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Abstract

A direct algorithm based on Joint EigenValue DecompositiV/D) has been proposed to com-
pute the Canonical Polyadic Decomposition (CPD) of mubiyvarrays (tensors). The iterative
part of our method is thus limited to the JEVD computationtti$ occasion we also propose an
original JEVD technique. Most of the iterative CPD algomithsuch as ALS have been shown by
means of practical studies toffer from convergence problems (local minima, slow convecgen
or high computational cost per iteration). On the other hane@ct methods seem in practice to
confine these disadvantages but impose some restrictiessay conditions. In this context,
our proposed algorithm involves less restrictive necgssamditions than other recent direct ap-
proaches and a limited computational complexity. It haseenpared to reference (direct and
non-direct) algorithms on synthetic arrays and real spsctipic data. These numerical exam-
ples highlight the main advantages of the proposed mettwsslitve both the JEVD and CPD
problems.

Keywords: multi-way arrays, direct canonical polyadic decompositiPARAFAC, joint
eigenvalue decomposition, fluorescence, over-factoring

1. Introduction

In this paper, we mainly propose a direct algorithm for theacacal polyadic decomposition
of real or complex-valued tensors (assimilated to multyaerays) using the Joint EigenValue
Decomposition (JEVD) of a set of non-defective matricese phesent contribution is actually
twofold since we jointly propose an algorithm to solve th&DEproblem. Tensor decomposition
plays a wider and wider role in numerous application areab s1$ Psychometric [1], Signal
Processing for Biomedical Engineering [2, 3, 4], Sensamafs, 6, 7], Arithmetic Complexity
[8] and Chemometrics [9, 10]. Thanks to its uniqueness ptigse[11, 12, 13, 14, 15, 16],
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the polyadic decomposition introduced in 1927 by HitchcficH is probably the most popular
nowadays. In fact, it is now best known as CANonical DECOM&us (CANDECOMP) [1],
PARAllel FACtor analysis (PARAFAC) [18] or CANDECOMPARAFAC (CP). In order to
be consistent and honor the original work we will keep theoagm CPD, which stands for
Canonical Polyadic Decomposition.

More precisely, a polyadic decomposition of an array is a sfimank-one terms that yields
an exact fit [17]. The CPD is then defined as the minimal polyadicomposition. The rank
of an array may be thus defined as the minimal number of ramkdors needed to achieve the
CPD.

Many algorithms have been proposed in order to compute tieakhulti-way arrays. One
of the most famous algorithms, due to its speed and ease ¢éringmtation, resorts to an iter-
ative Alternating Least Squares (ALS) procedure [18]. ®@ttezative algorithms based on first
and second order optimization methods such as gradiengg=adewton, Levenberg-Marquardt
or conjugate gradient have also been proposed (see [19PP2®2] for a full comparison).
Recently, a set of iterative algorithms based on a reducedtiftnal has been introduced in
[23]. These last algorithms bring qualitative informatimmthe solution but the counter part is a
longer computational time. Furthermore, an Enhanced Liesr @ (ELS) procedure has been
proposed in [24] in order to speed up the ALS algorithm. EL&esion to other iterative CPD
algorithm and #iciency of the ALS-ELS algorithm has been highlighted in [2However, in
spite of this refinement, the ALS algorithmfBers from a classical drawback. Indeed, nothing
ensures its global convergence and it can be stuck in locaihmi More generaly, iterative
approaches show convergence problems when several fatthiesCPD are correlated.

In the meantime, a few direct approaches have been prop@sezican mention the DTLD
approach [25]. However it is restricted to three-way arragd provide poor results [26, 20].
Thereby this kind of solution is generally used as a way dfdhizing iterative methods. Other
direct approaches have been proposed in the literaturelbbu@ot yet compared numerically
in studies such as the ones mentioned above. These methpidase the CPD as the simul-
taneous diagonalization, by equivalence [27, 28, 29] ogoaence [15], of a set of matrices.
The CPD problem can also be translated into a simultanecweraiézed Schur decomposition,
with orthogonal unknowns, as shown in [29]. Direct methodspute the CPD by solving an
alternative algebra problem of lower dimensions but theydioprovide a solution in terms of
least squares contrarily to the ALS and derivative-baselhigues. The reformulated problem
is usually solved by means of a Jacobi-like procedure.

We thus propose here a new formulation of the CPD as a JEVDOgmoleading to a novel
direct solution, named DIAG (Dlrect AlGorithm for canoniglyadic decomposition), involv-
ing less restrictive necessary conditions than the "Cldsmun Solution" (CFS) presented in
[27, 28]. Recall that the CFS algorithm requires that thé i@frthe considered CPD array does
not exceed two of the dimensions of the array. At this oceasie also propose an original
Jacobi-like JEVD algorithm, called JDTM (Joint Diagonalibn algorithm based on Target-
ing hyperbolic Matrices). Numerical examples highlighe timain advantages of the proposed
methods to solve the JEVD and CPD problems. Note that the Difg#hod can be seen as
a generalization of the BIOME approach [30] to the case ofyommsetric arrays. JDTM and
DIAG have been presented briefly in two separate confereaperp [31, 32], respectively. In
[32] DIAG was associated to another JEVD algorithm and wdled&ALT (SemiALgebraic
Tensor decomposition). The present paper details theatetspects of both algorithms in sec-
tions 2 and 3, respectively including their extension todbmplex case which is not trivial and
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their computational complexity. In addition subsectiofi8.dedicated to the comparison of nec-
essary conditions of fierent CPD algorithms, namely ALS, CFS and DIAG . Numericalihes
are also emphasized in section 4 which illustrate the maitufes of the DIAG approach, no-
tably the problem of over-factoring is addressed. Finalgpacrete application to fluorescence
spectroscopy is proposed in section 5.

2. Joint eigenvalue decomposition of non-defective matrés

We use the following consistent notations in the whole papectors, matrices and tensors
are denoted by lower case boldfaeg, (upper case boldfac&\j and upper case boldface calli-
graphic (A) letters respectively. Thieth entry of vectora is denoted byy; while A;j is the , j)-
th component of matribA. Entry (1, ...,ig) of any Q-order tensoff~ € R'vle or Clvx-xle
(Q > 2) is denoted byrj, ... j,. Outer product, Kronecker product and Khatri-Rao produet a
denoted by, ® ando, respectively. Moore-Penrose matrix inverse, euclideahfaobenius
norm are denoted ki ||E®||r and||.||e, respectively. We defineqy]n = [x;y] N N. |.] denotes
the floor function. Complex modulus and conjugate of any dempare denoted byz andz
respectively. The imaginary unit is denotediby
Givens and hyperbolic rotation matrices are denote@GandH, respectively. For instance in
the real casei3(6;;) andH (¢i;) are equal to the identity matrix, at the exception of thenaets:

G(8)i = G(6j)ji = costij) G(6;))ij = —G(6)ji = sin@;))
H(#i))i = H(¢ij)j; = coshéij) H(¢i)ij = H(#ij)ji = sinh@ij)

The JEVD problem consists in finding an eigenvector mafiftom a set of non-defective
matricesM® satisfying:
vk e [1;K]n, M® = ADOAT, (1)

where theK diagonal matrice®® are unknown. One could solve these EVDs separately, and
retain the solution that leads to the best estimate reggteconsidered application. However,
as explained in [29], it is safer from a numerical point ofwito decompose th& matrices
M® simultaneously, in some optimal sense, especially whepdherbation of these matrices
may have caused eigenvalues to cross each other. Indeedciicp only noisy observations
of the K matricesM® are clustered and it is well known that, when eigenvalueskse, the
eigenvectors in a single EVD may be strongffeated by small perturbations [33]. The reasonis
that for coinciding eigenvalues only the correspondingespace is defined;fiérent directions

in this subspace will emerge as eigenvectors féedint infinitesimal perturbations. When this
happens for one or more of the matrices in the JEVD probleengther matrices may still allow
to identify the actual eigenvectors. This follows theoremomed in [29]:

Theorem 1. The JEVD is unique up to a permutation and a scaling of thernakiofA if and
only if all the columns of the kK N matrix E, whose (kn)-th component g, is equal to 2]
are not proportional.

Note that in order to ensure uniqueness of the JEVD up to pation and scale indeterminacies,
we will assume in the sequel that tenvolved diagonal matriceB™ fulfil the condition given
in Theorem 1.

Few papers have proposed numerical solutions to the JEVBlgro All of them adapted
Jacobi’s principle to the search for a non-singular and mecessarily orthogonal eigenmatfx
3
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by using a suitable factorization, which is not reduced ®ghoduct of Givens matrices. This
domination of Jacobi-like methods is due to their good cogerce properties [34].

Two main kinds of Jacobi-like algorithms have been devealdpéehis context, based on dif-
ferent matrix factorizations. Originally, several authbad recourse to the QR factorizationfof
in order to compute the flerent sets of eigenvalues [35, 36]. Arguing that these @@rahms
suffer from convergence problems, Fu and Gao proposedtactige sh-rt algorithm [37] based
on the polar decomposition. Indeed the polar decompoditerbeen used favourably for eigen-
value decomposition purpose since a long time [38, 39, 3d]aso for joint diagonalization
by congruence [40]. Then the JUST algorithm was introdundd1] as a variation of the sh-rt
approach for which the iterative computation of the hypéchuatrix is made by minimizing an
alternative criterion. We propose here a third criteriod an appropriate optimization method,
giving birth to the JDTM algorithm. Another JEVD approactsed on LU factorization and
called JET was introduced in [32] for real-valued matrices.

The real case is addressed in the three following subsectidre extension to the complex case
is described in subsection 2.4. JDTM algorithm has been epatto JUST and sh-rt algorithms

in various situations involving real matrices. Significantmerical results are given in section

4.1.

2.1. A Jacobi-like process

In this subsection, all matrices are square matrices ofrdidéPolar matrix decompaosition
states that any non-singular real matrix can be factoriziethe product of an orthogonal matrix
Q and a symmetric positive semidefinite mat8x It is well known thatQ can be decomposed
into a product of Givens rotation matric€g6;;) and a unitary diagonal matrix. In the same way,
it has been shown th&can be decomposed into a product of hyperbolic rotationioeest (¢i;)
and diagonal matrices [40]. Thereby, due to the indeteraiésaf the JEVD problem mentioned
in theorem 1 and taking into account that diagonal, hypétasid Givens matrices commute,
the matrix A solving the JEVD problem given by (1) can be chosen as a ptafugivens and

hyperbolic rotation matrices:
-1 N

A=[]]]c@nHe. ()

i=1 j=i+1

Inserting (2) into (1) and using the fact thd{¢i;)~* = H(-¢i;) we get:

N-1 N N-1 N
vk e [1;K]n, DY = [ﬂ [ G(Oij)TH(—¢ij)) M® [ﬂ [ G(aiJ-)H(asij)), (3)

i=1 j=i+1 i=1 j=i+1

but we prefer the simpler formulation:

M M
vk € [1;K]n, DY = (]‘[ H(—¢m)G(am)T) M® []_[ G(em)H(¢m)), (4)
m=1 m=1

where each integam of [1; M]y stands for a coupld,(j) with 1 < i < j < N. Itis worth men-

tioning that any Givens or hyperbolic matrix is defined byyaothe parameter (angle). Therefore,

ideally we have to find a set &l = N(N — 1)/2 couples of paramete{®ij, ¢ij)}1<i<j<n in order

to get (1). Instead of simultaneously identifying thédecouples of parameters, a Jacobi-like
4
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procedure will repeat sequences &l Zuccessive optimizations until convergence. Each opti-
mization is performed with respect to only one parameteredgugnce of Bl optimizations is
generally called a sweep. As a resiNtM couples of Givens and hyperbolic matrices are used
in practice to identifyA whereNs is the number of sweeps. We thus look for a matinf the
form A = ]’1 LTI, G(6)H(¢m)- The idea is to iteratively diagonalize tihé® matrices by
sequentially optlmlzmg with respect 8 andgp; for each value ofn andns. Hence the first
sweep (s = 1) consists on the following transformations:

vk e [1; K]y, N®ID = G(61)" MWG(6}), (5)
V(k,m) € [1; Kln x [1; M]n, M&E™D = H(—gL)NEMDH (g1, (6)
vk m) € [1; K]y x [2; M]n NE™D = (gL M&™1DG(6L) (7)

Then the following sweeps (& ns < Ns) follow the same scheme:

¥(k.ng) € [1; Kl x [2; NeJnw, N6 = G(s) MEMDG(ef:), - (8)
V(k.m ng) € [1;K]nx € [1; MIn X [2; Nglyy, ME™) = H(—gle)NE™SH(ghy. (9)
V(k,mng) € [1; K]nx € [2; M]n X [2; Ng]n, N®™N) = G(gle)" MEM-1mIG(gh), (10)

Thereby, the optimal corresponding Givens and hyperbodtrices are sequentially com-
puted in order to gei diagonal matrices1 “MNs) at the end of the process.

2.2. Optimization of matrix angles

A natural criterion to compute the optimah(ns)-th Givens anglér; is thus to minimize the
sum of the euclidean norms of th&-aliagonal terms of th& matricesN®&mns):

ge(em):ZK] NZ Ngmnd)” (11)
i

This criterion is the generalization of the original Jacobierion to the joint diagonalization
context. Since Givens matrices are orthogonal, the sameititefiof N®™") holds in both the
joint diagonalization by congruence and JEVD cases andttteusame optimization algorithms
can be used. For instance, our proposed algorithm resotteetsame approach as the JAD
algorithm described in [42] whereas the sh-rt and JUST dlgos use their own minimization
scheme.

Once the optimal Givens matri®(6n;) is computed, dferent criteria can be used for the
optimal computation oH (¢p). This is the main dference between the three JEVD algorithms.
The sh-rt method aims at minimizing the Frobenius normv#™" whereh is found such

that (M1 — MOm0D| = = max M{m) - MEM) whereas the JUST algorithm resorts to
<K<

criterion (11) by replacmg\l(" My phy M*mns) - Instead of minimizing all the @-diagonal)
entries, we propose to target two particul@kdiagonal entries oM®&™"): if m corresponds to
the (, j)i<; couple, we simply aim at computing the optinW}"”"”S) and M]ﬂk’m”S) components by
using a "targeting" hyperbolic matrix. It is noteworthy thiae transformation (9)ffects the-th
and j-th rows and thé-th andj-th columns ofM*™" but only the {, j) and the {, i) components
are twice #fected by the hyperbolic matrix and its inverse. Hence ouicghto focus on the latter.

5
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Therefore, our Joint Diagonalization algorithm based orgd@ang hyperbolic Matrices (JDTM)
resorts to the following alternative criterigf®™ for the computation of the hyperbolic matrix:

K
G_]|DTM(¢ Z M(k m,ns) M(k mns)) (12)
k=1

Targeting some components was originally proposed by Siouitac in a dfferent context [40].
In the case of Givens matrices we showed that the optimizatd criteria (11) and (12) were
mathematically equivalent.

Now, let us look at the components Bf&™") - As previously mentioned, we only consider the
@i, j)-th and (, i)-th components which are given by:

sinh(2ps
MM _ (e _ k) ;Zl’m) + NE™ coshp)? - NE™™ sinhgk)?,  (13)

h .
Mlkmn) _ (kme) _ pytkmn) sin ;zﬁm) NKM) Sinhg)2 + NE™™ coshg)?.  (14)

Furthermore we can write that:
2
(Ml(ka.ns) Mj(ik,mns))Z . (Mi(jk,mns) _ MJ(ik,mns))
2 2

(Mi(j“m”s))z + (M}i“mns))z - (15)

The first term of the right-hand side does not depenebnindeed, we derive from (13) and
(14) the following equality:

kmng kmng)\2 kmng kmng)\2
(M|(J mns) + MEI mn )) (N|(J mns) + N](| mn ))

= . 16
Thereby minimizing;;"®™ is equivalent to minimize the function defined by:
K 2
kmns k,m,ns
/l(¢nms) — Z (M|(] mns) M](i mn. )) ) (17)
k=1

We denote byy™" the column vector oRX defined byy™" = M(k mns) Mlﬂk’m”S), so that

A(pr) = Y™ITYMNS) It is easily shown that the system of linear equatlons (h8)(@4) can be
rewritten such that:

y(mns) — W(mns)x((ﬁnms)’ (18)
with:
NEmn) _ y@mng) N (Lmng) o\ (dmng)
' 3 ! ! sinh(25%)
(mng) _ . . . Ney _ m
we | ] e[ e |
N(K m,ns) N(K m.ns) N(K mns) N(K mns)
Now defining the diagonal & 2 matrix J such thatJ;; = —-J;; = -1 and observing that
X(¢r) Ix(¢re) = 1, we have thus to minimize the quantitygns)" WM™ WMNs) x () under

6
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the constraint thax(¢n;)" Ix(¢n;) = 1. This can be done using the Lagrange multipliers strategy.
Thereby, we have to minimize thefunction given by:

L(X(@R)- 1(B1)) = X() W W) X (0) — () X(8)" I X(br)- (19)
Differentiation with respect t&(¢p;) leads to:
WRRITWIRS) (1) = () IX(¢iw)- (20)

SinceJ™! = J we have:
IWTIW(g) = (IO, (1)

Thus, u(¢er) and x(¢rs) are associated eigenvalue and eigenvector of mawig™"Iwmns,
More particularly, we have the following lemma:

Lemma 1. If the columns ofV(™"™) are diferent thenJWM™T\WMM) has two nonzero eigen-
values of opposite sign andg¢p;) is the eigenvector associated to the positive eigenvalue.

Proof 1. Letw; andw, be the column vectors of mati%™"). Both belong tdR¥, equipped
with the Euclidean norm and we define-av;"wy, b = wy;"™w, and c= w,"w,. Hence a, b and c
denote the squared euclidean nornwaf the scalar product betweemw andw, and the squared
Euclidean norm otv, respectively. Hence,

Jwmns)npmns) -a -b
b ¢
The characteristic polynomial is then:
P(a) = ® + (a— c)a + (b? — ca) (22)

and the discriminant is:

>
I

(a—c)? - 4b? + 4ca
(a+c-2b)(a+c+2b)
I wi —wa |12 wy +ws |2

Thereby, sincev; # Wy, A > 0 and JWMTWMM) is diagonalizable and admits two distinct
eigenvalues; anda,. Then we have:

(a-c)2-A
432
b? - ac
az

10?2

The Cauchy-Schwartz inequality giveésdac henceria, < 0.

We now demonstrate the second part of the lemma. Multip{gihpbyx(¢ns)™J yields:
H(em)X(om)" IX(8m),

H(rm)- (23)

The quadratic formx(ghe) WM™ TWmns) (4% is positive thug(¢r) is positive too.
7

X(¢nms)TW(mns)TW(mns) X(¢nms)
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Hence the previous lemma allows us to easily compi@&;) from W(™") and¢ps is deduced

from the definition ofx(¢py):
1 X(¢m 1)
hs = —atanl‘( i 24
mo2 X(ém)2 24)
Algorithm 1 summarizes the proposed method.

Algorithm 1: Summary of the JDTM algorithm

1: Define athresholde and a maximal number of swed{i"®
2: Initialize A with the identity matrix;

3 ng=1;

4; while T Y p.q(MSR)? > & andns < NI'*do

5 m=1,;

6: fori=1toN-1do

7: for j=i+1toNdo

8 Compute the optimal angi corresponding to the couple {) and buildG(6}y);
o Replace th& matricesM® by G(65)" MWG(67%):;

10: Compute the optimal anglgl; corresponding to the couplg {) and buildH (¢55);
11: Replace th& matricesM® by H(—¢ns) MO H (gf):

12: ReplaceA by AG(6m)H (¢r);

13: m=m+ 1,

14: end for

15:  end for

16: Ng=ng+1;
17: end while
18: NS = Ng;

2.3. Computational complexity

The computational complexity of an algorithm is given by themberT of floating point
operations (flop), given in practice by the number of reglimaltiplications. At each sweep,
there areN(N — 1)/2 Givens and hyperbolic matrices to compute and as many epdéima-
tricesA, M@, ... M&_ Computation of each hyperbolic matrix is dominated by thedpct
JWmnInn(mns) \which requires & multiplications. Givens matrices are computed in a similar
way [42] and thus also needK3multiplications. For each update (line 12 of algorithm 1gtrix
A is multiplied by a Givens and a hyperbolic matrix. Both protducan be done using a total of
8N multiplications. Finaly the update of each matk¥¥ (lines 9 and 11 of algorithm 1) is twice
more costly and involves M multiplications. Therefore the total computational coaxity is:

Typrm = NsN(N = 1)(3K + 4N + 8KN) (25)

2.4. Extension to the complex case

Let's now consider that matrices andM®, ... M®) pelong to the complex field. In this
case, the JDTM algorithm has to be significantly modified. ebd] each of the Givens and
hyperbolic rotation matrices involved in the polar decosifion of a complex matrix is now
defined by two parameters. Similarly to the real case, we fodys on the determination of

8



a1 hyperbolic matricedd which makes the specificity of the proposed algorithm. ldd&can
22 Still be estimated by the classic procedure [42].
23 We resort to the following classical parametrization of gbewx hyperbolic matrices, for each
as  couplem= (i, j)i<; we have:

H(¢m’ am)ii = H(¢m’ am)jj = COSh(bm); H(¢m’ am)ij = ﬁ((lsm» a’m)ji = Sinh@m)emm

215 Thereby we have to estimate for each matrix the cougled;;) that minimizes the new
26 JDTM cost function:

17 Using the previous parametrization, we obtaln:

bl

sinh(2p3) _jns . s
MEMRD _ (mn) _ kmnd) ;Zﬁm)ef.am + KM Goshp)2 — NEM sinh st e 205

218 (27)
sinh
Mlmn) _ (lmn) _ pytkmad) (?‘f’m)ela — NI sinhgsm)2eoR + N coshp)?.
(28)
25 It can be easily shown that minimizirg2™V is equivalent to minimizing?2"™:
K
~ (kmng kmng o (kmng kmng
FIDTM(gne o0y = ZlMi(j mng) 'V',(a mng2 |Mi(j mng) _ M](i mng)2. (29)
k=1
20 Where:
~ (kmng kmns kmns smh(Zp ) kmng oS Kmng) i
Mi(]. mns) — (N.(u mns) _ N](] m”)) > m] dony Ni(j M) coshplk)2edon — NJ(i M) sinh )2
(30)
21 After some straightforward computations, (28), (29) ar@) §eld:
K 2 2
BB, o) = (NG g coshasiey?
k=1
+ (‘Ni(ik,m,ns) _ NJ_(?"L”S) 2 _ (Ni(jk,mns)ﬁﬁrvmns)ezinnms + N_(Kmns)ﬁi(!('mns)e—zmnms))Smh(zp )2
+3 ((Ni(ik,nlns) _ Nj(;f,mns))Ni(jk,mns) — (N _ N(k mns))_(km’nS))elOm sinh(4"s
%((N(Kmns) NJ(:_(,m,ns))Ni(;('mnS)_Nj(ik,mns)(Ni(ik,m,ns)_Nj(if,m,ns))) eiom sinh(457%)
(31)
222
22 which can be rewritten as a function afp andaeps:
K
e M (e, af) = 5" (Ingemoa” + g ) (coshiasis) + 1)
k=1

+(’Ni(ik,m,ns) : N(_k,m,ns) 2_ (Ni(jkmns)ﬁgrmns)ezm”ms + Ni(jk,nlns)ﬁi(!(’mnS)e—Zianms)) (Cosh(zy, sy — )

(N Ny (e e ) g sinnag

k, k, ~j(kmns) k, k. k,
+((Ni(i mns) _ NJ(j mns)) Nij s) NJ(i mnS)(Ni(i mns) N( m,ns))) —iany Slnh(4ﬁ

32)
9



224

Dlﬁerentlatmg (32) with respect tapy andap; alternatively, then definingl; = tanh(2sy
andZk = €2 it can be shown after few more trivial computations thatshleition couple which
m|n|m|zes§JDT’\" is also a solution of the following polynomial system:

Po(zr) + (2Pu(Z)ty; + Po(zm)tites = (33)
(Quzm)tm — Qo(Zm)tns = 0 (34)
225 With:

(kmnsg) (kmns) ~(kmns) (kmns) { n(kmns) (kmns)
+((Nn = NG - NG (NG - N ) 7

Py(2) = Z N(kmns) (kmns)z4+ (' (kmns) 'N(kmns) Nj(:.(’mr‘S)

2 —(k,
)22 _ Ni(j mnS)NJ(ik'mnS)

k,mns
‘NJ(I TTL"‘)

K -
_ (kmns) (kmns)\ py(kmns) (kmns) (kmns)) Rgkmns)
Q2 = kZ: ((Nii mas) _ mns)emas) _(kmes) _ kmes)) {7 )23
=1

_((N_(_k,m,ns) N(kmns))ﬁ(km’nS) N_(mns)(N.(.kmns)_N(_k,m,ns)))z
i ij ji i ji

Qu(2) = ZK: 2( e 4 N(Kmns)N(kmnS))
) (39)
26 Solution sets are then easily given by:
Po(Zx) =0 and ts = 0; (36)

221 Ol

Po(z)(Qu(@))? + 2P1(Z5) Qo(Z) Qu () + Po(Z)(Qo(#))* = 0 and tfs = %ﬁ:; 37)

»s 3. Toward a new direct CPD algorithm: the DIAG method

29 3.1. The Canonical Polyadic Decomposition

230 CPD states that an@-order tensor (oQ-way array)7 of sizel; x - -- x Ig can be exactly

2n  decomposed into a sum QForder rank-1 tensors. ®-order rank-1 tensor can be defined as the
2 outer product betwee® vectorsx®, - .- | x(Q_ The rankR of 7~ is then the minimal number of
23 rank-1 tensors needed to achieve the following decompositi

R
7=) x®o.0xO. (38)
r=1

10
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Usually one also define® "loading" (or factor) matriceX®, - .. | X@ of sizel; xR, - -,
lo x R, respectively, so that™ is ther™™ column ofX@ and the CPD is commonly rewritten as:

R
Vg€ [1;Qln, Vig € [15lgln, Tiyig = Y XIXP--X(Q. (39)
r=1
Our main problem is thus to find for a given tengorof given rankR and ordeiQ, the Q factor

matrices that solves (39).

3.2. Unfolding matrix

Itis well known that the CPD can be rewritten in a matrix folndeed, the tensor dimensions
can be merged in order to store all tensor entries in a singi®lding" matrix. Obviously, there
are many way to merge the tensor dimensions and thus maniplegossfolding matrices. As it
will be seen, the choice of the unfolding matrix has an impercthe algorithm limitations and
performance. Therefore, in order to cover all the possiddj we introduce & parameter in
order that theP first dimensions are merged into the matrix rows whereasdimaimningQ — P
dimensions are merged into the matrix columns. The corredipg unfolding matrix is denoted
by T(P). Note that all the other unfolding matrices can be merefgioled by permuting the
tensor dimensions and changing thealue. T (P) entries are linked t@ entries by the following
transfer formulas:

v(mn) € [1;75]n % [1;72 I, T(P)mn = Tigig (40)
where 2 = I, 72 = lala1 -+ - Ip and:

[=]
vme Ly, m =i+ Z(iq -l (41)

=2

S 1
VneLiagln, N o=iea+ Y (g—Drf]. (42)
q=P+2

Then after some computations the CPD equation (39) can biétewas:

TP) = (XP 0.0 X) (X o0 XD)". (43)

It is worth mentioning that a majority of CPD algorithms suzh ALS or CFS resorts to the
P =1 case.

3.3. The DIAG algorithm
The algorithm presented here is available both in the redicamplex field. We start from
equation (43) and we define for a given couple of integeardb, a < b, the matringf’a) by:
YO0 = xOp...0x®@. (44)

Now, letUSV" be the singular value decompositionTfP) truncated at the ordd®, assuming
thatR < min(;rf, nS+l) (hypothesisH;). Thus there exists an invertible square matviof size
R x Rsuch that:

YED = um, (45)

YQEPHT = mlsvr, (46)
11
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Recalling thaty 2D = X(©@ o Y{@1P*1) and using the definition of the Kathri-Rao product,
YF*D1 can be seen as a row block matrix:

Yggg,ml)T _ [ ¢(1)Y§(Q71,P+1)T’ . ¢(|Q)Y§?71,P+1)T]’ (47)

whereg®, . .. (o are thelg diagonal matrices built from thiey rows of the matrixX?. As a
consequence, equations (46) and (47) yield:

SV = [I‘(l)T, .. .r('o)T, ] , (48)

where : _ _
Vi e [1;Ig]n, T = Y@ P HgOm™, (49)

All matricesT® andY{2 PV are of sizer? ! x R. We assume tha is chosen so tha? < Q-1

andR < ng;ll (hypothesisH>) and that they all admit a Moore-Penrose matrix inverse niihe
define: N -
Vi, iz € [1;10]3;, iz > i @12 = pip(a), (50)

Now replacingl® by its definition yields:

el _ M—T¢(i1)—1Y§(Q—1,P+1)ﬁY§(Q*1,P+1)¢(i2)MT’ (51)
= MTAGRMT (52)

whereA(2 = ¢()-1402) Thys M-" performs the JEVD of the known set of matrid@$-'2.
ThereforeM™ can be estimated by the JDTM algorithm. Then one can immagideduce
Yg(P’l) andYg(Q’P”) from (45) and (46). At this stage there are several ways tmast the factor
matrices fromY&P’l) andYg(Q’P”). One simple approach is to estimate each column of theHirst
factor matrices from the corresponding cquer&fl) and each column of th@ — P remaining
factor matrices from the corresponding column¥Yt P+ Indeed, column of Y&P’l) can be
reshaped into an ordét-rank-1 tensoM&Pr’l) whose factor vectors are theh columns of matri-
cesX®, ..., X Thereby a simple rank-1 High-Order SVD (HOSVD, [43])¥§™") provides

a direct estimation okﬁl), e ,xﬁp). In the same way, the colummof Yg(Q’P”) can be reshaped
in a (Q — P)-order, rank-1 tensoyg(cﬁp*l) whose factor vectors are tihegh columns of matrices
XC®+... XQ, Hencex"*Y ... x{9 can be estimated from the rank-1 HOSVDW{"*Y. Fi-
nally both operations are repeated for all thealues. The DIAG algorithm is summarized by
Algorithm 2.

3.4. Computational complexity

I';iac is clearly dominated by the three following computationissti-the truncated SVD of
the unfolding matrix of sizerf, 73, ,) requires 23, (x%)? + 5R(x” + 73,,) — 2(R® + (x7)%)/3
multiplications, assuming that?,+1 > nt’. Then, the computation of th® matrices needs ap-
proximately RIQ)ZnS;ll additional multiplications. Finally the cost of the JEVDopedure is
approximated by Rs(10)?R3. Additional computations can be neglected and thus we have:

Toiac ~ 273, ,(77)? + 5R(xf + 72, — 2(R® + (n])%) /3 + (RIQ)*n2.; + 8Ns(10)?Re.  (53)

12
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Algorithm 2: Summary of the DIAG algorithm
1: Choose a value d? and a permutation of the dimensionsfofas described in section 3.6;
Matricize the (possibly permuted) tensgr into matrix T(P) according to (40), (41) and
(42);

N

3: Compute the SVJSV" of T(P), truncated at rank R;

4: Split SV* into 1 blocks of sizeR x 73,1 in order to form thelg matrices @) given by (49);
5: forip; =1tolg—1do

6: forip=i1+1tolgdo

7: Compute@)(iLiZ) — F(il)ﬁr(iz);

8: end for

9: end for

10: Compute matrixM~" by JEVD of the set 0®(+'2) matrices;

11: Deduce matrice¥§(P’1) =UM andYgf"P*l) = M1Sv*;

12: forr = 1toRdo

13 Build Y& andy3P*Y by reshaping the-th columns ofy ™ andYQ"*D;
14: Deducexﬁl), . ,xﬁp) from the rank 1 HOSVD oM&P;l);

15 Deducex(™D,. .., x{9 the rank 1 HOSVD oty'3"*D;

16: end for

I'piac Should be compared to the numerical complexity of the AL®@dlgm which is approxi-
mately given by:

Q Q
Tais ~ Nais|3Re2 + 7R Z ]_[ Iel, (54)
g=1 k=1
k#q
However the numerical complexity of the DIAG algorithm issstgly related to the choice of the
unfolding matrix and both complexities depend on a large Imemof parameters. Furthermore
NaLs can fluctuate wildly. Therefore at this point it would be veazardous to draw general con-
clusions from the previous formulas even in simple caseseieeless we made some extensive
flop comparisons between both algorithms by vary@&, P and the tensor dimensions. Results
are reported in section 4.2.4. It will be shown that in all teasidered situationSpac < I'aLs
and Ns < Nais.

The numerical complexity of the CFS algorithm is very corogied to establish since this
algorithm computes several estimations of each factorirattowever we can easily explain
what makes DIAG a cheaper approach. CFS is a three stepthlgoiThe first step is algebraic
and performs the HOSVD of the tensor. In terms of numericahmlexity this operation is
usually close to the SVD of the unfolding matrix performedtia DIAG algorithm. The second
step is the resolution a®(Q — 1)?> JEVDs whereas DIAG requires only one JEVD. Finally, we
have to choose the best estimates of the factor matricesgamtamge number of combinations
which is also very time consuming.

3.5. Necessary conditions to the identifiability of DIAG Sfand CFS
The CPD algorithms are not always applicable due to theimisit restricted conditions.

We propose to compare here necessary conditions that édeat#ibility of the ALS, CFS and
13
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DIAG methods. LetQ, RandlI(i) be the tensor order, the CPD rank and ittle dimension of
the tensor, respectively. A tensor of ordgand rankk can be canonically decomposed by ALS
only if:

Q

(Cas): Vae[LQn, [ [1) =R (55)

=
DIAG conditions are given by hypothesg§ andH,. H; andH, were expounded for a given
order of the tensor dimensions (default order). Actuallytéking into account that the dimen-
sions can be permuted we obtain the following more generalition:

(Cpiac) : IAPe€[2;Q-1]n, 3 f; a permutation of th€ first natural numbers ardigs > P such that:
M7 1(Fi(@) > Rand [T3,,, 1(fi(i) = R (56)

1#0s

Finally, the conditiorCcks for the closed-form solution is given in [28]:

(Cers) : 3 (1. %) € [1; QI3 G # G such that (qu) > Randl(gz) > R (57)

Proposition 1. Cpac is more restrictive thai®a. s but less restrictive thaG¢ks:
Ccrs = Cpiag = CaLs

A proof is given in appendix. In practice the DIAG conditianpliesP < Q — 2 and can be
reformulated quite easily for low order tensors{®) < 5):

Third order tensors, Q = 3. Here we have necessariy= 1 henceCpac becomes simply: at
least two of the tensor dimensions are greater or equal iGRiErankR. Thereby at order
3 (and only at order 3Ppac andCcrs are equivalent.

Fourth order tensors, Q = 4. Here we can choose either= 1 or P = 2 but the condition
remains the same in both cases and is simply: at least orer dinsension is greater than
Rand at least one product of two of the remaining dimensioatsis greater thaR.

Fifth order tensors, Q = 5. Here 1< P < 3:

e if we chooseP = 1 or P = 3 thenCp ag becomes: at least one tensor dimension is
greater tharR and at least one product of three of the remaining dimenssoalso
greater thariR.

e if we chooseP = 2 thenCpac becomes: at least one product between two tensor
dimensions and another product between two of the remadliingnsions are greater
thanR.

3.6. Choice of the unfolding matrix

An obvious criterion is the residual error betweErand the reconstructed tensor built from
the estimated factor matrices. However it would be very thmesuming to test several possibil-
ities. As a consequence the choice of the more approprifédimg matrix should be related to
hypothesisH; andH,. Indeed, one has to choose a permutation of the tensor diomsrasnd
a P value that ensure both hypotheses. Otherwise, the DIAGiigois not suitable as it is
explained in the previous section. Recall notably that th@algorithm impliesP < Q — 2.

14
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Indeed, at order 3 we have necessaHly 1. At order 4 we have two possible values (1 and
2) and so on. Therefore if one wants to maximize the value etiighest possible rank then
one should maximize min@‘l, n?,fl), hence choos&(p) as squared as possible. In practice
we observed that this recommendation is always a good optien if all tensor dimensions are
greater than the rank. Apart from that one should note treahthmber of matrices to be jointly
diagonalized is directly related to the squared dimensfdhelast mode and thus the numerical
complexity of the JEVD step. Therefore in the case of a temsthr one very large dimension
we do not recommend to put it at the end (if possible). Moreegally, we recommend to take
into consideration the overall complexity of the DIAG algbm given by equation (53) and to
consider that with the JDTM algorithm the number of swedyg éxceeds very rarely 10. In
section 4.2.4 we give several significant numerical exampfeDIAG complexity for various
tensor dimensions and unfolding matrices.

4. Numerical simulations

The proposed algorithms are first validated on synthesia&iskts. We first focus the JEVD
sub-problem for which we compare JDTM performances to tleésgher JEVD algorithms.
Then we compare the DIAG approach with CFS, an other dirgorithm and ALS-ELS which
is a reference iterative method, with respect to severalstes. The last subsection is dedicated
to a particular tensor family for which iterative algoriteroonsistently fail to find the CPD.

4.1. Performance comparison of the JDTM algorithm

The performance of the JDTM algorithm is studied and congé&oehat of the JET, sh-rt
and JUST methods by varying the numlseof matrices to be jointly diagonalized, the Signal-
to-Noise Ratio (SNR) and the matrix dimensidthsThe matrix set to be jointly diagonalized is
built according to the following model:
wv® E®

+ o
M IEYIe

Vk € [1; K]y, M® = with M® = AD® A, (58)

Entries ofA, DX andE® are drawn randomly according to a standard normal distdbuhe
scalar parameter allows us to regulate the power of the Gaussian additiveerigfi8. The SNR
is then equal te-20 log,¢(c"). Hence is chosen in order to obtained the desired value of SNR.
At the end of each sweep, the squardiddiagonal components of tHé matricesM *M:ns)
are summed and the obtained value is compared to the valuputechat the previous sweep.
Algorithms are stopped when the relative deviation betw@ensuccessive values is smaller
than 10°3.
After having removed the scaling and permutation indeteaties we definea as the rela-
tive root squared error between the true eigenvector martrikits estimate:

SN SN (A - ALY
i'\il Zﬂil (Ai,j)z

Note that in most practical applications and notably indkource separation, one is only inter-
ested by the estimation of the eigenvector matrix. Hep@ppears as a relevant JEVD criterion.

(59)

ra =
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a7 Finally the number of sweep#\s, required by each algorithm is stored in order to com-
s pute the values of the total numerical complexifiesTherefore, algorithm results are judged
a5 according to three criteria, namdWg, I' andr a.

- Each simulation is repeated 100 times with a new draw of theiceas A, D® andE® at

sz eachtime. We present here median valuas@nd mean values d@fandNs obtained from each
s algorithm.

a79 Figures 1, 2 and 3 show simulation results for 3 SNR valuesd@®040 dB and 20 dB
s respectively). The number of matrices to be jointly diadmea was fixed td& = 64 whereas we
s Vvaried the matrix siz&l from 2 to 32. We first note that the estimation precision ofdlg@rithms

s logically increases with the rati/N and the SNR. Second, accordingro criterion JUST
s algorithm is consistently outperformed by other algorighwhatever the considered situation.
s At 60 dB, figure 1(a) points out that the JDTM and JET algorithuatclass the sh-rt approach
s concerning the estimation of eigenvectors matrix. Acawgdb thisra criterion JET performs
s Slightly better than JDTM for matrix size lower or equal towbereas for the largest size IDTM
s Clearly provides the best performances. The comparisoh@faverage computational costs
xs displayed in figure 1(b) shows very closed results betwelahealalgorithms. However JDTM
w0 appears more clearly as the less costly algorithm for lamesrix sizes. This is explained by a
w0 lower and remarkably stable number of sweeps (figure 1(cg\i®us conclusions hold at 40 dB.
s However it is interesting to note that concerning the ediioneof the eigenvectors matrix JDTM
s IS now significantly more accurate than JET fér= 16 andN = 32. Finally, the 20 dB case
sz highlights the éiciency of the JDTM algorithm which clearly improves JET ahersresults, for

sa  Matrix sizes larger than 8. However JET is now the fasterdlgu. In conclusion JDTM appears
s @S a very versatile algorithm which provide very accuraseilts in all the considered situation
ws (in comparison to its competitors) for a lower number of spgeeThis number is remarkably
a7 Stable, being comprised between 3 and 10 in all the consldgrenarios. Moreover JDTM
ws  consistently provides the best estimate of the eigenvecatrix for the largest matrix size and
w0 this gap increases with the SNR. To sum up, JDTfiéKs quite similar performances than its
w0 best competitors (sh-rt or JET) in the easiest cases (riega8&NR andK/N ratio) whereas it
«  Clearly becomes the better choice as thedlilty increases.

402 As part of this study, we also evaluate JDTM ability to deathwan ill-conditioned eigen-
w3 Vector matrix. For this purpose, we how compute the eiganvecatrix A with pairwise corre-
w4 lated columns as follows: odd columres,_;, are still randomly drawn as previously but even
w5 cOlumns,ay, are built in the following way :

¥re[l;N/2ln, ax =vay-1+ (1-v)n, (60)

s Wheren, is a vector ofRN whose components are randomly drawn according to a standard
«7 normal distribution. Thereby defines a collinearity factor which will vary fromDto 09 so

«s that matricesA can be very ill-conditioned. Figure 4 shows simulation hssfor a set of 10

w0 Mmatrices of size 10K = N = 10) at 80 dB. It can be seen that sh-rt, JDTM and JET perforrh wel
a0 forv < 0.9. IDTM and JET provide the best results in terms of estimati@cision but JDTM

a1 requires a minimal number of sweeps and computational cost.

a2 4.2. Performance comparison of the DIAG algorithm

13 We now study performances of the DIAG algorithm for the deposition of noisy tensors.
«s  Indeed, in most practical applications involving tensaalgsis, a noisy tensor of rarikis mod-

16
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elized by "truncated" CPD of rariR,, < Rwhich is usually more relevant than the exact CPD:
& 1 2
Vg e [1; Qln, Yig € [1;lglny Tipoeiq = Z XM x@ ... xg + &y s (61)
r=1

where& is an error term.Ry, is the model rank. The DIAG algorithm is compared with an
ALS-ELS algorithm and with the CFS algorithm in various aiions by means of Monte-Carlo
experiments. For each new experiment, a noise free tenguiiliSrom factor matrices oRy,
columns whose entries are randomly drawn according to datdmormal distribution. We then
add a Gaussian white noise whose the power is regulateddiegdo the desired SNR value.
The comparison criteriomy, is the Normalized Mean Squares Error (NMSE) computed batwe
actual and estimated factor matrices. Hence for a tensadef @ we have:

Q @ _ x@yr @ _ x@
1 vec — XW)vec - X
rxzazmed J X J'vecx ) , (62)

Vec()((q))TveCO((q))

whereX@ denotes the estimation of the factor matk¥®’, the vec() operator maps a matrix
to a column vector by stacking its columns one below the atinermed{ denotes the median
value computed from 100 MC experiments. Permutation anthgcambiguities in the estimated
factor matrices are fixed in the same manner as in [21]. Abrétlgms were written in-house. The
ALS-ELS algorithm can be found in the tensor package welepaly is stopped as soon as the
relative deviation between two consecutive values of thB €5t function becomes lower than
107 or the number of ALS iterations reaches 1000. ELS procedunani every 5 iterations. For
the decomposition of order-3 tensors, we use the CFS digodiescribed in [27] with the best
matching scheme proposed in section 4.2 of [27] whereaghimider tensors were decomposed
using the N-order version described in [28], using the sptirtal matching rules proposed by
the authors. Implemented versions of DIAG and CFS resohité@dDTM algorithm to solve the
JEVD problem and are stopped as soon as the relative devizitween two consecutive values
of the JEVD cost function becomes lower tharr@6r the number of JEVD iterations reaches
30. Unfolding matrix in the DIAG algorithm is generally clawsto be as squared as possible.
Since the number of test parametersis large, it would be $sipte to perform here an exhaustive
comparison. As a consequence we have limited ourselvesre key situations which illustrate
the main features of the proposed approachits ability to decompose high order tensors of
high rank,ii. tensors with almost collinear factoiig, its insensitivity to over-factoring anid.

its low computational complexity.

4.2.1. High order tensors

We first consider a set of 6-order tensors of rank 5 whose altltimensions are equal to 5.
DIAG parameterP is set to 3 and we vary the SNR from 10 dB to 80 dB. Results arteplo
on figures 5(a). CFS only works for the highest SNR value, abbbbecause this is afilicult
situation for which we are very close to its intrinsic limiitm. DIAG provides as accurate
estimations as ALS-ELS for SNR values greater than 10 dB.-ELS fails at 10 dB while
DIAG still works. Notably it clearly outperforms ALS at 10 dB

Ihttp://www.gipsa-lab.grenoble-inp.fr/ pierre.comon/TensorPackage/tensorPackage.html
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Figure 5: Median NMSE as a function of the SNR at the outpuhefALS and DIAG algorithms applied to high order
tensors.
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We then consider 8-order tensors of rank 6 whose all the diinea are equal to 3. For this
more dificult case, we vary SNR values from 20 dB to 50 dB. CFS is inapple because
of its restrictive necessary condition. Indeed tensor riarlarger than the two largest tensor
dimensions.P is set to 4. Figures 5(b) shows that in spite of ELS, ALS is ulsefss here.
Conversely DIAG performs well for the three SNR values ati2¥elB.

4.2.2. Influence of the collinearity factor

In the next two following examples we consider the CPD of rdrtknsors whose columns
of the random factor matrices are pairwise correlated inh&lmodes (swamp). For instance,
correlated columns in modgare built following the scheme of equation (60):

vr e [1;R/2]n X2 = vx@ 4+ (1-»)n@. (63)

Note that it has been shown previously in [21] that in thiglkifiscenarios ALS performances
are significantly improved by using ELS. First simulationditves third order tensors of size
4x4x 4. For the second simulation we consider fourth order tensigize 4< 4 x 4 x 4. Results
are plotted on figures 6(a) and 6(b) respectively. DIAG isahly algorithm which works well in
all the considered situations including the modiidilt ones (high values o4 except for = 0.9
at order 3. ALS-ELS algorithm fails or is outperformed forgast values of (v > 0.5 at order
3 andv > 0.7 at order 4). At order 3 CFS results are slightly better thi@ones while at
order 4 we find an opposite situation wher 0.7. When dealing with higher values only DIAG
works.

We then perform a third simulation with third order tensdirsiae 4x 4 x 10 x 4. This time all
the factors in each mode are mutually correlated:

vg e [1;Qln, ¥r € [2;RIn X = vx¥ 4+ (1 - »)n®. (64)

Then we vary tensors rank from 3 to 7 whilés set to 0.8. This simulation again highlights the
main restriction of the CFS algorithm which cannot perforRBCof rank higher than 4. ALS-
ELS results are slightly better than DIAG ones for ranks 34n@n the opposite DIAG appears
as the best option for higher rank values. Notably it stil\pde satisfactory results fd&® = 7
contrary to ALS-ELS. Finally we compare the complex versidrour algorithm DIAG using
the complex JDTM method with the complex version of the AL§ogithm. Complex-valued
tensors are built as for the two first examples of this sedbioinusing complex-valued factor
matrices. We consider here third order tensors of siz®& % 5 and rank 3. Results are displayed
in figure 6(d). Results obtained in the complex field are vanjlar to those obtained in the real
field for example 1. Indeed ALS starts to fail for- 0.4 whereas DIAG still works at = 0.9.

4.2.3. Over-factoring
In many practical situations the actual model rétkof the data tensor to be decomposed
is unknown and it is usually not equal to the tensor rank. Fethods exist for estimating this
number. In addition, these sometimes provide ambiguousmradictory results. This can lead
to overestimate the model rank. In other words the corredipgrdecomposition implies more
factors than it is necessary (over-factoring). SupposeRhds an overestimation &, andQ is
the tensor order. A classical problem with ALS is that@({&y—Rn) extra factors not only model
the additive noise but also the signal. Hence their estonatiects the estimation of th@R,
actual factors. We study here the impact of over-factorim@bAG results. For this purpose we
successively compute 5 CPD of 3-order noisy tensors of mmaadéd3 Ry, = 3,11 =1, =13=7,
23
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Figure 6: Influence of the collinearity factor on the CP deposition



Figure 7: Median NMSE as a function of SNR at the output of th&SALS, CFS and DIAG algorithms in the case of

over-factoring.
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(b) 7x 7 x7x 7 tensors of real rank 3.
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Table 1: Median NMSE, averaged number of iterations andagee number of flops for small tensors of order 3

Algorithm R=4,1 =10x10x 10 R=4,1 =5x100x5 R=4,1 =5x5x100
I'x | Nit | r I'x | Nit | r I'x | Nit | r
ALS 2.3x10° | 130 | 6x10° [ 2.5x10°° | 140 | 2x10" | 2.7x10°3 | 192 | 2.8x10’
ALS-ELS 2.3x10°3 | 47 | 2x10° | 2.5x10°% | 46 | 7.5x1C° | 2.7x10°3 | 67 | 1.1x10’
DIAG 5x1073 5 | 3x10° | 6.6x103 | 5 | 1.7x10° | 2x10°7? 5 | 2.9x10’
DIAG + ALS-ELS | 2.2x103 | 7 | 6x10° | 2.5x10% | 8 | 1.4x10° | 2.7x103 | 9 3x10’

Table 2: Median NMSE, averaged number of iterations andagyet number of flops for large tensors of order 3

Algorithm R=7,1 =50x50x50 | R=5,1 =100x100x100| R=4,1=50x100x 50

I'x | N | r I'x | Nit | r I'x | Nit | r
ALS 5.6x10% | 58 | 3x10° | 2.3x10°% | 23 | 4.6x10° | 3.4x10°% | 47 | 2.1x10°P
ALS-ELS 5.6x104 | 27 | 1.8x1(° 3.3x10* | 14 | 8.2x10’
DIAG 2.1x103% | 5 | 5.5x10" | 5.8x10% | 5 | 2.8x10® | 5.7x10* | 5 | 3.5x10’
DIAG + ALS-ELS | 5.4x10* | 4 | 7.6x10" | 2.3x10% | 3 | 3.3x10° | 3.3x10% | 3 | 4.9x10’

SNR=50 dB) truncated at rank 3 to 7 respectively. After each CPidfaneach estimated factor
matrix we keep the three columns that best correspond tactheale8 factors. Thereby at the end
of the process we can computefor each CPD. DIAG results are compared with those of ALS-
ELS and CFS on figure 7(a). Itis worth mentioning that ovetdang has little impact on DIAG
and CFS results while ALS-ELS provides incorrect estinregiof the actual factors as soon as
the model rank is overestimated. This is an important featdirdirect approaches. A second
simulation is performed in the same way but with 4-orderoes®f dimensions kX 7 x 7 x 4.
Model rank is still set to 3. Results are plotted on figure 7(Ayain over-factoring strongly
affects ALS-ELS estimates. Conversely DIAG and CFS results@msistent even in the case a
large number of extra factors is used. We can also note tlmatlat 4 DIAG is less sensitive to
over-factoring than CFS.

4.2.4. Atrade-@between speed and precision

We have shown some particular situations for which the DIAg®@dthm provides the best
estimation results. However one of the main advantageseoptbposed approach with respect

Table 3: Median NMSE, averaged number of iterations andaaee number of flops for tensors of order 4

Algorithm R=51=5%x10x5%x10| R=51=5x5x10x10| R=8,1 =5x5x10x5

I'x | N | r I'x | Nit | r I'x | Nit | r
ALS 1.5x1073 | 50 | 1.5x10" | 1.4x103 | 31| 9.3x10° | 3.5x10°3 | 11 | 4.7x10’
ALS-ELS 1.5x10°3 | 29 | 9.4x10° | 1.4x103 | 23 | 7.3x10° | 3.5x10°3 | 54 | 2.4x10’
DIAG 7.1x103% | 5 | 7.1x10° | 3.2x10° | 5 | 6.5x10° | 1.7x102% | 6 | 6.9x1C°
DIAG + ALS-ELS | 1.5x103 | 6 | 2.7x10° | 1.4x103 | 6 | 2.5x1(P | 3.5x10° | 9 | 4.6x10°
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Table 4: Median NMSE, averaged number of iterations andageer number of flops for higher order tensor and
tensors with correlated facto(all tensors are rank 4)

Algorithm | =7Xx7Tx7Tx7x7x7 | 1=10x10x10x 10x 10 | =10x10x 10
rx [N | T rx | Ni | r rx | Ne | T
ALS 2.3x107% | 21 | 2.6x10° | 2.5x10% | 28 | 1.9x1C° | 4.3x10°1 | 831 | 4x10’
ALS-ELS 2.6x10% | 19 | 2.5x10° 1.2x10°3 | 444 | 2x10’
DIAG 2.3x10% | 4 | 5.4x10" | 2.8x10% | 4 2x10° | 2.5x10°% | 5 | 3x10°
DIAG + ALS-(ELS) | 2.2x10% | 2 | 8.3x10" | 2.5x10% | 2 | 3.5x10" | 6.8x10* | 10 | 7x10°

to iterative algorithms is its high convergence speed anditer numerical complexity. Further-
more we still have to evaluate DIAG performances in the cédsgotensors. For this purpose,
we study here 12 representative examples by varying thetelimensions and the CPD rank.
Examples are classified into 4 groups of three examples:| semslors of order 3, large tensors
of order 3, tensors of order 4 and finally, higher order temsmd tensors with correlated CPD
factors. Median NMSE values, averaged numbers of iteratigrand averaged numbers of flops
I" are reported in tables 1, 2, 3 and 4 for each example of thegimwps and for an SNR value
of 40 dB. DIAG is here compared to ALS and ALS-ELS . DIAG estiggacan also be used as
initial guests of the ALS-ELS procedure. Hence in theseemBIDIAG + ALS-ELS" refers to
the ALS-ELS algorithm initialized with DIAG estimates.

Group of small third order tensorslin the two first examples we show that ALS and ALS-ELS
perform slightly better than DIAG in terms of estimation giggon. However on average DIAG
only requires 5 JDTM iterations to converge against 46 arif@adALS-ELS and ALS, respec-
tively. Hencel'piac is 10 to 100 times lower thaliy s andl'a s _g1s. Another interesting point
is that the DIAG+ ALS-ELS procedure limits the number of ALS iterations to @& averaged
number of iterations reported in the table for DIAGALS-ELS is the averaged number of ALS-
ELS iterations used after an initialization with DIAG) ané wan see from these results that this
is enough to obtain a precision similar or better than th&tl(3-ELS. Consequently, the numer-
ical complexity of this approach is 3 to 10 times lower thaarthhose of'a s andl'a s gLs.
The last example is similar to the second one but tensor ditors have been permuted so that
only the DIAG unfolding matrix is dferent. Here DIAG results are degraded both in terms of
precision and humerical complexity. We can conclude thiatsfpossible, it is better to not place
the larger dimension of the tensor at the end.

Group of large third order tensorsWe consider now third order tensors whose all the dimen-
sions are equal to 50 or 100. As a consequence, the CPD raak lgvwier than the tensor
dimensions and all algorithms perform better and need fa@emations. This explain that the gap
between the dierent algorithms is narrowing. However we can still drawshme general con-
clusion: DIAG remains the cheapest solution and DIABGLS-ELS provides the same precision
than ALS and ALS-ELS for a lower numerical complexity.

Group of fourth order tensorsWe obtain the same kind of results that with the first group so
that DIAG + ALS-ELS still appears to give the best compromise betweegigion and cost.
One should note however that in the last case DIAG is by farctreapest whereas its results
regarding the NMSE are not as good. This is explained by ttietlian the rank is greater than
three of the tensor dimensions and slightly lower than theafaing one.
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Figure 8: Decomposition of the Paatero tensor, evolution of the mahimedian and maximal values of the ALS-ELS
estimation error, according to a distance between theisnlaind the starting values and comparison with CFS and
DIAG results.

Higher order tensors and tensors with correlated CPD fastofhe first example of this group
deals with fifth order tensors (for which our version of ELShist working). For the second
example we consider sixth order tensors. It is worth memiphere that in both cases DIAG
provides as accurate estimates as ALS and ALS-ELS do whiteuinerical complexity remains
largely lower. Now looking at the last example with correthfactors, one can first note that
ALS doesn’t work whereas ALS-ELS is more accurate than DIAGe price to paid is a very
high number of iterations (444) and an increased computaltimost (about 2107 flops) against
5 iterations and abouta. (P flops for DIAG. In this case one should not that DIAGALS-ELS
is significantly better than ALS-ELS in terms of estimatioregision for a limited numerical
complexity.

As a first conclusion DIAG appears as a good traffdsetween estimation precision, speed
and numerical complexity. Besides, the DIAGALS-ELS procedure provides a similar or
better precision than that of ALS-ELS whereas its numexoahplexity remains quite close to
that of DIAG. Hence by combining both algorithms one can eehithe best precision, a good
convergence speed and a reduced numerical complexity.

4.3. Results on the Paatero tensor

In [44], Paatero introduced a very simple 3-order tensorizé & x 2 x 2 which has the
following form:

1
-] g

e O
0 h]' (65)

Let’s define its determinart by:
A = 4h+ d%. (66)
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Then, it can be shown that the equatidn= 0 partitions the space into two subspaces, which
hence have a non zero volume: The inequality> O defines the subspace of rank-2 tensors,
whereas\ < 0 defines the subspace of rank-3 tensors. Finally, the cketenf tensors of rank 1
lies on the hypersurface = 0. [21]

Some of these tensors have the particularity of misleadiygterative algorithm, although
the chosen starting value is close to the solution. As an pigiRaatero notably consider in [44]
to decompose the tensor defined kyd( h) = (30, 0.26,0.34) from the initial value € d, h) =
(30,0.3,0.12). This tensor belongs to the rank 2 subspace but it is ttodee varietyA = 0. Its
decomposition is given by the three following factor magtsc

A:[1/x —1/x] B:[1/x —1/x} C:[1/x -1/x

, (67)
Y1 Y2 Y1 Y2 Y3 Ya

with: x = (4h/e+ d?)z, y, = (¢ — d)/(2X), y1 = X% — @z, Ya = h/(ya(y1 +Y2)) andys = yaya/y1.

Later in [21], authors confirmed that in this case, even thetreficient iterative algorithms
such as ALS-ELS and Levenberg-Marquardt get stuck in a ledaimum of the cost function,
leading to a very bad estimation of the factor matrices. Altyusince the iterative algorithms
works by successive optimization of rank-2 tensors, thewnottake the shorter paths to the
solution which could cross the space of rank-3 tensors. élhethis is an other typical situation
where direct algorithms can help. In order to see this we heggw®duced the experiment here not
only for the Paatero starting values but foffelient starting values around the solution. Hence
we define a parametérsuch that the initial factor matrices of the ALS-ELS?, BO)

AO® = A 4+ 5Ex; BO = B+ 6Eg; C? = C+6§Ec, (68)

whereEa, Eg andEc are matrices of size 2 2 whose elements are randomly drawn according
to a standard normal law. We now definas the mean estimation error upon the three estimated
factor matricesA, B andC:

_L{UA-Alr  1B-Bll IC-Cll
3| IAlE IBle " IClr

(69)

The ALS-ELS algorithm is run 500 times on the tengor, with a new draw of thé,, Eg and

Ec matrices at each time, and forfigirent values of comprised between 1000 and 18 We
present on figure 8 the plots of the median, minimal and malxiadaes ofea s_g1 s according

to thes value. For comparison, bothyag andeces values are also reported on the figure. It can
be seen that the iterative algorithm needs a very goodlig#i#on in order to get an estimation
precision close to the machine precision. Recall that wéoaldng for an exact decomposition
since the considered tensors are noise free. Conversedyt dilgorithms such as the closed-
form solution or DIAG provide a perfect decomposition®fand a thus an exact estimation of
the factor matrices.

5. Application to fluorescence spectroscopy

A good application example of the CPD is found in fluorescesmmectroscopy since after
some numerical corrections measured data can be modelladdBD with physical meaning.
Standard spectrofluorimeters allow to measure the inten§ithe fluorescence signal emitted
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by a diluted solution at wavelengtly by exciting the solution at wavelength. Hence, by
scanning the excitation-emission couplés {;) one obtains art x J matrix of fluorescence
which is called the Fluorescence Excitation-Emission MgFEEM) of the solution. In many
applications one have to measure a FEEM set correspondiagéd ofK solutions and thus
obtains a fluorescing data tens¥rof order 3 and sizé x J x K which contains th& FEEM.
Solutions are often mixtures of a small numbRf, of diluted fluorescing chemical species
(fluorophores). Fluorophore concentrations vary from atsmh to an other. Hence fluorophore
r is characterized by its excitation spectrugn(t;), its fluorescence emission spectrufi(4;)
and the variation of its concentration through the solugeth(concentration profilek (k). In
practice one wants to recover, f, andc, (r = 1---Ry) from the measured FEEMSs. It can be
shown that after removing scatterinfjexts and correcting (or preventing) inner filtéieets, the
contribution of each fluorophore to the solution signalieér in excitation, in emission and in
concentration. In other words we have:

R
Xi,j,k = Z Ei,er,er,r, (70)
r=1

whereE;; = &(4), Fjr = fr(4;) andCy, = ¢;(K), so that the CPD solves this inverse problem in
a deterministic way. This is the reason why CPD has beenljaagplied to analyze FEEM sets
since original works of Bro in this area [9, 10].

In most applications of fluorescence spectroscopy the nupfliliorophores which defines the
model rank of the decomposition is unknown and has to be astioin However few methods
exist and can give contradictory results and lead to oveefang. A good example of this
situation can be found in [45]. This would be acceptable ieach estimated factor matrix
one obtain théR,, real factors aside with extra factors whose the contrilmstiare almost null.
Actually this is not the case with ALS which is very commonbed for analyzing this kind of
data. Therefore this problem remains an important issu&&NF analysis. In order to highlight
the reliability of DIAG in this context we consider here a ftascence tensor which contains
the fluorescence intensity of 3 distinct mixtures of two flyanores (fluorescein and quinine
sulphate) measured at 4671 excitation-emission wavelength couples. Hence theotesige is

3 x 46 x 71 and the model rank is 2. CPD of rank 3 were then used to dexsarthe tensor.
ALS and DIAG results are reported on figure 9 and 10 respdgtauad compared to the actual
factors after removing permutation and scaling indeteatyn Excitation and Emission factors
are normalized so that factor contributions are condenseld concentration mode. Actual
concentration profiles are perfectly known since theseadyerhtory mixtures and actual spectra
were measured aside from pure solutions of fluorescein amihgusulphate. This is a simple
case for which both algorithms give perfect results whengbed model rankRy, = 2) is
selected (data not shown). However ALS sensitivity to deetering éfect in a concrete case
clearly appears here. Indeed actual factors are not wethatsd (notably the fluorescein spectra
and the concentration profiles). Moreover contributionhaf &€xtra factor to the decomposition
is significant. Recall that this factor has no physical megnOn the opposite DIAG results are
satisfying notably regarding the estimated spectra. Onevedfy that the contribution of the
extra factor is almost null.

6. Conclusion

We have described in this paper a CPD algorithm that takearadge of the link between
CPD and Joint EVD in an original way. A JEVD algorithm has beenjointly proposed. Com-
31



637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

putational complexities and extension to the complex fi@dehbeen given for both algorithms.
Numerical simulations point out thefeiency of the proposed JDTM algorithm to solve the
JEVD problem. This algorithm usuallyfiers more accurate results than its competitors espe-
cially in the most dificult cases involving big matrices and low SNR values. In seafmmumer-
ical complexity, the JDTM algorithm also provides good peniances thanks to a remarkably
low and stable number of iterations.

Classical iterative CPD algorithms such as ALS are usudiigient but sifer from convergence
problem, notably in case of highly correlated factors, arel\very sensitive to over-factoring.
In addition they require a large number of iterations to hetle convergence. ELS allows us
to reduce this number and deals with correlated factorsrimessituations but it remains useless
in case of over-factoring. In addition, we have seen thattlee some simple cases for which
iterative approaches consistently fail for theoreticasens.

In this context direct approaches such as the proposed Dig@ithm have been designed
to prevent such issues. First the DIAG algorithm involvesvatéd iterative procedure which
requires very few iterations hence limiting global compiotaal cost of the algorithm. Second it
is insensitive to over-factoring thanks to the initial SVIieh is independent of the chosen rank.
These features have been verified in this paper by using mangrical simulations. Notably we
have shown that DIAG was able to deal with highly correlateztdrs in all the modes or a large
number of extra factor in case of over-factoring. Furthenermur results also demonstrates that
DIAG is very dficient to decompose high order tensors. Finally it is a vesydégorithm with a
lower computational complexity than ALS or ALS-ELS, notabi the case of small tensors or
correlated factors.

As a counterpart, DIAG implies more restricted necessangitimns on the CPD rank than
ALS. Therefore ALS-ELS is more accurate than DIAG when thkria close to DIAG intrinsic
limit. This is usually not the case in fluorescence spectpgapplications for which at least one
tensor dimension is largely greater than the model rankdditi@n it has been shown that DIAG
results can be improved by adding very few ALS iterationdaitimited impact on the overall
numerical complexity. Conversely, one should note that-f&etoring is an important issue of
FEEM analysis. This makes DIAG an attractive alternativéht classical ALS procedure for
the CPD of fluorescence tensors, as it has been shown on &caragample.

Eventually, comparing to the CFS algorithm which is alsofanence direct CPD approach,
DIAG is a cheaper algorithm since it only involves one JEVDgadure and does not require to
compare several estimates of the factor matrices. But ita advantage definitely comes from
the necessary condition of CFS which is more restricted Bi&®’s one. Hence there are many
simple cases that CFS cannot handle. More generally CFSaycdecreases as we get closer
to its intrinsic limit. Otherwise CFS results are close t&Blresults.

Appendix A. Proof of proposition 1

Proof 2. Cces = Cpiac is trivial. Indeed ifa (qi, q2) € [1;Q]ﬁ,, 01 # G suchthat (q1) >
R and (qg2) > R then taking any permutation df the Q first natural number such tha(f) = qu
and §(2) =gy, P=1and ¢ = Q ensure€pac.
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Let now suppose thalpac is true and thatCa s is false, i.e.:

P
IPe[2;Q-1]n, 3 f;, Igs> P and g< Q such that: 1) ]_[ I(F@) =R (A1)
i=1

2) []rhy=R

Q
3) []10)<Ri).
i=1

Since we havé < g < Qthusge {fi(1),---, i(P U {fi(P+1),---, fi(Q)}.

e We first assume thatg{f|(1),-- -, f|(P)}. 2) and3) give:

1 % 1%
Wﬂ@ﬁjilum» > Rﬁ[]um

i=P+1
Q

LT | YRRy [T
1(fi () | (@) ’

i=P+1 i=1

P
1@ > 1R | [1hia).
i=1

Since ge {fi(1),-- -, fi(P)},
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nl(f.(i))zl(q) ]_[ L(fi (i)
= i¢|fFll(q)

thereby,

P
1>1(fi(@) [ ] 1Ch()
i;tlflfll(q)

which is absurd.

e Now we assume thatg{f (P + 1),---, f;(Q)}. Thereby,
Q

@ < [,

i=P+1
P Q
@[ [1cha@)y < []richa,
i=1 i=1
while 1) and 3) give:
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(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)
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which is contradictory to (A.10).

Therefore ifCpac is verified therCa, s is verified.
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