
HAL Id: hal-00949746
https://hal.science/hal-00949746

Submitted on 20 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Canonical Polyadic Decomposition based on joint
eigenvalue decomposition

Xavier Luciani, Laurent Albera

To cite this version:
Xavier Luciani, Laurent Albera. Canonical Polyadic Decomposition based on joint eigenvalue decom-
position. Chemometrics and Intelligent Laboratory Systems, 2014, 132, pp. 152-167. �hal-00949746�

https://hal.science/hal-00949746
https://hal.archives-ouvertes.fr


CanonicalPolyadic Decomposition based on joint eigenvalue
decomposition

Xavier Luciania,b, Laurent Alberac,d,e,∗

aAix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296, Marseille, F-13397, France.
bUniversité de Toulon, CNRS, LSIS, UMR 7296, La Garde, F-83957, France.

cInserm, UMR 642, Rennes, F-35000, France
dLTSI, University of Rennes 1, Rennes, F-35000, France

eInria, Centre Inria Rennes - Bretagne Atlantique, Rennes, F-35000, France

Abstract

A direct algorithm based on Joint EigenValue Decomposition(JEVD) has been proposed to com-
pute the Canonical Polyadic Decomposition (CPD) of multi-way arrays (tensors). The iterative
part of our method is thus limited to the JEVD computation. Atthis occasion we also propose an
original JEVD technique. Most of the iterative CPD algorithms such as ALS have been shown by
means of practical studies to suffer from convergence problems (local minima, slow convergence
or high computational cost per iteration). On the other hand, direct methods seem in practice to
confine these disadvantages but impose some restrictive necessary conditions. In this context,
our proposed algorithm involves less restrictive necessary conditions than other recent direct ap-
proaches and a limited computational complexity. It has been compared to reference (direct and
non-direct) algorithms on synthetic arrays and real spectroscopic data. These numerical exam-
ples highlight the main advantages of the proposed methods to solve both the JEVD and CPD
problems.

Keywords: multi-way arrays, direct canonical polyadic decomposition, PARAFAC, joint
eigenvalue decomposition, fluorescence, over-factoring

1. Introduction1

In this paper, we mainly propose a direct algorithm for the canonical polyadic decomposition2

of real or complex-valued tensors (assimilated to multi-way arrays) using the Joint EigenValue3

Decomposition (JEVD) of a set of non-defective matrices. The present contribution is actually4

twofold since we jointly propose an algorithm to solve the JEVD problem. Tensor decomposition5

plays a wider and wider role in numerous application areas such as Psychometric [1], Signal6

Processing for Biomedical Engineering [2, 3, 4], Sensor array [5, 6, 7], Arithmetic Complexity7

[8] and Chemometrics [9, 10]. Thanks to its uniqueness properties [11, 12, 13, 14, 15, 16],8
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the polyadic decomposition introduced in 1927 by Hitchcock[17] is probably the most popular9

nowadays. In fact, it is now best known as CANonical DECOMPosition (CANDECOMP) [1],10

PARAllel FACtor analysis (PARAFAC) [18] or CANDECOMP/PARAFAC (CP). In order to11

be consistent and honor the original work we will keep the acronym CPD, which stands for12

Canonical Polyadic Decomposition.13

More precisely, a polyadic decomposition of an array is a sumof rank-one terms that yields14

an exact fit [17]. The CPD is then defined as the minimal polyadic decomposition. The rank15

of an array may be thus defined as the minimal number of rank-1 tensors needed to achieve the16

CPD.17

Many algorithms have been proposed in order to compute the CPD of multi-way arrays. One18

of the most famous algorithms, due to its speed and ease of implementation, resorts to an iter-19

ative Alternating Least Squares (ALS) procedure [18]. Other iterative algorithms based on first20

and second order optimization methods such as gradient, Gauss-Newton, Levenberg-Marquardt21

or conjugate gradient have also been proposed (see [19] [20,21, 22] for a full comparison).22

Recently, a set of iterative algorithms based on a reduced functional has been introduced in23

[23].These last algorithms bring qualitative informationon the solution but the counter part is a24

longer computational time. Furthermore, an Enhanced Line Search (ELS) procedure has been25

proposed in [24] in order to speed up the ALS algorithm. ELS extension to other iterative CPD26

algorithm and efficiency of the ALS-ELS algorithm has been highlighted in [21]. However, in27

spite of this refinement, the ALS algorithm suffers from a classical drawback. Indeed, nothing28

ensures its global convergence and it can be stuck in local minima. More generaly, iterative29

approaches show convergence problems when several factorsof the CPD are correlated.30

In the meantime, a few direct approaches have been proposed.One can mention the DTLD31

approach [25]. However it is restricted to three-way arraysand provide poor results [26, 20].32

Thereby this kind of solution is generally used as a way of initializing iterative methods. Other33

direct approaches have been proposed in the literature as well but not yet compared numerically34

in studies such as the ones mentioned above. These methods rephrase the CPD as the simul-35

taneous diagonalization, by equivalence [27, 28, 29] or congruence [15], of a set of matrices.36

The CPD problem can also be translated into a simultaneous generalized Schur decomposition,37

with orthogonal unknowns, as shown in [29]. Direct methods compute the CPD by solving an38

alternative algebra problem of lower dimensions but they donot provide a solution in terms of39

least squares contrarily to the ALS and derivative-based techniques. The reformulated problem40

is usually solved by means of a Jacobi-like procedure.41

We thus propose here a new formulation of the CPD as a JEVD problem leading to a novel42

direct solution, named DIAG (DIrect AlGorithm for canonical polyadic decomposition), involv-43

ing less restrictive necessary conditions than the "ClosedForm Solution" (CFS) presented in44

[27, 28]. Recall that the CFS algorithm requires that the rank of the considered CPD array does45

not exceed two of the dimensions of the array. At this occasion we also propose an original46

Jacobi-like JEVD algorithm, called JDTM (Joint Diagonalization algorithm based on Target-47

ing hyperbolic Matrices). Numerical examples highlight the main advantages of the proposed48

methods to solve the JEVD and CPD problems. Note that the DIAGmethod can be seen as49

a generalization of the BIOME approach [30] to the case of unsymmetric arrays. JDTM and50

DIAG have been presented briefly in two separate conference papers [31, 32], respectively. In51

[32] DIAG was associated to another JEVD algorithm and was called SALT (SemiALgebraic52

Tensor decomposition). The present paper details theoretical aspects of both algorithms in sec-53

tions 2 and 3, respectively including their extension to thecomplex case which is not trivial and54
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their computational complexity. In addition subsection 3.5 is dedicated to the comparison of nec-55

essary conditions of different CPD algorithms, namely ALS, CFS and DIAG . Numerical results56

are also emphasized in section 4 which illustrate the main features of the DIAG approach, no-57

tably the problem of over-factoring is addressed. Finally aconcrete application to fluorescence58

spectroscopy is proposed in section 5.59

2. Joint eigenvalue decomposition of non-defective matrices60

We use the following consistent notations in the whole paper: vectors, matrices and tensors61

are denoted by lower case boldface (a), upper case boldface (A) and upper case boldface calli-62

graphic (A) letters respectively. Thei-th entry of vectora is denoted byai while Ai j is the (i, j)-63

th component of matrixA. Entry (i1, . . . , iQ) of any Q-order tensorT ∈ RI1×···×IQ or CI1×···×IQ64

(Q > 2) is denoted byTi1,··· ,iQ. Outer product, Kronecker product and Khatri-Rao product are65

denoted by◦, ⊗ and⊙, respectively. Moore-Penrose matrix inverse, euclidean and frobenius66

norm are denoted by♯, ‖E(k)‖F and‖.‖F , respectively. We define [x; y]N = [x; y] ∩N. ⌊.⌋ denotes67

the floor function. Complex modulus and conjugate of any complex z are denoted by|z| andz68

respectively. The imaginary unit is denoted byi.69

Givens and hyperbolic rotation matrices are denoted byG andH, respectively. For instance in70

the real case,G(θi j ) andH(φi j ) are equal to the identity matrix, at the exception of the elements:71

G(θi j )ii = G(θi j ) j j = cos(θi j ) G(θi j )i j = −G(θi j ) ji = sin(θi j )

H(φi j )ii = H(φi j ) j j = cosh(φi j ) H(φi j )i j = H(φi j ) ji = sinh(φi j )

The JEVD problem consists in finding an eigenvector matrixA from a set of non-defective72

matricesM(k) satisfying:73

∀k ∈ [1; K]N, M(k) = AD(k) A−1, (1)

where theK diagonal matricesD(k) are unknown. One could solve these EVDs separately, and74

retain the solution that leads to the best estimate regarding the considered application. However,75

as explained in [29], it is safer from a numerical point of view to decompose theK matrices76

M(k) simultaneously, in some optimal sense, especially when theperturbation of these matrices77

may have caused eigenvalues to cross each other. Indeed, in practice only noisy observations78

of the K matricesM(k) are clustered and it is well known that, when eigenvalues areclose, the79

eigenvectors in a single EVD may be strongly affected by small perturbations [33]. The reason is80

that for coinciding eigenvalues only the corresponding eigenspace is defined; different directions81

in this subspace will emerge as eigenvectors for different infinitesimal perturbations. When this82

happens for one or more of the matrices in the JEVD problem, the other matrices may still allow83

to identify the actual eigenvectors. This follows theorem proved in [29]:84

Theorem 1. The JEVD is unique up to a permutation and a scaling of the columns ofA if and85

only if all the columns of the K× N matrix E, whose (k, n)-th component Ek,n is equal to D(k)
n,n,86

are not proportional.87

Note that in order to ensure uniqueness of the JEVD up to permutation and scale indeterminacies,88

we will assume in the sequel that theK involved diagonal matricesD(k) fulfil the condition given89

in Theorem 1.90

Few papers have proposed numerical solutions to the JEVD problem. All of them adapted91

Jacobi’s principle to the search for a non-singular and non-necessarily orthogonal eigenmatrixA92
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by using a suitable factorization, which is not reduced to the product of Givens matrices. This93

domination of Jacobi-like methods is due to their good convergence properties [34].94

Two main kinds of Jacobi-like algorithms have been developed in this context, based on dif-95

ferent matrix factorizations. Originally, several authors had recourse to the QR factorization ofA96

in order to compute the different sets of eigenvalues [35, 36]. Arguing that these QR-algorithms97

suffer from convergence problems, Fu and Gao proposed an effective sh-rt algorithm [37] based98

on the polar decomposition. Indeed the polar decompositionhas been used favourably for eigen-99

value decomposition purpose since a long time [38, 39, 34] and also for joint diagonalization100

by congruence [40]. Then the JUST algorithm was introduced in [41] as a variation of the sh-rt101

approach for which the iterative computation of the hyperbolic matrix is made by minimizing an102

alternative criterion. We propose here a third criterion and an appropriate optimization method,103

giving birth to the JDTM algorithm. Another JEVD approach based on LU factorization and104

called JET was introduced in [32] for real-valued matrices.105

The real case is addressed in the three following subsections. The extension to the complex case106

is described in subsection 2.4. JDTM algorithm has been compared to JUST and sh-rt algorithms107

in various situations involving real matrices. Significantnumerical results are given in section108

4.1.109

110

2.1. A Jacobi-like process111

In this subsection, all matrices are square matrices of order N. Polar matrix decomposition112

states that any non-singular real matrix can be factorized into the product of an orthogonal matrix113

Q and a symmetric positive semidefinite matrixS. It is well known thatQ can be decomposed114

into a product of Givens rotation matricesG(θi j ) and a unitary diagonal matrix. In the same way,115

it has been shown thatS can be decomposed into a product of hyperbolic rotation matricesH(φi j )116

and diagonal matrices [40]. Thereby, due to the indeterminacies of the JEVD problem mentioned117

in theorem 1 and taking into account that diagonal, hyperbolic and Givens matrices commute,118

the matrixA solving the JEVD problem given by (1) can be chosen as a product of Givens and119

hyperbolic rotation matrices:120

A =
N−1∏

i=1

N∏

j=i+1

G(θi j )H(φi j ). (2)

Inserting (2) into (1) and using the fact thatH(φi j )−1 = H(−φi j ) we get:121

∀k ∈ [1; K]N, D(k) =


N−1∏

i=1

N∏

j=i+1

G(θi j )TH(−φi j )

 M(k)


N−1∏

i=1

N∏

j=i+1

G(θi j )H(φi j )

 , (3)

but we prefer the simpler formulation:122

∀k ∈ [1; K]N, D(k) =


M∏

m=1

H(−φm)G(θm)T

 M(k)


M∏

m=1

G(θm)H(φm)

 , (4)

where each integerm of [1; M]N stands for a couple (i, j) with 1 ≤ i < j ≤ N. It is worth men-123

tioning that any Givens or hyperbolic matrix is defined by only one parameter (angle). Therefore,124

ideally we have to find a set ofM = N(N − 1)/2 couples of parameters{(θi j , φi j )}1≤i< j≤N in order125

to get (1). Instead of simultaneously identifying theseM couples of parameters, a Jacobi-like126
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procedure will repeat sequences of 2M successive optimizations until convergence. Each opti-127

mization is performed with respect to only one parameter. A sequence of 2M optimizations is128

generally called a sweep. As a result,NsM couples of Givens and hyperbolic matrices are used129

in practice to identifyA, whereNs is the number of sweeps. We thus look for a matrixA of the130

form A =
∏Ns

ns=1

∏M
m=1 G(θns

m )H(φns
m). The idea is to iteratively diagonalize theM(k) matrices by131

sequentially optimizing with respect toθns
m andφns

m for each value ofm andns. Hence the first132

sweep (ns = 1) consists on the following transformations:133

∀k ∈ [1; K]N, N(k,1,1) = G(θ11)T M(k)G(θ11), (5)

∀(k,m) ∈ [1; K]N × [1; M]N, M(k,m,1) = H(−φ1
m)N(k,m,1)H(φ1

m). (6)

∀(k,m) ∈ [1; K]N × [2; M]N N(k,m,1) = G(θ1m)T M(k,m−1,1)G(θ1m) (7)

Then the following sweeps (1< ns ≤ Ns) follow the same scheme:134

∀(k, ns) ∈ [1; K]N × [2; Ns]N, N(k,1,ns) = G(θns

1 )T M(k,M,ns−1)G(θns

1 ), (8)

∀(k,m, ns) ∈ [1; K]N× ∈ [1; M]N × [2; Ns]N, M(k,m,ns) = H(−φns
m)N(k,m,ns)H(φns

m). (9)

∀(k,m, ns) ∈ [1; K]N× ∈ [2; M]N × [2; Ns]N, N(k,m,ns) = G(θns
m )T M(k,m−1,ns)G(θns

m ), (10)

Thereby, the optimal corresponding Givens and hyperbolic matrices are sequentially com-135

puted in order to getK diagonal matricesM(k,M,Ns) at the end of the process.136

2.2. Optimization of matrix angles137

A natural criterion to compute the optimal (m, ns)-th Givens angleθns
m is thus to minimize the138

sum of the euclidean norms of the off-diagonal terms of theK matricesN(k,m,ns):139

ζG(θns
m ) =

K∑

k=1

N,N∑

p=1,q=1
p,q

(
N(k,m,ns)

pq

)2
. (11)

This criterion is the generalization of the original Jacobicriterion to the joint diagonalization140

context. Since Givens matrices are orthogonal, the same definition of N(k,m,ns) holds in both the141

joint diagonalization by congruence and JEVD cases and thusthe same optimization algorithms142

can be used. For instance, our proposed algorithm resorts tothe same approach as the JAD143

algorithm described in [42] whereas the sh-rt and JUST algorithms use their own minimization144

scheme.145

Once the optimal Givens matrixG(θns
m ) is computed, different criteria can be used for the146

optimal computation ofH(φns
m). This is the main difference between the three JEVD algorithms.147

The sh-rt method aims at minimizing the Frobenius norm ofM(h,m,ns) whereh is found such148

that
∣∣∣∣M(h,m,ns)

ii − M(h,m,ns)
j j

∣∣∣∣ = max
1≤k≤K

∣∣∣∣M(k,m,ns)
ii − M(k,m,ns)

j j

∣∣∣∣, whereas the JUST algorithm resorts to149

criterion (11) by replacingN(k,m,ns) by M(k,m,ns). Instead of minimizing all the (off-diagonal)150

entries, we propose to target two particular off-diagonal entries ofM(k,m,ns): if m corresponds to151

the (i, j)i< j couple, we simply aim at computing the optimalM(k,m,ns)
i j andM(k,m,ns)

ji components by152

using a "targeting" hyperbolic matrix. It is noteworthy that the transformation (9) affects thei-th153

and j-th rows and thei-th and j-th columns ofMk,m,ns but only the (i, j) and the (j, i) components154

are twice affected by the hyperbolic matrix and its inverse. Hence our choice to focus on the latter.155
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Therefore, our Joint Diagonalization algorithm based on Targeting hyperbolic Matrices (JDTM)156

resorts to the following alternative criterionζJDT M
H for the computation of the hyperbolic matrix:157

ζJDT M
H (φns

m) =
K∑

k=1

(
M(k,m,ns)

i j

)2
+

(
M(k,m,ns)

ji

)2
, (12)

Targeting some components was originally proposed by Souloumiac in a different context [40].158

In the case of Givens matrices we showed that the optimizations of criteria (11) and (12) were159

mathematically equivalent.160

Now, let us look at the components ofM(k,m,ns). As previously mentioned, we only consider the161

(i, j)-th and (j, i)-th components which are given by:162

M(k,m,ns)
i j =

(
N(k,m,ns)

ii − N(k,m,ns)
j j

) sinh(2φns
m)

2
+ N(k,m,ns)

i j cosh(φns
m)2 − N(k,m,ns)

ji sinh(φns
m)2, (13)

163

M(k,m,ns)
ji =

(
N(k,m,ns)

j j − N(k,m,ns)
ii

) sinh(2φns
m)

2
− N(k,m,ns)

i j sinh(φns
m)2 + N(k,m,ns)

ji cosh(φns
m)2. (14)

Furthermore we can write that:164

(
M(k,m,ns)

i j

)2
+

(
M(k,m,ns)

ji

)2
=

(
M(k,m,ns)

i j + M(k,m,ns)
ji

)2

2
+

(
M(k,m,ns)

i j − M(k,m,ns)
ji

)2

2
. (15)

The first term of the right-hand side does not depend onφns
m. Indeed, we derive from (13) and165

(14) the following equality:166

(
M(k,m,ns)

i j + M(k,m,ns)
ji

)2

2
=

(
N(k,m,ns)

i j + N(k,m,ns)
ji

)2

2
. (16)

Thereby minimizingζJTDM
H is equivalent to minimize theλ function defined by:167

λ(φns
m) =

K∑

k=1

(
M(k,m,ns)

i j − M(k,m,ns)
ji

)2
. (17)

We denote byy(m,ns) the column vector ofRK defined byy(m,ns)
k = M(k,m,ns)

i j − M(k,m,ns)
ji , so that168

λ(φns
m) = y(m,ns)Ty(m,ns). It is easily shown that the system of linear equations (13) and (14) can be169

rewritten such that:170

y(m,ns) =W(m,ns)x(φns
m), (18)

with:171

W(m,ns) =



N(1,m,ns)
ii − N(1,m,ns)

j j N(1,m,ns)
i j − N(1,m,ns)

ji
...

...

N(K,m,ns)
ii − N(K,m,ns)

j j N(K,m,ns)
i j − N(K,m,ns)

ji


; x(φns

m) =

[
sinh(2φns

m)
cosh(2φns

m)

]
.

Now defining the diagonal 2× 2 matrix J such thatJ11 = −J22 = −1 and observing that172

x(φns
m)T J x(φns

m) = 1, we have thus to minimize the quantityx(φns
m)TW(m,ns)TW(m,ns)x(φns

m) under173
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the constraint thatx(φns
m)T J x(φns

m) = 1. This can be done using the Lagrange multipliers strategy.174

Thereby, we have to minimize theL function given by:175

L(x(φns
m), µ(φns

m)) = x(φns
m)TW(m,ns)TW(m,ns)x(φns

m) − µ(φns
m)x(φns

m)T J x(φns
m). (19)

Differentiation with respect tox(φns
m) leads to:176

W(m,ns)TW(m,ns)x(φns
m) = µ(φns

m)J x(φns
m). (20)

SinceJ−1 = J we have:177

JW(m,ns)TW(m,ns)x(φns
m) = µ(φns

m)x(φns
m). (21)

Thus,µ(φns
m) and x(φns

m) are associated eigenvalue and eigenvector of matrixJW(m,ns)TW(m,ns).178

More particularly, we have the following lemma:179

Lemma 1. If the columns ofW(m,ns) are different thenJW(m,ns)TW(m,ns) has two nonzero eigen-180

values of opposite sign andx(φns
m) is the eigenvector associated to the positive eigenvalue.181

Proof 1. Let w1 andw2 be the column vectors of matrixW(m,ns). Both belong toRK , equipped182

with the Euclidean norm and we define a= w1
Tw1, b = w1

Tw2 and c= w2
Tw2. Hence a, b and c183

denote the squared euclidean norm ofw1, the scalar product betweenw1 andw2 and the squared184

Euclidean norm ofw2 respectively. Hence,185

JW(m,ns)TW(m,ns) =

[
−a −b
b c

]

The characteristic polynomial is then:186

P(α) = α2 + (a− c)α + (b2 − ca) (22)

and the discriminant is:187

∆ = (a− c)2 − 4b2 + 4ca

= (a+ c− 2b)(a+ c+ 2b)

= || w1 − w2 ||
2|| w1 + w2 ||

2

Thereby, sincew1 , w2, ∆ > 0 and JW(m,ns)TW(m,ns) is diagonalizable and admits two distinct188

eigenvaluesα1 andα2. Then we have:189

α1α2 =
(a− c)2 − ∆

4a2

=
b2 − ac

a2

The Cauchy-Schwartz inequality gives b2 < ac henceα1α2 < 0.190

We now demonstrate the second part of the lemma. Multiplying(21) byx(φns
m)T J yields:191

x(φns
m)TW(m,ns)TW(m,ns)x(φns

m) = µ(φns
m)x(φns

m)T J x(φns
m),

= µ(φns
m). (23)

The quadratic formx(φns
m)TW(m,ns)TW(m,ns)x(φns

m) is positive thusµ(φns
m) is positive too.192
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Hence the previous lemma allows us to easily computex(φns
m) from W(m,ns) andφns

m is deduced193

from the definition ofx(φns
m):194

φns
m =

1
2

atanh

(
x(φns

m)1

x(φns
m)2

)
. (24)

Algorithm 1 summarizes the proposed method.

Algorithm 1: Summary of the JDTM algorithm

1: Define athresholdε and a maximal number of sweepNmax
s

2: Initialize A with the identity matrix;
3: ns = 1;
4: while

∑
k
∑

p,q(M(k)
p,q)2 > ε andns ≤ Nmax

s do
5: m= 1;
6: for i = 1 to N − 1 do
7: for j = i + 1 to N do
8: Compute the optimal angleθns

m corresponding to the couple (i, j) and buildG(θns
m );

9: Replace theK matricesM(k) by G(θns
m )T M(k)G(θns

m );
10: Compute the optimal angleφns

m corresponding to the couple (i, j) and buildH(φns
m);

11: Replace theK matricesM(k) by H(−φns
m)M(k)H(φns

m);
12: ReplaceA by AG(θns

m )H(φns
m);

13: m= m+ 1;
14: end for
15: end for
16: ns = ns + 1;
17: end while
18: Ns = ns;

195

2.3. Computational complexity196

The computational complexity of an algorithm is given by thenumberΓ of floating point197

operations (flop), given in practice by the number of required multiplications. At each sweep,198

there areN(N − 1)/2 Givens and hyperbolic matrices to compute and as many updates of ma-199

trices A,M(1), · · · ,M(K). Computation of each hyperbolic matrix is dominated by the product200

JW(m,ns)TW(m,ns) which requires 3K multiplications. Givens matrices are computed in a similar201

way [42] and thus also need 3K multiplications. For each update (line 12 of algorithm 1), matrix202

A is multiplied by a Givens and a hyperbolic matrix. Both products can be done using a total of203

8N multiplications. Finaly the update of each matrixM(k) (lines 9 and 11 of algorithm 1) is twice204

more costly and involves 16N multiplications. Therefore the total computational complexity is:205

ΓJDT M = NsN(N − 1)(3K + 4N + 8KN) (25)

2.4. Extension to the complex case206

Let’s now consider that matricesA and M(1), · · · ,M(K) belong to the complex field. In this207

case, the JDTM algorithm has to be significantly modified. Indeed, each of the Givens and208

hyperbolic rotation matrices involved in the polar decomposition of a complex matrix is now209

defined by two parameters. Similarly to the real case, we onlyfocus on the determination of210
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hyperbolic matricesH which makes the specificity of the proposed algorithm. Indeed, G can211

still be estimated by the classic procedure [42].212

We resort to the following classical parametrization of complex hyperbolic matrices, for each213

couplem= (i, j)i< j we have:214

H(φm, αm)ii = H(φm, αm) j j = cosh(φm); H(φm, αm)i j = H(φm, αm) ji = sinh(φm)eiαm

Thereby we have to estimate for each matrix the couple (φi j , αi j ) that minimizes the new215

JDTM cost function:216

ζJDT M
HC (φns

m, α
ns
m) =

K∑

k=1

|M(k,m,ns)
i j |2 + |M(k,m,ns)

ji |2. (26)

Using the previous parametrization, we obtain:217

M(k,m,ns)
i j =

(
N(k,m,ns)

ii − N(k,m,ns)
j j

) sinh(2φns
m)

2
e−iαns

m + N(k,m,ns)
i j cosh(φns

m)2 − N(k,m,ns)
ji sinh(φns

m)2e−2iαns
m ,

(27)218

M(k,m,ns)
ji =

(
N(k,m,ns)

j j − N(k,m,ns)
ii

) sinh(2φns
m)

2
eiαns

m − N(k,m,ns)
i j sinh(φns

m)2e2iαns
m + N(k,m,ns)

ji cosh(φns
m)2.

(28)
It can be easily shown that minimizingζJDT M

HC is equivalent to minimizing̃ζJDT M
HC :219

ζ̃JDT M
HC (φns

m , α
ns
m) =

K∑

k=1

|M̃(k,m,ns)
i j + M(k,m,ns)

ji |2 + |M̃(k,m,ns)
i j − M(k,m,ns)

ji |2, (29)

where:220

M̃(k,m,ns)
i j =

(
N(k,m,ns)

ii − N(k,m,ns)
j j

) sinh(2φns
m)

2
eiαns

m + N(k,m,ns)
i j cosh(φns

m)2e2iαns
m − N(k,m,ns)

ji sinh(φns
m)2.

(30)
After some straightforward computations, (28), (29) and (30) yield:221

ζ̃JDT M
HC (φns

m , α
ns
m ) =

K∑

k=1

(∣∣∣∣N(k,m,ns)
i j

∣∣∣∣
2
+

∣∣∣∣N(k,m,ns)
ji

∣∣∣∣
2)

cosh(2φns
m )2

+

(∣∣∣∣N(k,m,ns)
ii − N(k,m,ns)

j j

∣∣∣∣
2
−

(
N(k,m,ns)

i j N
(k,m,ns)
ji e2iαns

m + N(k,m,ns)
i j N

(k,m,ns)
i j e−2iαns

m

))
sinh(2φns

m )2

+ 1
2

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N(k,m,ns)

i j −
(
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
ji

)
eiαns

m sinh(4φns
m )

+ 1
2

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
i j − N(k,m,ns)

ji

(
N(k,m,ns)

ii − N(k,m,ns)
j j

))
e−iαns

m sinh(4φns
m )

(31)

222

which can be rewritten as a function of 4φns
m andαns

m :223

ζ̃JDT M
HC (4φns

m , α
ns
m ) = 1

2

K∑

k=1

(∣∣∣∣N(k,m,ns)
i j

∣∣∣∣
2
+

∣∣∣∣N(k,m,ns)
ji

∣∣∣∣
2) (

cosh(4φns
m ) + 1

)

+

(∣∣∣∣N(k,m,ns)
ii − N(k,m,ns)

j j

∣∣∣∣
2
−

(
N(k,m,ns)

i j N
(k,m,ns)
ji e2iαns

m + N(k,m,ns)
i j N

(k,m,ns)
i j e−2iαns

m

)) (
cosh(4φns

m ) − 1
)

+

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N(k,m,ns)

i j −
(
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
ji

)
eiαns

m sinh(4φns
m )

+

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
i j − N(k,m,ns)

ji

(
N(k,m,ns)

ii − N(k,m,ns)
j j

))
e−iαns

m sinh(4φns
m ).

(32)
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224

Differentiating (32) with respect to 4φns
m andαns

m alternatively, then definingtns
m = tanh(2φns

m)
andzns

m = eiαns
m , it can be shown after few more trivial computations that thesolution couple which

minimizesζ̃JDT M
HC is also a solution of the following polynomial system:

P0(zns
m) + (2P1(zns

m)tns
m + P0(zns

m)tns
m )tns

m = 0 (33)(
Q1(zns

m)tns
m − Q0(zns

m)
)
tns
m = 0 (34)



with:225

P0(z) =
K∑

k=1

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N(k,m,ns)

i j −
(
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
ji

)
z3

+

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
i j − N(k,m,ns)

ji

(
N(k,m,ns)

ii − N(k,m,ns)
j j

))
z

P1(z) =
K∑

k=1

−N
(k,m,ns)
ji N(k,m,ns)

i j z4 +

(∣∣∣∣N(k,m,ns)
i j

∣∣∣∣
2
+

∣∣∣∣N(k,m,ns)
ji

∣∣∣∣
2
+

∣∣∣∣N(k,m,ns)
ii − N(k,m,ns)

j j

∣∣∣∣
2)

z2 − N
(k,m,ns)
i j N(k,m,ns)

ji

Q0(z) =
K∑

k=1

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N(k,m,ns)

i j −
(
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
ji

)
z3

−

((
N(k,m,ns)

ii − N(k,m,ns)
j j

)
N

(k,m,ns)
i j − N(k,m,ns)

ji

(
N(k,m,ns)

ii − N(k,m,ns)
j j

))
z

Q1(z) =
K∑

k=1

2
(
N

(k,m,ns)
ji N(k,m,ns)

i j z4 − N
(k,m,ns)
i j N(k,m,ns)

ji

)

(35)

Solution sets are then easily given by:226

P0(zns
m) = 0 and tns

m = 0; (36)

or:227

P0(zns
m)(Q1(zns

m))2 + 2P1(z
ns
m)Q0(zns

m)Q1(zns
m) + P0(zns

m)(Q0(zns
m))2 = 0 and tns

m =
Q0(zns

m)

Q1(zns
m)
. (37)

3. Toward a new direct CPD algorithm: the DIAG method228

3.1. The Canonical Polyadic Decomposition229

CPD states that anyQ-order tensor (orQ-way array)T of size I1 × · · · × IQ can be exactly230

decomposed into a sum ofQ-order rank-1 tensors. AQ-order rank-1 tensor can be defined as the231

outer product betweenQ vectorsx(1), · · · , x(Q). The rankR of T is then the minimal number of232

rank-1 tensors needed to achieve the following decomposition:233

T =

R∑

r=1

x(1)
r ◦ · · · ◦ x(Q)

r . (38)
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Usually one also definesQ "loading" (or factor) matricesX(1), · · · , X(Q) of size I1 × R, · · · ,234

IQ ×R, respectively, so thatx(q)
r is ther th column ofX(q) and the CPD is commonly rewritten as:235

∀q ∈ [1; Q]N, ∀iq ∈ [1; Iq]N, Ti1···iQ =

R∑

r=1

X(1)
i1r X(2)

i2r · · ·X
(Q)
iQr . (39)

Our main problem is thus to find for a given tensorT of given rankR and orderQ, theQ factor236

matrices that solves (39).237

3.2. Unfolding matrix238

It is well known that the CPD can be rewritten in a matrix form.Indeed, the tensor dimensions239

can be merged in order to store all tensor entries in a single "unfolding" matrix. Obviously, there240

are many way to merge the tensor dimensions and thus many possible unfolding matrices. As it241

will be seen, the choice of the unfolding matrix has an impacton the algorithm limitations and242

performance. Therefore, in order to cover all the possibilities, we introduce aP parameter in243

order that theP first dimensions are merged into the matrix rows whereas the remainingQ− P244

dimensions are merged into the matrix columns. The corresponding unfolding matrix is denoted245

by T(P). Note that all the other unfolding matrices can be merely obtained by permuting the246

tensor dimensions and changing theP value.T(P) entries are linked toT entries by the following247

transfer formulas:248

∀(m, n) ∈ [1; πP
1 ]N × [1; πQ

P+1]N, T(P)m,n = T i1,··· ,iQ (40)

where,πa
a = Ia, πb

a = IaIa+1 · · · Ib and:249

∀m ∈ [1; πP
1]N, m = i1 +

P∑

q=2

(iq − 1)πq−1
1 , (41)

∀n ∈ [1; πQ
P+1]N, n = iP+1 +

Q∑

q=P+2

(iq − 1)πq−1
P+1. (42)

Then after some computations the CPD equation (39) can be rewritten as:250

T(P) =
(
X(P) ⊙ · · · ⊙ X(1)

) (
X(Q) ⊙ · · · ⊙ X(P+1)

)T
. (43)

It is worth mentioning that a majority of CPD algorithms suchas ALS or CFS resorts to the251

P = 1 case.252

3.3. The DIAG algorithm253

The algorithm presented here is available both in the real and complex field. We start from254

equation (43) and we define for a given couple of integersa andb, a < b, the matrixY(b,a)
X by:255

Y(b,a)
X = X(b) ⊙ · · · ⊙ X(a). (44)

Now, let USVH be the singular value decomposition ofT(P) truncated at the orderR, assuming256

thatR ≤ min(πP
1 , π

Q
P+1) (hypothesisH1). Thus there exists an invertible square matrixM of size257

R× Rsuch that:258

Y(P,1)
X = UM, (45)

Y(Q,P+1)
X

T = M−1SVH. (46)
11



Recalling thatY(Q,P+1)
X = X(Q) ⊙ Y(Q−1,P+1)

X and using the definition of the Kathri-Rao product,259

Y(Q,P+1)
X

T can be seen as a row block matrix:260

Y(Q,P+1)
X

T =
[
φ(1)Y(Q−1,P+1)

X
T, · · · ,φ(IQ)Y(Q−1,P+1)

X
T
]
, (47)

whereφ(1), · · · ,φ(IQ) are theIQ diagonal matrices built from theIQ rows of the matrixXQ. As a261

consequence, equations (46) and (47) yield:262

SVH =
[
Γ

(1)T, · · ·Γ(IQ)T,
]
, (48)

where :263

∀i ∈ [1; IQ]N, Γ(i) = Y(Q−1,P+1)
X φ(i) MT. (49)

All matricesΓ(i) andY(Q−1,P+1)
X are of sizeπQ−1

P+1×R. We assume thatP is chosen so thatP < Q−1264

andR≤ πQ−1
P+1 (hypothesisH2) and that they all admit a Moore-Penrose matrix inverse. Then we265

define:266

∀i1, i2 ∈ [1; IQ]2N, i2 > i1 Θ
(i1,i2) = Γ(i1)♯

Γ
(i2). (50)

Now replacingΓ(i) by its definition yields:267

Θ
(i1,i2) = M−Tφ(i1)−1Y(Q−1,P+1)♯

X Y(Q−1,P+1)
X φ(i2) MT, (51)

= M−T
Λ

(i1,i2) MT, (52)

whereΛ(i1,i2) = φ(i1)−1φ(i2). Thus,M−T performs the JEVD of the known set of matricesΘ(i1,i2).268

ThereforeM−T can be estimated by the JDTM algorithm. Then one can immediately deduce269

Y(P,1)
X andY(Q,P+1)

X from (45) and (46). At this stage there are several ways to estimate the factor270

matrices fromY(P,1)
X andY(Q,P+1)

X . One simple approach is to estimate each column of the firstP271

factor matrices from the corresponding column ofY(P,1)
X and each column of theQ−P remaining272

factor matrices from the corresponding column ofY(Q,P+1)
X . Indeed, columnr of Y(P,1)

X can be273

reshaped into an order-P, rank-1 tensorY (P,1)
Xr whose factor vectors are ther-th columns of matri-274

cesX(1), · · · , X(P). Thereby a simple rank-1 High-Order SVD (HOSVD, [43]) ofY (P,1)
Xr provides275

a direct estimation ofx(1)
r , · · · , x

(P)
r . In the same way, the columnr of Y(Q,P+1)

X can be reshaped276

in a (Q− P)-order, rank-1 tensorY (Q,P+1)
Xr whose factor vectors are ther-th columns of matrices277

X(P+1) · · · X(Q). Hence,x(P+1)
r · · · x(Q)

r can be estimated from the rank-1 HOSVD ofY (Q,P+1)
Xr . Fi-278

nally both operations are repeated for all ther values. The DIAG algorithm is summarized by279

Algorithm 2.280

3.4. Computational complexity281

ΓDIAG is clearly dominated by the three following computations. First, the truncated SVD of282

the unfolding matrix of size (πP
1 , π

Q
P+1) requires 2πQ

P+1(π
P
1)2 + 5R2(πP

1 + π
Q
P+1) − 2(R3 + (πP

1 )3)/3283

multiplications, assuming thatπQ
P+1 > π

P
1 . Then, the computation of theΘ matrices needs ap-284

proximately (RIQ)2πQ−1
P+1 additional multiplications. Finally the cost of the JEVD procedure is285

approximated by 8Ns(IQ)2R3. Additional computations can be neglected and thus we have:286

ΓDIAG ≈ 2πQ
P+1(π

P
1)2 + 5R2(πP

1 + π
Q
P+1) − 2(R3 + (πP

1)3)/3+ (RIQ)2πQ−1
P+1 + 8Ns(IQ)2R3. (53)
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Algorithm 2: Summary of the DIAG algorithm

1: Choose a value ofP and a permutation of the dimensions ofT as described in section 3.6;
2: Matricize the (possibly permuted) tensorT into matrix T(P) according to (40), (41) and

(42);
3: Compute the SVDUSVH of T(P), truncated at rank R;
4: Split SVH into IQ blocks of sizeR× πQ−1

P+1 in order to form theIQ matricesΓ(i) given by (49);
5: for i1 = 1 to IQ − 1 do
6: for i2 = i1 + 1 to IQ do
7: ComputeΘ(i1,i2) = Γ(i1)♯

Γ
(i2);

8: end for
9: end for

10: Compute matrixM−T by JEVD of the set ofΘ(i1,i2) matrices;
11: Deduce matricesY(P,1)

X = UM andY(Q,P+1)
X = M−1SVH;

12: for r = 1 toR do
13: Build Y (P,1)

Xr andY (Q,P+1)
Xr by reshaping ther−th columns ofY(P,1)

X andY(Q,P+1)
X ;

14: Deducex(1)
r , · · · , x

(P)
r from the rank 1 HOSVD ofY (P,1)

Xr ;
15: Deducex(P+1)

r , · · · , x(Q)
r the rank 1 HOSVD ofY (Q,P+1)

Xr ;
16: end for

ΓDIAG should be compared to the numerical complexity of the ALS algorithm which is approxi-287

mately given by:288

ΓALS ≈ NALS


3RπQ

1 + 7R2
Q∑

q=1

Q∏

k=1
k,q

Ik


, (54)

However the numerical complexity of the DIAG algorithm is strongly related to the choice of the289

unfolding matrix and both complexities depend on a large number of parameters. Furthermore290

NALS can fluctuate wildly. Therefore at this point it would be veryhazardous to draw general con-291

clusions from the previous formulas even in simple cases. Nevertheless we made some extensive292

flop comparisons between both algorithms by varyingQ,R,P and the tensor dimensions. Results293

are reported in section 4.2.4. It will be shown that in all theconsidered situationsΓDIAG ≤ ΓALS294

andNs≪ NALS.295

296

The numerical complexity of the CFS algorithm is very complicated to establish since this297

algorithm computes several estimations of each factor matrix. However we can easily explain298

what makes DIAG a cheaper approach. CFS is a three step algorithm. The first step is algebraic299

and performs the HOSVD of the tensor. In terms of numerical complexity this operation is300

usually close to the SVD of the unfolding matrix performed inthe DIAG algorithm. The second301

step is the resolution ofQ(Q− 1)2 JEVDs whereas DIAG requires only one JEVD. Finally, we302

have to choose the best estimates of the factor matrices among a large number of combinations303

which is also very time consuming.304

3.5. Necessary conditions to the identifiability of DIAG, ALS and CFS305

The CPD algorithms are not always applicable due to their intrinsic restricted conditions.306

We propose to compare here necessary conditions that ensureidentifibility of the ALS, CFS and307
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DIAG methods. LetQ, R and I (i) be the tensor order, the CPD rank and thei-th dimension of308

the tensor, respectively. A tensor of orderQ and rankRcan be canonically decomposed by ALS309

only if:310

(CALS) : ∀ q ∈ [1; Q]N, Q∏

i=1
i,q

I (i) ≥ R. (55)

DIAG conditions are given by hypothesesH1 andH2. H1 andH2 were expounded for a given311

order of the tensor dimensions (default order). Actually, By taking into account that the dimen-312

sions can be permuted we obtain the following more general condition:313

(CDIAG) : ∃ P ∈ [2; Q− 1]N,∃ fI a permutation of theQ first natural numbers and∃ qs > P such that:
∏P

i=1 I ( fI (i)) ≥ R and
∏Q

i=P+1
i,qs

I ( fI (i)) ≥ R. (56)

Finally, the conditionCCFS for the closed-form solution is given in [28]:314

(CCFS) : ∃ (q1, q2) ∈ [1; Q]2N, q1 , q2 such thatI (q1) ≥ RandI (q2) ≥ R. (57)

Proposition 1. CDIAG is more restrictive thanCALS but less restrictive thanCCFS:315

CCFS ⇒ CDIAG ⇒ CALS316

A proof is given in appendix. In practice the DIAG condition impliesP ≤ Q − 2 and can be317

reformulated quite easily for low order tensors (3≤ Q ≤ 5):318

Third order tensors, Q = 3. Here we have necessarilyP = 1 henceCDIAG becomes simply: at319

least two of the tensor dimensions are greater or equal to theCPD rankR. Thereby at order320

3 (and only at order 3)CDIAG andCCFS are equivalent.321

Fourth order tensors, Q = 4. Here we can choose eitherP = 1 or P = 2 but the condition322

remains the same in both cases and is simply: at least one tensor dimension is greater than323

Rand at least one product of two of the remaining dimensions isalso greater thanR.324

Fifth order tensors, Q = 5. Here 1≤ P ≤ 3:325

• if we chooseP = 1 or P = 3 thenCDIAG becomes: at least one tensor dimension is326

greater thanR and at least one product of three of the remaining dimensionsis also327

greater thanR.328

• if we chooseP = 2 thenCDIAG becomes: at least one product between two tensor329

dimensions and another product between two of the remainingdimensions are greater330

thanR.331

3.6. Choice of the unfolding matrix332

An obvious criterion is the residual error betweenT and the reconstructed tensor built from333

the estimated factor matrices. However it would be very timeconsuming to test several possibil-334

ities. As a consequence the choice of the more appropriate unfolding matrix should be related to335

hypothesisH1 andH2. Indeed, one has to choose a permutation of the tensor dimensions and336

a P value that ensure both hypotheses. Otherwise, the DIAG algorithm is not suitable as it is337

explained in the previous section. Recall notably that the DIAG algorithm impliesP ≤ Q − 2.338
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Indeed, at order 3 we have necessarilyP = 1. At order 4 we have two possible values (1 and339

2) and so on. Therefore if one wants to maximize the value of the highest possible rank then340

one should maximize min(πq−1
1 , π

q−1
P+1), hence chooseT(p) as squared as possible. In practice341

we observed that this recommendation is always a good optioneven if all tensor dimensions are342

greater than the rank. Apart from that one should note that the number of matrices to be jointly343

diagonalized is directly related to the squared dimension of the last mode and thus the numerical344

complexity of the JEVD step. Therefore in the case of a tensorwith one very large dimension345

we do not recommend to put it at the end (if possible). More generally, we recommend to take346

into consideration the overall complexity of the DIAG algorithm given by equation (53) and to347

consider that with the JDTM algorithm the number of sweeps (Ns) exceeds very rarely 10. In348

section 4.2.4 we give several significant numerical examples of DIAG complexity for various349

tensor dimensions and unfolding matrices.350

4. Numerical simulations351

The proposed algorithms are first validated on synthesized data sets. We first focus the JEVD352

sub-problem for which we compare JDTM performances to theseof other JEVD algorithms.353

Then we compare the DIAG approach with CFS, an other direct algorithm and ALS-ELS which354

is a reference iterative method, with respect to several scenarios. The last subsection is dedicated355

to a particular tensor family for which iterative algorithms consistently fail to find the CPD.356

4.1. Performance comparison of the JDTM algorithm357

The performance of the JDTM algorithm is studied and compared to that of the JET, sh-rt358

and JUST methods by varying the numberK of matrices to be jointly diagonalized, the Signal-359

to-Noise Ratio (SNR) and the matrix dimensionsN. The matrix set to be jointly diagonalized is360

built according to the following model:361

∀k ∈ [1; K]N, M(k) =
M̃

(k)

‖M̃
(k)
‖F

+ σ
E(k)

‖E(k)‖F
with M̃

(k)
= AD(k) A−1. (58)

Entries ofA, D(k) andE(k) are drawn randomly according to a standard normal distribution. The362

scalar parameterσ allows us to regulate the power of the Gaussian additive noise E(k). The SNR363

is then equal to−20 log10(σ). Hence,σ is chosen in order to obtained the desired value of SNR.364

At the end of each sweep, the squared off-diagonal components of theK matricesM(k,M,ns)
365

are summed and the obtained value is compared to the value computed at the previous sweep.366

Algorithms are stopped when the relative deviation betweentwo successive values is smaller367

than 10−3.368

After having removed the scaling and permutation indeterminacies we definerA as the rela-369

tive root squared error between the true eigenvector matrixand its estimatêA:370

rA =

√√√√√∑N
i=1

∑N
j=1

(
Ai, j − Âi, j

)2

∑N
i=1

∑N
j=1

(
Ai, j

)2
. (59)

Note that in most practical applications and notably in blind source separation, one is only inter-371

ested by the estimation of the eigenvector matrix. HencerA appears as a relevant JEVD criterion.372
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Finally the number of sweeps,Ns, required by each algorithm is stored in order to com-373

pute the values of the total numerical complexitiesΓ. Therefore, algorithm results are judged374

according to three criteria, namelyNs, Γ andrA.375

Each simulation is repeated 100 times with a new draw of the matrices A, D(k) andE(k) at376

each time. We present here median values ofrA and mean values ofΓ andNs obtained from each377

algorithm.378

Figures 1, 2 and 3 show simulation results for 3 SNR values (60dB, 40 dB and 20 dB379

respectively). The number of matrices to be jointly diagonalized was fixed toK = 64 whereas we380

varied the matrix sizeN from 2 to 32. We first note that the estimation precision of thealgorithms381

logically increases with the ratioK/N and the SNR. Second, according torA criterion JUST382

algorithm is consistently outperformed by other algorithms whatever the considered situation.383

At 60 dB, figure 1(a) points out that the JDTM and JET algorithmoutclass the sh-rt approach384

concerning the estimation of eigenvectors matrix. According to thisrA criterion JET performs385

slightly better than JDTM for matrix size lower or equal to 16whereas for the largest size JDTM386

clearly provides the best performances. The comparison of the average computational costs387

displayed in figure 1(b) shows very closed results between all the algorithms. However JDTM388

appears more clearly as the less costly algorithm for largest matrix sizes. This is explained by a389

lower and remarkably stable number of sweeps (figure 1(c)). Previous conclusions hold at 40 dB.390

However it is interesting to note that concerning the estimation of the eigenvectors matrix JDTM391

is now significantly more accurate than JET forN = 16 andN = 32. Finally, the 20 dB case392

highlights the efficiency of the JDTM algorithm which clearly improves JET and sh-rt results, for393

matrix sizes larger than 8. However JET is now the faster algorithm. In conclusion JDTM appears394

as a very versatile algorithm which provide very accurate results in all the considered situation395

(in comparison to its competitors) for a lower number of sweeps. This number is remarkably396

stable, being comprised between 3 and 10 in all the considered scenarios. Moreover JDTM397

consistently provides the best estimate of the eigenvectormatrix for the largest matrix size and398

this gap increases with the SNR. To sum up, JDTM offers quite similar performances than its399

best competitors (sh-rt or JET) in the easiest cases (regarding SNR andK/N ratio) whereas it400

clearly becomes the better choice as the difficulty increases.401

As part of this study, we also evaluate JDTM ability to deal with an ill-conditioned eigen-402

vector matrix. For this purpose, we now compute the eigenvector matrix A with pairwise corre-403

lated columns as follows: odd columns,a2r−1, are still randomly drawn as previously but even404

columns,a2r , are built in the following way :405

∀r ∈ [1; N/2]N, a2r = νa2r−1 + (1− ν)nr , (60)

where nr is a vector ofRN whose components are randomly drawn according to a standard406

normal distribution. Therebyν defines a collinearity factor which will vary from 0.1 to 0.9 so407

that matricesA can be very ill-conditioned. Figure 4 shows simulation results for a set of 10408

matrices of size 10 (K = N = 10) at 80 dB. It can be seen that sh-rt, JDTM and JET perform well409

for ν < 0.9. JDTM and JET provide the best results in terms of estimation precision but JDTM410

requires a minimal number of sweeps and computational cost.411

4.2. Performance comparison of the DIAG algorithm412

We now study performances of the DIAG algorithm for the decomposition of noisy tensors.413

Indeed, in most practical applications involving tensor analysis, a noisy tensor of rankR is mod-414
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Figure 1: Evolution of the three comparison criteria as a function of the matrix size for a set of 64 matrices with an SNR
value of 60 dB.
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Figure 2: Evolution of the three comparison criteria as a function of the matrix size for a set of 64 matrices with an SNR
value of 40 dB.
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Figure 3: Evolution of the three comparison criteria as a function of the matrix size for a set of 64 matrices with an SNR
value of 20 dB.
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Figure 4: Evolution of the three comparison criteria as a function of the correlated factor between columns of matrixA
for a set of 10 matrices of size 10 and an SNR value of 80 dB.
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elized by "truncated" CPD of rankRm < Rwhich is usually more relevant than the exact CPD:415

∀q ∈ [1; Q]N, ∀iq ∈ [1; Iq]N, T i1,··· ,iQ =

Rm∑

r=1

X(1)
i1,r

X(2)
i2,r
· · · X(Q)

iQ,r
+ Ei1,··· ,iQ, (61)

whereE is an error term.Rm is the model rank. The DIAG algorithm is compared with an416

ALS-ELS algorithm and with the CFS algorithm in various situations by means of Monte-Carlo417

experiments. For each new experiment, a noise free tensor isbuilt from factor matrices ofRm418

columns whose entries are randomly drawn according to a standard normal distribution. We then419

add a Gaussian white noise whose the power is regulated according to the desired SNR value.420

The comparison criterion,rX, is the Normalized Mean Squares Error (NMSE) computed between421

actual and estimated factor matrices. Hence for a tensor of orderQ we have:422

rX =
1
Q

Q∑

q=1

med



√√
vec(X(q) − X̂(q))Tvec(X(q) − X̂(q))

vec(X(q))Tvec(X(q))

 , (62)

whereX̂(q) denotes the estimation of the factor matrixX(q), the vec(·) operator maps a matrix423

to a column vector by stacking its columns one below the otherand med(·) denotes the median424

value computed from 100 MC experiments. Permutation and scaling ambiguities in the estimated425

factor matrices are fixed in the same manner as in [21]. All algorithms were written in-house. The426

ALS-ELS algorithm can be found in the tensor package web-page 1. It is stopped as soon as the427

relative deviation between two consecutive values of the CPD cost function becomes lower than428

10−6 or the number of ALS iterations reaches 1000. ELS procedure is run every 5 iterations. For429

the decomposition of order-3 tensors, we use the CFS algorithm described in [27] with the best430

matching scheme proposed in section 4.2 of [27] whereas higher order tensors were decomposed431

using the N-order version described in [28], using the sub-optimal matching rules proposed by432

the authors. Implemented versions of DIAG and CFS resort to the JDTM algorithm to solve the433

JEVD problem and are stopped as soon as the relative deviation between two consecutive values434

of the JEVD cost function becomes lower than 10−6 or the number of JEVD iterations reaches435

30. Unfolding matrix in the DIAG algorithm is generally chosen to be as squared as possible.436

Since the number of test parameters is large, it would be impossible to perform here an exhaustive437

comparison. As a consequence we have limited ourselves to some key situations which illustrate438

the main features of the proposed approach :i. its ability to decompose high order tensors of439

high rank,ii. tensors with almost collinear factors,iii. its insensitivity to over-factoring andiv.440

its low computational complexity.441

4.2.1. High order tensors442

We first consider a set of 6-order tensors of rank 5 whose all the dimensions are equal to 5.443

DIAG parameterP is set to 3 and we vary the SNR from 10 dB to 80 dB. Results are plotted444

on figures 5(a). CFS only works for the highest SNR value, probably because this is a difficult445

situation for which we are very close to its intrinsic limitation. DIAG provides as accurate446

estimations as ALS-ELS for SNR values greater than 10 dB. ALS-ELS fails at 10 dB while447

DIAG still works. Notably it clearly outperforms ALS at 10 dB.448

1http://www.gipsa-lab.grenoble-inp.fr/~pierre.comon/TensorPackage/tensorPackage.html
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Figure 5: Median NMSE as a function of the SNR at the output of the ALS and DIAG algorithms applied to high order
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We then consider 8-order tensors of rank 6 whose all the dimensions are equal to 3. For this449

more difficult case, we vary SNR values from 20 dB to 50 dB. CFS is inapplicable because450

of its restrictive necessary condition. Indeed tensor rankis larger than the two largest tensor451

dimensions.P is set to 4. Figures 5(b) shows that in spite of ELS, ALS is usefulness here.452

Conversely DIAG performs well for the three SNR values above20 dB.453

4.2.2. Influence of the collinearity factor454

In the next two following examples we consider the CPD of rank4 tensors whose columns455

of the random factor matrices are pairwise correlated in allthe modes (swamp). For instance,456

correlated columns in modeq are built following the scheme of equation (60):457

∀r ∈ [1; R/2]N x(q)
2r = νx

(q)
2r−1 + (1− ν)n(q)

r . (63)

Note that it has been shown previously in [21] that in this kind of scenarios ALS performances458

are significantly improved by using ELS. First simulation involves third order tensors of size459

4×4×4. For the second simulation we consider fourth order tensors of size 4×4×4×4. Results460

are plotted on figures 6(a) and 6(b) respectively. DIAG is theonly algorithm which works well in461

all the considered situations including the most difficult ones (high values ofν) except forν = 0.9462

at order 3. ALS-ELS algorithm fails or is outperformed for largest values ofν (ν > 0.5 at order463

3 andν > 0.7 at order 4). At order 3 CFS results are slightly better than DIAG ones while at464

order 4 we find an opposite situation whenν < 0.7. When dealing with higher values only DIAG465

works.466

We then perform a third simulation with third order tensors of size 4× 4× 10× 4. This time all467

the factors in each mode are mutually correlated:468

∀q ∈ [1; Q]N, ∀r ∈ [2; R]N x(q)
r = νx

(q)
1 + (1− ν)n(q)

r . (64)

Then we vary tensors rank from 3 to 7 whileν is set to 0.8. This simulation again highlights the469

main restriction of the CFS algorithm which cannot perform CPD of rank higher than 4. ALS-470

ELS results are slightly better than DIAG ones for ranks 3 and4. On the opposite DIAG appears471

as the best option for higher rank values. Notably it still provide satisfactory results forR = 7472

contrary to ALS-ELS. Finally we compare the complex versionof our algorithm DIAG using473

the complex JDTM method with the complex version of the ALS algorithm. Complex-valued474

tensors are built as for the two first examples of this sectionbut using complex-valued factor475

matrices. We consider here third order tensors of size 5× 5× 5 and rank 3. Results are displayed476

in figure 6(d). Results obtained in the complex field are very similar to those obtained in the real477

field for example 1. Indeed ALS starts to fail forν > 0.4 whereas DIAG still works atν = 0.9.478

4.2.3. Over-factoring479

In many practical situations the actual model rankRm of the data tensor to be decomposed480

is unknown and it is usually not equal to the tensor rank. Few methods exist for estimating this481

number. In addition, these sometimes provide ambiguous or contradictory results. This can lead482

to overestimate the model rank. In other words the corresponding decomposition implies more483

factors than it is necessary (over-factoring). Suppose that R̂m is an overestimation ofRm andQ is484

the tensor order. A classical problem with ALS is that theQ(R̂m−Rm) extra factors not only model485

the additive noise but also the signal. Hence their estimation affects the estimation of theQRm486

actual factors. We study here the impact of over-factoring on DIAG results. For this purpose we487

successively compute 5 CPD of 3-order noisy tensors of modelrank 3 (Rm = 3, I1 = I2 = I3 = 7,488
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Figure 6: Influence of the collinearity factor on the CP decomposition
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Table 1: Median NMSE, averaged number of iterations and averaged number of flops for small tensors of order 3
Algorithm R= 4, I = 10× 10× 10 R= 4, I = 5× 100× 5 R= 4, I = 5× 5× 100

rX Nit Γ rX Nit Γ rX Nit Γ

ALS 2.3×10−3 130 6×106 2.5×10−3 140 2×107 2.7×10−3 192 2.8×107

ALS-ELS 2.3×10−3 47 2×106 2.5×10−3 46 7.5×106 2.7×10−3 67 1.1×107

DIAG 5×10−3 5 3×105 6.6×10−3 5 1.7×105 2×10−2 5 2.9×107

DIAG + ALS-ELS 2.2×10−3 7 6×105 2.5×10−4 8 1.4×106 2.7×10−3 9 3×107

Table 2: Median NMSE, averaged number of iterations and averaged number of flops for large tensors of order 3
Algorithm R= 7, I = 50× 50× 50 R= 5, I = 100× 100× 100 R= 4, I = 50× 100× 50

rX Nit Γ rX Nit Γ rX Nit Γ

ALS 5.6×10−4 58 3×108 2.3×10−4 23 4.6×108 3.4×10−4 47 2.1×108

ALS-ELS 5.6×10−4 27 1.8×108 3.3×10−4 14 8.2×107

DIAG 2.1×10−3 5 5.5×107 5.8×10−4 5 2.8×108 5.7×10−4 5 3.5×107

DIAG + ALS-ELS 5.4×10−4 4 7.6×107 2.3×10−4 3 3.3×108 3.3×10−4 3 4.9×107

SNR=50 dB) truncated at rank 3 to 7 respectively. After each CPD and for each estimated factor489

matrix we keep the three columns that best correspond to the actual 3 factors. Thereby at the end490

of the process we can computerX for each CPD. DIAG results are compared with those of ALS-491

ELS and CFS on figure 7(a). It is worth mentioning that over-factoring has little impact on DIAG492

and CFS results while ALS-ELS provides incorrect estimations of the actual factors as soon as493

the model rank is overestimated. This is an important feature of direct approaches. A second494

simulation is performed in the same way but with 4-order tensors of dimensions 7× 7× 7× 4.495

Model rank is still set to 3. Results are plotted on figure 7(b). Again over-factoring strongly496

affects ALS-ELS estimates. Conversely DIAG and CFS results areconsistent even in the case a497

large number of extra factors is used. We can also note that atorder 4 DIAG is less sensitive to498

over-factoring than CFS.499

4.2.4. A trade-off between speed and precision500

501

502

503

504

We have shown some particular situations for which the DIAG algorithm provides the best505

estimation results. However one of the main advantages of the proposed approach with respect506

Table 3: Median NMSE, averaged number of iterations and averaged number of flops for tensors of order 4
Algorithm R= 5, I = 5× 10× 5× 10 R= 5, I = 5× 5× 10× 10 R= 8, I = 5× 5× 10× 5

rX Nit Γ rX Nit Γ rX Nit Γ

ALS 1.5×10−3 50 1.5×107 1.4×10−3 31 9.3×106 3.5×10−3 11 4.7×107

ALS-ELS 1.5×10−3 29 9.4×106 1.4×10−3 23 7.3×106 3.5×10−3 54 2.4×107

DIAG 7.1×10−3 5 7.1×105 3.2×10−3 5 6.5×105 1.7×10−2 6 6.9×105

DIAG + ALS-ELS 1.5×10−3 6 2.7×106 1.4×10−3 6 2.5×106 3.5×10−3 9 4.6×106
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Table 4: Median NMSE, averaged number of iterations and averaged number of flops for higher order tensor and
tensors with correlated factors(all tensors are rank 4)

Algorithm I = 7× 7× 7× 7× 7× 7 I = 10× 10× 10× 10× 10 I = 10× 10× 10
rX Nit Γ rX Nit Γ rX Nit Γ

ALS 2.3×10−4 21 2.6×108 2.5×10−4 28 1.9×108 4.3×10−1 831 4×107

ALS-ELS 2.6×10−4 19 2.5×108 1.2×10−3 444 2×107

DIAG 2.3×10−4 4 5.4×107 2.8×10−4 4 2×107 2.5×10−3 5 3×105

DIAG + ALS-(ELS) 2.2×10−4 2 8.3×107 2.5×10−4 2 3.5×107 6.8×10−4 10 7×105

to iterative algorithms is its high convergence speed and its lower numerical complexity. Further-507

more we still have to evaluate DIAG performances in the case of big tensors. For this purpose,508

we study here 12 representative examples by varying the tensor dimensions and the CPD rank.509

Examples are classified into 4 groups of three examples: small tensors of order 3, large tensors510

of order 3, tensors of order 4 and finally, higher order tensors and tensors with correlated CPD511

factors. Median NMSE values, averaged numbers of iterationsNit and averaged numbers of flops512

Γ are reported in tables 1, 2, 3 and 4 for each example of the fourgroups and for an SNR value513

of 40 dB. DIAG is here compared to ALS and ALS-ELS . DIAG estimates can also be used as514

initial guests of the ALS-ELS procedure. Hence in these tables, "DIAG+ ALS-ELS" refers to515

the ALS-ELS algorithm initialized with DIAG estimates.516

Group of small third order tensors.In the two first examples we show that ALS and ALS-ELS517

perform slightly better than DIAG in terms of estimation precision. However on average DIAG518

only requires 5 JDTM iterations to converge against 46 and 140 for ALS-ELS and ALS, respec-519

tively. HenceΓDIAG is 10 to 100 times lower thanΓALS andΓALS−ELS. Another interesting point520

is that the DIAG+ ALS-ELS procedure limits the number of ALS iterations to 7-8(the averaged521

number of iterations reported in the table for DIAG+ ALS-ELS is the averaged number of ALS-522

ELS iterations used after an initialization with DIAG) and we can see from these results that this523

is enough to obtain a precision similar or better than that ofALS-ELS. Consequently, the numer-524

ical complexity of this approach is 3 to 10 times lower than than those ofΓALS andΓALS−ELS.525

The last example is similar to the second one but tensor dimensions have been permuted so that526

only the DIAG unfolding matrix is different. Here DIAG results are degraded both in terms of527

precision and numerical complexity. We can conclude that ifit is possible, it is better to not place528

the larger dimension of the tensor at the end.529

Group of large third order tensors.We consider now third order tensors whose all the dimen-530

sions are equal to 50 or 100. As a consequence, the CPD rank is far lower than the tensor531

dimensions and all algorithms perform better and need feweriterations. This explain that the gap532

between the different algorithms is narrowing. However we can still draw thesame general con-533

clusion: DIAG remains the cheapest solution and DIAG+ ALS-ELS provides the same precision534

than ALS and ALS-ELS for a lower numerical complexity.535

Group of fourth order tensors.We obtain the same kind of results that with the first group so536

that DIAG + ALS-ELS still appears to give the best compromise between precision and cost.537

One should note however that in the last case DIAG is by far thecheapest whereas its results538

regarding the NMSE are not as good. This is explained by the fact than the rank is greater than539

three of the tensor dimensions and slightly lower than the remaining one.540
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Higher order tensors and tensors with correlated CPD factors. The first example of this group541

deals with fifth order tensors (for which our version of ELS isnot working). For the second542

example we consider sixth order tensors. It is worth mentioning here that in both cases DIAG543

provides as accurate estimates as ALS and ALS-ELS do while its numerical complexity remains544

largely lower. Now looking at the last example with correlated factors, one can first note that545

ALS doesn’t work whereas ALS-ELS is more accurate than DIAG.The price to paid is a very546

high number of iterations (444) and an increased computational cost (about 2×107 flops) against547

5 iterations and about 3×105 flops for DIAG. In this case one should not that DIAG+ ALS-ELS548

is significantly better than ALS-ELS in terms of estimation precision for a limited numerical549

complexity.550

551

As a first conclusion DIAG appears as a good trade-off between estimation precision, speed552

and numerical complexity. Besides, the DIAG+ ALS-ELS procedure provides a similar or553

better precision than that of ALS-ELS whereas its numericalcomplexity remains quite close to554

that of DIAG. Hence by combining both algorithms one can achieve the best precision, a good555

convergence speed and a reduced numerical complexity.556

4.3. Results on the Paatero tensor557

In [44], Paatero introduced a very simple 3-order tensor of size 2× 2 × 2 which has the558

following form:559

T =

[
0 1 e 0
1 d 0 h

]
. (65)

Let’s define its determinant∆ by:560

∆ = 4h+ d2e. (66)
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Then, it can be shown that the equation∆ = 0 partitions the space into two subspaces, which561

hence have a non zero volume: The inequality∆ > 0 defines the subspace of rank-2 tensors,562

whereas∆ < 0 defines the subspace of rank-3 tensors. Finally, the closedset of tensors of rank 1563

lies on the hypersurface∆ = 0. [21]564

Some of these tensors have the particularity of misleading any iterative algorithm, although565

the chosen starting value is close to the solution. As an example, Paatero notably consider in [44]566

to decompose the tensor defined by (e, d, h) = (30, 0.26, 0.34) from the initial value (e, d, h) =567

(30, 0.3, 0.12). This tensor belongs to the rank 2 subspace but it is closeto the variety∆ = 0. Its568

decomposition is given by the three following factor matrices:569

A =
[

1/x −1/x
y1 y2

]
B =

[
1/x −1/x
y1 y2

]
C =

[
1/x −1/x
y3 y4

]
, (67)

with: x = (4h/e+ d2)
1
6 , y2 = (x3 − d)/(2x), y1 = x2 − a2, y4 = h/(y2(y1 + y2)) andy3 = y2y4/y1.570

Later in [21], authors confirmed that in this case, even the most efficient iterative algorithms571

such as ALS-ELS and Levenberg-Marquardt get stuck in a localminimum of the cost function,572

leading to a very bad estimation of the factor matrices. Actually, since the iterative algorithms573

works by successive optimization of rank-2 tensors, they cannot take the shorter paths to the574

solution which could cross the space of rank-3 tensors. Thereby, this is an other typical situation575

where direct algorithms can help. In order to see this we havereproduced the experiment here not576

only for the Paatero starting values but for different starting values around the solution. Hence577

we define a parameterδ such that the initial factor matrices of the ALS-ELS,A(0), B(0)
578

A(0) = A + δEA; B(0) = B + δEB; C(0) = C + δEC, (68)

whereEA, EB andEC are matrices of size 2× 2 whose elements are randomly drawn according579

to a standard normal law. We now defineǫ as the mean estimation error upon the three estimated580

factor matrices,̂A, B̂ andĈ:581

ǫ =
1
3


‖A − Â‖F
‖A‖F

+
‖B − B̂‖F
‖B‖F

+
‖C − Ĉ‖F
‖C‖F

 . (69)

The ALS-ELS algorithm is run 500 times on the tensorT , with a new draw of theEA, EB and582

EC matrices at each time, and for different values ofδ comprised between 1000 and 10−10. We583

present on figure 8 the plots of the median, minimal and maximal values ofǫALS−ELS according584

to theδ value. For comparison, bothǫDIAG andǫCFS values are also reported on the figure. It can585

be seen that the iterative algorithm needs a very good initialisation in order to get an estimation586

precision close to the machine precision. Recall that we arelooking for an exact decomposition587

since the considered tensors are noise free. Conversely, direct algorithms such as the closed-588

form solution or DIAG provide a perfect decomposition ofT and a thus an exact estimation of589

the factor matrices.590

5. Application to fluorescence spectroscopy591

A good application example of the CPD is found in fluorescencespectroscopy since after592

some numerical corrections measured data can be modelled bya CPD with physical meaning.593

Standard spectrofluorimeters allow to measure the intensity of the fluorescence signal emitted594
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Figure 9: CPD factors of the fluorescence tensor using ALS.
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Figure 10: CPD factors of the fluorescence tensor using DIAG-JDTM.
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by a diluted solution at wavelengthλ j by exciting the solution at wavelengthλi . Hence, by595

scanning the excitation-emission couples (λi , λ j) one obtains anI × J matrix of fluorescence596

which is called the Fluorescence Excitation-Emission Matrix (FEEM) of the solution. In many597

applications one have to measure a FEEM set corresponding toa set ofK solutions and thus598

obtains a fluorescing data tensorX of order 3 and sizeI × J × K which contains theK FEEM.599

Solutions are often mixtures of a small number,Rm, of diluted fluorescing chemical species600

(fluorophores). Fluorophore concentrations vary from a solution to an other. Hence fluorophore601

r is characterized by its excitation spectrum,er (λi), its fluorescence emission spectrum,fr (λ j)602

and the variation of its concentration through the solutionset (concentration profile),cr (k). In603

practice one wants to recoverer , fr andcr (r = 1 · · ·Rm) from the measured FEEMs. It can be604

shown that after removing scattering effects and correcting (or preventing) inner filter effects, the605

contribution of each fluorophore to the solution signal is linear in excitation, in emission and in606

concentration. In other words we have:607

Xi, j,k =

Rm∑

r=1

Ei,r F j,rCk,r , (70)

whereEi,r = er (λi), F j,r = fr (λ j) andCk,r = cr (k), so that the CPD solves this inverse problem in608

a deterministic way. This is the reason why CPD has been largely applied to analyze FEEM sets609

since original works of Bro in this area [9, 10].610

In most applications of fluorescence spectroscopy the number of fluorophores which defines the611

model rank of the decomposition is unknown and has to be estimated. However few methods612

exist and can give contradictory results and lead to over-factoring. A good example of this613

situation can be found in [45]. This would be acceptable if ineach estimated factor matrix614

one obtain theRm real factors aside with extra factors whose the contributions are almost null.615

Actually this is not the case with ALS which is very commonly used for analyzing this kind of616

data. Therefore this problem remains an important issue of FEEM analysis. In order to highlight617

the reliability of DIAG in this context we consider here a fluorescence tensor which contains618

the fluorescence intensity of 3 distinct mixtures of two fluorophores (fluorescein and quinine619

sulphate) measured at 46× 71 excitation-emission wavelength couples. Hence the tensor size is620

3 × 46× 71 and the model rank is 2. CPD of rank 3 were then used to decompose the tensor.621

ALS and DIAG results are reported on figure 9 and 10 respectively and compared to the actual622

factors after removing permutation and scaling indeterminacy. Excitation and Emission factors623

are normalized so that factor contributions are condensed in the concentration mode. Actual624

concentration profiles are perfectly known since these are laboratory mixtures and actual spectra625

were measured aside from pure solutions of fluorescein and quinine sulphate. This is a simple626

case for which both algorithms give perfect results when thegood model rank (Rm = 2) is627

selected (data not shown). However ALS sensitivity to over-factoring effect in a concrete case628

clearly appears here. Indeed actual factors are not well estimated (notably the fluorescein spectra629

and the concentration profiles). Moreover contribution of the extra factor to the decomposition630

is significant. Recall that this factor has no physical meaning. On the opposite DIAG results are631

satisfying notably regarding the estimated spectra. One can verify that the contribution of the632

extra factor is almost null.633

6. Conclusion634

We have described in this paper a CPD algorithm that takes advantage of the link between635

CPD and Joint EVD in an original way. A JEVD algorithm has beenconjointly proposed. Com-636
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putational complexities and extension to the complex field have been given for both algorithms.637

Numerical simulations point out the efficiency of the proposed JDTM algorithm to solve the638

JEVD problem. This algorithm usually offers more accurate results than its competitors espe-639

cially in the most difficult cases involving big matrices and low SNR values. In terms of numer-640

ical complexity, the JDTM algorithm also provides good performances thanks to a remarkably641

low and stable number of iterations.642

Classical iterative CPD algorithms such as ALS are usually efficient but suffer from convergence643

problem, notably in case of highly correlated factors, and are very sensitive to over-factoring.644

In addition they require a large number of iterations to reach the convergence. ELS allows us645

to reduce this number and deals with correlated factors in some situations but it remains useless646

in case of over-factoring. In addition, we have seen that there are some simple cases for which647

iterative approaches consistently fail for theoretical reasons.648

In this context direct approaches such as the proposed DIAG algorithm have been designed649

to prevent such issues. First the DIAG algorithm involves a limited iterative procedure which650

requires very few iterations hence limiting global computational cost of the algorithm. Second it651

is insensitive to over-factoring thanks to the initial SVD which is independent of the chosen rank.652

These features have been verified in this paper by using many numerical simulations. Notably we653

have shown that DIAG was able to deal with highly correlated factors in all the modes or a large654

number of extra factor in case of over-factoring. Furthermore our results also demonstrates that655

DIAG is very efficient to decompose high order tensors. Finally it is a very fast algorithm with a656

lower computational complexity than ALS or ALS-ELS, notably in the case of small tensors or657

correlated factors.658

As a counterpart, DIAG implies more restricted necessary conditions on the CPD rank than659

ALS. Therefore ALS-ELS is more accurate than DIAG when the rank is close to DIAG intrinsic660

limit. This is usually not the case in fluorescence spectroscopy applications for which at least one661

tensor dimension is largely greater than the model rank. In addition it has been shown that DIAG662

results can be improved by adding very few ALS iterations with a limited impact on the overall663

numerical complexity. Conversely, one should note that over-factoring is an important issue of664

FEEM analysis. This makes DIAG an attractive alternative tothe classical ALS procedure for665

the CPD of fluorescence tensors, as it has been shown on a practical example.666

Eventually, comparing to the CFS algorithm which is also a reference direct CPD approach,667

DIAG is a cheaper algorithm since it only involves one JEVD procedure and does not require to668

compare several estimates of the factor matrices. But its main advantage definitely comes from669

the necessary condition of CFS which is more restricted thanDIAG’s one. Hence there are many670

simple cases that CFS cannot handle. More generally CFS accuracy decreases as we get closer671

to its intrinsic limit. Otherwise CFS results are close to DIAG results.672

Appendix A. Proof of proposition 1673

Proof 2. CCFS ⇒ CDIAG is trivial. Indeed if∃ (q1, q2) ∈ [1; Q]2N, q1 , q2 such that I(q1) ≥674

R and I(q2) ≥ R then taking any permutation fI of the Q first natural number such that fI (1) = q1675

and fI (2) = q2, P = 1 and qs = Q ensuresCDIAG.676
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Let now suppose thatCDIAG is true and thatCALS is false, i.e.:677

∃ P ∈ [2; Q− 1]N, ∃ fI , ∃ qs > P and q≤ Q such that: 1)
P∏

i=1

I ( fI (i)) ≥ R, (A.1)

2)
Q∏

i=P+1
i,qs

I ( fI (i)) ≥ R, (A.2)

3)
Q∏

i=1

I (i) < RI(q). (A.3)

Since we have1 ≤ q ≤ Q thus q∈ { fI (1), · · · , fI (P)} ∪ { fI (P+ 1), · · · , fI (Q)}.678

• We first assume that q∈ { fI (1), · · · , fI (P)}. 2) and3) give:679

1
I ( fI (qs))

Q∏

i=P+1

I ( fI (i)) >
1

I (q)

Q∏

i=1

I (i), (A.4)

1
I ( fI (qs))

Q∏

i=P+1

I ( fI (i)) >
1

I (q)

Q∏

i=1

I ( fI (i)), (A.5)

I (q) > I ( fI (qs))
P∏

i=1

I ( fI (i)). (A.6)

Since q∈ { fI (1), · · · , fI (P)},680

P∏

i=1

I ( fI (i)) = I (q)
P∏

i=1
i, f−1

I (q)

I ( fI (i)) (A.7)

thereby,681

1 > I ( fI (qs))
P∏

i=1
i, f−1

I (q)

I ( fI (i)) (A.8)

which is absurd.682

• Now we assume that q∈ { fI (P+ 1), · · · , fI (Q)}. Thereby,683

I (q) <

Q∏

i=P+1

I ( fI (i)), (A.9)

I (q)
P∏

i=1

I ( fI (i)) <

Q∏

i=1

I ( fI (i)), (A.10)

while 1) and3) give:684

I (q)
P∏

i=1

I ( fI (i)) >

Q∏

i=1

I (i), (A.11)

I (q)
P∏

i=1

I ( fI (i)) >

Q∏

i=1

I ( fI (i)), (A.12)
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which is contradictory to (A.10).685

Therefore ifCDIAG is verified thenCALS is verified.686
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