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1 Introduction

The one-way propagation of small amplitude, long wavelength, gravity waves
in shallow water can be described by the Korteweg-de Vries equation (KdV)
[13]

ut + ux + uxxx + uux = 0.

or its regularized version, the Benjamin-Bona-Mahony (BBM) equation

ut + ux − uxxt + uux = 0.

Many works related to the damped KdV equation can be found in the
literature ([2, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 15] and references therein).
These account for a wide variety of different results, such as regularizing
effect of the damping, asymptotic behavior, existence of attractor or numer-
ical computations. Few literatures are concerned the damped BBM equation
[12, 18]. This paper consists in establishing theoretical and numerical results
for the solution of a generalized damped BBM equation.

We introduce the following equation, called dBBM, for x ∈ T(0, L),
L > 0 and t ∈ R

ut + ux − uxxt + uux + Lγ(u) = 0,
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where the operator Lγ is defined by its Fourier symbol

L̂γ(u)(k) := γkûk.

Here ûk is the k−th Fourier coefficient of u and (γk)k∈Z are positive real
numbers chosen such that

∫

T

u(x)Lγ(u)dµ(x) =
∑

k∈Z

γk|ûk|2 ≥ 0.

Standard dampings are included choosing γk = k2 as parabolic damping
or γk = γ as weak damping. The proposed sequence (γk)k∈Z allows us to
consider a greater range of damping. In particular, one may wonder if it is
necessary to absorb all frequencies of a long wavelength gravity wave like
the solution of KdV or BBM. To obtain this kind of results, we can consider
sequences γk → 0 when |k| → +∞ or even γk = 0 for large |k|.

In comparison with the standard BBM equation for which the H1−norm
is preserved, we notice that the H1-norm decreases for the solution u of the
damped equation dBBM. More precisely, we have for all time t ∈ R

d

dt
||u(t)||2H1 = −|u(t)|2γ ≤ 0,

and the natural space to study the well-posedness is the space Hγ(T), defined
as

Hγ(T) :=



u ∈ L2(T);

∑

k∈Z

γk|ûk|2 < +∞



 ,

equipped with the norm

|u|γ :=

√∑

k∈Z

γk|ûk|2.

In order to simplify the writings, k can denote either an integer as an index,
or the value 2πk

L . When there is no ambiguity, we denote C the different
constants appearing in the following results.

The paper is organised as follows. We establish in Section 2 the local well-
posedness of the dBBM equation. We prove some important estimates about
the space Hγ(T). Some qualitative properties of the solution are also given.
In Section 3, numerical schemes are presented to solve the damped equation
and to preserve the qualitative properties of the continuous solution. Section
4 deals with the numerical results. In particular, we manage to build a
family of dampings weaker than the standard ones. These, for example
taking lim|k|→+∞ γk = 0, yet provide dampen solutions.
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2 Analysis of the problem

After studying the space Hγ(T), we establish the well-posedness of the
Cauchy problem associated with the dBBM equation.

2.1 Proper energy space Hγ(T)

Here we take γk > 0, ∀k ∈ Z. We first state some properties of injection.

Proposition 2.1. Assume that
∑

k∈Z

1
γk

< +∞. Then there exists a constant

C > 0 such that
‖u‖∞ ≤ C|u|γ .

The injection Hγ(T) →֒ L∞(T) is continuous.

Proof. Let u ∈ Hγ(T). We notice that

u(x) =
∑

k∈Z

û(k)eikx.

Then

|u(x)| ≤
∑

k∈Z

|û(k)| =
∑

k∈Z

1√
γk

√
γk|û(k)|.

We assumed that γk > 0. Hence, the Cauchy-Schwarz inequality implies for
all x ∈ T :

|u(x)| ≤

∑

k∈Z

1

γk




1
2

∑

k∈Z

γk|û(k)|2



1
2

=


∑

k∈Z

1

γk




1
2

|u|γ .

This completes the proof.

Remark 2.2. The above result is also a condition to have ‖û‖l1 ≤ C|u|γ .

Proposition 2.3. We assume that for all k ∈ Z we have γk > βk. Let
ρN = max

k≥N

βk

γk
. Then lim

N→+∞
ρN = 0 if and only if the continuous injection

Hγ(T) →֒ Hβ(T) is compact.

Proof. The condition is necessary, indeed if there exists α > 0 such that
ρN > α, ∀N , then the norms |u|β and |u|γ are equivalent, the injection
cannot be compact. Let us prove now that the condition is sufficient. First
we have for u ∈ Hγ(T) :

|u|β =
∑

k∈Z

βk|ûk|2 ≤
∑

k∈Z

γk|ûk|2 = |u|γ .

This shows that the injection is continuous. Now we prove that the injection
is compact. We use finite rank operators and we take the limit. Let IN
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be the orthogonal operator on the polynomials of frequencies k such that
−N ≤ k ≤ N . We have

INu =
∑

|k|≤N

ûkeikx.

Hence

|(Id − IN )u|2β =
∑

|k|≥N+1

βk|ûk|2,

≤
∑

|k|≥N+1

βk

γk
γk|ûk|2,

≤ ρN+1 |u|2γ −→
N→+∞

0.

Therefore Id is a compact operator and consequently the injection is com-
pact.

Now we give some conditions on the sequence (γk)k∈Z so that Hγ(T) is
an algebra.

Proposition 2.4. Let u and v be two functions in Hγ(T). Assume that

there exists a constant C > 0 such that
√

γk ≤ C
(√

γk−j +
√

γj

)
for all

k, j ∈ Z. Then we have the following inequality:

|uv|γ ≤ C (|u|γ‖v̂‖l1 + |v|γ‖û‖l1) ,

Moreover if
∑

k∈Z

1
γk

< +∞ then Hγ(T) is an algebra.

Proof. Let u, v ∈ Hγ(T). We have

|uv|2γ =
∑

k∈Z

γk|ûv(k)|2.

We remind that ûv(k) = û ⋆ v̂(k). We use the inequality
√

γk ≤ C
(√

γk−j +
√

γj

)
.

We obtain for all k ∈ Z

√
γk|ûv(k)| ≤ C


∑

j∈Z

√
γk−j|û(k − j)v̂(j)| +

∑

j∈Z

√
γj |û(k − j)v̂(j)|


 .

Hence

|uv|2γ ≤ C2
∑

k∈Z


∑

j∈Z

√
γk−j|û(k − j)v̂(j)| +

∑

j∈Z

√
γj|û(k − j)v̂(j)|




2

,

≤ C2
∑

k∈Z





∑

j∈Z

√
γk−j|û(k − j)v̂(j)|




2

+


∑

j∈Z

√
γj|û(k − j)v̂(j)|




2

 ,

≤ C2
(
‖ (

√
γk|û|) ⋆ |v̂|‖2

l2 + ‖|û| ⋆
(√

γk|v̂|‖2
l2

))
.
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We remind that for two functions f and g defined from N to R such that
f ∈ l1 and g ∈ l2, we have

‖|f | ⋆ |g|‖2
l2 ≤ ‖g‖2

l2‖f‖2
l1 .

Thus
|uv|2γ ≤ C

(
|u|2γ‖v̂‖2

l1 + |v|2γ‖û‖2
l1

)
.

We know there exists a constant c > 0 such that ‖û‖l1 ≤ c|u|γ if
∑

k∈Z

1
γk

<

+∞. Then, there exists C̃ > 0 such that

|uv|γ ≤ C̃|u|γ |v|γ .

Remark 2.5. With γk = k2s we find the standard Sobolev injection. Indeed,

we have the inequality
√

γk ≤ C
(√

γk−j +
√

γj

)
and if s > 1

2 then
∑

k∈Z

1
γk

<

+∞.

2.2 Local well-posedness

We can study the well-posedness of problem dBBM. We consider the Cauchy
problem

ut + ux − uxxt + uux + Lγ(u) = 0, x ∈ T, t ∈ [0, T ] (1)

u(x, t = 0) = u0(x). (2)

Theorem 2.6. Assume that
√

γk+j ≤ C(
√

γk +
√

γj) for all k and j in Z,∑
k∈Z

1
γk

< +∞ and u0 ∈ Hγ(T). Then there exists T = 1
C0|u0|γ

> 0 and there

exists a unique u ∈ C ([0, T ], Hγ(T)) solution of the Cauchy problem (1)-(2).
Moreover, for all M > 0 with |u0|γ ≤ M and |v0|γ ≤ M , there exists a

constant C1 > 0 such that the solutions u and v, associated with the initial
data u0 and v0 respectively, satisfy for all t ≤ 1

C0M

|u(·, t) − v(·, t)|γ ≤ C1 |u0 − v0|γ .

Proof. Let write the initial value problem (1)-(2) as

∂tu = Au + f(u), (3)

u(t = 0) = u0(x), (4)

where

Au = − (1 − ∂xx)−1 (∂xu + Lγ(u)) ,

f(u) = − (1 − ∂xx)−1 ∂x

(
u2

2

)
.
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According to the Duhamel’s formula, u is solution of the Cauchy problem
(3)-(4) if and only if

u(t) = φ (u(t)) = Stu0 +

∫ t

0
St−τ f (u(τ)) dτ,

where

Stv =
∑

k∈Z

eikxe
−

(ik+γk)

1+k2 t
v̂(k).

The purpose is to show that u is the unique fixed point of φ. We define the
closed ball

B(T ) = {u ∈ C ([0, T ]; Hγ(T)) ; |u(t) − u0|γ ≤ 3|u0|γ} .

Our purpose is to apply the Banach fixed point theorem.
Let u ∈ B(T ). We show that φ (u(t)) ∈ B(T ). From the triangle in-

equality, we have:

|φ (u(t)) |γ ≤ |Stu0|γ +

∫ t

0
|St−τ (f(u)) |γdτ.

On the one hand, since γk ≥ 0

|Stu0|2γ =
∑

k∈Z

γk|Ŝtu0(k)|2,

≤
∑

k∈Z

γk|e−
γk

1+k2 t
û0(k)|2,

≤ |u0|2γ ,

and
|St−τ f (u(τ)) |γ ≤ |f (u(τ)) |γ .

On the other hand, we need to upper bound the term |f (u(τ)) |γ . We have

|f (u(τ)) |2γ = | − (1 − ∂xx)−1 ∂x

(
u2

2
(τ)

)
|2γ ,

=
∑

k∈Z

γk

∣∣∣∣∣F
(

− (1 − ∂xx)−1 ∂x

(
u2

2
(τ)

))∣∣∣∣∣

2

,

=
∑

k∈Z

γk

∣∣∣∣∣
ik

1 + k2

û2

2

∣∣∣∣∣

2

.

However, since |k|
1+k2 ≤ 1 and Hγ(T) is an algebra, it gets

|f (u(τ))|γ ≤ C |u|2γ .
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The Duhamel’s formula implies for 0 ≤ t ≤ T

|φ (u(t)) |γ ≤ |u0|γ +

∫ t

0
|u(τ)|2γdτ,

≤ |u0|γ + C

(
sup

t∈[0,T ]
|u(t)|γ

)2

T.

But u ∈ B(T ), so

|u(t)|γ − |u0|γ ≤ |u(t) − u0|γ ≤ 3|u0|γ ,

that implies
|u(t)|γ ≤ 4|u0|γ .

We have φ (u(t)) ∈ B(T ) if |φ (u(t)) − u0|γ ≤ 3|u0|γ . The inequality

|φ (u(t) − u0) |γ ≤ 2|u0|γ + CT
(
16|u0|2γ

)
≤ 3|u0|γ ,

is true if we choose

0 < T ≤ |u0|γ
16C|u0|2γ

=
1

16C

(
1

|u0|γ

)
.

Now we show that φ is a contraction mapping on B(T ). Let u, v ∈ B(T ).
We have

|φ (u(t)) − φ (v(t))|γ =

∣∣∣∣
∫ t

0
St−τ (f(u) − f(v)) dτ

∣∣∣∣
γ

,

≤
∫ t

0

∣∣∣∣∣
u2

2
− v2

2

∣∣∣∣∣
γ

(τ)dτ.

We notice that u2 − v2 = (u − v)(u + v). Since Hγ(T) is an algebra, we have

∣∣∣u2 − v2
∣∣∣
γ

≤ C |u − v|γ |u + v|γ ,

≤ C
(
|u|γ + |v|γ

)
|u − v|γ .

And for u, v ∈ B(T ),
∣∣∣u2 − v2

∣∣∣
γ

≤ 8C |u0|γ |u − v|γ .

We infer for all t ∈ [0, T ]

|φ (u(t)) − φ (v(t))|γ ≤ 8C |u0|γ
∫ t

0
|u − v|γ (τ)dτ,

≤ 8C |u0|γ T sup
t∈[0,T ]

|(u − v)(t)|γ .
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Hence

sup
t∈[0,T ]

|φ (u(t)) − φ (v(t))|γ ≤
(
8C |u0|γ T

)
sup

t∈[0,T ]
|u(t) − v(t)|γ .

Consequently φ is a contraction mapping if 8C |u0|γ T < 1, i.e., T < 1
8C|u0|γ

.

Finally, from the Banach fixed-point theorem, φ has a unique fixed-point
solution of u(t) = φ (u(t)). So, there exists a unique solution of the Cauchy
problem.

It remains to prove the continuity with the initial data. Let u and v
solutions of the Cauchy problem (1)-(2) with initial data u0 and v0 respec-
tively, such that |u0|γ ≤ M and |v0|γ ≤ M . The Duhamel’s formula gives

for t ∈ [0, T ], T ≤ 1
C0M

|u − v|γ ≤ |u0 − v0|γ +

∫ t

0
|f(u) − f(v)|γ dτ,

≤ |u0 − v0|γ + C ′T
(
|u0|γ + |v0|γ

)
sup

t∈[0,T ]
|u − v|γ .

It implies
|u − v|γ ≤ C1 |u0 − v0|γ .

2.3 Behavior of the solution

In this part, we aim to get some estimations of the damping rate. Actually in
the case without damping, the H1-norm of the solution is invariant during
time. Here this norm is decreasing. We adapt the work done on KdV
equation [6].

Let us begin with the linear equation, that reads

ut − utxx + ux + Lγ(u) = 0 x ∈ T, t ∈ [0, T ]. (5)

Let u be valued in L2(T), ∀t > 0. We write u as a Fourier series and,
due to the orthogonality of the trigonometric polynomials, we obtain

(1 + k2)
dûk(t)

dt
+ (γk + ik)ûk(t) = 0.

Hence

ûk(t) = e
−

γk+ik

1+k2 t
ûk(0).

It follows that

|u|2H1 =
∑

k∈Z

(1 + k2)|ûk(t)|2 =
∑

k∈Z

(1 + k2)e
−

2γk
1+k2 t|ûk(0)|2.
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Proposition 2.7. Let γk > 0, ∀k ∈ Z and u0 ∈ Hδ(T) where δk = (1+k2)2

γk
.

Then the unique solution u of (5) verifies

|u|2H1 ≤ min

(
e−1

2t
|u0|2δ , |u0|2H1

)
, ∀t > 0.

More generally, if u0 ∈ Hβδ(T) then

|u|2β′ ≤ e−1

2t
|u0|2βδ where β′

k = (1 + k2)βk.

Proof. On one hand, the scalar product in L2(T) of (5) with u provides

1

2

d

dt
|u|2H1 +

∑

k∈Z

γk|ûk(t)|2 = 0.

Hence
d

dt
|u|2H1 ≤ 0.

Consequently |u|2H1 ≤ |u0|2H1 . On the other hand, to obtain the second
inequality, we write

|u|2H1 =
∑

k∈Z

(1 + k2)|ûk|2,

=
∑

k∈Z

(1 + k2)e
−

2γk
1+k2 t|ûk(0)|2,

=
∑

k∈Z

(1 + k2)2 γk

1 + k2
e

−
2γk

1+k2 t 1

γk
|ûk(0)|2.

Since the function β 7→ βe−2βt is uniformly bounded by e−1

2t , we infer that

|u|2H1 ≤ e−1

2t
|u0|2δ .

In the same way we obtain the third inequality from

βk|ûk|2 = βke
−

2γk
1+k2 t|ûk(0)|2 = (1 + k2)

γk

1 + k2
e

−
2γk

1+k2 t
(

βk

γk
|ûk(0)|2

)
.

We can prove the two following results with similar arguments:

Proposition 2.8. Assume that γk ∈ [0, 1], ∀k ∈ Z and u0 ∈ Hδ(s) , where

δ
(s)
k = (1+k2)s+1

γs
k

. Then for all s > 0, u the solution of (5) verifies ∀t > 0

|u|2H1 ≤ min

(
e−s

(
s

2t

)s

|u0|2δ(s) , |u0|2H1

)
.
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Proposition 2.9. We assume that there exist three positive constants α, β
and C such that u the solution of (5) verifies:

i. |û0k|2 ≤ Cγ2δ
k with δ = α + β.

ii.
∑

k∈Z

(1 + k2)2α+1γ2β
k < +∞.

Then

|u|2H1 ≤ Ce−2a
(

α

t

)2α ∑

k∈Z

(1 + k2)2α+1γ2β
k = O

(
1

t2α

)
.

We can now deal with the non-linear equation. We can find similar
kind of decreasing but less explicit than in the linear case. We remind the
equation

ut − utxx + ux + uux + L (u) = 0 (6)

The scalar product in L2 of (6) with u yields

1

2

d

dt
|u|2H1 + |u|2γ = 0.

Proposition 2.10. We assume that

i. γk > 0 ∀k ∈ Z,

ii. u0 ∈ Hγ(T) ∩ H1(T) with
L∫
0

u0(x)dx = 0,

Then lim
t→+∞

|u|H1 = 0.

Proof. Because of γk > 0, we have
d|u|2

H1

dt ≤ 0 and then the function t 7→
|u|2H1 is decreasing and consequently lim

t→+∞
|u(t)|2H1 = C. We notice that we

also have |u|H1 ≤ |u0|H1 . Since u ∈ H1 ∩Hγ , we deduce that lim
t→+∞

|u(t)|2γ =

0. Finally, since γk > 0, we have lim
t→+∞

ûk = 0 and then u = 0, which means

that C = 0.

Lemme 2.11. For all function v smooth enough, we set v̄ = 1
L

L∫
0

v(x, t)dx.

Let u be the solution of dBBM valued in Hγ(T) ∩ H2(T). Then ū(t) =
e−γ0tū(0).

Proof. We integrate the equation in space on the interval [0, L] and we obtain

L∫

0

(
∂u

∂t
+ Lγ(u)

)
dx = 0.
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But

L∫

0

Lγ(u)(x, t)dx =

L∫

0

∑

k∈Z

γkûke
2iπkx

L dx = Lγ0û0 = γ0

L∫

0

u dx.

Hence we have

d

dt


 1

L

L∫

0

u(x, t)dx


 +

1

L

L∫

0

Lγ(u)(x, t)dx = 0,

Therefore
dū

dt
+ γ0ū = 0.

We deduce the desired result.

The solution converges to 0 in H1 with a rate depending on the Hγ-norm.
Thus, as in [6], we introduce the following ratio function

G : (u, t) 7→ G(u, t) =
|u|γ

|u|H1

=

√√√√√√

∑
k∈Z

γk|ûk|2
∑

k∈Z

(1 + k2)|ûk|2 . (7)

To simplify the writings, we use G(t) instead of G(u, t) when no confusion
is possible.

Proposition 2.12. Let u be the unique solution of dBBM valued in Hγ(T)∩
H1(T). We assume that G is C 1 in time. Then we have the following
equalities.

i. |u(t)|2H1 = e
−2

t∫
0

G2(s)ds

|u0|2H1 ,

ii. |u(t)|2γ = G2(t)e
−2

t∫
0

G2(s)ds

|u0|2H1 .

In particular, lim
t→+∞

|u|2H1 = 0 if and only if t 7→ G(t) /∈ L2
t (0, +∞).

Proof. As previously, we take the scalar product in L2(T) of the equation
dBBM with u and we obtain

1

2

d

dt
|u|2H1 + |u|2γ = 0.

Since |u|2γ = G2(t)|u|2H1 , we have

1

2

d

dt
|u|2H1 + G2(t)|u|2H1 = 0 thus |u(t)|2H1 = e

−2
t∫

0

G2(s)ds

|u0|2H1 .
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We find lim
t→+∞

|u|2H1 = 0 if and only if t 7→ G(t) /∈ L2
t (0, +∞).

Then, we have

|u(t)|2γ = G2(t)e
−2

t∫
0

G2(s)ds

|u0|2H1 .

The proposition 2.10 involves that lim
t→+∞

|u|γ = 0 and consequently

lim
t→+∞

G2(t)e
−2

t∫
0

G2(s)ds

|u0|2H1 = 0.

Remark 2.13. We can establish similar results for the forced equation

ut − utxx + ux + uux + Lγ(u) = f.

Proposition 2.14. Assume that f ∈ H1/γ(T) and u0 ∈ H1(T) ∩ Hγ(T).
Then the solution u of the forced equation satisfies:

|u(t)|2H1 ≤ e
−

t∫
0

G2(s)ds

|u0|2H1 +

L∫

0

e
−

t∫
s

G2(τ)dτ

|f |21/γds.

Proof. The scalar product of dBBM with u gives

1

2

d

dt
|u|2H1 + |u|2γ =< f, u > .

But
|〈f, u〉| ≤ |f |1/γ |u|γ and |u|2γ = G2(t)|u|2H1 .

From the Young inequality, we have

1

2

d

dt
|u|2H1 + G2(t)|u|2H1 ≤ 1

2
|f |21/γ +

1

2
|u|2γ .

It involves that
d

dt
|u|2H1 + G2(t)|u|2H1 ≤ |f |21/γ .

Using the Gronwall’s lemma, we obtain

|u(t)|2H1(T) ≤ e
−

t∫
0

G2(s)ds

|u0|2H1 +

L∫

0

e
−

t∫
s

G2(τ)dτ

|f |21/γds.

Multiplying each term with G2(t), it gets

|u(t)|2γ(T) ≤ G2(t)e
−

t∫
0

G2(s)ds

|u0|2H1 +

L∫

0

e
−

t∫
s

G2(τ)dτ

G2(t)|f |21/γds.
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3 Numerical schemes

In this part, we study and present some numerical schemes well suited for
the long-time behavior of the solution of dBBM equation. We also give
details on their implementation

3.1 Numerical schemes

Let start with time discretization. We denote by D the operator of derivation
in space, by D2 the operator of second derivation in space and by un the
approximation of u at time tn = n∆t.

We first introduce the fully bacward Euler method. We have the follow-
ing discretization:

(Id − D2)
un+1 − un

∆t
+ Dun+1 +

1

2
D
(
(un+1)2

)
+ Lγun+1 = f. (8)

Proposition 3.1. If u0 = u0 ∈ H1(T) and f ∈ H1/γ(T) then the sequence
(un)n∈N generated by the fully backward Euler method is well defined, in
H1(T) and

|un+1|2H1 + |un+1 − un|2H1 + ∆t
∑

k∈Z

γk|ûn+1
k |2 ≤ |un|2H1 + ∆t

∑

k∈Z

1

γk
|f̂k|2.

Moreover, if f = 0 then lim
n→+∞

|un|H1 = 0.

Proof. We use the following identity

〈(Id − D2)(un+1 − un), un+1〉 = −1

2

(
|un|2H1 − |un+1 − un|2H1 − |un+1|2H1

)
.

We compute the scalar product of (8) with un+1 and we obtain

|un+1|2H1 + |un+1 − un|2H1 − |un|2H1 + 2∆t〈Lγun+1, un+1〉
= 2∆t〈un+1, f〉,

where
〈Lγun+1, un+1〉 =

∑

k∈Z

γk|ûn+1
k |2 ≥ 0.

Hence we have

|un+1 − un|2H1 + |un+1|2H1 + 2∆t
∑

k∈Z

γk|ûn+1
k |2 = |un|2H1 + 〈un+1, f〉.

The Young inequality on the right hand side provides

〈un+1, f〉 ≤ 1

2

∑

k∈Z

γk|ûn+1
k |2 +

1

2

∑

k∈Z

1

γk
|f̂k|2

13



We infer the expected result

|un+1|2H1 + |un+1 − un|2H1 + ∆t|un+1|2γ ≤ |un|2H1 + ∆t
∑

k∈Z

1

γk
|f̂k|2

If f = 0, we directly have the equality

|un+1|2H1 + |un+1 − un|2H1 + ∆t|un+1|2γ = |un|2H1

We deduce that the sequence (|un|H1)n∈N
is decreasing and lower bounded

by 0. Then it is convergent to a positive constant C. It follows that

lim
n→+∞

∑

k∈Z

γk|ûn
k |2 = 0.

As γk > 0, we have lim
n→+∞

ûn
k = 0 and consequently C = 0.

Proposition 3.2. Let (un)n∈N be the sequence generated by the fully back-

ward Euler method. Assume that f = 0. We set G(n) =
|un|γ

|un|
H1

. Then we

have

|un|2H1 ≤



n∏

j=1

1

1 + 2∆t(G(j))2


 |u0|2H1 .

Moreover, if ∆t is small enough and if (G(j))j∈Z /∈ l2 then lim
n→+∞

|un|H1 = 0.

Proof. We compute the scalar product of (8) with un+1 and we obtain

1

2∆t

(
|un+1|2H1 − |un|2H1 + |un+1 − un|2H1

)
+ (G(n+1))2|un+1|2H1 = 0.

Hence
(
1 + 2∆t(G(n+1))2

)
|un+1|2H1 + |un+1 − un|2H1 ≤ |un|2H1 .

Therefore

|un+1|2H1 ≤ |un|2H1

1 + 2∆t(G(n+1))2
.

We infer by induction that

|un|2H1 ≤



n∏

j=1

1

1 + 2∆t(G(j))2


 |u0|2H1 .

Now if ∆t is small enough, we have

log




n∏

j=1

1

1 + 2∆t(G(j))2


 = −

n∑

j=1

log(1 + 2∆t(G(j))2) ≃ −2∆t
n∑

j=1

(G(j))2.

If (G(j)) /∈ l2 then lim
n→+∞

|un|H1 = 0.
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Remark 3.3. The forward Euler method can be applied to the BBM equa-
tion, contrarily to the KdV equation. Moreover, it is more difficult to es-
tablish qualitative properties as Propositions 3.1 and 3.2. The scheme is
written as

(Id − D2)
un+1 − un

∆t
+ Dun +

1

2
D
(
(un)2

)
+ Lγun = f.

Let introduce the Sanz-Serna scheme, given by

(Id − D2)
un+1 − un

∆t
+ D

(
un+1 + un

2

)
+

1

2
D



(

un+1 + un

2

)2



+ Lγ

(
un+1 + un

2

)
= f. (9)

Proposition 3.4. Assume that u0 ∈ H1(T) and f ∈ L2 ∩ H1/γ(T). Then
the scheme (9) is stable in H1(T) for all ∆t > 0.

Proof. We take the scalar product of (9) with un+1+un

2 . We obtain

|un+1|2H1 − |un|2H1

2∆t
+

1

4
|un+1 + un|2γ =

〈
f,

un+1 + un

2

〉
.

Using the duality and the Young’s inequality, it implies

|un+1|2H1 − |un|2H1

2∆t
+

1

4
|un+1 + un|2γ ≤ 1

2
|f |21/γ +

1

2

∣∣∣∣∣
un+1 + un

2

∣∣∣∣∣

2

γ

.

Hence

|un+1|2H1 +
∆t

4
|un+1 + un|2γ ≤ |un|2H1 + ∆t|f |21/γ .

Consequently we have the stability on every time interval [0, T ].

Remark 3.5. The Crank-Nicolson scheme is given by

(Id − D2)
un+1 − un

δt
+ D

(
un+1 + un

2

)
+

1

4
D
(
(un+1)2 + (un)2

)

+ Lγ
un+1 + un

2
= f. (10)

We cannot have uniform H1−bounds for un from this scheme because

〈
D
(
(un+1)2 + (un)2

)
,
un+1 + un

2

〉
6= 0.
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3.2 Implementation

The Fourier Transform in space is applied to the dBBM equation. The
equation (6) becomes

(1 + k2)
dûk

dt
+ (ik + γk)ûk + (ûux)k = 0.

We remind that the term Lγ(u) is written in the Fourier space as

∑

k∈Z

γkûkeikx.

Then we use the schemes introduced in the previous subsection for the
discretization in time and the FFT for the space discretization. These are
implicit methods and we apply a fixed-point method. We solve equations
which can be written as un+1 = Φ(un, un+1) by Picard iterates.

Algorithm 1 Picard iterates

v0 = un, m = 0
while ‖Φ(un, um) − um‖ > ǫ do

vm+1 = Φ(un, vm)
m = m + 1

end while

un+1 = vm

Unfortunately, even if the used scheme is unconditionally stable, this
method presents instabilities. The stability of the fixed-point iterate can
be improved by applying extrapolation like technic as follows (see also [1]).
The principle is to change the iterate vm+1 = Φ(un, vm) by

vm+1 = vn − (−1)kαk
m∆k

Φvm,

where ∆k
Φvm =

k∑
j=0

Ck
j (−1)k−jΦ(j)(un, vm), Φ(j) denotes the j-th compo-

sition of Φ with itself. The parameter αk
m is computed such as mini-

mizing the Euclidean norm of the linearized part of the residual rm+1 =
vm+1 − Φ(un, vm). We have

αk
m = (−1)k 〈∆1

Φvm, ∆k+1
Φ vm〉

〈∆k+1
Φ vm, ∆k+1

Φ vm〉
.

In fact, we take k = 1, and we have the following algorithm

16



Algorithm 2 Improved fixed-point algorithm

v0 = un, m = 0
while ‖Φ(un, vm) − vm‖ > ǫ do

∆1
Φvm = Φ(un, vm) − vm

∆2
Φvm = Φ(un, φ(un, vm)) − 2Φ(un, vm) + vm

α1
m = − 〈∆1

Φvm,∆2
Φvm〉

〈∆2
Φ

vm,∆2
Φ

vm〉

vm+1 = vm + α1
m∆1

Φvm

m = m + 1
end while

un+1 = vm

4 Numerical results

Let us begin by stating the parameters chosen for the simulations. We
present the results obtained with the Sanz-Serna scheme for the non-forced
equation (f = 0) on the interval [−L, L], with L = 50, discretized in 210

points. We obtain similar results with fully backaward Euler and Crank-
Nicolson schemes. The time step is ∆t = 0.01. Let us remind that k can
denote either an integer as an index, or the value 2πk

L .

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

1.5

x

Solution at different times

 

 

u0
t=5
t=10
t=20
t=30

Figure 1: Solution at times t = 0 (—), t = 5 (· − ·), t = 10 (- - -), t = 20
(· · · ), t = 30 (—) for γk = k2. Here the initial datum is the soliton.
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We consider the soliton as initial datum

u0(x) = −3(1 − c) cosh−2

(
±1

2

√
c − 1

c
(x − d)

)
,

with c = 1.5 and d = 0.2L . We begin with a laplacian damping in Figure
1. The figure shows the effect of the damping on the solution. Since γ0 = 0,
the solution tends to the mean value of u0.

Figure 2 corresponds to the simulation of the following standard damp-
ings

• the constant: γk = 1, ∀k,

• the laplacian: γk = k2, ∀k,

• the bilaplacian: γk = k4, ∀k.
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t

G(t)

 

 

constant=1
laplacian
bilaplacian

Figure 2: Evolution of ‖u‖H1 and G(t) with respect to time for standard
dampings, the constant (—), the laplacian (- - -) and the bilaplacian (· · · ).
Here the initial datum is the soliton.

For these dampings, we verify that the H1-norm decreases as expected.
Moreover the solution converge to the norm value of u0 for the laplacian
and bilpalacian dampings. We can also classify these dampings. Here the
constant one is more efficient than the two other. But the laplacian one is
more efficient than the bilaplacian one. These results are in agreement with
the ones about the KdV equation [5, 8, 9, 10, 11, 14].
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We extend, in Figure 3, the simulations to the dampings such that γk > 0
with lim

k→+∞
γk = 0. We consider here three "tend to 0" dampings, with

polynomial or exponential decay as follows

• γk = 1
1+|k| ,

• γk = 1
(1+|k|)α , α = 3

• γk = e−|k|.

These dampings do not fit with the asymptions of the theorem 2.6 but
they still damp down the soliton. Indeed we notice that the H1-norm is
decreasing. We can classify the dampings. Precisely, the first one damps
more than the two other and the third one is more efficient than the second
one. Since these dampings tends to 0, their effects are principally on low
frequencies. And for low frequencies, we have

1

1 + |k| > e−|k| >
1

(1 + |k|)α
.

Then the classification of dampings in Figure 3 seems licit.
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Figure 3: Evolution of ‖u‖H1 and G(t) with respect to time for "tend to 0"
dampings, γk = 1

1+|k| (—), γk = 1
(1+|k|)3 (· − ·) and γk = e−|k| (- - -). Here

the initial datum is the soliton.
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We now consider band limited dampings, namely

γk =

{
1 if |k| ≤ N
0 if |k| > N

. (I(N))

We define M := max(k), where k is the finite vector of frequencies used for
the numerical tests in Figure 4. To keep γk > 0, ∀k, we choose

γk =

{
1 if |k| ≤ N

e−a||k|−N | if |k| > N
. (EI(N))

or

γk =

{
1 if |k| ≤ N

1
(1+||k|−N |)a if |k| > N

. (PI(N))

We denote the classic band limited damping by I(N), the one corrected
with exponential decay EI(N) and the third one corrected with polynomial
decay PI(N). Here we set a = 3, we obtain γk > 0 with lim

k→+∞
γk = 0.
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Figure 4: Evolution of ‖u‖H1 and G(t) with respect to time for band limited

type dampings, I
(

M
4

)
(—), PI

(
M
4

)
(—), EI

(
M
4

)
(—), I

(
M
16

)
(· − ·),

PI
(

M
16

)
(- - -) ,EI

(
M
16

)
(· · · ). Here the initial datum is the soliton.

The difference between these dampings is when |k| > N . For these
frequencies, since γk 6= 0, the dampings with exponential or polynomial
decay should damp more than the ideal one (I(N)). It is the case when
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N = M
16 , moreover the damping with polynomial decay is more effective

than the one with exponential decay. But we observe similar damping when
N = N

4 . We notice the damping depends on the band width. It seems
rightful because the equation considered is dispersive. Indeed, for this kind
of equation, high frequencies appear and these frequencies cannot be damped
especially if the band width is too small.

Let us illustate this by considering now the gaussian as initial datum

u0(x) = e− x2

σ2 .

Here the standard deviation is fixed equal to σ = max(k)
10 . Then, in order to

see the effect of the damping on the low frequencies, we study the influence
of the band limited damping size in Figure 5. We observe that the more
N increases, the more efficient is the damping. However, it seems that
all dampings with N ≥ 3σ

2 behave similarly. Besides, for lower N , the
different kind of dampings can be classified. We notice that for all N and
all dampings, the decreasing speed is similar at beginning and the difference
appears after. The difference appears when the high frequencies does.
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Figure 5: Evolution of ‖u‖H1 and G(t) with respect to time for band limited

type dampings, I
(
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(· · · ), I
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(—). Here the initial datum is the gaussian.

The influence of the domain is finally inspected. It is known that the
eigenvalues of the laplacian and of the bilapalcian depends on the length of
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the domain L. Here we choose the initial datum as

u0(x) = sin

(
2πx

L

)
.

Figure 6 presents results with L equal to π, 2π and 3π. We notice that if
L < 2π, the laplacian damping is less effective than the bilaplacian one. It
is the contrary if L > 2π. But, the dampings are similar when L = 2π.
We also observe that for a fixed damping, the greater is L, the slower is the
damping.
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Figure 6: Evolution of ‖u‖H1 and G(t) with respect to time for L = π with
γk = k2 (· − ·) and γk = k4 (- - -), L = 2π with γk = k2 (—) and γk = k4

(—), L = 3π with γk = k2 (· · · ) and γk = k4 (· − ·). Here the initial datum
is a sine.

5 Final comments

The damping operator Lγ considered in this article allows to have a large
variety of dampings. We first get back the standard dampings (for example
−∆u). But we also have less common dampings like band-limited ones or
weaker ones, e.g., such that lim

|k|→+∞
γk = 0. Moreover, with this frequential

approach, we can adjust the dampings by frequency bands. This is interest-
ing in order to build cheap and efficient dampings. Using these dampings,
the numerical observation shows a damping for energy norms like the H1-
norm. This is consistent with the results about the asymptotic behavior.
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This way of damping with frequency filters is particulary of interest for
its flexibility and its efficiency. It would be a good perspective to perform
similar work for the control wave equations.
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