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Abstract

The topological derivative of cost functionals J that depend on the stress (through
the displacement gradient, assuming a linearly elastic material behavior) is considered in
a quite general 3D setting where both the background and the inhomogeneity may have
arbitrary anisotropic elastic properties. The topological derivative DJ(z) of J quantifies
the asymptotic behavior of J induced by the nucleation in the background elastic medium
of a small anisotropic inhomogeneity of characteristic radius a at a specified location z.
The fact that the strain perturbation inside an elastic inhomogeneity remains finite
for arbitrarily small a makes the small-inhomogeneity asymptotics of stress-based cost
functionals quite different than that of the more usual displacement-based functionals.

The asymptotic perturbation of J is shown to be of order O(a3) for a wide class
of stress-based cost functionals having smooth densities. The topological derivative
of J , i.e. the coefficient of the O(a3) perturbation, is established, and computational
procedures then discussed. The resulting small-inhomogeneity expansion of J is mathe-
matically justified (i.e. its remainder is proved to be of order o(a3)). Several 2D and 3D
numerical examples are presented, in particular demonstrating the proposed formulation
of DJ on cases involving anisotropic elasticity and non-quadratic cost functionals.

1 Introduction

The topological derivative DJ(z) quantifies the perturbation induced to a cost functional J by
the virtual creation of an object (in this work, an elastic inhomogeneity) occupying a region
Ba(z) with prescribed center z inside the solid and vanishingly small characteristic radius
a. In structural optimization, the field DJ(z) helps directing the algorithm towards optimal
topologies by indicating where creating new holes is most profitable, see e.g. [6, 39] and also
[1] in conjunction with the shape derivative. Moreover, computational evidence [11, 19, 33] as
well as more recent theoretical and experimental studies [3, 12, 45] show that the topological
derivative is also effective for flaw identification problems.

Most of the studies so far devoted to the topological derivative and its applications consider
cost functionals that depend on the primary variable, namely the displacement field in the
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solid mechanics context of this work. Such formulations exploit the analysis of the asymptotic
behavior as a→ 0 of the perturbation induced to the displacement by the virtual creation of
Ba(z), for which an abundant literature is available [4, 15, 16, 27, 34]. An important component
of small-inhomogeneity asymptotics of displacement fields is the elastic moment tensor (EMT),
whose definition and properties are studied in e.g. [5] for isotropic materials and [13, 38] for
anisotropic materials.

However, some optimization problems involve stress-based cost functionals, which is equi-
valent (for the present context of linearly elastic solids) to considering functionals that depend
on strains or displacement gradients. Examples include topology optimization of composite
structures with materials constrained by yield criteria, and flaw identification using full-field
kinematical measurements, as both types of problems may be cast as minimization problems
involving stress-based cost functionals. The asymptotic behavior of such cost functionals is
quite different, and more involved, than in the previous case, due to the fact that the strain
perturbation inside an elastic inhomogeneity has a finite, nonzero limit as a → 0, while the
asymptotics of displacement-based functionals rests upon the fact that the magnitude of the
displacement perturbation vanishes as a→ 0.

So far, only few works have investigated the small-inhomogeneity asymptotics of stress-
based functionals. The 2D isotropic case is addressed for specific stress-based functionals
(elastic energy, von Mises and Drucker-Prager yield criteria) in [7, 8, 41]. Moreover, results for
general quadratic stress-dependent functionals are given in [40] within a 2D and 3D anisotropic
framework. The special case of cost functionals that are directly linked to the anisotropic elas-
tic potential energy in 2D or 3D is considered in [15]. The main purpose of this article is to
formulate and justify the topological derivative for stress-dependent functionals, in a quite
general three-dimensional framework where the functionals are defined in terms of domain
integrals of arbitrary sufficiently smooth densities while both the background material and
the small trial inhomogeneity are allowed to have anisotropic elastic properties. The results
given herein for topological derivatives thus contain expressions given in [7, 8, 15, 41] as special
cases. They are illustrated by computational experiments on 2D and 3D examples involving
anisotropic elasticity and stress-based quadratic or non-quadratic cost functionals, and inspi-
red by topology optimization or flaw identification.

The article is organised as follows. Section 2 recalls the concept of topological derivative,
introduces notation and collects the main facts on the elastic transmission problem and elas-
tic moment tensor. The main result on topological derivative is stated and established in
Section 3. The numerical evaluation of DJ is addressed in Section 4, and Section 5 is then
devoted to the presentation and discussion of computational experiments.

2 Elastic transmission problem and cost functional

2.1 Notation, elastic transmission problem

Consider an elastic body occupying a smooth bounded domain Ω ⊂ R3. The anisotropic elastic
properties of the background material (against which the effect of small inhomogeneities will
be considered), assumed to be homogeneous, are characterized by the fourth-order elasticity
tensor C. The boundary ∂Ω is split according to ∂Ω = ΓD ∪ ΓN (where ΓD ∩ ΓN = ∅
and |ΓD| 6= 0), so that a given force density g ∈ L2(ΓN;R3) is applied on ΓN while a given
displacement ū ∈ H1/2(ΓD;R3) is prescribed on ΓD. Additionally, a body force density f
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assumed (for reasons given later) to have C0,β(Ω) Hölder continuity for some β > 0 is applied
to Ω.

The background solution, i.e. the displacement field arising in the reference solid due to
the prescribed excitations (f , g, ū), is defined as the solution to

div(C :ε[u]) + f = 0 in Ω, (C :ε[u])·n = g on ΓN, u = ū on ΓD (1)

where n is the unit outward normal to Ω and ε[w] denotes the linearized strain tensor asso-
ciated with a given displacement w, defined by

ε[w] = 1
2
(∇w + ∇wT). (2)

In (1) and hereinafter, symbols ’ · ’ and ’ : ’ denote single and double inner products, e.g.
(C : ε)ij = Cijk`εk`, with Einstein’s convention of summation over repeated indices implicitly
used throughout.

Alternatively, the background displacement is governed by the weak formulation

Find u ∈ W (ū), 〈u,w〉CΩ = F (w), ∀w ∈W0, (3)

where 〈u,w〉CD denotes the bilinear elastic energy form associated to given domain D ⊂ R3

and elasticity tensor C, i.e.:

〈u,w〉CD :=

∫
D

ε[u] :C :ε[w] dV =

∫
D

∇u :C :∇w dV (4)

(with the second equality holding by virtue of the well-known minor symmetries of C), the
linear form F associated to the loading is defined by

F (w) =

∫
Ω

f ·w dV +

∫
ΓN

g ·w dS, (5)

and having introduced, for given ū∈H1/2(ΓD;R3), the spaces W (ū) and W0 of displacement
fields that are kinematically admissible with respect to arbitrary and homogeneous prescribed
Dirichlet data, respectively, i.e.:

W (ū) :=
{
v ∈H1(Ω;R3), v= ū on ΓD

}
, W0 := W (0). (6)

The C0,β(Ω;R3) regularity assumption on f , which is stronger than the more-usual assump-
tion f ∈ L2(Ω;R3), ensures (e.g. from the properties of elastic volume potentials, see [31],
Thm. 10.4) that u is in C2,β(D;R3) for any subset DbΩ. It is made in order to later permit
Taylor expansions of displacements or strains about selected internal points.

2.2 Transmission problem for a small trial inhomogeneity

Now, consider a single small elastic inhomogeneity located at z ∈ Ω, of characteristic linear
size a, occupying the domain

Ba = z + aB,
where B ⊂ R3 is a bounded smooth domain and a is small enough to have B̄a b Ω. The
inhomogeneity has anisotropic properties characterized by the elasticity tensor C?, so that the
elastic properties of the whole solid are defined by the tensor-valued field Ca given by

Ca = (1− χ(Ba))C + χ(Ba)C? = C + χ(Ba)∆C, (7)

χ(D) being the characteristic function of the domain D and ∆C :=C?−C denoting the elastic
tensor perturbation.
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The displacement field ua ∈W (ū) arising in the solid containing the small inhomogeneity
due to the prescribed excitations (f , g, ū) solves the transmission problem

div(Ca :ε[ua]) + f = 0 in Ω, (C :ε[ua])·n = g on ΓN, u = ūa on ΓD. (8)

Formulation (8) implicitly enforces, by virtue of its distributional interpretation, the perfect-
bonding relations ua|+ = ua|− and (C : ε[ua]) ·n|+ = (C? : ε[ua]) ·n|− on ∂Ba, where the ±
subscripts indicate limiting values from outside and inside Ba, respectively, and n is the unit
outward normal vector to ∂Ba.

The transmission problem (8) can alternatively be formulated in terms of the displacement
perturbation va := ua−u rather than the total displacement ua. Subtracting (3) from the
corresponding weak formulation of (8) yields the following weak formulation for va:

Find va ∈ W0, 〈va,w〉CaΩ = −〈u,w〉∆CBa
, ∀w ∈W0. (9)

Free-space transmission problem (FSTP). The auxiliary problem of a perfectly-bonded
inhomogeneity (B,C?) embedded in an infinite elastic medium Ω∞ = R3 and subjected to a
uniform remote stress equal to the background stress at z will play an important role in the
sequel. The FSTP thus consists in finding the displacement field uB such that

div(CB :ε[uB]) = 0 in R3, uB(ξ)− u∞(ξ) = O(|ξ|−2), |ξ| → ∞, (10)

where the background displacement u∞ is defined by u∞(ξ) = ∇u(z) ·ξ and with CB :=
C + χ(B)∆C. The FSTP (10) can be recast into the following weak formulation for the

displacement perturbation vB :=uB−u∞:

Find vB ∈W∞, 〈vB,w〉CBR3 = −〈u∞,w〉∆CB , ∀w ∈W∞, (11)

with the function space W∞ defined by W∞ =
{
w ∈L2

loc(R3;R3),∇w ∈L2(R3;R3×3)
}

.
When B is an ellipsoid, i.e. B= {x ∈ R3, (x1/a1)2 +(x2/a2)2 +(x3/a3)2 ≤ 1} , a1, a2, a3 >

0 (with the axes of the Cartesian frame (Ox1x2x3) assumed, without loss of generality, to be
aligned with the ellipsoid principal axes), the FSTP (12) is analytically solved in Eshelby’s
celebrated paper [18]. In that case, vB is found to have a constant strain and gradient inside
B, with

∇vB(x) = S int :ε?(z), ε?(z) = −(C+∆C :S int)−1 :∆C :∇u(z) (x∈B), (12)

S int being the interior Eshelby tensor of B, which relates a constant eigenstrain ε? in B to
the constant displacement gradient in B. We note that the above definition of S int somewhat
differs from the usual Eshelby tensor S, which is such that ε[vB](x) = S : ε?(z) (x ∈ B)
instead. Using e.g. Eq. (17.14) of [37], one has

S int
ijmn =

1

4π
Ck`mn

∫
S2

Nik(ξ(ŝ))ξ`(ŝ)ξj(ŝ) dS(ŝ), (13)

where S2 is the unit sphere, ξ(ŝ) is defined for ŝ∈S2 by

ξ = (ŝ1/a1, ŝ2/a2, ŝ3/a3), (14)

and the tensor-valued function ξ 7→ N (ξ) is given by N (ξ) = K−1(ξ), where Kik(ξ) :=
Cijk`ξjξl is the Christoffel acoustic tensor. A similarly modified version of the exterior Eshelby
tensor will be used in Section 4.1.
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Elastic moment tensor. The elastic moment tensor (EMT) [5, 15, 38] will be seen to play
an important role in the small-inhomogeneity asymptotics of cost functionals. The EMT A
is the fourth-order tensor defined for any value of the constant tensor ∇u(z)∈R3×3 by

A :∇u(z) =

∫
B

∆C :∇uB dV =

∫
B

∆C : (∇u(z) + ∇vB) dV, (15)

where vB is the solution of the FSTP (11). The EMT has the same symmetry properties as
the elasticity tensor C: for any pair of second-order tensors E,E′ ∈R3×3, A satisfies

E′ :A :E = E :A :E′ (major symmetry), (16a)

E′ :A :E = E′ :A :ET and E′ :A :E = E′T :A :E (minor symmetries). (16b)

The EMT for an ellipsoidal inhomogeneity is readily found, using (12) into (15), to have
the closed form expression [5, 15, 38, 40]

A = |B|C : (C+∆C :S int)−1 :∆C. (17)

Asymptotic behavior of va [2, 13, 15]. The inner approximation ṽa of va is given by

ṽa(x) = avB

(x−z
a

)
, x∈Ba (18)

where vB solves the FSTP (11). Moreover, for any cut-off function θ ∈ C∞c (Ω) such that θ ≡ 1
in a neighborhood D of z, let δa ∈ H1(Ω;R3) be defined by

va = θṽa + δa. (19)

Then, there exists a constant C > 0 independent of a such that the estimates

(a) ‖∇ṽa‖L2(Ω) ≤ Ca3/2, (b) ‖ṽa‖L2(Ω) ≤ Ca5/2, (c) ‖δa‖H1(Ω) ≤ Ca5/2 (20)

and
(a) ‖∇va‖L2(Ω) ≤ Ca3/2, (b) ‖va‖L2(Ω) ≤ Ca5/2. (21)

hold [2, 15]. Estimate (20c) also relies on the previously-made assumption that f has C0,β

regularity for some β > 0 in a neighbourhood of z. Moreover, the known O(|x̄|−3) far-field
behavior of ∇vB [15, 37] implies, by rescaling, that

‖∇ṽa‖L∞(Ω\D) ≤ Ca3. (22)

Remark 1. As mentioned in [15], the above estimates, established assuming C to be constant
(homogeneous background material), are expected to also hold for heterogeneous elastic prop-
erties that are smooth in a fixed neighbourhood of z (with the EMT then defined in terms of
C(z)). A numerical experiment involving a piecewise constant C for non-destructive testing
is shown in Section 5.

2.3 Cost functional

Cost functionals of the form

J(Ca) = Ja(ua,∇ua) with Ja(u,d) =

∫
Ω

ψa
(
x,u(x),d(x)

)
dV (x) (23)

are considered, where the density ψa : Ω×R3×R3×3 → R is defined by

ψa = (1− χ(Ba))ψ + χ(Ba)ψ
? = ψ + χ(Ba)∆ψ, (24)
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with functions ψ and ψ? (and hence also ∆ψ :=ψ?−ψ) assumed to be twice differentiable in
all their arguments. Moreover, all second-order derivatives of ψ and ψ? are assumed to have
C0,γ(Ω×R3×R3×3) Hölder regularity for some γ > 0 with respect to all their arguments. We
will denote by x∈Ω, u∈R3, d∈R3×3 the generic arguments of a density ψ(x,u,d). Then,
∂xψ, ∂uψ, ∂dψ will denote the partial derivatives with respect of the corresponding arguments,
with higher-order partial derivatives denoted similarly, e.g. ∂2

udψ (with similar notations for
ψ?). The assumed Hölder regularity of ψ can thus be expressed as the existence of a finite
constant K such that, for every combination of indices i, j = x, u, d ,

sup
x0∈Ω
u0∈R3

d0∈R3×3

∣∣∂2
ijψ(x0,u0,d0)

∣∣+ sup
(x0,x1)∈Ω
(u0,u1)∈R3

(d0,d1)∈R3×3

∣∣∂2
ijψ(x0,u0,d0)− ∂2

ijψ(x1,u1,d1)
∣∣(

|x0 − x1|γ + |u0 − u1|γ + |d0 − d1|γ
) ≤ K,

with a similar inequality holding for ψ?. We note that the above assumption implies that ∂2
ijψ

and ∂2
ijψ

? are bounded over Ω×R3×R3×3.
The partial directional derivatives ∂uJa and ∂dJa of Ja with respect to its first and second

arguments are defined, for later use, by〈
∂uJa(u,d),w

〉
=

∫
Ω\Ba

∂uψ(x,u,d)·w dV +

∫
Ba

∂uψ
?(x,u,d)·w dV, w ∈W0,〈

∂dJa(u,d),h
〉

=

∫
Ω\Ba

∂dψ(x,u,d) :h dV +

∫
Ba

∂dψ
?(x,u,d) :h dV, h∈L2(Ω;R3×3).

(25)

Remark 2. The assumed Hölder and boundedness conditions on the cost functional densities
might seem restrictive, but are satisfied by a number of cost functions often used in applica-
tions (compliance, energy based functionals, least squares misfit functionals, yield functions).
Examples include (i) all quadratic functions of d, and (ii) the useful penalization function

ψ(d) = Ψn(q(d)), Ψn(t) :=
(
1 + tn

)1/n − 1 (26)

(where q is any quadratic function of d), introduced in [7] to approximate pointwise yield
functions with thresholds, whose derivatives Ψ

′′
n and Ψ

′′′
n are bounded over R+ (one finds e.g.

that 0 < |Ψ′′n| ≤ 21/n(n− 1) for any t > 0, n > 1). Case (ii) is typically used with q(∇u)
chosen as the appropriate squared (von Mises, Hill-Tsai, Drucker-Prager. . . ) yield function,
normalized so that the corresponding criterion reads q(∇u)≤ 1.

3 Topological derivative

In this section, we state our main result (Theorem 1) and give its proof in Section 3.1.
The generalization to piecewise-regular densities ψ is then addressed in Section 3.2. Finally,
particular instances of Theorem 1 are discussed in Section 3.3.

Definition 1 (topological derivative). Assume that J(Ca) can be expanded in the form

J(Ca) = J(C) + δ(a)DJ(z) + o(δ(a)) (27)

where δ(a) is assumed to vanish as a→ 0 and characterizes the small-inhomogeneity asymp-
totic behavior of J(Ca). Then, the coefficient DJ(z), which also depends a priori on the shape
B and the moduli C,C?, is called the topological derivative of J at z ∈Ω.
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Remark 3. Terminology for the concept of topological derivative varies, with “gradient” or
“sensitivity” sometimes used instead of “derivative”.

Theorem 1. Assume a three-dimensional setting as laid out in Section 2. Any cost functional
J of the form (23) and fulfilling the assumptions made in Section 2.3 admits an expansion of
the form (27), with δ(a) = a3 and the topological derivative DJ(z) of J at z ∈Ω given by

DJ(z) = |B|∆ψ(z,u(z),∇u(z))−∇p(z) :A :∇u(z)

+ ∂d(∆ψ)(z,u(z),∇u(z)) :

∫
B
∇vB(x̄) dV (x̄)

+

∫
R3\B
G(z,∇vB(x̄)) dV (x̄) +

∫
B
G?(z,∇vB(x̄)) dV (x̄). (28)

The functions G and G?: R3×R3×3 → R are defined, for a given background solution u, by

G(z,d) := ψ(z,u(z),∇u(z)+d)− ψ(z,u(z),∇u(z))− ∂dψ(z,u(z),∇u(z)) :d (29a)

G?(z,d) := ψ?(z,u(z),∇u(z)+d)− ψ?(z,u(z),∇u(z))− ∂dψ?(z,u(z),∇u(z)) :d, (29b)

and p∈W0 is the adjoint state, defined as the solution of the weak formulation〈
p,w

〉C
Ω

=
〈
∂uJ0(u,∇u),w

〉
+
〈
∂dJ0(u,∇u),∇w

〉
∀w ∈W0, (30)

with ∂uJ0 and ∂uJ0 as defined by (25).
When the densities ψ, ψ? are linear or quadratic in their third argument (i.e. when ∂2

ddψ
and ∂2

ddψ
? are independent on d), letting D(z) := ∂2

ddψ(z,u(z)) and D?(z) := ∂2
ddψ

?(z,u(z)),
the last two terms in (28) are given by the more explicit expression

1

2

∫
R3\B

∇vB(x̄) :D(z) :∇vB(x̄) dV (x̄) +
1

2

∫
B
∇vB(x̄) :D?(z) :∇vB(x̄) dV (x̄)

Moreover, under two-dimensional plane-strain conditions (where only in-plane displace-
ments are nonzero), the result (28) still holds (with Ω ⊂ R2, B ⊂ R2 and the next-to-last
integral now taken over R2 \B), while δ(a) = a2 in expansion (27).

Remark 4. The result (28) for DJ involves the gradient ∇vB of the FSTP solution, rather
than just its strain ε[vB], which explains the definition (10) chosen here for the Eshelby tensor.

3.1 Proof of Theorem 1

The detailed proof to follow concentrates on the 3D case, its adaptation to the 2D case being
then outlined in a comment. The proof consists in finding the leading contribution to the
difference J(Ca)− J(C) = Ja(ua,∇ua)− J0(u,∇u) as a→ 0. To this end, we write

Ja(ua,∇ua)− J0(u,∇u) =
(
Ja(u,∇u)− J0(u,∇u)

)
+
(
Ja(ua,∇ua)− Ja(u,∇ua)−

〈
∂uJa(u,∇u),va

〉)
+
(
Ja(u,∇ua)− Ja(u,∇u)−

〈
∂dJa(u,∇u),∇va

〉)
+
(〈
∂uJa(u,∇u),va

〉
+
〈
∂dJa(u,∇u),∇va

〉)
, (31)

7



with ∂uJa and ∂uJa as defined by (25), and separately evaluate the leading contribution of
each bracketed term in the right-hand side of (31); this is done in the following Lemmas 2
to 5. Using the results of the lemmas in the above decomposition then directly establishes
both the expansion (27) and the expression (28) of DJ(z) stated in Theorem 1.

Lemma 2. Let ∆ψ be defined as in (24). One has

Ja(u,∇u)− J0(u,∇u) = a3|B|∆ψ(z,u(z),∇u(z)) + o(a3).

Proof. By interior regularity for u and the assumed smoothness of ψ, ψ?, ∆ψ(x,u(x),∇u(x))
is continuous at x = z. Therefore, the Lemma follows easily from:

Ja(u,∇u)− J0(u,∇u) =

∫
Ω

(
ψa(x,u,∇u)− ψ(x,u,∇u)

)
dV (x)

=

∫
Ba

∆ψ(x,u,∇u) dV (x) = a3|B|∆ψ(z,u(z),∇u(z)) + o(a3),

where the last step exploits the fact that the volume of Ba is |Ba| = a3|B|.
Lemma 3. Let the displacement perturbation va solve problem (9). One has

Ja(ua,∇ua)− Ja(u,∇ua)−
〈
∂uJa(u,∇u),va

〉
= o(a3),

with ∂uJa as defined by (25)

Proof. The proof is based on Taylor expansions. A first-order expansion of ψ with respect to
its first argument first yields

ψ(x,ua,∇ua)− ψ(x,u,∇ua) = ∂uψ(x,u,∇ua)·va + 1
2
va ·∂2

uuψ(x,u+δuva,∇ua)·va
for some δu(x) ∈ [0, 1]. Moreover, a zeroth-order Taylor expansion of ∂uψ with respect to its
second argument gives

∂uψ(x,u,∇ua)·va − ∂uψ(x,u,∇u)·va = ∇va :∂2
duψ(x,u,∇u+δd∇va)·va

for some δd(x) ∈ [0, 1]. Both expansions are valid due to the assumed regularity of ψ. Similar
expansions also hold for the density ψ?, for some δ?u(x), δ?d(x) ∈ [0, 1]. Combining all of these
expansions, one finds

Ja(ua,∇ua)− Ja(u,∇ua) =
〈
∂uJa(u,∇u),va

〉
+Ra (32)

with the remainder Ra given by

Ra =

∫
Ω\Ba

[
1
2
va ·∂2

uuψ(x,u+δuva,∇ua)·va + ∇va :∂2
duψ(x,u,∇u+δd∇va)·va

]
dV

+

∫
Ba

[
1
2
va ·∂2

uuψ
?(x,u+δ?uva,∇ua)·va + ∇va :∂2

duψ
?(x,u,∇u+δ?d∇va)·va

]
dV

Next, thanks to the boundedness of the second-order partial derivatives of ψ and ψ?, there
exists a constant C > 0 such that

Ra ≤ C(‖va‖2
L2(Ω) + ‖∇va‖L2(Ω) ‖va‖L2(Ω))

Finally, estimates (21) imply that there exists a constant C > 0 such that

Ra ≤ Ca4 = o(a3).

Using the above estimate in (32) completes the proof.
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Lemma 4. One has

Ja(u,∇ua)− Ja(u,∇u)−
〈
∂dJa(u,∇u),∇va

〉
= a3

{∫
R3\B
G(z,∇vB(x̄)) dV (x̄) +

∫
B
G?(z,∇vB(x̄)) dV (x̄)

}
+ o(a3) (33)

where ∂dJa is defined by (25) and the functions G and G?: R3×R3×3 → R are defined by (29a,b).

Proof. The combination to be estimated is first recast in the form

Ja(u,∇ua)− Ja(u,∇u)−
〈
∂dJa(u,∇u),∇va

〉
=

∫
Ω\Ba

G(x,∇va) dV (x) +

∫
Ba

G?(x,∇va) dV (x)

=
(
Ja(u,∇ua)− Ja(u,∇u+∇ṽa)−

〈
∂dJa(u,∇u+∇ṽa),∇v̂a

〉 )
+
(
∂dJa(u,∇u+∇ṽa),∇v̂a

〉
−
〈
∂dJa(u,∇u),∇v̂a

〉 )
+
(
Ja(u,∇u+∇ṽa)− Ja(u,∇u)−

〈
∂dJa(u,∇u),∇ṽa

〉 )
(34a)

having used functions G, G? defined by (29a,b) for the last equality, and with v̂a defined
(using (19) in the second equality below) by

v̂a = va − ṽa = δa + (θ−1)ṽa. (34b)

Since ∇v̂a = ∇δa+(θ−1)∇ṽa+∇θ⊗ṽa, we note for later use that estimates (20) and (22)
(together with the fact that the support of (θ−1)∇ṽa is Ω\D) imply

‖∇v̂a‖L2(Ω) = O(a5/2). (34c)

We first focus on contributions of integrals over Ω\Ba, i.e. of the density G, to (34a). To
begin, each bracketed combination in (34a) is reformulated by exploiting Taylor expansions
(of first-order with respect to its third argument, with integral remainder) of ψ, to obtain∫

Ω\Ba

G(x,∇va) dV (x) =

∫
Ω\Ba

∇v̂a(x) :D2

(
x,u+ ṽa,∇v̂a(x)

)
:∇v̂a(x) dV (x)

+

∫
Ω\Ba

∇v̂a(x) :D1

(
x,∇v̂a(x)

)
:∇ṽa(x) dV (x)

+

∫
Ω\Ba

∇ṽa(x) :D3

(
x,∇ṽa(x)

)
:∇ṽa(x) dV (x), (34d)

with

D1(y,d) =

∫ 1

0

∂ddψ
(
y,u(y),∇u(y)+ td)

)
dt,

D2(y,w,d) =

∫ 1

0

∂ddψ
(
y,u(y),∇w(y)+ td

)
(1− t) dt,

D3(y,d) = D2(y,u,d).

(34e)
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BothD1

(
x,∇v̂a(x)

)
andD2

(
x,u(x)+ṽa(x),∇v̂a(x)

)
are bounded over Ω, due to the bound-

edness of the second-order partial derivatives of ψ. This remark is exploited by applying the
Cauchy-Schwarz inequality to the first two integrals I1 and I2 of the right-hand side of (34d)
and invoking estimates (20a) and (34c), to obtain I1 = O(a5) = o(a3) and I2 = O(a4) = o(a3).
Using these estimates, applying the change of variables x̄ = (x−z)/a to the third integral
of the right-hand side of (34d) (whereby dV (x) = a3 dV (x̄)), and recalling definition (19) of
ṽa, we obtain∫

Ω\Ba

G(x,∇ṽa) dV (x) = a3

∫
((Ω−z)/a)\B

∇vB(x̄) :D3(z+ax̄,∇vB(x̄)) :∇vB(x̄) dV (x̄) + o(a3)

= a3

∫
((Ω−z)/a)\B

∇vB(x̄) :D3(z,∇vB(x̄)) :∇vB(x̄) dV (x̄) +R + o(a3)

= a3

∫
((Ω−z)/a)\B

G(z,∇vB(x̄)) dV (x̄) +R + o(a3) (34f)

(having noted that ∇vB(x̄) :D3(z,∇vB(x̄)) :∇vB(x̄) = G(z,∇vB(x̄))), where the remainder
R is such that

R := a3

∫
((Ω−z)/a)\B

∇vB(x̄) :
[
D3(z+ax̄,∇vB(x̄))−D3(z,∇vB(x̄))

]
:∇vB(x̄) dV (x̄)

≤ Ca3+γ

∫
((Ω−z)/a)\B

|∇vB(x̄)|2|x̄|γ dV (x̄) ≤ Ca3+γ

∫
R3\B
|∇vB(x̄)|2|x̄|γ dV (x̄), (34g)

by virtue of the inequality

|D3(z+ax̄,d)−D3(z,d)| ≤ Caγ|x̄|γ (34h)

stemming from the assumed C0,γ Hölder regularity of ∂ddψ and the known C2 interior regu-
larity of u in Ω, which implies that there exists τ ′, τ ′′ ∈ [0, 1] such that

u(x)−u(z) = a∇u(z+τ ′ax̄)·x̄, ∇u(x)−∇u(z) = a∇2u(z+τ ′′ax̄)·x̄. (34i)

The known O(|x̄|−3) far-field behavior of ∇vB(x̄) [15, 37] implies that the last integral in (34g)
over the unbounded domain R3\B is finite for any γ < 3, and hence that R = O(a3+γ) = o(a3).
Finally, taking the limit ((Ω−z)/a)\B → R3\B in (34f) (which is legitimate by the dominated
convergence theorem since |G(z,∇vB(x̄))| is integrable over R3 \ B), the desired asymptotic
form of (34d) is obtained:∫

Ω\Ba

G(x,∇va) dV (x) = a3

∫
R3\B
G(z,∇vB(x̄)) dV (x̄) + o(a3). (34j)

The second integral in the right-hand side of (34a) can be estimated following similar
arguments. A representation similar to (34d) holds, with integrals taken over Ba and ψ
replaced by ψ? in (34e). Noting in addition that now v̂a = δa since θ = 1 in Ba, the first
two integrals in the right-hand side of the counterpart of (34d) are easily established to be of
order o(a3) using estimates (20). Using again the change of variables x̄ = (x−z)/a in the
remaining integral, one then finds∫

Ba

G?(x,∇va) dV (x) = a3

∫
B
G?(z,∇vB(x̄)) dV (x̄) +R? + o(a3), (34k)
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where, exploiting through (34h) the assumed Hölder regularity of ψ?, the remainder R? is
such that

R? := a3

∫
B
∇vB(x̄) :

[
D(z+ax̄,∇vB(x̄))−D(z,∇vB(x̄))

]
:∇vB(x̄) dV (x̄)

≤ Ca3+γ

∫
B
|∇vB(x̄)|2|x̄|γ dV (x̄) = O(a3+γ).

The desired asymptotic form of (34k) is therefore obtained:∫
Ba

G?(x,∇va) dV (x) = a3

∫
B
G?(z,∇vB(x̄)) dV (x̄) + o(a3) (34l)

The lemma finally follows from using expansions (34j) and (34l) in (34a).

Finally, the leading contribution to the last bracketed combination of (31) is given in the
following lemma in terms of an adjoint solution.

Lemma 5. Let the adjoint solution p∈W0 be defined by the weak formulation〈
p,w

〉C
Ω

=
〈
∂uJ0(u,∇u),w

〉
+
〈
∂dJ0(u,∇u),∇w

〉
∀w ∈W0, (35)

with ∂uJ0 and ∂dJ0 as defined by (25). One has〈
∂uJa(u,∇u),va

〉
+
〈
∂dJa(u,∇u),∇va

〉
= a3|B|

{
−∇p(z) :A :∇u(z) + ∂d(∆ψ)(z,u(z),∇u(z)) :

∫
B
∇vB dV (x̄)

}
+ o(a3) (36)

Proof. Setting ∆ψ :=ψ?−ψ, one has〈
∂uJa(u,∇u),va

〉
+
〈
∂dJa(u,∇u),∇va

〉
=
〈
∂uJ0(u,∇u),va

〉
+
〈
∂dJ0(u,∇u),∇va

〉
+
〈
∂u∆J(u,∇u),va

〉
+
〈
∂d∆J(u,∇u),∇va

〉
(37a)

Invoking the definition (35) of the adjoint solution, the identity〈
va,w

〉C
Ω

= −
〈
ua,w

〉∆C
Ba
, ∀w ∈ W0

verified by the transmission problem, one finds〈
∂uJ0(u,∇u),va

〉
+
〈
∂dJ0(u,∇u),∇va

〉
=
〈
p,va

〉C
Ω

= −
〈
ua,p

〉∆C
Ba

= −a3|B|∇p(z) :A :∇u(z) + o(a3), (37b)

where the last equality holds by virtue of [15, Lemma 2] and p having C2 interior regularity
(see Section 3.2). Next, using decomposition (19) of va and the fact that ∆J has Ba as its
geometrical support (implying in particular that θ = 1 in Ba), one has〈

∂u∆J(u,∇u),va
〉

+
〈
∂d∆J(u,∇u),∇va

〉
=
〈
∂u∆J(u,∇u), (ṽa+δa)

〉
+
〈
∂d∆J(u,∇u),∇(ṽa+δa)

〉
(37c)

The partial derivatives of ∆ψ(x,u(x),∇u(x)) being bounded by virtue of the assumptions
made on ψ, ψ? and the C2 interior regularity of u, there exists a constant C > 0 such that〈

∂u∆J(u,∇u), (ṽa+δa)
〉

+
〈
∂d∆J(u,∇u),∇δa

〉
≤ a3/2(‖ṽa‖L2(Ω) + ‖δa‖H1(Ω)))

≤ Ca4, (37d)

the last inequality stemming from estimates (20).
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The term
〈
∂d∆J(u,∇u),∇ṽa

〉
remains to be estimated. By the mean value theorem

applied to ∂d(∆ψ)(x,u(x),∇u(x)), there exists t(x)∈ [0, 1] such that

∂d(∆ψ)(x,u(x),∇u(x)) = ∂d(∆ψ)(z,u(z),∇u(z)) + ∂2
xd∆ψ(xt,ut,∇ut)·(x−z)

+ ∂2
ud∆ψ(xt,ut,∇ut)·[u(x)−u(z)] + ∂2

dd∆ψ(xt,ut,∇ut) : [∇u(x)−∇u(z)]

where xt, ut, ∇ut are defined by

xt := z + t(x−z),

ut := u(z) + t[u(x)−u(z)],

∇ut := ∇u(z) + t[∇u(x)−∇u(z)].

(37e)

Introducing x−z = ax̄ and expansions (34i), stemming from the C2 interior regularity of u,
in the above definitions, one obtains for x∈Ba

∂d(∆ψ)(x,u(x),∇u(x)) = ∂d(∆ψ)(z,u(z),∇u(z)) +O(a)

which in turn implies〈
∂d∆J(u,∇u),∇ṽa

〉
= a3∂d(∆ψ)(z,u(z),∇u(z)) :

∫
B
∇vB dV + o(a3) (37f)

The lemma finally follows by substituting (37d) and (37f) into the right-hand side of (37c)
and then using the resulting estimate together with (37b) in (37a).

The two-dimensional case. The proof for the two-dimensional plane-strain case is iden-
tical, except for the fact that estimates (20) to (22) must be replaced by their following
two-dimensional counterparts:

(a) ‖∇ṽa‖L2(Ω;R2) ≤ Ca, (b) ‖ṽa‖L2(Ω;R2) ≤ Ca2
√
| log a|, (c) ‖δa‖H1(Ω;R2) ≤ Ca2,

(38a)

(a) ‖∇va‖L2(Ω;R2) ≤ Ca, (b) ‖va‖L2(Ω;R2) ≤ Ca2. (38b)

‖∇ṽa‖L∞(Ω\D) ≤ Ca2, (38c)

which can be established e.g. by adapting to the two-dimensional case the proofs given in [15].

3.2 Case of piecewise-regular cost functional densities

Now we extend the previous results to the topological derivative of functionals Jω defined by
an integral over a portion ω ⊂ Ω of the elastic body Ω, of the form

Jω(Ca) = Ja(ua,∇ua;ω), with Ja(u,d;ω) =

∫
ω

ψa(x,u,∇u) dV (x),

where the trial inhomogeneity Ba is assumed to satisfy either Babω or Bab(Ω\ω̄) (the case
where Ba ∩ ∂ω 6= ∅ not being considered). If Ba b ω, the previous analysis remains valid,
with DJ still given by (28) and the only change concerning the adjoint solution, which now
satisfies the weak formulation∫

Ω

ε[p] : C : ε[q]dV =

∫
Ω

χω
{
∂dψ : ∇q + ∂uψ · q

}
dV, ∀q ∈ W0(Ω). (39)

On the other hand, if Bab (Ω\ ω̄), ψa − ψ = 0 in ω and the cut-off function θ in decomposi-
tion (19) can be chosen, for any sufficiently small a, such that θ= 0 in ω. This choice implies
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that va = δa in ω for any z ∈Ω\ω, and hence, by estimate (20c), that

‖va‖H1(ω) ≤ Ca5/2.

Consequently, retracing the proof of Theorem 1, contributions to DJ arising from ∂ddψ and
∂ddψ

? in Lemma 4 are o(a3), and DJ is simply given, in terms of the solutions u of (3) and
p of (39), by

DJ(z) = −∇p(z) : A : ∇u(z). (40)

Regularity of the adjoint solution. As it was previously seen, the point-wise evaluation
of DJ at some z ∈ Ω requires the background displacement u and the adjoint solution p to
have some local regularity at z, namely u,p ∈ C2,α(D;R3) for some neighborhood D b Ω of
z and α ∈ (0, 1). The needed regularity for u follows directly from the regularity of the body
force density f ∈ C0,α(Ω;R3). When the cost function J depends only on u, the adjoint state
p solves

Find p∈W0, 〈p,w〉CΩ =
〈
∂uJ0(u),w

〉
, ∀w ∈W0.

Then, if ∂uψ(x,u(x)) ∈ C0,α(Ω;R3), p fulfills automatically the required interior regularity
in Ω. On the contrary, the case when the cost functional depends on ∇u is slightly more
delicate. In such a case p solves

Find p∈W0, 〈p,w〉CΩ =
〈
∂dJ0(∇u),∇w

〉
, ∀w ∈W0

Thus if ∂dψ(x,∇u(x)) ∈ C1,α(Ω;R3×3), p fulfills the required regularity. We remark that the
components of the tensor (∇u)ij ∈ C1,α(Ω) so we can take any function ψ(·, d) ∈ C1(R3×3)
for this purpose. Finally when the cost function J is defined in a sub-domain ω of Ω,〈

∂dJ0(∇u),∇w
〉

=

∫
ω

∂dψ(x,∇u) :∇w dV =

∫
Ω

χω∂dψ(x,∇u(x)) :∇w dV,

the adjoint state p solves
−div(Cε(p)) = −div(∂dψ(x,∇u)) in D,

p = 0 on ΓD,

C :ε(p)·n = 0 on ΓN ,

where ΓN ∩ω = ∅ is assumed. We can easily check that div(χω∂dψ(x,∇u(x))) ∈ H−1(Ω;R3)
if ∂dψ(x,∇u(x)) ∈ C1,α(Ω;R3×3). Then by the Lax-Milgram theorem p ∈ W0(Ω). To achieve
the required C2,α local regularity of p at z ∈Ω, we only need to select z /∈ ∂ω.

Indeed, if z ∈ (Ω \ ω̄), there is a smooth neighborhood D ⊂ Ω \ ω̄ of z such that div(C :
ε(p)) = 0 in D. Therefore (e.g. [35, Theorem 4.16]), there exists a neighborhood D′ b D of
z where p ∈ C2,α(D′;R3).

Otherwise if z ∈ ω, there exists a smooth neighborhood D b ω of z where p solves the
problem {

−div(Cε(q)) = −div(∂dψ(x,∇u)) in D,

q = p on ∂D.

The adjoint state p can be decomposed as p = p1 + p2, where p1 solves the problem{
−div(Cε(q)) = 0 in D,

q = p on ∂D
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and p2 solves {
−div(Cε(q)) = −div(∂dψ(x,∇u)) in D,

q = 0 on ∂D.

Therefore, there exists a neighborhood D′ b D of z where p1 ∈ C2,α(D′;R3). Moreover
p2 ∈ C2,α(D;R3) if ∂dψ(x,∇u(x)) ∈ C1,α(D;R3×3), thanks to the interior regularity of p2.
Hence p∈C2,α(D′;R3).

3.3 Particular cases

A few particular instances of the general result given by Theorem 1, and their connections to
previously-available results, are now discussed.

Displacement-based functional. In this case, ∂dψ = ∂dψ
? = 0, and hence G = G? = 0.

Only the first two terms in the expression (28) of DJ then remain; moreover the second term
in the right-hand side of the adjoint problem (35) vanishes. As a result, formula (28) reduces
to known results for displacement-based functionals, e.g. [15, Prop. 4.2] if ∆ψ(z,u(z)) = 0.

Quadratic stress-based functional. This case is such that ∂2
ddψ=D(z), ∂2

ddψ
? =D?(z),

where D and D? are symmetric fourth-order tensor fields. It is studied in [40], where D
and D? are constant, and otherwise arbitrary, tensors. Expression (28) of DJ for this case
is indeed found, after adjusting for notational differences, to coincide with [40, Theorem 3.1].
Reference [40] also gives a number of useful explicit formulas on Eshelby’s solution and its use
in evaluating DJ for quadratic stress-based functional, including one for the evaluation of the
last two integrals in (28) when B is the unit sphere and the tensor D is isotropic.

Quadratic energy-like functional. This case, examined in [15], is a particular instance
of the previous case with D =C and D? =C?, and thus corresponds to functionals of the form

Ja(∇u) =
〈
u−u0,u−u0

〉Ca
Ω

(u0 ∈H1(Ω;R3) given).

Apply our main result (28) to this case yields

DJ(z) = |B|ε[u−u0](z) :∆C :ε[u−u0](z)− ε[p](z) :A :ε[u](z)

+ |B|ε[u− 2u0](z) :∆C :

∫
B
ε[vB] dV

= |B|ε[u0](z) :∆C :ε[u0](z) + ε[u−2u0−p](z) :A :ε[u](z) (41)

where the last expression matches the one established by another approach in [15] (wherein
the adjoint solution q is linked to p through q = u0−u+p). We have used identities∫

R3

ε[vB] :Ca :ε[vB] dV = −|B|ε[u](z) :∆C :

∫
B
ε[vB] dV

(obtained from (11) with w= vB) in the first equality of (41), and

|B|ε[u− 2u0] :∆C :

∫
B
ε[vB] dV = ε[u− 2u0] :

(
A− |B|∆C

)
:ε[u](z)

(resulting from left multiplication of (15) by ε[u− 2u0]) in the second equality of (41).
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Drucker-Prager penalty functional. The penalty functional considered in [7] is based
on the following assumptions: (a) two-dimensional isotropic elasticity, plane-strain conditions,
identical Poisson ratio in background and inhomogeneity materials, (b) circular trial inhomo-
geneities (i.e. B taken as the unit disk), (c) ψ(d) = Ψn(α2

DP(C : d)), with α2
DP denoting the

yield function associated with the Drucker-Prager criterion, and a similar definition for ψ? in
terms of the inhomogeneity material. Using these assumptions in equation (28), we recover
equation (44) of [7] as a special case.

4 Numerical evaluation of the topological derivative

The evaluation of the topological derivative (28) requires numerical procedures, even in the
simplest cases (isotropic elasticity, spherical shape for B), in particular because of the integral
over the unbounded region R3\B. The details of such procedure depend upon whether B is
an ellipsoid, or has some other shape, as ∇vB is constant inside B in the former case but not
necessarily in the latter [18]. In the sequel, we concentrate on the ellipsoidal case, which is
sufficient for most applications.

4.1 3D case, ellipsoidal trial inclusion

Let B denote an ellipsoid with principal axes a1, a2, a3, as in Section 2.2. In that case, ∇vB(x̄)
inside B is given by (12), and the two integrals over B appearing in (28) are easily evaluated
since their densities are constant.

The integral over R3 \B in (28) requires a more elaborate procedure, as the integration
domain is unbounded and vB is spatially-dependent (and in fact decays at infinity). First x̄
is transformed to y according to

y = (x̄1/a1, x̄2/a2, x̄3/a3) (|y| ≥ 1). (42)

It is then natural to set y = |y|ŷ, with ŷ ∈S2 (where S2 is the unit sphere) and 1≤ |y| ≤+∞.
Finally the transformation t = |y|−1 (with 0 < t ≤ 1) is applied to the radial variable, so
that (42) represents any x̄∈R3 \B in the form x̄(ŷ, t). This results in∫

R3\B
G(z,∇vB(x̄)) dV (x̄) =

1

a1a2a3

∫ 1

0

1

t4

{∫
S2

G(z,∇vB(x̄(ŷ, t))) dS(ŷ)
}

dt, (43)

which is to be evaluated using numerical quadrature (using e.g. a Gaussian rule for t and a
Lebedev rule on S2 [32]).

The exterior Eshelby tensor and its numerical evaluation. Equation (43) in turn
requires the evaluation of ∇vB(x̄(ŷ, t)) for any given quadrature point (ŷ, t). Having assumed
an ellipsoidal shape for B, ∇vB is given outside of B by (Eq. (18.6) of [37])

∇vB(x̄) = Sext(x̄) :ε?, (44)

where ε? is again defined by (12) and Sext(x̄) is the exterior (spatially varying) Eshelby tensor,
given by

Sext
ijmn(x̄(ŷ, t)) =

1

2π
Ck`mn

{∫
S?(ŷ,t)

Nik(ξ)ξ`ξj dS(ŝ)−
∮
L+(ŷ,t)

tNik(ξ)ξ`ξj dφ(ŝ)
}
, (45)
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Figure 1: Parametrization of the set S?⊂S2.

where ξ = ξ(ŝ) and N (ξ) are defined as in (13), S?(ŷ, t) is the portion of S2 defined by
S?(ŷ, t) := {ŝ ∈ S2 : 0≤ ŝ·ŷ≤ t}, L+(ŷ, t) the circular contour on S2 defined by L+(ŷ, t) :=
{ŝ ∈ S2 : ŝ·ŷ= t} (Fig. 1), while dS(ŝ) and dφ(ŝ) respectively denote the solid angle differ-
ential on S2 and the polar angle differential on the circle L+(ŷ, t). We note that definition (44)
of Sext(x̄) again differs somewhat from the symmetrized version used in e.g. [40].

It is useful to recast (45) in a form more suitable for numerical quadrature. To this
end, let S?(ŷ, t) be represented in terms of coordinates (z, φ) spanning the fixed domain
Q :=

{
(z, φ) ∈ [0, 1]× [0, 2π[

}
by

S?(ŷ, t) =
{
ŝ∈S2 | ŝ = (1− t2z2)1/2 ˆ̀(φ) + tzŷ

}
with ˆ̀(φ) spanning the unit circle S1 := {ŝ·ŷ = 0} (this representation stems from paramete-
rizing ŝ using angular spherical coordinates (θ, φ) and setting z := t−1 cos θ). L+(ŷ, t) is then
the subset of S?(ŷ, t) such that z= 1. The (z, φ) parametrization implies that dS(ŝ) = t dzdφ,
and also induces a corresponding representation ξ(tz, φ) of ξ as defined by (14). Inserting it
in (45) and rearranging the resulting expression, the exterior Eshelby tensor Sext is given, for
a given evaluation point x̄(ŷ, t), by an integral over the fixed domain Q:

Sext
ijmn(x̄(ŷ, t)) =

t

2π
Ck`mn

∫ 1

0

dz

∫ 2π

0

[
Σk`ij(tz, φ)− Σk`ij(t, φ)

]
dφ (46)

with
Σk`ij(tz, φ) = Nik(ξ(tz, φ))ξ`(tz, φ)ξj(tz, φ).

For given x̄(ŷ, t), Sext(x̄(ŷ, t)) can then be evaluated by means of standard numerical quadra-
ture in Q (using e.g. product rules that are Gaussian in z and uniform in φ). In addition, a
Taylor expansion in t about t= 0 yields Σk`ij(tz, φ)−Σk`ij(t, φ) = (z−1)∂1Σk`ij(0, φ) +O(t2),
where ∂1 denotes the partial derivative w.r.t. the first argument. It is moreover straightfor-
ward to show that ∂1Σk`ij(0, φ) is for any (k`ij) a polynomial in (cosφ, sinφ) involving only
odd-degree terms, and hence that its integral over φ ∈ [0, 2π] vanishes. Consequently, the
Taylor expansion of (46) about t= 0 is Sext

ijmn(x̄(ŷ, t)) = O(t3), implying that the integral in t
of (43) is well defined. This remark is consistent with the otherwise known O(|x̄|−3) behavior
of ∇vB(x̄) as |x̄| → +∞.
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Remark 5. For a general functional with non-quadratic dependence on stress (i.e. such that
∂2
ddψ and ∂2

ddψ
? depend on d), the computation of (43) by numerical quadrature must be done

anew for each evaluation point z of DJ(z). This makes the computation of the topological
derivative field DJ potentially expensive.

On the other hand, quadratic stress-based functionals entail much less computational work,
since one has (with D as in Theorem 1)∫

R3\B
G(z,∇vB(x̄)) dV (x̄) = ε?(z) :

{ 1

2

∫
R3\B

Sext(x̄) :D(z) :Sext(x̄) dV (x̄)
}

:ε?(z),

allowing the computation of the whole field DJ(z) using just one numerical quadrature in the
(ŷ, t) variables (if D is independent of z) or up to 45 such quadratures (for general D(z), for
which the major symmetry Dijk` =Dk`ij necessarily holds).

Isotropic background material. Letting the material be in that case characterized using
its shear modulus G and Poisson’s ratio ν, the Christoffel tensor N has a simple closed-form
expression

Nik(ξ) =
1

G|ξ|2
[
δik −

1

2(1−ν)
ξ̂i⊗ ξ̂k

]
(47)

with ξ̂ := ξ/|ξ|. A straightforward calculation then shows that Ck`mnΣk`ij = Ck`mnΣk`ji,
implying that Sext(x̄) : ε? is symmetric, i.e. coincides with the value obtained from the
definition of the exterior Eshelby tensor used in [40]. The exterior Eshelby tensor for a unit
ball is then found (by analytical evaluation of (46) using (47), or by completing derivations
presented in [37, Sec. 11]) to have the following closed-form expression (wherein x̄ := |x̄|):

2(1− ν)Sext
ijk`(x̄) =

[ 7

x̄9
− 5

x̄7

]
xixjxkx` +

[ 1

x̄5
− 1

x̄7

]
δijxkx` +

[ 1−2ν

x̄5
− 1

x̄7

]
δk`xixj

+
[ ν
x̄5
− 1

x̄7

]
(δikxjx` + δjkxix` + δi`xjxk + δj`xixk)

+
[ 1

5x̄5
− 1−2ν

3x̄3

]
δijδk` +

[ 1

5x̄5
+

1−2ν

3x̄3

]
(δikδj` + δjkδi`). (48)

Moreover, Sext(x̄) :E evaluated for an arbitrary tensor E ∈R3×3
sym using the above formula

coincides with equation (23) of [40].

4.2 2D plane strain case, elliptical trial inclusion.

The exterior Eshelby tensor for an elliptic inclusion

B =
{
x ∈ R2, (x1/a1)2 + (x2/a2)2 ≤ 1

}
, a1, a2 > 0,

embedded in a 2D infinite anisotropic medium, under plane strain conditions, can also be
expressed (following a direct derivation given in Appendix A) as an integral in a form suitable
for numerical quadrature.

Sext(x̄) =
1

π

{∫ π/2

−π/2

[
α(θ)⊗N

(
α(θ)

)
⊗α(θ)

]
dθ

}
:C

− 2

π

{∫ π/2

−π/2

[
α(θ(w))⊗N

(
α(θ(w))

)
⊗α(θ(w))

]
dw

}
:C (49)
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having set x̄ = y
(
a1 cos γ, a2 sin γ

)
, α(θ) =

(
a−1

1 cos(θ+γ), a−1
2 sin(θ+γ)

)
, while the function

θ(w) in the second integral is defined implicitly by sin θ =
√

1−y−2 sinw.

Isotropic background material, circular inclusion. The exterior Eshelby tensor for
a circular inclusion of unit radius is then found, for example by analytical evaluation of (49)
using (47), to have the following closed-form expression (with all indices ranging in {1, 2}):

2(1− ν)Sext
ijk`(x̄) =

[ 6

x̄8
− 4

x̄6

]
xixjxkx` +

[ 1

x̄4
− 1

x̄6

]
δijxkx` +

[ 1−2ν

x̄4
− 1

x̄6

]
δk`xixj

+
[ ν
x̄4
− 1

x̄6

]
(δikxjx` + δjkxix` + δi`xjxk + δj`xixk)

+
[ 1

4x̄4
− 1−2ν

2x̄2

]
δijδk` +

[ 1

4x̄4
+

1−2ν

2x̄2

]
(δikδj` + δjkδi`), (50)

5 Numerical examples

The finite element analysis for each of the following 2D and 3D test cases was carried out
with the software Freefem++ [20]. The finite elements for the displacement and adjoint state
where chosen as Lagrange P1 elements on a triangular and tetrahedral mesh, respectively. The
mesh of the surface of a human femur was obtained from the mesh database of the GAMMA
project [28], while its inner tetrahedral mesh and the surface mesh adaptation were generated
thanks to TetGen [43] and FreeYams [21], respectively. The plot of the 2D, 3D functions and
meshes was done with Medit [36].

The term in the topological derivative (28) involving an integral on R3 \B was evaluated
using (43) and two quadrature rules, namely a 4-point Gauss-Legendre rule on t∈ [0, 1] and a
26-point Lebedev rule [32] on ŷ ∈ S2 (Sec. 5.2), while two Gauss-Legendre quadratures were
used for the 2D example of Sec. 5.1. The known analytical expression (48) of the 3D isotropic
exterior Eshelby tensor Sext for the unit sphere was directly applied (Secs. 5.1 and 5.2) to
avoid additional numerical quadrature work. The examples of Sec. 5.3 rely instead on the
special cases (40) and (41) of DJ , avoiding both the numerical quadrature in (43) and the
recourse to Sext.

Since the topological derivative depends on the derivatives of u and p, the finite element
representation of DJ(z) is P0 (piecewise constant). To facilitate graphical post-processing, a
regularized version DJr of DJ was computed, by applying a standard regularization procedure
consisting in solving the variational problem∫

Ω

(
DJr w + ε∇DJr ·∇w

)
dV =

∫
Ω

DJ w dV, ∀w ∈H1(Ω).

The parameter ε controls the diffusion and regularization of DJ , at a slight expense of accuracy.
For this study ε was set to ε = 10−6.

5.1 Sensitivity analysis of the Hill-Tsai failure criterion

Composite materials are quite popular in industry thanks to their low weight, high fatigue
resistance and good endurance against corrosion. The elastic constitutive relation for such
materials, restricted for two-dimensional problems to the in-plane components of the stress
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Ω

Figure 2: Orthotropic ply Ω clamped to a circular support: configuration and mesh (∼ 3, 700
elements). A horizontal uniform load g is applied on its right side.

tensor, may be conveniently written in the principal orthotropy directions, and using the Voigt
notation, in the form 

σ`
σt
τ`t

 =
1

1−ν`tνt`

 E` νt`E` 0
ν`tEt Et 0

0 0 2G`t


ε`
εt
ε`t


where the stresses are denoted as σ` in the fiber direction, σt in the direction transverse to the
fibers, and τ`t for the shear stresses. This model involves four independent elastic constants,
since one must have νt`E` = ν`tEt.

The Hill-Tsai failure criterion, suitable for orthotropic materials, is an adaptation of the
von Mises yield criterion whereby the material strength depends on the direction, according
to the orientation of the fiber reinforcement. This criterion can be written as [23]

α2(σ) :=
σ2
`

σ̂2
`

+
σ2
t

σ̂2
t

− σ`σt
σ̂2
`

+
τ 2
`t

τ̂ 2
`t

< 1, (51)

where σ̂`, σ̂t and τ̂`t denote known rupture strengths.
Unlike their metal counterparts, composite structures are incapable to conduct away the

extreme electrical currents and electromagnetic fields generated by lighting strikes. Hence
the need for protection of composite structures has prompted the development of specialized
lighting strike protection materials [22]. An example of such material features metallic parts
of conductive material added into the laminate. This numerical example examines, by means
of the topological derivative, the sensitivity of the Hill-Tsai criterion (51) to the addition of
small metallic inhomogeneities to the orthotropic material, so as to determine (and avoid)
those locations for which this material addition make the laminate most vulnerable to failure.

Let the domain Ω = {(x, y) ∈ (0, 2)× (0, 1)} ⊂ R2 be occupied by a rectangular car-
bon/epoxy fiber ply (i.e. a composite membrane, with fiber direction e` = (ex+ey)/

√
2 and

60% fiber volume fraction), clamped to a circular support. An uniform horizontal tensile
traction g = 10−5E`ex is applied on its right side (Fig. 2).

The elastic parameters of the composite ply are E` = 135 GPa, Et = 10 GPa, G`t =
5 GPa, ν`t = 0.3, while the ultimate tensile failure strengths involved in the criterion (51) are
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σ̂` = 1500 MPa, σ̂t = 50 MPa, τ̂`t = 70 MPa. The metallic inclusions are considered circular
and made of aluminum, whose isotropic elastic characteristics are E = 72 GPa, ν = 0.34, while
the von Mises yield strength is σ̂ = 20MPa.

Let the densities ψ, ψ? entering the definition (23) of the cost functional J(Ca) be given,
in terms of the penalization function Ψn introduced in (26), by

ψ(d) = Ψn

(
α2(C :d)

)
, ψ?(d) = Ψn

(
α2
?(C? :d)

)
(52)

(with n≥ 1). The function α for the composite membrane is given by (51). The corresponding
function α? for the aluminum is also taken of the form (51) with σ̂` = σ̂t = σ̂ and τ̂`t = σ̂/

√
3, as

this choice reduces the Hill-Tsai criterion to the plane-stress von Mises criterion for isotropic
materials. With this choice, J(Ca) is always nonnegative; moreover, in the limit n → ∞,
J(Ca) = 0 unless the threshold (51) is violated at some location. The value n= 5 is used in
the numerical experiments to follow. The topological derivative DJ is given by (28), with

G(z,d) = ψ(∇u(z) + d)− ψ(∇u(z))− ∂dψ(∇u(z)) :d, (53)

and with G? similarly defined in terms of ψ?. The derivative ∂dψ is found to be given by

∂dψ(∇u) :d =
[ (

1 + α2n(C :∇u)
)(1−n)/n

α2(n−1)(C :∇u)
]
∂dα

2(C :∇u) :d (54)

where, since α2(σ) is a symmetric quadratic form in σ,

∂dα
2(C :∇u) :d = 1

2
α2
(
C : (∇u(z)+d )

)
− 1

2
α2
(
C : (∇u(z)−d )

)
.

Numerical assessment of the topological derivative evaluation. To provide a vali-
dation of expression (28) of DJ , the Hill-Tsai cost functional J(Ca) defined by (23) and (52)
is numerically evaluated (with n =1, 2 or 4) for a circular inclusion of finite radius a, centered
at (x, y) = (1, 2/3). The mesh (Fig. 3) was designed to allow considering several values of a,
i.e. a sequence of nested concentric inclusions. The discrepancy e(a) between J(Ca) evaluated
either numerically or using (28), defined by

e(a) :=
|J(Ca)− J(C)− a2DJ(z)|

|a2DJ(z)|
, with ∆J := J(Ca)− J(C)

Figure 3: Orthotropic ply: mesh for the numerical validation of DJ .
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Figure 4: Orthotropic ply: numerical validation of DJ for nested inclusions.

is plotted against a in Fig. 4. A numerical test of correctness of the evaluation of DJ(z) then
consists in checking that e(a) = o(a) for small a. This desired trend is achieved in Fig. 4.

Topological derivative distribution in the composite membrane. Figure 5 shows
the distributions of values of the Hill-Tsai criterion (51) and its topological derivative. The
metallic inclusion should not be placed in zones where DJ takes higher values.

5.2 Sensitivity of the von Mises criterion for an isotropic 3D beam

Consider a beam occupying the domain Ω = { (x, y, z)∈ (−0.1, 0.1)×(−0.5, 0.5)×(−0.1, 0.1) },
clamped on its rear face y =−0.5, made of an isotropic elastic material (Fig. 6). A traction
g = xez is applied on the front face, so as to produce torsion around the main axis x= z= 0.
The remaining faces are traction-free.

The beam is meshed with∼ 75, 500 tetrahedral elements and the isotropic elastic properties
of the material are normalized and given as Young’s modulus E = 1 and Poisson’s ratio

0.0

0.2

0.6

0.9

(a) Values of the Hill-Tsai failure criterion

0.0

7.0

21.0

28.7

(b) Values of the topological derivative

Figure 5: Orthotropic ply: sensitivity analysis of the Hill-Tsai failure criterion.
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5.0× 10−2

1.0× 10−1

2.5× 10−2

7.6× 10−2

Figure 6: Beam under torsion: geometrical configuration, with color scale of displacement modulus
(undeformed and deformed views)

ν = 0.3. We study the variation of the von Mises criterion when a small spherical cavity
is introduced in the beam. This is a typical example of sensitivity analysis for topology
optimization. The von Mises yield criterion sets a threshold on the equivalent stress σeq:

α(σ) ≤ 1, with α(σ) := σeq/σ̂, σeq :=
(

3
2
dev(σ) :dev(σ)

)1/2
, (55)

where dev(σ) :=σ− 1
3
tr(σ)I is the deviatoric stress tensor and σ̂ is a critical stress threshold

for the material, here chosen as σ̂ = 0.1. Under the given torsional loading, the stress state
then satisfies (55) in the entire beam (see Figure 7).

1.6×10−5

3.2×10−3

6.4×10−3

1.6×10−3

4.8×10−3

Figure 7: Beam under torsion: contour plot of 2σ2
eq/3 = |dev(σ)|2 on the boundary (left) and inside

the beam along a transversal cut (right).

Considering σeq as a function of the displacement gradient through the elastic constitutive
equation σ = C :∇u, and given that the trial cavity Ba contains no material (i.e. C? = 0), ψ
and ψ? are chosen as

ψ(∇u) = Ψn

(
α2(C :d)

)
, ψ?(d) = 0 (56)

where Ψn is again the penalty function (26), with n ≥ 1 and α is defined by (55). Then if
n→∞, the value of the integral of (56) on Ω is nonzero only if (55) is violated in some part of
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Figure 8: Beam under torsion: color maps of |DJ | in planes x = 0 (top left), x = 0.05 (top right)
and x = 0.1 (bottom). The left boundary corresponds to the clamped face of the beam.

the domain. Let us take e.g. n = 5. Thus, noting that ∆ψ = −ψ, the topological derivative
of the functional

Ja(Ca) = Ja(∇ua) =

∫
Ω\Ba

ψ(∇ua) dV

is given by

DJ(z) = −|B|ψ(∇u(z))−∇p(z) :A :∇u(z) + ∂dψ(∇u(z)) : |B|∇vB[∇u(z)]

+

∫
R3\B
G(z,∇vB[∇u(x)])(x̄) dV,

where G(z,d) again has the form (53), this time with ψ defined by (56) and (55). The
derivative ∂d still has the form (54), now with

∂dα
2(C :∇u) :d =

3

σ̂2
dev(C :∇u) :dev(C :d)

The distribution of the values of DJ for three different cut planes is plotted in Figure 8.
The generation of these three planar isosurface maps entailed, for each evaluation point z,
the evaluation of (43) via numerical quadrature (see the opening part of this section) and
in practice required about 1 mn of CPU time on a desktop PC. This shows the practical
feasibility of generating topological derivative maps even for the non-quadratic case and under
3D conditions.

Remark 6. The similarities between the distribution of |σdev| in Figure 7 and the topological
derivative in Figure 8 are noticeable. This observation supports the idea of using |σ| as a
sensitivity measure for topology optimization. In fact this property is exploited by evolutionary
algorithms [25] and soft kill option algorithms [9] for lightweight design subjected to a yield
criterion. In general, these algorithms search the optimal topology through a fully stressed
design, by gradually removing the low stressed material w.r.t. a certain reference value.

5.3 3D anisotropic non-destructive testing

Two applications of non-destructive control in anisotropic materials are now presented, one
pertaining to medical imaging and the other to composite structures. Indeed, several groups
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have recently investigated the topological derivative as a means for imaging hidden flaws, see
for instance [3, 48], and also [45] for an application on experimental data. Existing investiga-
tions in this direction are based on usual displacement-based cost functionals (typically of the
output least-squares type). In contrast, we examine in this example an alternative approach
where the misfit to experimental data is formulated in terms of an energy (and hence strain-
or stress-based) cost functional. Assuming the availability of a displacement measurement u0

over a part ω of the elastic solid Ω, using e.g. full-field kinematical data [10], the strain energy
of the measurement misfit is given by

Jω(Ca) = Ja(∇ua;ω) =

∫
ω

∇(ua − u0) :Ca :∇(ua − u0) dV. (57)

Depending on whether the trial inhomogeneity Ba is located inside or outside of ω, we distin-
guish two cases:

1. Ba ⊂ ω. This case is relevant when complete displacement measurements are available
over a particular region ω inside Ω. Adapting (41), the topological derivative reads

DJ(z) = |B|∇u0(z) :∆C :∇u0(z)−∇(p+ 2u0 − u) :A :∇u (z ∈ω),

where the adjoint solution p satisfies the variational formulation〈
p,w

〉C
Ω

= 2
〈
u− u0,w

〉C
ω
, ∀w ∈ W0(Ω).

2. Ba⊂Ω\ω̄. The interest of this situation is justified when we have a set of small control
volumes inside a body and we want to identify the position of the anomaly outside
the measured volumes. As previously seen in Section 3.2, there is no second order
contribution in the topological derivative and DJ simply reads

DJ(z) = −∇p(z) : A : ∇u(z) (z ∈Ω\ ω̄).

First application. It is concerned with the detection of anomalous femoral bone tissue.
The local change of elastic properties in femoral bone may be provoked e.g. by cancer metas-
tasis, traumatic or pathological fractures. Moreover, bone cell elasticity and morphology
changes during the cell cycle [29], and elasticity differences between cancerous and healthy
tissues of various kinds have been experimentally established [30, 42].

Additionally, bone is a complex material, with a multiphasic, heterogeneous and anisotropic
microstructure [17]. In particular, femoral bone can be accurately modelled a transversely
isotropic material whose principal orientations are defined based either on the trabecular
structures or the harvesian system, according to whether the bone is cancellous or cortical [47].

Consider the proximal part Ω of a femoral bone (Fig. 9), contained in the box
{

(x, y, z) ∈
(0.03, 0.09) × (0.04, 0.08) × (0.01, 0.11)

}
and meshed with ∼ 213, 600 tetrahedral elements

(mesh size h = 0.001). The elastic properties of the healthy bone are by simplification assumed
to be homogeneous and transversely isotropic, with normalized elastic constants given by

Ex = Ey = 0.5, Ez = 1, νxy = νxz = νyz = 0.35, Gxz = Gyz = 0.03.

The anomalous tissue is assumed to be a small and stiffer spherical inhomogeneity (Fig. 10)
with radius 0.005 and center at (0.05, 0.06, 0.06). Its Young and shear moduli are twice those
of the healthy bone, while both materials have the same Poisson ratios. The bone is clamped
at z = 0.01 and loaded with a vertical force density g = −1× 10−3ez applied on the top
surface of the femur (z ∈ [0.10, 0.11]).
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Figure 9: Femoral bone: a uniform vertical load g = −10−3ez is applied on the head of the femur
(simulating the body weight) while the distal horizontal section z = 0.01 is clamped
(left). The right panel shows a color scale of the displacement modulus.

The measurement region ω is defined as the vertically central zone of the femur (shown in
red in Fig. 10). Simulated data is assumed to be exact for simplicity. While this constitutes
a strong idealization, previous numerical experiments on flaw identification by topological
derivative have shown the approach to be only moderately sensitive to measurement noise [11].

Figure 11 shows three iso-surfaces of DJ with decreasing levels η ≈ −0.19 (yellow), η ≈
−0.45 (green) and η ≈ −0.71 (blue), where an iso-surface Sη with level η relative to the

(negative) absolute minimum DJmin := minz∈Ω DJ(z) is defined by

Sη =
{
z ∈Ω,DJ(z) = η|DJmin|

}
(58)

Those iso-surfaces show the location of the anomalous tissue to be correctly identified.

Second application. It consists in detecting a failure point leading to damage inside a
composite structure. Multi-laminate composite structures are made of multiple orthotropic

ey

ex

ez

z = 0.08

z = 0.04

←− ω

Figure 10: Femoral bone: anomalous tissue (left, in red) and measurement region ω (right, in red).
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(a) Three-dimensional view. (b) Transversal cut view.

Figure 11: Femural bone: iso-surfaces η ≈−0.19 (yellow), η ≈−0.45 (green) and η ≈−0.71 (blue)
of DJ .

plies, each of them composed of a weak matrix (most often polymeric) and reinforcement
fibers (carbon, glass, kevlar, etc). The main failure modes in composites are fiber rupture,
matrix rupture and delamination [23]. We consider here a composite cube Ω = {(x, y, z) ∈
(0, 0.2)3}, filled up with ∼ 23, 000 tetrahedral elements (mesh size h = 0.011), made of three
stacked layers of equal thickness (Fig. 12) whose constitutive elastic properties are transversely
isotropic. The normalized elastic constants for the bottom layer are

Ex = 1 , Ey = Ez = 0.05, νxy = νxz = νyz = 0.35, Gxz = Gyz = Gxy = 0.03,

The middle and top layers have the same elastic constants than the lowest one, but with
the horizontal principal orthotropy directions resulting from a 45o and 90o rotation of the

0.2

0.2

0.2

ey
ex

(a) Layered cube, and fiber orientation.

ey

ex

ez

1.3×10−3

1.2× 10−1

2.4× 10−1

6.0× 10−2

1.8× 10−1

g1

g2

(b) A color scale of the displacement modulus.

Figure 12: Layered cube: two uniform compression loads g1 = −0.1ex and g2 = 0.1ex are respec-
tively applied on the faces of the cube x = 0.2 and x = 0. Displacements are not affine
in the spatial coordinates due to the anisotropy.

26



x, y axes, respectively. The failure point is modeled as a spherical inhomogeneity, of centre
(0.1, 0.15, 0.1) and radius 0.01, and with very low elastic moduli properties C? = 10−5C. The
considered misfit criterion is again of the form (57), this time with the measurement region
ω consisting of a set of M small disconnected control volumes: ω = ∪ωj (1 ≤ j ≤M), with
ωj ⊂ Ω and ωi ∩ ωj = ∅ (two such configurations, with M = 44 and M = 729, are shown on
Fig. 13). The adjoint solution p in this case solves∫

Ω

∇p :C :∇q dV = 2
M∑
i=1

∫
ωi

∇(u− u0) :C :∇q dV, ∀q ∈ W0(Ω).

Fig. 14 shows one iso-surface (in green) of DJ with negative level surrounding the minimum
of DJ(z) for each control volume configuration of Figure 13 (with η ≈ −0.65 and η ≈
−0.3, respectively). As expected, the identification quality improves with the number of
measurement zones. Moreover, the absolute minima of DJ are found to be DJmin ≈ −1.3×10−3

and DJmin ≈ −6.9× 10−2, respectively, which is another indication of configuration 2 being
more sensitive to a small defect.

(a) Configuration 1 (M = 44). (b) Configuration 2 (M = 729).

Figure 13: Layered cube: control volumes ωj (1≤ j ≤M).

ex ey

ez

(a) Configuration 1 (M = 44).

ex ey

ez

(b) Configuration 2 (M = 729).

Figure 14: Layered cube: iso-surface Sη with η ≈ −0.65 (left) and η ≈ −0.3 (right) of DJ . The
grey sphere shows the correct location of the failure point.
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6 Conclusion

The topological derivative DJ of a general cost functional J depending on both the displace-
ment and its gradient (i.e. on the stress, assuming linear elastic constitutive properties) has
been established by means of a rigorous small-inhomogeneity asymptotic expansion, under
arbitrary 3D anisotropic conditions. This generalized version of DJ combines the previously-
known terms associated with the topological derivative of displacement-based functionals and
new terms which arise only for the case of stress-dependent functionals. Furthermore, our
result holds for the case of a trial inclusions Ba appearing either inside or outside the sup-
port ω ⊂ Ω of the volume density ψa of the functional J (i.e. only the more-complex case
case where Ba sits on ∂ω is left out). From a computational standpoint, one of the new
terms in DJ entails carrying out a numerical integration on the unbounded region R3 \ B,
and a suitable change of variables allowing subsequent use of standard quadrature formulas
was given for both the 3D and 2D cases. Moreover, the computational procedure involves
both the exterior and interior Eshelby tensors, for which explicit formulas are available in a
few cases, and which can otherwise be evaluated by numerical quadrature of integral repre-
sentation formulas such as (46). Numerical examples demonstrate both the feasibility and
usefulness of computing the field z → DJ(z), even for the case of non-quadratic stress-based
functionals for three-dimensional configurations for which substantial numerical quadrature
work is necessary.
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[17] Doblaré, M., Garcıa, J. M., Gómez, M. J. Modelling bone tissue fracture and healing: a
review. Eng. Frac. Mech., 71:1809–1840 (2004).

[18] Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion and related
problems. Proc. Roy. Soc. A, 241:376–396 (1957).
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A The 2D plane-strain case

Inclusion and inhomogeneity problems in plane strain have been addressed in many references,
with solution methods usually based on complex potentials, see e.g. [14, 26, 44, 46]. Here,
we derive the exterior Eshelby tensor Sext(x) such that the displacement u(x) produced in
an infinite two-dimensional anisotropic elastic medium by the application of an eigenstrain
E? ∈R2×2

sym in an elliptical region B satisfies

∇vB[E?](x) = Sext(x) : E? x∈R2. (59)

The derivation is done by means of a direct evaluation of the integral representation formula
of u(x), which under the present conditions (anisotropic, plane strain) reads

u(x) =
i

(2π)2

{∫
R2

∫
B

exp(iη ·(ξ−x))N (η)⊗η dV (ξ) dV (η)
}

:C :E? (60)

The above fourth-dimensional integral over (ξ,η)∈B×R2 is now evaluated with the help of
coordinate transformations. To this aim, B is assumed without loss of generality to be centered
at the coordinate origin and with its principal directions directed along the coordinate axes.
The evaluation point x ∈ R2 is parameterized as

x(y, γ) = y (a1 cos(γ), a2 sin(γ)) , γ ∈ [0, 2π], y ∈ (0,∞), (61)

and two mappings are introduced. First, f : (t, θ)∈R+\{0}×[0, 2π[ 7−→ (η1, η2)∈R2\{(0, 0)}
is defined by{

η1(t, θ) = tα1(θ)

η2(t, θ) = tα2(θ)
with α(θ) = (α1, α2)(θ) :=

(
a−1

1 cos(θ+γ), a−1
2 sin(θ+γ)

)
, (62)

which implies
dV (η) = (a1a2)−1t dt dθ,

Then, for given η ∈R2 \{0} (i.e. for given (t, θ)∈R+ \{0}), g : (z1, z2)∈D 7−→ (ξ1, ξ2)∈B
(where D⊂R2 is the closed unit disk) is defined by{

ξ1 = a1( z1 sin θ + z2 cos θ)

ξ2 = a2(−z1 cos θ + z2 sin θ)
with

−
√

1− z2
2 ≤ z1≤

√
1− z2

2 ,

−1≤ z2≤ 1
(63)

which implies
dV (ξ) = a1a2 dz1 dz2

Now, mappings (62) and (63) are substituted into the integral representation formula (60).
Noting that definitions (61), (62) and (63) imply

α(θ)·x = y cos θ, η ·(ξ−x) = t[z2−α(θ)·x],

one first finds, using mapping (63) and the fact that the integrand of the resulting integral
over (z1, z2) does not depend on z1, that∫

B
eiη·(ξ−x) dV (ξ) = a1a2e

−itα(θ)·x
∫ 1

−1

2
√

1− z2
2 e

itz2 dz2 = a1a2
2π

t
e−itα(θ)·xJ1(t),

where J1 is the Bessel function of first kind and order 1, the last equality stemming from
formula 3.752 of [24] together with the function z2 7−→

√
1− z2

2 sin kz2 being odd. Then,
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using the above result into (60) and applying mapping (62), one obtains

i

(2π)2

∫
R2

∫
B

exp(iη ·(ξ−x))N (η)⊗η dV (ξ) dV (η)

=
i

2π

∫ 2π

0

{
N
(
α(θ)

)
⊗α(θ)

∫ ∞
0

e−itα(θ)·xJ1(t)
dt

t

}
dθ

=
1

π

∫ π/2

−π/2

{
N
(
α(θ)

)
⊗α(θ)

∫ ∞
0

sin
(
tα(θ)·x

)
J1(t)

dt

t

}
dθ (64)

The last equality above is established by using that (i) α(θ) is 2π-periodic, (ii) α(θ+π) =
−α(θ) and (iii) N (−η) =N (η) (N being homogeneous of degree −2).

The inner integral in (64) in fact admits a known closed-form expression (formula 6.693(1)
of [24]), which depends on the value of α(θ)·x = y cos θ:∫ ∞

0

sin
(
tα(θ)·x

)
J1(t)

dt

t
= α(θ)·x 0≤α(θ)·x≤ 1 (65a)

= α(θ)·x−
√

(α(θ)·x)2 − 1 α(θ)·x≥ 1 (65b)

If x ∈ B, (61) implies that y ≤ 1, and hence that α(θ) ·x ≤ 1 for any θ. From (60), (64)
and (65a,b), u(x) is then such that

u(x) = xS int :E?, ∇u(x) = S int :E?

where S int is the plane-strain interior Eshelby tensor, given by

S int =
{ 1

π

∫ π/2

−π/2
α(θ)⊗N

(
α(θ)

)
⊗α(θ) dθ

}
:C

If x ∈ R2 \ B̄, (61) implies that y > 1. Let θ̄ = arccos(1/y), so that the subset of
θ ∈ [−π/2, π/2] where α(θ)·x≥ 1 is θ ∈ [−θ̄, θ̄]. In that case, using (60), (64) and (65a,b) and
differentiating the resulting expression of u(x) with respect to x, one finds

∇u(x) = Sext(x) :E?

with the plane-strain exterior Eshelby tensor Sext(x) given by

Sext(x) = S int − 2

π

{∫ θ̄

−θ̄

[
(α(θ)·x)√

(α(θ)·x)2 − 1
α(θ)⊗N

(
α(θ)

)
⊗α(θ)

]
dθ

}
:C

Even though this representation of the 2D general Eshelby tensor is valid, is not suited
for numerical evaluation due to the term 1/

√
(α · x)2 − 1, which is (weakly) singular at the

endpoints θ=±θ̄. We recast it into a form suitable for numerical quadrature by setting

sin θ =
√

1−y−2 sinw, θ ∈ [−θ̄, θ̄], w ∈ [−1, 1]

Then, since α(θ)·x= y cos θ, one easily finds that

(α(θ)·x) dθ =
√
y2−1 cosw dw,

√
(α(θ)·x)2 − 1 =

√
y2−1 cosw

Consequently, Sext(x) is now expressed as

Sext(x) = S int − 2

π

{∫ π/2

−π/2

[
α(θ(w))⊗N

(
α(θ(w))

)
⊗α(θ(w))

]
dw

}
:C

where the integral can now be evaluated by usual quadrature rules.
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