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Abstract

In this paper we derive a dynamic friction force model for road/tire
interaction for wheeled ground vehicles. The model is based on a similar
dynamic friction model for contact developed previously for contact-point
friction problems, called the LuGre model [6]. We show that the dy-
namic LuGre friction model is able to accurately capture velocity and
road/surface dependence of the tire friction force. A comparison between
the friction forces predicted by our model and experimental data is also
provided.
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Figure 1: Typical variations of the tire/road friction profiles for different road surface
conditions (top), and different vehicle velocities (bottom). Curves given by Harned et
ol in [14].

1 Introduction

The problem of traction control for ground vehicles is of enormous importance
to automotive industry. Traction control systems reduce or eliminate excessive
slipping or sliding during vehicle acceleration and thus enhance the controlla-
bility and maneuverability of the vehicle. Proper traction control design has a
paramount effect on safety and handling qualities for passenger vehicles. Trac-
tion control aims to achieve maximum torque transfer from the wheel axle to
forward acceleration. The friction force at the tire/road interface is the main
mechanism for converting wheel angular acceleration (due to the motor torque)
to forward acceleration (longitudinal force). Therefore, the study of friction
force characteristics at the road/tire interface has received a great deal of at-
tention in the automotive literature. Tire friction model are also important to
reproduce for simulion purposes. Active control mechanisms, like the ESP, TCS,
ABS, steering control, active suspensions, etc. may be tested and optimized by
using vehicle mechanical 3D simulators with a suited tire/road friction models.

A common assumption in most of tire friction models is that the normalized
tire friction p

F TFriction force

#= F,  Normal force

is a nonlinear function of the normalized relative velocity between the road
and the tire (slip coefficient s) with a distinct maximum; see Fig. 1. Tt is also
understood that p depends also on the velocity of the vehicle and road surface
conditions, among other factors (see [5] and [14]). The curves shown in Fig. 1
illustrate how these factors influence the shape of p.

The static model shown in Fig. 1 is derived empirically based solely on
steady-state experimental data [14, 2]. Under steady-state conditions, experi-
mental data seem to support the force vs. slip curves of Fig. 1. Nevertheless, the
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Figure 2: One-wheel system with lumped friction (left), and distributed friction
(right)

development of friction force at the tire/road interface is very much a dynamic
phenomenon. In other words, the friction force does not reach its steady-state
instantaneously, but rather exhibits significant transient behavior which may
differ significantly from its steady-state value. Experiments performed in com-
mercial vehicles, have shown that the tire/road forces do not vary along the
curves shown Fig. 1, but “jump” from one value to another when these forces
are displayed in the u — s plane [24]. These variation are most likely to exhibe
hysteresis loops, clearly displaying its dynamic nature.

In this paper, we develop new, speed-dependent, dynamic friction models
that can be used to describe the tire/road interaction. These models have
the advantage that are developed starting from first principles and are based
on simple contact (punctual) dynamic friction models [6]. Thus, the parame-
ters entering the models have a physical significance which allows the designer
to tune the model parameters based on experimental data. The models are
also speed-dependent. This property agrees with experimental observations. A
simple parameter in the model can also be used to capture the road surface
characteristics. Finally, in opposition to many other static models, our model is
shown to be well-defined everywhere (zero rotational or linear vehicle velocities)
and hence, is appropriate for any vehicle motion situations (in particular during
the braking and acceleration phases), as well as for control law design.



2 Tire/road friction models
In this study we consider a system of the form:

mo = F (1)
Ju = —rF+u, (2)

where m is 1/4 of the vehicle mass and J, r are the inertia and radius of the
wheel, respectively. v is the linear velocity, w is the angular velocity, u is the
accelerating (or braking) torque, and F' is the tire/road friction force. For the
sake of simplicity, only longitudinal motion will be considered. The dynamics
of the braking and driving actuators are also neglected.

2.1 Slip/Force maps

The most common tire friction models used in the literature are those of slip/force
maps. They are defined as one-to-one (memoryless) maps between the friction
F, and the longitudinal slip rate s, defined as:

rw

sp=1—-"22 if v>rw, v#0 braking
5§ = (3)
sa=1—.= if v<rw, w#0 driving

The slip rate results from the reduction of the effective circumference of
the tire (consequence of the tread deformation due to the elasticity of the tire
rubber), which implies that the ground velocity will not be equal to v = rw.
The slip rate is defined in the interval [0,1]. When s = 0 there is no sliding
(pure rolling), whereas s = 1 indicates full sliding.

The slip/force models aim at describing the shapes shown in Fig. 1 via static
maps F'(s) : s = F. They may also depend on the vehicle velocity v, i.e. F(s,v),
and vary when the road characteristics change.

One of the most well-known models of this type is Pacejka’s model (see,
Pacejka and Sharp [20] ), also known as the “magic formula”. This model has
been shown to suitably match experimental data, obtained under particular
conditions of constant linear and angular velocity. The Pacejka model has the
form

F(s) = ¢y sin(ce arctan(cgs — c4(cgs — arctan(css)))),

where the ¢}s are the parameters characterizing this model. These parameters
can be identified by matching experimental data, as shown in Bakker et al. [2].

The model proposed by Burckhardt [5] for the tire/road friction character-
istics is of the form

F(s,v) = (01(1 —e %) — 035) e Y, (4)

where ¢y, ---,c4 are constants. The normal load at the tire is kept constant in
this model. Note also the velocity dependency of this model, seeking to match
variations like the one shown in Fig. 1.



Kiencke and Daiss [15] neglect the velocity dependent term in Eq. (4) and
approximate the curve by

S

F =Kg—n———
(5) 182+ cos+ 1

(5)
where K is the slope of the F'(s) versus s curve when s = 0 and ¢; and ¢, are
properly chosen parameters. Notice that Eq. (5) is only dependent on the slip
s. The value of K, is assumed to be known. Kiencke and Daiss [15] choose a
fixed value of about 30° for it.

Alternative, Burckhardt [4] proposes a simpler three parameters model,

F(s)=c1(1 —e %) —¢3s.

Since these models are highly nonlinear in the unknown parameters, they are
not well adapted to be used for on-line identification. For this reason, simplified
models like

F(s) =c1v/s —cas

are used in connection with a linear recursive identification algorithms, has been
proposed in the literature.

A part from the nonlinearity in the unknown parameters, the major limita-
tion of this models seems to steer from the fact that the unknown parameters are
not really invariant, they may strongly depend on the tire characteristics (such
as compound, tread type, tread depth, inflation pressure, temperature), on the
road conditions (such as type of surface, texture, drainage, capacity, tempera-
ture, lubricant, i.e. water or snow), and on the vehicle operational conditions
(velocity, load), see Pasterkamp and Paceijka [19].

The “Static Friction Models” apply when we have steady state conditions for
the linear and angular velocities. This is rarely true in reality, especially when
the vehicle goes through continuous successive phases between acceleration and
braking.

As an alternative to the static F'(s) maps, different forms of dynamic mod-
els can be adopted. The so-called “Dynamic Models” attempt to capture the
transient behaviour of the tire-road contact forces under time varying veloci-
ties conditions. One such model has been proposed by Bliman et al in [3]. In
that reference the friction is calculated by solving a differential equation of the
following form?!

2 = |v|Az + Bu,
F(z,v;) = Cz+sgn(o)D (6)

The matrix A is required to be Hurwitz of dimension either one or two, with
the latter case being more accurate. Another dynamic model that can be used
to accurately predict the friction forces during transients is the LuGre friction
model [8]. The details of this model are presented in the sections that follow.

'In what follows, the upper dot on a signal stands for the partial time-derivative, i.e.
2(¢,t) = %((,t), and % stands for the total time derivative, i.e.%((,t) = %((,t)



Wheel with
lumped friction F

A

Base Frame

Figure 3: Vie of the contact area with the position of the underformed contact
point (p, and the point ¢; that deform under longitudinal shear forces.

Dynamic models can be formulated as a lumped or distributed models, as
shown in Fig. 2. A lumped friction model assumes punctual tire-road friction
contact. As a results, the mathematical model describing such a model are
ordinary differential equations that can be solved by time integration. Opposed
to lumped models, the distributed friction assumes the existence of a contact
patch with an associated pressure distribution resulting in a partial differential
equations, that it need to be solved ith both time and space. This distinction,
and the derivation basis of some of these models will be discussed next.

2.2 Lumped dynamic models

Under this consideration, a certain number of dynamic models have been pro-
posed in the literature. We present next two examples of often used dynamic
models, and then we introduce an extension of the LuGre model. Nevertheless,it
will be show that some of those lumped models are not able to reproduce the
steady-state characteristics similar to those of the Paceijka model.

Brush-type models. They are derived from the idealization of a contact
point deformation and from kinematic considerations (velocity relations between
the points that concern the tire deformations). Its derivation follows semi-
empirical considerations, and assumes that the contact forces result from the
product of the tire deformation and the tire stiffness.



An example of a two-dimensional model characterizing the lateral force and
the aligning momentum, can be found in [17]. A brush model for the longitudinal
tire dynamic has been derived in [9, 1].

The proposed model for the longitudinal dynamics, is derived by defining
the normalized longitudinal slip z as:

Cl _CO

G

where (; locates a hypothetical element which follows the road, and (y locates
a hypothetical element which in undeformed under longitudinal shear forces,
as shown in Fig. 3. Differentiating 2 with respect to time, and noticing that
(o = rw, (1 = v, we get (for simplicity, we only discuss the case of v > 0):

L = u— ol (7)

—Z
o

F = h(z)=kz (8)
where v is the linear velocity, v, = rw —wv is the relative velocity, and the contact
force F' is defined by the function h(z) that defined in general the stationary
slip characteristics. In the simplest case, h(z) is given by a linear relationship
between the longitudinal slip and the tire (linear) stiffness k. The constant?
1/0 = (i is called the relaxation length, which can be defined as the distance
required to reach the steady-state value of F

rw —v

Fos = h(zss) = kzgs =k sign(v) = ks

after a steep change of the slip longitudinal velocity, s = v, /v = (rw—wv)/v. The

role of the relaxation length 1/0 in the equation (7), can be better understood
by rewriting this equation in terms of the spatial coordinate 7:

n®=AWMW

rather than as a time-differential equation, i.e.

1dz 1dzdn
cd = saga =T ®)
1dz vy
-z - _ L = 10
. Z+|v| z+s (10)

where the last equality results form the consideration on that v > 0. Equation
(10) can thus be seen as a first order spatial equation with the sliding velocity s
as its input. It becomes clear thus that o represent the spatial constant of this
equation.

2When following the derivation of this model, it is not clear under which conditions (1
can be considered constant. Indeed, in certain works, the relaxation length has been make a
function of the slip deformation, see [17]
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Figure 4: Friction force as a function of displacement fro the Dahl’s model.

As pointed out in [9], the model work well for high speeds, but it generates
lightly damped oscillations at low speeds. The reason is that at quasi-steady-
state regime, z is close to its steady-state value (2 ~ s) , and that friction F is
dominated by its spring-like behaviour (F' a kz), resulting in a lightly damped
mechanical system. As it will be show later, during the presentation of the
LuGre model, the oscillations can be cancelled by introducing an additional
damping term at the output F. Others consideration are necessary to make
this model consistent with all possible changes in the velocity sign. [9] provides
a twelve-step algorithm for implementing this model in simulations.

The Dahl model The Dahl model [10] was developed for the purpose of
simulating control systems with friction. The starting point for Dahl’s model is
the stress-strain curve in classical solid mechanics [21] and [22] (Fig. 4). When
subject to stress, the friction force increases gradually until rupture occurs. Dahl
modeled the stress-strain curve by a differential equation. Let x, be the relative
displacement, v, = %= the relative velocity, F' the friction force, and Fg the
maximal friction force (Coulomb force). Then the Dahl’s model has the form:

«
(ji—l: =0y (1 - F%sign(w)) (11)
where oy is the stiffness coefficient « is a parameter that determines the shape
of the stress-strain curve. The value a = 1 is most commonly used. Higher
values will give a stress-strain curve with sharper bend. The friction force |F|
will be never be larger than Fg if its initial value is such that |F'(0)] < Fe.
When integrating 11, it can be observed a monotonic growing of F'(t) after step
changes on v,.. Therefore the Dahl’s model canot exhibe a maximum peaking,
as the Paceika’s behaviour suggest.



It is also important to remark that in this model the friction model is only a
function of the displacement and the sign of the relative velocity. This implies
that the evolution of the friction force in the F' — z plane will only depend on
the sign of the velocity, but not on the magnitude of v,.. This property is called
rate-independent, and it makes possible the theory of hysteresis operators to be
used.

To obtain a time domain model Dahl observed that:

dFF  dFdx dF F . “
% = %E = %Ufr = 0o (1 - F_CSIgn(vr)) Ur (12)

For the case a = 1, the Dahl model (12) can be written as

dF F
= o = gl (13)

or in it state model description:

dz z

— = v, —0og—|v, 14
) (14
F = o9z (15)

with z being the relative displacement. Note the different in the interpretation
of z in the brush model where it represent the normalized relative displacement.
Introducing the relative length distance n,, as:

me(t) = / jon(7)ldr

The Dahl models becomes

i dF
oo dny

= —FLCF + sign(s) (16)

In this coordinates, the Dahl model behaves as a linear space invariant system
with the sign of the longitudinal slip velocity as its input. The motion in the
F — n, plane is thus independent of the magnitude of the slip velocity.

Comparison between the Brush and the Dahl model. It is also instruc-
tive to compare the brush model with the Dahl model. First note that the
steady-state values for each models are:

brush __ Dahl
F =ks F;

, = Fesign(s)

Since |s| < 1, then k and and F¢ represent the maximum values that the
friction can take. In steady state, the brush model predicts a linear behaviour
with respect to s, whereas the Dahl model predicts a discontinuous form with

values in the set [—F¢, F¢].



In the neighborhood of v, = 0, both models predict similar linearized pre-
sliding behaviour (spring like),

Ft ~ ko, (17)
Fs[s)ahl R ool (18)
but there are some differences when comparing the complet dynamic equations
of both models. Consider the particular form h(z) = kz in the equation (8),

then the spatial representations of both models in the 5, and the 7, coordinates
are given as:

1 dFDahl 1
— = ——FPohl 4 gion(s 19
S i gn(s) (19)
1 derush 1
. - _ _Fbrush : )
ko dn A + sign(s) (20)

Let F. = k, and 09 = ko, then both models looks similar. Note however that
they are defined in a different coordinates, which change the interpretation that
may be given to the relaxation length constant: F.oo describes the relaxation
length of the Dahl’s model with respect to the relative (sliding) distance, whereas
1/0 represents the relaxation length of the brush model defined with respect to
the absolute (total) traveled longitudinal distance.

Note also that the two models above do not exhibit a maximum for values
|s| < 1, as the Pacejka’s does. However, the brush model can be modified by
redefining the function h(z) so as to produce a steady-state behaviour similar
to the one depicted by the Magic formula [1].

Lumped-LuGre model The LuGre model® is an extension of the Dahl’s
model that include the Stribeck effect (see, [6]). This model will be used as a
basis for further developments for the final model proposed in this paper. The
Lumped-LuGre model as proposed in [8], and [7] is given as:

_ oolvy|

z
g(vr)
F = (ooz+ 012+ 090,) F, (22)

zZ = v

with,
1
9(vr) = po + (ps — po)e™ /v 12
where gy is the rubber longitudinal lumped stiffness, oy the rubber longitudinal
lumped damping, o5 the viscous relative damping, ¢ the normalized Coulomb
friction, ps the normalized Static friction,(uc < pg € [0,1]), vg the Stribeck

3This model differs from the one in [6] in the way that the function g(v) is defined. Here
1

we propose to use the term e~1vr/?s12 ingtead the term e~ /v)* a5 in the LuCre point-

contact model in order to better match the pseudo-stationary characteristic of this model

(map s — F(s) ) with the shape of the Pacejka’s model, as it will be shown later.

10



relative velocity, F;, the normal force, v, = (rw — v) the relative velocity, and z
the internal friction state.

In opposition to the Dahl’s model, the lumped LuGre model does exhibit a
maximum for values |s| < 1, but it still displaying discontinuous steady-state
characteristics, at zero relative velocity. Nevertheless, by letting the internal
bristle deflection z depends on both the time and the contact position (, it is
possible to show that the model in that case will have the suited stead-state
properties.

2.3 Distributed models

Distributed models assume the existence of an area of contact (or patch) between
the tire and the road, as shown in Fig. 2. This patch represents the projection
of the part of the tire that is in contact with the road. With the contact patch is
associated a frame O,,, with (-axis along the length of the patch in the direction
of the tire rotation. The patch length is L.

Distributed dynamical models, have been studied previously, for example,
in the works of Bliman et al. [3]. In these kinds of models, the contact patch
area is discretized to a series of elements, and the microscopic deformation
effects are studied in detail. In particular, Bliman at al. characterize the elastic
and Coulomb friction forces at each point of the contact patch, and they give
the aggregate effect of these distributed forces by integrating over the whole
patch area. They propose a second order rate-independent model (similar to
Dahl’s model), and show that, under constant v and w, there exists a choice
of parameters that closely match a curve similar to the one characterizing the
magic formula.

One can also extend the point friction model (21)-(22) to a distributed fric-
tion model along the patch by letting z((, t) denote the friction state (deflection)
of the bristle/patch element located at the point ¢ along the patch at a certain
time ¢. The model (21)-(22) can now be written as:

dz _ oo|vr|
E(C,t) = Ur—mz (23)
L
Fo= [largnac. (24)

with g(v,.) defined as before and

A0 = (2054 o G +020r ) £2(0),
where, dF is the differential friction force (force per unit length), f,(¢) is the
normal force distribution, v, = (rw —v) is the relative velocity of each bristle in
contact. The model assumes that the contact velocity of each differential state
element is equal to v;.
Noting that ¢ = % = |rw| (the frame origin changes location when the

wheel velocity reverses: ( = rw, for w > 0, and C = —rw, for w < 0), and that

11



%(C, t) = g—z % + %, we have that equation (23) describes a partial differential

equation (PDE), i.e.

0z 0z oolvr|
== (¢t =) =v, —

5 (Gl + (G = v - Sl
that should be solved in both time and space. More details on the model
derivation basis are given in the Appendix.

(¢, 1) (25)

Steady-state characteristics. The (time) steady-state characteristics of the
model (23)-(24) are obtained under g—g((, t) = 0 and by setting the velocities v
and w constants. Enforcing this conditions in (25) results in

92t _ 1 (Ur_ao|vr|

o¢ Jor| g9(v,)

) (26)

At steady-state, v,w (and hence v,) are constant, and (26) can be integrated
along the patch with the boundary condition z(0,t) = 0. A simple calculation
shows that

@) = sl T R —a e @
0
where
0o Uy g(U’r’)
= — _ = r 2
C1 g(vr) wr ) C2 Sgn('[} ) oo ( 8)

Note that when w = 0, the distributed model, and hence the steady-state ex-
pression (27) collapses into the one predicted by the standard punctual contact
LuGre model.

In order to calculate the steady-state value of the total friction force from
(57), i.e.

L
Fo = / (Goes (€) + 0307) f (C)C (20)
0

we need to assume a distribution for the normal force f,,(¢). A Typical form of
the normal force distribution reported in the literature [23, 18, 13, 12], is shown
in Fig. 5. However, for seek of simplicity, other forms can be adopted. Some
examples are:

e Constant norm distribution. A simple result can be derived if we assume
uniform load distribution, as done in [8] and [11]. For uniform normal
load

F,
fal@) = 22 (30)

and one obtains,

F,, = (sgn(vr)g(vr) [1 - %(1 - e*L/Z)] + agvr> F, (31)

12



Figure 5: Typical normal load distribution along the patch; from [?].

where
7 _|wr|gtv) (32)
vl 0o
o Exponentially decaying distribution.
falQ) =a P fg,  O0<a<1 (33)

where f,,(0) = f,o denotes the distributed normal load for ¢ = 0. This
particular choice will become clear later on, when we reduce the infinite
dimension distributed model to a simple lumped one having one state
variable. Moreover, for a < 1 we have a decreasing function of f,. With
this choice one obtains

F.. = oocoky (elna _ fpelne+CL) _q 4 kz) + oavykr(a — 1) (34)
where
b — frnoL Ina

' na and ko = Ina + CL

Details of this calculations are in the Appendix. The value of f,o can
be computed from a, L and the total normal load F;, acting on the wheel
shaft. That is,

F, = /OLfn(C)dCZ/OLa%andC:f"O[%a%]L

In 0

13



anL
= — (a—-1
Ina (a )
which yields,
Ina

fno = an

(35)

e Distributions with zero boundary conditions. As shown in Fig. 5, the more
realistic force distributions have, by continuity, zero boundary values. Sev-
eral forms can be proposed. Some possible examples are:

falQ) = ;Fn 1- (%ff) ] (36)

or,
fn(C) = Fysin(n(/L) (37)
’ fn(¢) = Fyexp 7 sin(n¢/L) (38)

Relation with the magic formula. The previously derived steady-state
expressions, depend on both v and w. They can also be expressed as a function
of s and either v or w. For example, for the constant distribution case, we have
that Fgs(s), can be rewritten as:

e Driving case.

Fy(s) = sgn(v,)F,9(s) (1 + Ui(l:§|)s| (e o 1)) + Fho2rws(39)

1
with g(s) = pe + (ps — pe) e”1"3/v12 | for some constant w, and sy =

s €[0,1].

e Braking case. Noticing that the following relations hold between the brak-
ing sp and the driving sq4 sliding velocity definitions:

Sp

rwsq = USy, Sq = S 1
b —

the braking case writes as

gls)[1 — 5| __coris

Fy(s) = sgn(v.)Fhg(s) (1 + (e” sT=sT — 1)) + Fo2(40)

00L|S|

1
with g(s) = po + (us — pe) e 1?/%12 | for some constant v, and s, =€
[0,1].

14
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Figure 6: Static view of the distributed LuGre model (braking case) with uniform
force distribution (Expression of F}) under: (a)-left different values for v, (b)-right
different values for 6 with v = 20m/s = 72Km/h. These curves show the normalized
friction p = F(s)/F,, as a function of the slip rate s.

Remark: Note that the above expressions depends not only on s, but either
on v or w depending the considered case. Therefore plots of F' versus s can
only be obtained for a specified (constant) velocity. The velocity-dependency
of the steady-state curves is also present in the data found in the literature.
Nevertheless, it should be stressed the impossibility reproduce such a curves
form experimental data obtained from standard vehicles where v and w cannot
be independently controlled. For that, specially design equipment is needed.
Fig. 6-(a) shows the steady-state characteristics for the braking case, with the
data given in Table 1.

Parameter | Value | Units
09 181.54 | [1/m]
0P 0.0018 | [s/m)]
pe 0.8 []

s 1.55 []

Vs 6.57 [m/s]
L 0.2 [m]

Table 1: Data used for the plot shown in Fig. 6

Dependency on road conditions. The level of tire/road adhesion, can be
modeled by introducing a multiplicative parameter 6 in the function g(v,). To
this aim, we substitute g(v,) by

g(vr) = 0g(v,),

where g(v;) is the nominal known function as given before. Computation of the
function F'(s,0), from Eq. (40) as a function of €, gives the curves shown in

15



Fig. 6-(b). These curves match reasonably well the experimental data shown in
Fig. 1-(a), for different coeflicients of road adhesion using the parameters shown
in Table 1. Hence, the parameter 8, can suitably describes the changes in the
road characteristics.

Note that the steady-state representation of Eq. (39) can be used to identify
most of the model parameters by feeding this model to experimental data. These
parameters can also be used in the simpler mean lumped model, which can be
shown to suitably approximate the solution of the PDE described by Eqgs. (23)
and (24). This approximation is discussed next.

2.4 From distributed to lumped mean models

It is clear that the distributed model captures reality better than the lumped,
point contact model. It is also clear that in order to use the distributed model
for control purposes it is necessary to choose a discrete number of states to
describe the dynamics for each tire. This has the disadvantage that a possibly
large number of states is required to describe the friction generated at each tire.
Alternatively, one could define a mean friction state zZ for each tire and then
derive an ordinary differential equation for zZ. To this end, let us define

L
) = g /0 (1) fulQ)dC (41)

L
Fp = /0 ful€) dC

0= [ Zcnmnou (42)

where F}, is given by

Thus,

From (54) we get

0 = [ (- el - gg D orl) sy

_ UT_O'0|UT| ) |wr|/ 62 Fa(C)dc

9
B oolvy| |wr| |wr| 0fn(C)
= -2 - 2 [, t)fn«;)] 5 ) e ac %

The term in the square brackets describes the influence of the boundary con-
ditions, whereas the integral term accounts for the particular form of the force
distribution.

From another hand, we have from (24),

L
F(t) = /0 (UO Z(C: ) + 01 (C: ) + U—ZUT> fn(C) dC
(o0z(t) + o1 2(t) + U2vr) F,
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As a general goal, one may wish to introduce distributions, that lead to the
following form (mean lumped LuGre model),

) = v %z(t) ~ () wrlz(t) (43)
F(t) = (o0z(t) + 012(t) + o2v,) Fy (44)

where k is defined as:

L
K07 = { .00, - [ =602 dc} (45)

and F,, as above. When comparing this model with the punctual LuGre one
(21)-(22), it is clear that x capture its distributed nature. It may also expected
that £ > 0, so that the map v,.(t) — F(t) preserve the similar passivity proper-
ties that the punctual model.

Note also that according to the hypothesis taking on the force distribution
form, different expressions for the mean model can be developed: xk may then
become a constant, an explicit or an implicit function of zZ. We study some of
these forms next.

Exponentially decaying distributions. Now, assuming (33) as well as 2(0,¢) =
0 we get

L
K07 = [0 ) = o [N e
= FLZ(L,t)afno — lnfa Z(t) (46)

n

Next, recall that we require a < 1. For very small values of a it is possible to
ignore the term containing z(L,t) in the equation above, and approximate x(-)

by a constant

|
n:—%, with 0<a<1 (47)

Uniform normal distribution. The case of the uniform normal distribution
can be viewed as a special case of (33) with a = 1. In this case f,({) = fno =
F, /L and we obtain the following expression

k()7 = g 2(Lot) foo = T2(L,1 (48)

Deur [11] proposed that the boundary condition for the last element z(L,t) be
approximated by an expression afine to the mean deflection Z, i.e.

2(L,t) =~ ko(-)Z (49)
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resulting in the relation,

fo
L

K= (50)
The function ko(-) in (49) is chosen in [11] so that the steady state solutions
of the total friction force for the mean lumped (43)-(44), and the one of the
distributed model (expression (31)are the same. This results in the following
expression for kg

1—eL/Z

Ko = Iio(Z) =
1-Z(1—eL/7)

(51)

In [11] it is also shown that, ko belongs to the range € [1,2], but that a con-
stant value for kg € [1,2] can be chosen, while making the steady states of the
distributed and lumped models only slightly different, as it is shown in Fig. 7
Next, we present several plots of the steady state of the distributed model
with uniform and non-uniform normal load distribution, along with the steady
state plots of both lumped models, and for different values of k and a. We
use the same parameters g, 02, us, e and vs for both models. In particular
we choose the values shown in Table 2. All steady state plots were made for

Parameter Value
oo 200 m~!
o2 0 sec /m
e 0.5
s 0.9
Vs 12.5 m/ sec

Table 2: Common Parameters

constant vehicle velocity v = 20m/ sec and patch length L = 0.2m.
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Figure 7: Steady state plots assuming normal load distribution using the ap-
proximation from [11].

08 T T

Distributed model
a=

07t

06 Lumped Model a = 0.05

Distributed model a = 0.05

05

03
0.2

0.1

Figure 8: Steady state plots assuming the load distribution given in (33).
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3 Experimental Results

In this section we briefly present the measurements collected during three brak-
ings of the a vehicle under the same vehicle operational and road conditions.
We will be using this data to identify the parameters of the mean lumped LuGre
model. We then use these parameter and validate the dynamic friction model
by comparing the time histories of the friction force predicted by the proposed
extension of the LuGre model with the friction force from the three experiments.

Testbed car description The "BASIL” car is a laboratory car based on a
Renault Mégane 110 Kw. It has been equipped with several different sensors
to study the behaviour of the vehicle during the breaking and traction phases.
These sensors are (see Fig. 9):

e an optic cross-correlation sensor to measure the transverse and longitudi-
nal vehicle velocities,

e a basic inertial unit with a piezoelectric vibrating gyroscope to measure
the yaw rate and another one to measure the roll velocity,

e 3 magnetic compass for the direction, and

e two acceleration sensors to measure the longitudinal and lateral accelera-
tions,

e the ABS-system is used to derive, troughout a suitable signal processing,
the wheels’ velocities w;,

e a DGPS system has been used to locate the vehicle and compute its tra-
jectory with great accuracy (less than one centimeter). [Michel: en quoi
cette inforest utile; pour calculer v ? |,

e specific-purpose sensors (not described here) have been used to measure
the throttle angle and collector pressure (driver activity) [Michel a quoi
servent, dans notre cas, ces measures 7.

For this application, a Kistler wheel force transducer has been installed in
[Michel: a la place de, ou dans la place de ? | place of the standard right
rim to measure the dynamic forces and moments acting between the road and
the vehicle. Its weight must be [Michel most be or is ?] small, considering the
unsprung mass.

This sensor gives the complete wrench in real time, namely forces F;, F,, F.

and moment M,. These variables are shown in Fig. 10. The complete equipped
vehicle is presented with all the measurement parameters in Fig. 9.
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Figure 9: Sensors and measurement parameters.

Trials description. For safety reasons, the trials were carried out on a straight
test track under dry weather conditions. The intended driving situations were
highlighted and analysed through a set of experiments with the equipped vehi-
cle called BASIL. After an accelerating phase, the vehicle speed was maintained
constant at a pre-defined speed. Then, in order to match iso [Michel: what are
the iso condition, please describe] conditions and small values of forces F, and
F, before the braking phase, the test driver released the clutch for a few sec-
onds. The speed of the vehicle decreased slightly. Then, the test driver start the
braking phase and strongly brakes until the grip limit of the front wheels was
reached. Finally, he released the brake pedal and accelerated again to repeat
the same sequence. Three braking phases were performed and stored in file.

Collected data The collected data obtained throughout experiments are shown
in figures Fig. ?7, and Fig. ??7. Fig. 7?7 shows the measurements of the braking
pressure, the longitudinal speed of the vehicle and the REW [Michel: what mean
?] velocity, for three braking phases. Fig. 7?7 shows the different measurements
of forces Fy, Fy and F, and the lateral acceleration g;. The values of F and
gt clearly show the lateral excitation of the vehicle during the braking phases,
due to geometrical aspects of the suspension system. However

Parameter identification and lumped-LuGre model validation The
experimental data consists of measurements of the longitudinal slip s, friction
coefficient p, and linear velocity v. We also know the sampling frequency of the
measurements which allows us to re-construct the time vector.

First, we compare the steady state solution of the distributed dynamical
model at the mean velocity of the experiments with the friction coefficient p
given by the experiments. We plots the corresponding p vs. slip curves and
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SensorOd

Figure 10: View of the equipped wheel with the Kistler sensor and variables mea-
sured.

determine the parameters of the model (o¢, o2, s, ptc and vs). We then compare
the time histories of the friction force given by our the model with the ones given
by the experiments to determine the rest of the parameters (e.g., o1).We used
the s — u plot of only one experiment (Braking #2) to identify the parameters
for the steady state solution.

In order to identify the model parameters we use an optimization algorithm
of MATLAB and fit the steady state solution of the distributed model to the
it - s plot data of Braking #2. For simplicity, when running the optimization
algorithm we used a fixed value for vs and a. The patch length was chosen as
L = 0.2m and the total normal force was chosen as F,, = 3000 N. This was done
for uniform normal load distribution with x = 1.2 (case (i)), and with varying
k (case (ii)). The results for the normal load distribution in (33) and a = 0.05
are also presented, for comparison (case (iii)).

The results of the identification are shown below.

The normal load distribution at the contact patch for case (iii) is shown in
Fig. ??

The comparison between the experimental results and the simulation results

using the LuGre dynamic friction model for the three cases are shown in Figs. ?7-
29
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Parameter | Value Parameter Value Parameter | Value
oo m~! oo 178 m~T! oo m~!
o1 m! o1 1m™ ! o1 m!
09 sec /m 09 0 sec /m 09 sec /m
e fe 0.8 fe
Hs Hs 1.5 Hs
Vs m/ sec Vs 5.5 m/ sec Vs m/ sec

Table 3: Data used for the plots concerning the cases (i) left, (ii)-center, and
(iii)-right.

23



0.8

0.4

0.2

WA

t(sec)

Figure 11: case (ii): varying k.



4 Conclusions

Appendix

Details of the distribution model derivation. Let z((,t) denote the fric-
tion state (deflection) of the bristle/patch element located at the point ¢ along
the patch at a certain time ¢ and consider the total deflection of this element
between two time instances t and ¢ + dt. Since the time interval dt the element
has moved to the location ¢ + d¢, and using (21)-(22), we have that (see also
Fig. 12)

(Gt dt) = 2(G, 1) = (0 — (G ) (52)
Expand 2z(¢ + d¢,t + dt) as follows,
z(C+d(,t +dt) = z((,t) + CdC—f——dt-l—

and substitute in (52). Dividing both sides by dt and keeping only first order
terms, one obtains

L LT R (53)

0z
E(C,t) g(vr)

a¢

Using the fact that d¢/dt = |wr| we have the following partial differential equa-
tion for the internal friction state along the patch

0z 0z oo |vr|
92 L 9% il = v, — 1
8t+6§|wr| v (o) (54)
3 2 1 ‘d(‘
SR T
\\ // \\ o //
1~ — ‘
Lo L oewdc

Figure 12: Derivation of distributed friction model along contact patch.

The friction force generated at the patch can be computed from
L
- [ v (55)
0
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The friction force developed in the element d( is given by

0
AR (G0 = (203(6.0 + 56,0 + 220r) 120 (56)
where f,,(¢) is the normal force density function along the patch, and dF((,t)

is the friction force induced by the element at position ( of the patch, at time
t. The total friction force at the patch, can thus be computed as follows

L
F) = [ (002(6,0) + 0 GG + 00 (0 &6 657)

Calculations of the decaying force distribution Eq. (33) Assuming
(33) we get

L
JREENGIAGE
0
L ¢ L ¢
= 0'0/ 02(1 — ecc)fnoafd( = UOC2fn0/ (1 — ecc)afdc
0 0
L e L Ina L
_ L e (L ctcq)
UOC?'an[lnae " lna—l—C’Le " }0
_ L Ina L (Ina+CL) L L _
o Uoc?'fno(lnae lna—l—C’Le lna + lna—l—C’L) o
JroL [ ina Ina (Ina+CL) Ina
= e L) 4 7
70T g (e na+ CL® e C’L)
Similarly,
L
| oeontaortc =
0

L L
I /0 Fa(QdC = 050, /0 o fuod¢

L ¢k L L
= 020rfuo [EGL]O = o20rfao [Ea B E}
anL
= JEAL P
72 Tna (a=1)
Finally we have,
F., = cocoky (elna _ kpene+CL) _q 4 I<:2) +ovonki(a— 1) (58)

with the constant as defined in the main body of the paper.
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