Thus, the model considers within-class dependencies between
all variables, Temp excluded, and it requires only 19 parameters (while the bi-
component CIM model needs 23 parameters). However, since this model has
only two blocks, we cannot prove its identifiability (see Appendix A). Neverthe-
less, this model seems to be identifiable because the runs of the EM algorithm
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number of components
1 2 3 4 5 6

BIC -623.23 -576.62 -551.37 -533.46 -546.89 -565.21
CIM ARI (Uri) 0.00 0.02 0.47 0.41 0.36 0.24

ARI (Ren) 0.00 0.41 0.28 0.50 0.44 0.33
ARI (Uri/Ren) 0.00 0.24 0.53 0.85 0.77 0.59

BIC -497.28 -447.54 -458.48 -465.14 -474.85 -480.64
ARI (Uri) 0.00 0.06 0.13 0.27 0.36 0.24

CMM ARI (Ren) 0.00 0.56 0.51 0.36 0.44 0.33
ARI (Uri/Ren) 0.00 0.33 0.39 0.51 0.77 0.59

Time 0.58 0.92 1.22 1.58 2.03 2.24

Table 14: Results of the Acute data set: BIC criterion (BIC), adjusted Rand
Index (ARI) and computing time in minutes (Time). Values of the best models
according to the BIC value are in bold.

achieving the best value of the log-likelihood function produce systematically
the same estimates.

Class Block 1 Block 2
Temp αkjh Nau Lum Pus Mic Bur αkjh

1 41 0.47 no yes yes no yes 0.28
π1 = 0.51 40 0.35 no yes yes yes no 0.18

42 0.08 no yes no yes no 0.18
no no no no no 0.18
no yes yes yes yes 0.16
no yes no no no 0.02

ū1j α1j• 0.50 0.90 0.19 0.98
2 37 0.45 yes yes no yes yes 0.29

π2 = 0.49 38 0.38 no yes no no no 0.29
36 0.15 no no yes no no 0.15

yes yes no yes no 0.15
no yes yes no yes 0.08
no no no no no 0.02

ū2j α2j• 0.50 0.98 0.19 0.99

Table 15: Parameters of the best CMM model for the Acute data set. For each
class, the first rows give the mode description (names of the levels h of the
block j associated to their probabilty αkjh) and the last row gives the indices
of the block distribution. We recall that ūkj and αkj• stand respectively for
the complexity and the strength as defined in (4).

Table 15 summarizes the block distribution and lists the modes of each
block. Based on these results, the class 1 is characterized by individuals with
a high temperature, often lumbar pain and no nausea. On the other hand,
the class 2 contains only individuals with a temperature equal or less than
38C. Note that the model provides strongly different classes. Indeed, block 1
provides different modes for both classes and the probability mass of the modes
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is high (α11• = 0.90 and α21• = 0.98). Moreover, the distributions of the two
components for block 2 is mainly concentrated on the modes (α12• = 0.98 and
α22• = 0.99) and only two modes appear in both components.

It is known (Czerniak and Zarzycki, 2003) that acute nephritis of renal
pelvis origin begins with sudden fever, which reaches, and sometimes exceeds
40C. The fever is accompanied by shivers and one or both-side lumbar pains,
which are sometimes very strong. Symptoms of acute inflammation of urinary
bladder appear very often. Quite not infrequently there are nausea and vomit-
ing and spread pains of whole abdomen. Therefore, the interpretation provided
by the bi-component CMM model is relevant. As shown by Table 16, the class
1 mainly groups individuals with acute nephritis of renal pelvis origin.

CMM
class1 class2

Ren - no 10 60
Ren - yes 50 0

Table 16: Confusion matrix between the acute nephritis of renal pelvis origin
and the partition resuling from the best model.

7 Conclusion

In this article, we have presented a new mixture model (CMM) to cluster cat-
egorical data. Its strength is to relax the conditional independence assumption
while staying parsimonious. A summary of the distribution of variables is given
by both indices ūkj (complexity) and αkj• (strength) while each class can be
summarized by the mode locations. As shown on the Seabirds application,
CMM can improve the results of the classical latent class model even if the
conditional independence assumption is true, thanks to its sparsity.

The combinatorial problems of the block detection and of the modes num-
ber selection is solved by a hybrid MCMC algorithm which uses the compu-
tation of the integrated complete-data likelihood and which does not require
estimates. Thus, this approach can be used to select the interactions of the
log-linear mixture model per block. The parameters are only estimated for the
single selected model. The R package CoModes allows to perform the model
selection and the parameter estimation. Both data sets presented in this arti-
cle are included in this package. To efficiently reduce the computing time, the
functions of this package will be soon implemented in C++.

However, the model selection becomes difficult if the data set has a large
number of variables, since the number of competing models becomes large.
Some constraints on the block variables repartition could also be added (for in-
stance the number of variables into blocks could be limited at three variables).
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Another solution could be to estimate the model by a forward/backward strat-
egy but it is known that these methods are sub-optimal.

Finally, we imposed the equality of the repartition of the variables into
blocks for all the classes. This property allows us to prove the generic identi-
fiability of CMM. This lack of flexibility is counterbalanced by flexible block
distribution. However, one could try to relax the class-equality of s with the
model non-identifiability risk.
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A Generic identifiability of CMM

When d ≥ 3, CMM is generically identifiable (i.e. the parameter space where the model
is not identifiable has a Lebesgue measure equal to zero). The demonstration is based on
results of Allman et al. (2009) which use the Kruskal theorem (Kruskal, 1977, 1976). The
demonstration is cut into three steps: reminder of the Kruskal results for the three-way
tables, demonstration of the model generic identifiability when d = 3, then its extension
when model has more than three blocks.

Kruskal results For a matrix M , the Kruskal rank of M , denoted by rankK M is the
largest number I such that every set of I rows of M are linearly independent.
Theorem 1 (Kruskal (Kruskal, 1977, 1976)). Let Ij = rankK Mj . If

I1 + I2 + I3 ≥ 2g + 2,

then the tensor [M1,M2,M3] uniquely determines the Mj , up to simultaneous permutation
and rescaling rows.

Generic identifiability of CMM with three blocks Let k0 = argmin
k

ukj and the

matrix Mj where

Mj(k, h) = αkjh. (22)

By denoting by ξj = min
k

ukj + 1, generically, we have

rankK Mj = min(g, ξj).

Corollary 1 The parameters of CMM with three blocs are generically identifiable, up to
label swapping, provided:

min(g, ξ1) + min(g, ξ2) + min(g, ξ3) ≥ 2g + 2.

Generic identifiability of CMM with more than three blocks In the same way that
Allman et al. (2009), we generalize the result with d blocks by observing that d blocks of
categorical variables can be combined into three categorical variables. Thus, we can apply
the Kruskal theorem.
Corollary 2 We consider a CMM with d blocks where d ≥ 3. If there exists a tri-partition
of the set {1, . . . , d} into three disjoint non empty subsets S1, S2 and S3, such that γi =∏
j∈Si ξj with

min(g, γ1) + min(g, γ2) + min(g, γ3) ≥ 2g + 2, (23)

then the model parameters are generically identifiable up to label swapping.

B Approximation of I(ukj)

First, we define a new parametrization of the block distribution facilitating the integrated
complete-data likelihood computation and the prior distribution related to this new block
parametrization. Second, we underline the relationship between the embedded models. We
conclude by the integrated complete-data likelihood computation, which is the target result.
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B.1 New parametrization of the block distribution

Without loss of generality, we assume that the elements of δkj are ordered by decreasing val-
ues of the probability mass associated to them and we introduce the new parametrization of

αkj denoted by εkj = (εkjh;h = 1, . . . , ukj) where εkj ∈ Ekj =
[

1
mj

; 1
]
× . . .×

[
1

mj−ukj
; 1
]

and where εkjh is defined by

εkjh =

{
αkj1 if h = 1

αkjh∏h−1
h′=1

(1−εkjh′ )
otherwise.

Each εkjh follows a truncated beta distribution on the interval
[

1
mj−h+1

, 1
]
, so

p(εkj |δkj ,m) =
mj

mj − ukj
. (24)

The conditional probability of xj = (xji ; i = 1, . . . , n) is

p(xj |z, ukj , δ?kj , εkj) =

ukj∏
h=1

(εkjh)
n?kj(h) (1− εkjh)n̄

?
kjh . (25)

B.2 Relation between embedded models

Let the model with u	kj modes and the parameters (δ?	kj , ε
	
kj) and the model with ukj modes

and the parameters (δ?kj , εkj) such as u	kj = ukj − 1 and such as the u	kj modes having the

largest probabilities have the same locations (∀h ∈ δ?	kj , h ∈ δ
?
kj) and the same probability

masses (ε	kjh = εkjh, h < ukj). These embedded models follow this relation

p(xj |z, ukj , δ?kj , εkj)
p(xj |z, u	kj , δ

?	
kj , ε

	
kj)

=
(mj − ukj + 1)

n̄?kjukj−1−1

(mj − ukj)
n̄?
kjukj

(εukj )
n?kj(ukj) (1− εukj )

n̄?kjukj . (26)

B.3 Integrated complete-data likelihood

The integrated complete-data likelihood is finally approximated, by neglecting the sum over
the discrete parameters of the modes locations and by performing the exact computation
on the continuous parameters, by

Ikj(ukj) ≈
(

1

mj − ukj

)n̄?kj ukj∏
h=1

Bi
(

1
mj−h+1

;n?
kj(h)

+ 1; n̄?kjh + 1
)

mj − h
, (27)

Proof If, for the model with ukj − 1 modes, the best modes locations are known and given

by δ?	kj then the conditional probability of xj for a model with ukj modes is

p(xj |z, ukj , δ?	kj , εkj) =
1

mj − ukj + 1

∑
δkj∈∆kj

p(xj |z, ukj , δkj , εkj), (28)

where ∆kj = {δkj : δ?	kj ⊂ δkj and card(δkj) = ukj}. Thus, by approximating this sum by

its maximum element, we obtain that

p(xj |z, ukj , δ?	kj , εkj) =
1

mj − ukj + 1
p(xj |z, ukj , δ?kj , εkj), (29)
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As p(xj |z, ukj = 0) = (mj)
−nk , by applying recursively (26), we obtain that

p(xj |z, ukj , εkj) ≈
(

1

mj − ukj

)n̄?kjukj ukj∏
h=1

(εkjh)
n?kj(h) (1− εkjh)n̄

?
kjh

mj − h+ 1
. (30)

C Details on the model sampling

The sampling of (s[s+1],u[s+1]) from (10) is performed in two steps. Firstly, a new reparti-
tion of the variables into blocks and the mode number of the modified blocks, respectively
denoted by s[s+1] and u[s+1/2], are sampled by one iteration of a Metropolis-Hastings algo-
rithm. Secondly, the mode number of each block is sampled by one MCMC iteration. Thus,
the sampling of m[s+1] is decomposed into the two following steps

(s[s+1],u[s+1/2]) ∼ p(s,u|g, s[s],u[s],x, z[s+1]) (31)

u[s+1] ∼ p(u|s[s+1],u[s+1/2],x, z[s+1]). (32)

Thus, this chain has p(s,u|g,x, z[s+1]) as stationary distribution.

C.1 Metropolis-Hastings algorithm to sample from (31)

This sampling is performed by one iteration of the Metropolis-Hastings algorithm divided
into two steps. Firstly, the proposal distribution q(.;m[s]) generates a candidate m? =
(g, s?,u?). Secondly m[s+1] is sampled according to the acceptance probability µ[s] defined
by

µ[s] = 1 ∧
p(x, z[s+1]|m?)

p(x, z[s+1]|m[s])

q(m[s];m?)

q(m?;m[s])
. (33)

Note that the computation of µ[s] involves to compute the integrated complete-data likeli-
hood defined by (17). The sampling of m[s+1/2] is written as

m? ∼ q(.;m[s]) (34)

m[s+1/2] =

{
m? with a probability µ[s]

m[s] otherwise.

The proposal distribution q(.;m[s]) samples m? in two steps. The first step changes the
block affectation of one variable. In practice, s? is uniformly sampled in V (s[s]) = {s :

∃!b as b ∈ s[s]
j and b /∈ sj}. The second step uniformly samples the mode numbers among

all its possible values for the modified blocks while u?kj = u
[s]
kj for non-modified blocks (i.e.

j as s
[s]
j = s?j ).

C.2 MCMC algorithm to sample u[s+1]

This step allows to increase or decrease the mode number of each block by one at each

iteration. So, u
[s+1]
kj is sampled according to p(ukj |m[s+1/2],x, z[s+1]) defined by

p(ukj |g,m[s+1], u
[s+1/2]
kj ,x, z[s+1]) ∝

 p(xj |z[s+1], ukj) if |ukj − u
[s+1/2]
kj | < 2

and ukj /∈ {0,mj}.
0 otherwise.

(35)


