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Chapter 1

Additive functionals and push forward measures under

Veretennikov’s flow

Shizan Fang and Andrey Pilipenko

S.F.: Institut de Mathematiques, Universite de Bourgogne, Dijon, France

A.P.: Institute of Mathematics NAS, Kiev, Ukraine

Dedicated to Professor Masatoshi Fukushima with admiration

In this work, we will be interested in the push forward measure (ϕt)∗γ, where ϕt

is defined by the stochastic differential equation

dϕt(x) = dWt + a(ϕt(x))dt, ϕ0(x) = x ∈ R
m
,

and γ is the standard Gaussian measure. We will prove the existence of density
under the hypothesis that the divergence div(a) is not a function, but a signed
measure belonging to a Kato class; the density will be expressed with help of the
additive functional associated to div(a).

1.1. Introduction

Let (Xt)t≥0 be a Brownian flow on R
m, that is, Wt = Xt − X0 is a standard

Brownian motion; then for a function u ∈ C2(Rm), Itô formula says that

u(Xt)− u(X0) =

∫ t

0

∇u(Xs) · dWs +

∫ t

0

1

2
∆u(Xs) ds. (1.1)

In a celebrated paper13 M. Fukushima extended a C2 function u in (1.1) to a

function u in the Sobolev space H1(Rm); in order to reach this end, he used an

additive functional N
[u]
t of X· to express the last term in (1.1), moreover he showed

that N
[u]
t /t tends to 1

2∆u in distribution sense.

In this work, we will be concerned with the stochastic differential equation (SDE)

on R
m

dϕt(x) = dWt + a(ϕt(x))dt, ϕ0(x) = x ∈ R
m, (1.2)

where a : Rm → R
m is a measurable map.

1



February 20, 2014 10:20 World Scientific Review Volume - 9.75in x 6.5in Fang˙PilipenkoSW

2 Shizan Fang and Andrey Pilipenko

The SDE (1.2), due to the non-degenerated noise Wt, makes illuminating difference

with ordinary differential equations (ODE). In the context of ODE, the existence

of a flow of quasi-invariant measurable maps associated to a vector field a on R
m

belonging to Sobolev space, having a bounded divergence div(a), was established

in a seminal paper by Di Perna and Lions in Ref.8 ; their result was extended later

in Ref.1 by L. Ambrosio to a vector field having only bounded variation regularity

and bounded divergence (see also Ref.7).

There are various considerations to SDE (1.2). When a is bounded, it was proved

by Veretennikov in Ref.25 that there exists a unique strong solution ϕt(x) to SDE

(1.2). Moreover if a is Hölderian, it was proved in Ref.12 as well as in Ref.27 that

x → ϕt(x) is a flow of diffeomorphisms. Recently, it was proved in Ref.3 that if a

is of bounded variation, and µk,j =
∂ak

∂xj
are signed measures satisfying (1.19) for all

k, j,, then the solution ϕt to SDE (1.2) is in Sobolev space:

ϕt(·) ∈ ∩p≥1W
1
p,loc(R

m,Rm), t ≥ 0.

Moreover, the Sobolev derivative ∇ϕt is a solution to the equation

∇ϕt = I +

∫ t

0

Āϕ(ds)∇ϕs(x), t ≥ 0,

where Āϕ is the additive functional associated to ∇a.

In Ref.26 , X. Zhang allowed a to be time-dependent, and established the existence

of strong solutions under integrability conditions on the drift a, while in Ref,19

Krylov and Röckner considered such a SDE on a domain of Rm and established the

existence of strong solutions. In another direction, in Ref.4 Bass and Chen took

the point of view of additive functionals

Ai
t =

∫ t

0

ai(ϕs(x)) ds,

where ai denotes the ith-component of a, to generalize the drift a; ai(x)dx seen as

the Revuz measure associated to Ai
t, was extended to the Kato class Kα for some

α > 0, where Kα is the class of signed measures on R
m defined by

Kα =
{

π(dx); lim
ε→0

sup
x∈Rm

∫

B(x,ε)

|x− y|α |π|(dy) = 0
}

(1.3)

where |π| denotes the total variation of π. More precisely, they proved that if the

Revuz measures π1, . . . , πm are in Km−1 with m ≥ 3, then with help of associated

additive functionals At = (A1
t , . . . , A

m
t ), the SDE

Xt = x+Wt +At

admits a unique weak solution. The interest of considering π1, . . . , πm in Kato

class is they are not necessarily absolutely continuous with respect to the Lebesgue
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measures. In the case where a = ∇ log ρ, by considering

E(u, v) =
∫

Rm

∇u · ∇v ρ(x)dx,

the theory of Dirichlet forms provides a powerful tool, which allows ρ to be only

locally integrable (see Refs.14,15).

In this work, we are interested in push-forward measures under the map x→ ϕt(x)

defined by SDE (1.2). It is well-known that if a is smooth and bounded, then

x → ϕt(x) is a diffeomorphism of Rm and the inverse flow ϕ−1
t can be expressed

by SDE with reversed Brownian motion. More precisely, for t > 0 given, let W t
s =

W (t− s)−W (t), and ψt
s solve the SDE

dψt
s(x) = −a(ϕt

s(x))dt+ dW t
s , s ∈ [0, t], ψt

0(x) = x; (1.4)

then ϕ−1
t = ψt

t . Let γ be the standard Gaussian measure on R
m. By Kunita21 the

push forward measure (ϕ−1
t )∗γ admits the density K̃t with respect to γ given by

K̃t(x) = exp
(

−
∫ t

0

〈ϕs(x), ◦dWs〉 −
∫ t

0

δ(a)(ϕs(x)) ds
)

(1.5)

where ◦dWs means the stochastic integral in Stratanovich’s sense, and δ(a) is the

divergence with respect to γ, that is,
∫

Rm

〈∇f,a〉 dγ =

∫

R

fδ(a) dγ for all f ∈ C1
0 (R

m).

We have δ(a)(x) = 〈a, x〉 − div(a) so that

∫ t

0

δ(a)(ϕs(x)) ds =

∫ t

0

〈a(ϕs(x)), ϕs(x)〉 ds−
∫ t

0

div(a)(ϕs(x)) ds. (1.6)

Here is the main result of this paper

Theorem 1.1. Let a : Rm → R
m be a bounded measurable map. Assume that the

divergence div(a) in generalized sense is a signed measure µ satisfying the condition

lim
t→0

sup
x∈Rm

∫

Rm

(

∫ t

0

s−m/2e−|x−y|2/(2s) ds
)

|µ|(dy) = 0, (1.7)

where |µ| denotes the total variation of µ. Let ϕt be given by SDE (1.2); then almost

surely the push forward measure (ϕt)∗γ is equivalent to γ, and the density K̃t of the

push forward measure (ϕ−1
t )∗γ with respect to γ has the expression

K̃t(x) = exp
(

−At +

∫ t

0

〈a(ϕs(x)), ϕs(x)〉 ds−
∫ t

0

〈ϕs(x), dWs〉 −
mt

2

)

, (1.8)

where At is the additive functional associated to div(a).
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Notice that if f is a positive function in the Kato class Km−2, then (see Ref.4),

lim
t→0

sup
x∈Rm

E

(

∫ t

0

f(Ws + x) ds
)

= 0,

that is nothing but (1.7) for µ(dy) = f(y)dy.

The organization of the paper is as follows. In section 1.2, we will recall and collect

some facts concerning continuous additive functionals. Section 1.3 is devoted to the

proof of Theorem 1.1. In section 1.4, we will consider some examples of vector fields

a whose divergence div(a) is a signed measure, but is not absolutely to Lebesgue

measure. In section 1.5, we will discuss briefly generalizations of Theorem 1.1.

1.2. Continuous additive functionals

In this section, we recall some definitions and facts about continuous additive func-

tionals of Markov processes. There are a lot of publications in the litterature on

this topic, see for example Refs.9,14,16,17,23,24 . Here we will follow Chapters 6 -

8 in Ref.9 Chapter II, section 6 in Ref.17 . We don’t need the theory on the

whole generality; so some assumptions, statements or definitions are simplified in

our exposition.

Let {Xt, t ≥ 0} be a continuous Rm-valued homogeneous Markov processes adapted

to a filtration {Ft, t ≥ 0} with infinite life-time, Px be the distribution of X· given

X0 = x. Denote Nt = σ(Xs, s ∈ [0, t]).

Definition 1.1. A non negative additive functional of X is a R+-valued, Nt-

adapted process A = {At(X), t ≥ 0} such that

1) it is almost surely continuous in t and A0(X) = 0;

2) it is additive, i.e. ∀t ≥ 0 ∀s ≥ 0 ∀x ∈ R
m :

At+s(X) = As(X) +At(θsX), Px-a.s.,

where θs is the shift operator.

Following the terminology of Dynkin9 , we introduce the notion of W -functional.

Definition 1.2. A non negative continuous additive functional At(X) is called W -

functional if

∀t ≥ 0 : sup
x

Ex(At(X)) <∞. (1.9)

The function ft(x) = Ex(At(X)) is called the characteristics of At(X).

Here is an obvious example

Example 1.1. Let b : Rm → [0,∞) be a bounded measurable function. Then

At(X) :=

∫ t

0

b(Xs)ds (1.10)
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is a W -functional of X.

Assume that for any t > 0, Xt has a transition density p(t, x, y). Then the charac-

teristics of At(X) defined in (1.10) is equal to

ft(x) = Ex

∫ t

0

b(Xs)ds =

∫ t

0

∫

Rm

b(y)p(s, x, y)dyds

=

∫

Rm

(

∫ t

0

p(s, x, y)ds
)

b(y)dy.

(1.11)

There are a close relations between convergence of W -functionals and their charac-

teristics. The first one is the following

Proposition 1.1. (see Ref.9 , Theorem 6.3) A W -functional is defined by its

characteristics uniquely up to the equivalence.

The second one concerns the convergence, that is,

Theorem 1.2. (Ref.9 , Theorem 6.4, Lemma 6.1′) Let {A(n)
t (X)} be a sequence of

W -functionals of X and f
(n)
t (x) = Ex

(

A
(n)
t (X)

)

be their characteristics. Assume

that a function ft(x) is such that for each t > 0

lim
n→∞

sup
0≤s≤t

sup
x∈Rm

|f (n)s (x)− fs(x)| = 0. (1.12)

Then ft(x) is the characteristics of aW -functional At(X). Moreover, for each t > 0,

lim
n→+∞

Ex(|At(X)−A
(n)
t (X)|2) = 0,

and in probability,

lim
n→+∞

sup
s∈[0,t]

|A(n)
s (X)−As(X)| = 0.

Example 1.2. Let {Xt = Bt, t ≥ 0} be a one-dimensional Brownian motion; set

A
(n)
t :=

∫ t

0

2n1
B(s)∈

[

− 1

n
, 1

n

]ds.

Then a function bn in expression (1.10) is equal to 2n1{|x|≤1/n} and converges to

the Dirac mass δ0 at 0. It is easy to verify that (1.12) holds with

ft(x) =

∫

R

∫ t

0

p(s, x, y)dsδ0(dy) =

∫ t

0

p(s, x, 0)ds,

where

p(s, x, y) =
1√
2πs

exp
{ |x− y|2

2s

}

is the transition density of a Brownian motion. The limiting additive functional is

the local time of a Brownian motion at 0. Now let us write (1.11) as

ft(x) =

∫

Rd

(

∫ t

0

p(s, x, y)ds
)

µ(dy), (1.13)
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with µ(dy) = a(y)dy. Note that representation (1.13) makes a sense even µ is not

absolutely continuous with respect to Lebesgue measure.

Similarly to Example 1.2, sometimes it is possible to assign a W -functional to a

measure. For example, assume that there exists a sequence of non-negative bounded,

measurable functions {bn, n ≥ 1} such that for t > 0

lim
n→0

sup
x

∣

∣

∣

∫

Rm

(
∫ t

0

p(s, x, y)ds

)

(µn(dy)− µ(dy))
∣

∣

∣
= 0,

where µn(dy) = bn(y)dy. Then a function ft(x) defined in (1.13) is the characteristic

of a W -functional. We will formally denote it by

At :=

∫ t

0

dµ

dy
(Xs)ds.

If there are some a priori estimates on the transition density of Xt, then using the

described approach it is possible to characterize a class of measures corresponding

to its W -functionals. See for example Ref.9 , Ch.8 for W -functionals of a Brownian

motion.

Let’s come back to SDE (1.2). It is known in Ref.2 that the transition density of

ϕt(x) exists and there are constants c1, c2 > 0 depending only on supx |a(x)| such
that ∀t ∈ (0, T ],

c−1
1 t−m/2 exp

{

− |x− y|2
c2t

}

≤ p(t, x, y) ≤ c1t
−m/2 exp

{

− c2|x− y|2
t

}

. (1.14)

Observe that ( Ref.9 Ch.8)
∫ t

0

p(s, x, y)ds ≍ ω(|x− y|),

where

ω(r) =















1,m = 1,

ln(r − 1) ∨ 1,m = 2,

r2−m,m ≥ 3,

More precisely, for each t > 0, there exists a positive constant C such that for all

x 6= y ∈ R
m with m > 1,

C−1ω(|x− y|) ≤
∫ t

0

p(s, x, y)ds ≤ Cω(|x− y|). (1.15)

So, a function ft(x) defined in (1.13) is finite if and only if
∫

Rm ω(x− y)µ(dy) <∞.

Hence, assumption (1.9) is equivalent to

sup
x

∫

Rm

ω(|x− y|)µ(dy) <∞. (1.16)
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Assume that (1.16) is satisfied. It follows from ( Ref.9 , Theorem 6.6) that condition

lim
t→0

sup
x
ft(x) = 0 (1.17)

ensures that ft(x) =
∫

Rm

(

∫ t

0
p(s, x, y)ds

)

µ(dy) is a characteristic of W -functional.

It follows from (1.14) that (1.17) is equivalent to

lim
t→0

sup
x

∫

Rm

(

∫ t

0

s−m/2 exp
{

− |x− y|
2s

}

ds
)

µ(dy) = 0. (1.18)

Remark 1.1. If µ satisfies (1.18), then µ satisfies (1.16).

Now we deal with signed additive functionals.

Definition 1.3. We say that At(X) is a signed continuous additive functional if

it has the decomposition At(X) = A+
t (X) − A−

t (X), where {A±
t (X), t ≥ 0} are

continuous non negative additive functionals of X.

For a signed measure µ = µ+ − µ− such that

lim
t→0

sup
x

∫

Rm

(

∫ t

0

s−m/2 exp
{

− |x− y|2
2s

}

ds
)

|µ|(dy) = 0, (1.19)

where |µ| is the total variation of µ, we can construct a signed W-functional At =

A+
t −A−

t , where functionals A+
t , A

−
t correspond to µ+, µ− respectively (see Ref.9).

1.3. Proof of Theorem 1.1

Let a be a bounded measurable vector field on R
m.

Definition 1.4. We say that a signed measure µ on R
m is the divergence in a

generalized sense of a if for any test function g ∈ C∞
0 (Rm) :

∫

Rm

〈a(x),∇g(x)〉dx = −
∫

Rm

g(x)µ(dx),

where dx on the left hand side denotes the Lebesgue measure; we denote µ = div(a).

In what follows, we will assume that div(a) exists and satisfies condition (1.7).

Let {gn, n ≥ 1} ⊂ C∞
0 (Rm) be a sequence of non-negative smooth functions with

compact support such that
∫

Rm

gn(x)dx = 1, and gn(x) = 0 for |x| > 1

n
.

Put

an(x) := a ∗ gn(x) =
∫

Rm

a(x− y)gn(y)dy. (1.20)

Note that an ∈ C∞(Rm,Rm),



February 20, 2014 10:20 World Scientific Review Volume - 9.75in x 6.5in Fang˙PilipenkoSW

8 Shizan Fang and Andrey Pilipenko

‖an‖∞ = sup
x

|an(x)| ≤ sup
x

|a(x)| = ‖a‖∞, (1.21)

and an converges to a in all Lp
loc(R

m,Rm). Without loss of generality we may

assume that as n→ +∞,

an(x) → a(x) for almost everywhere x ∈ R
m. (1.22)

Let ϕn
t (x) be the stochastic flow of diffeomorphisms defined by

dϕn
t (x) = dWt + an(ϕ

n
t (x))dt, ϕn

0 (x) = x ∈ R
m. (1.23)

Let γ be the standard Gaussian measure on R
m. We set

Kn
t (x) =

d(ϕn
t )∗γ

dγ
, K̃n

t (x) =
d(ϕn

t )
−1
∗ γ

dγ
.

It is well-known (see Ref.21) that

Kn
t (ϕ

n
t (x)) =

1

K̃n
t (x)

, (1.24)

and

K̃n
t (x) = exp

{

−
∫ t

0

(δan)(ϕ
n
s (x))ds−

∫ t

0

〈ϕn
s (x), ◦dWs〉

}

= exp
{

−
∫ t

0

(δan)(ϕ
n
s (x))ds−

∫ t

0

〈ϕn
s (x), dWs〉 −

mt

2

}

,

(1.25)

where δan(x) = (div an)(x) − 〈an(x), x〉. In,10 the Lp estimates on densities were

established and used to prove the absolute continuity for a limit of push-forward

measures. Here we will use the following result of Gikhman and Skorokhod Ref.18 .

Theorem 1.3. (see Ref.18) Let (X1.F , µ1) be a probability space, X2 be a complete

separable metric space, µ2 be a probability measure on the Borel σ-algebra B(X2).

Assume that a sequence of measurable mappings {Fn : X1 → X2, n ≥ 0} is such

that

1) as n→ +∞, Fn converges to F0 in measure µ1;

2) for all n ≥ 1, the push forward measure (Fn)∗µ1 is absolutely continuous with

respect to µ2;

3) the sequence of the densities
{

ρn := d(Fn)∗µ1

dµ2

, n ≥ 1
}

is uniformly integrable

with respect to µ2.

Then the push forward measure (F0)∗µ1 is absolutely continuous with respect to µ2.

Moreover, if ρn converges to ρ in measure µ2, then ρ = d(F0)∗µ1

dµ2

.
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Let us apply Theorem 1.3 to the sequence {ϕn
t , n ≥ 1}. First of all, we remark

that although in Ref.22 D. Luo assumed that the drift admits the divergence as

a function satisfying some integrability condition, but in the proof of Theorem 3.4

in Ref.,22 he only used Krylov estimate for non-degenerated diffusions, without

involving the divergence. Since an converges to a in all Lp
loc, we can use directly

Theorem 3.4 in Ref.22 to get that for each x ∈ R
m, we have

lim
n→+∞

E

(

sup
t∈[0,T ]

|ϕn
t (x)− ϕt(x)|

)

= 0. (1.26)

Applying Fubini’s theorem and choosing a subsequence if necessary we get

P
(

{

ω; for γ almost surely x, lim
n→∞

sup
t∈[0,T ]

|ϕn
t (x)− ϕt(x)| = 0

}

)

= 1. (1.27)

It follows that for almost surely ω, for all t ∈ [0, T ], ϕn
t converges to ϕt in measure

with respect to γ.

Next, we will establish the uniform integrability of {Kn
t ; n ≥ 1}.

Proposition 1.2. We have

sup
n≥1

E

(

sup
t∈[0,T ]

∫

Rm

Kn
t (x)| lnKn

t (x)|γ(dx)
)

< +∞. (1.28)

Proof. We have
∫

Rm

Kn
t (x)| ln(Kn

t (x))| dγ(x) =
∫

Rm

| ln(Kn
t (ϕ

n
t (x)))| dγ(x).

But by (1.24) and (1.25), we have

ln(Kn
t (ϕ

n
t (x))) =

∫ t

0

(div(an)(ϕ
n
s (x)) ds−

∫ t

0

〈an(ϕn
s (x)), ϕ

n
s (x)〉 ds

+

∫ t

0

〈ϕn
s (x), dWs〉+

mt

2
.

Let T > 0 be fixed; then

E

(

sup
t∈[0,T ]

∫

Rm

Kn
t (x)| lnKn

t (x)|γ(dx)
)

≤
∫

Rm

[

E
(

sup
t∈[0,T ]

|
∫ t

0

(div an)(ϕ
n
s (x))ds|

)

+ E
(

sup
t∈[0,T ]

|
∫ t

0

〈ϕn
s (x), dWs〉|

)

+ E
(

∫ T

0

|an(ϕn
s (x))| |ϕn

s (x)|ds
)

+mT
]

dγ(x).

(1.29)
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By (1.21), it is well-known that there exists a constant c0 > 0 independent of n

such that

sup
n

E

(

sup
t∈[0,T ]

|ϕn
t (x)|

)

≤ c0(1 + |x|), (1.30)

Using Burkholder’s inequality and (1.30), we also have

sup
n

E

(

sup
t∈[0,T ]

|
∫ t

0

〈ϕn
s (x), dWs〉|

)

≤ c0(1 + |x|). (1.31)

Let us estimate E

(

supt∈[0,T ] |
∫ t

0
(div an)(ϕ

n
s (x))ds|

)

.

Denote

µ(dy) = (div a)(dy), µn(dy) = div an(y)dy.

We have

div(an) = div(a ∗ gn) = div a ∗ gn = µ ∗ gn.
Let

An(t) =

∫ t

0

(div an)(ϕ
n
s (x))ds;

then An is a signed additive functional of ϕn. Let pn(t, x, y) be the transition

density of ω → ϕn
t (x, ω). By (1.14), there are two constants c1, c2 > 0 independent

of n such that

e−|x−y|2/c22t

c1tm/2
≤ pn(t, x, y) ≤

c1e
−c2|x−y|2/2t

tm/2
.

So there exists a constant β > 0 independent of n such that
∫ t

0

pn(s, x, y) ds ≤ β

∫ t/c2

0

e−|x−y|2/2s

sm/2
ds.

Let

kt(r) =

∫ t/c2

0

e−r2/2s

sm/2
ds.

It follows that

E(|An(t)|) ≤
∫

Rm

∫ t

0

pn(s, x, y)| div an(y)| dsdy

≤ β

∫

Rm

kt(|x− y|)|µn|(dy).
(1.32)

We have

| div(an)(y)| ≤
∫

Rm

gn(y − z) |µ|(dz),
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so that

∫

Rm

kt(|x− y|)|µn(y)| dy ≤
∫

Rm×Rm

kt(|x− y|)gn(y − z) |µ|(dz)dy

=

∫

Rm

(

∫

Rm

kt(|x+ z − y|)gn(y) |µ|(dz)
)

dy ≤ σ(t),

where

σ(t) = sup
x,y

∫

Rm

kt(|x+ z − y|) |µ|(dz).

Then by condition (1.7), CT := supt∈[0,T ] σ(t) < +∞. Now combining this with

(1.30) and (1.31), and by (1.29), we finally obtained (1.28). �

Now by Fatou’s lemma,

E

(

lim
n→∞

sup
t∈[0,T ]

∫

Rm

Kn
t (x)| lnKn

t (x)|ν(dx)
)

≤ lim
n→∞

E

(

sup
t∈[0,T ]

∫

Rm

Kn
t (x)| lnKn

t (x)|ν(dx)
)

<∞.

So, for almost surely ω :

lim
n→∞

sup
t∈[0,T ]

∫

Rm

Kn
t (x)| lnKn

t (x)|ν(dx) <∞.

Hence for almost surely ω, there exists a random subsequence {nk} such that

sup
k

sup
t∈[0,T ]

∫

Rm

Knk

t (x)| lnKnk

t (x)|ν(dx) <∞. (1.33)

Now we can apply Theorem 1.3 to conclude that for almost surely ω, and for all

t ∈ [0, T ], the push-forward measure (ϕt)∗γ is absolutely continuous with respect

to γ. Actually it remains to prove that (ϕt)∗γ is equivalent to γ.

Proposition 1.3. The map x → ϕt(x) admits an inverse map x → ψt(x), which

is given by the reserved SDE

dψs(x) = dW t
s − a(ψs(x)) ds, ψ0(x) = x, s ∈ [0, t]. (1.34)

Proof. For each n, the inverse map of x→ ϕn
t (x) is given by ψn

t where ψn
s solves

dψn
s (x) = dW t

s − a(ψn
s (x)) ds, ψn

0 (x) = x, s ∈ [0, t].

In the same way, we have

lim
n→+∞

E

(

sup
s∈[0,t]

|ψn
s (x)− ψs(x)|

)

= 0.

In order to prove that ψt is the inverse map of ϕt, we will use the following result
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Lemma 1.1. Let X,Y be complete, separable metric spaces, ν be a finite measure

on X.

Assume that a sequence of X-valued random elements {ξn, n ≥ 0} and a sequence

of measurable functions fn : X → Y are such that

1) ξn → ξ0 in probability, as n→ ∞;

2) fn → f0 in measure with respect to ν, as n→ ∞;

3) the push forward measure (ξn)∗P is absolutely continuous with respect to ν;

4) the sequence of densities
{d(ξn)∗P

dν
, n ≥ 1

}

is uniformly integrable with respect

to ν.

Then as n→ +∞

fn(ξn) → f0(ξ0) in probability.

We refer to Corollary 9.9.11 in Ref.,5 as well as to Lemma 2 in Ref.20 for a proof.

�

Proof (continued) of Proposition 1.3. For almost surely ω, up to a subsequence,

the family of densities {Kn
t ; n ≥ 1} is uniformly integrable. In Lemma 1.1, we take

X = Y = R
m, ξn = ϕn

t , fn = ψn
t . Then ϕ

n
t (ψ

n
t ) converges to ϕt(ψt) in probability.

So that ϕt ◦ ψt = Id. In the same way, we prove that ψt ◦ ϕt = Id. �

End of the proof of Theorem 1.1. Let At be a signed additive functional of ϕt

that corresponds to the measure µ = div a. Then using Theorem 1.2, similarly to

the proof of Lemma 3 in Ref.3 , we get
∫ t

0

div an(ϕ
n
s (x))ds→ At in L

2, as n→ ∞.

Using again Lemma 1.1, we have for s fixed, an ◦ϕs converges to a ◦ϕs in measure.

Therefore by expression

K̃n
t (ω, x) = exp

{

−
∫ t

0

(div an)(ϕ
n
s (x)) ds+

∫ t

0

〈an(ϕs(x)), ϕ
n
s (x)〉 ds

−
∫ t

0

〈ϕn
s (x), dWs〉 −

mt

2

}

,

when n→ +∞, Kn
t converges in measure P ⊗ γ to

exp
{

−At +

∫ t

0

〈a(ϕs(x)), ϕs(x)〉ds−
∫ t

0

〈ϕs(x), dWs〉 −
mt

2

}

. (1.35)

The proof of Theorem 1.1 is completed. �

1.4. Examples

In this section, we will construct examples of vector fields a satisfying the condition

in Theorem 1.1.
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a) Examples of W -functionals.

Let {X(t), t ≥ 0} be a Markov process in R
m with transition density satisfying

condition (1.14). Let D1, . . . , Dk be bounded domains of Rm with C1 boundary,

and σ∂Dj
be the surface measure on ∂Dj .

Let µ be a signed measure defined by

µ(dx) = b0(x)dx+

k
∑

j=1

bk(x)σ∂Dj
(dx), (1.36)

where b0, . . . , bk are bounded measurable functions. Then conditions (1.16) and

(1.18) are satisfied. So the additive functional

A(t) =

∫ t

0

dµ(X(s))

dx
ds

is well-defined.

Remark that for m = 1, any finite measure µ satisfies condition (1.18). Indeed,

sup
x

∫

Rm

∫ t

0

s−1/2 exp
{

− |x− y|2
s

}

dsµ(dy) ≤ µ(R)

∫ t

0

s−1/2ds→ 0, t→ 0 + .

b) Functions of bounded variation.

Assume that derivatives ∂ai

∂xk
considered in a generalized sense are measures. Such

function a = (a1, . . . ,am) are called functions of bounded variation (BV). If this

measures are of the form (1.36) with bounded bj , then a satisfies condition (1.7).

Let now g ∈ C1(Rm,Rm), D be a bounded domain with C1 boundary. Then a(x) =

g(x)1{x∈D} also satisfies condition (1.7) since the generalized divergence div a equals

to

(div g(x))1{x∈D}dx+ 〈g(x), n(x)〉σ∂D(dx),

where n(x) is the normal vector at x ∈ ∂D (see Ref.11).

Linear combinations of the form

b0(x) +
k
∑

j=1

gj(x)1x∈Dj

also satisfy condition (1.7), if b0 ∈ Lip, gj ∈ C1, Dj are bounded with C1 boundary.

It should be noted that if a = (a1, . . . , am) is a vector field of bounded variation

and µk,j =
∂ak

∂xj
satisfies (1.19) for all k, j, it has been proved in Ref.3

P
(

ϕt(·) ∈ ∩p≥1W
1
p,loc(R

m,Rm), t ≥ 0
)

= 1.

Moreover, the Sobolev derivative is a solution of the equation

∇ϕt = I +

∫ t

0

Āϕ(ds)∇ϕs(x), t ≥ 0, (1.37)
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where

Āϕ(t) =

∫ t

0

∇a(ϕs)ds, t ≥ 0 (1.38)

was defined in section 1.2. It follows from (1.37) that a.s.

det∇ϕt(x) = exp{tr(Āϕ(t))} > 0.

Hence it follows from Ch. 9.2 in Ref.6 the absolute continuity (ϕt)∗γ with respect

to γ.

c) Example of a /∈ BV with div a = 0.

Functions of bounded variation is not unique example satisfying condition (1.7).

For m = 2, let

a(x1, x2) = (g(x1 − x2), g(x2 − x1)),

where g is only measurable, bounded function. Then div a = 0 in the generalized

sense, but partial derivatives ∂a
∂xk

may not be measures.

1.5. Generalizations and localization.

In this section, we give briefly some generalization of Theorem 1.1.

Assume now that the vector field a is locally bounded and for any x ∈ R
m. Assume

that SDE (1.2) is conservative in the sense of Kunita21 , that is, if τ(x) is the

life-time of ϕt(x), then

P ({ω; τ(x) = +∞}) = 1.

For example, this is the case if a has a linear growth.

Let {fn; n ≥ 1} be a sequence of functions in C∞
0 (Rm) such that

sup
n,x

(|fn(x)|+ |∇fn(x)|) <∞; fn(x) = 1, for |x| ≤ n.

Denote

an(x) = a(x)fn(x),

and

τn(x) = inf{t ≥ 0 : |ϕt(x)| ≥ n}.

Let ϕn
t be the solution to SDE (1.2) with an instead of a. Observe that an is a

bounded vector field on R
m. By uniqueness of solutions, almost surely, for t ≤ τn(x),

ϕt(x) = ϕn
t (x). So for any bounded Borel function h : Rm → R,

∫

{τn(x)≥t}

h(ϕt(x)) dγ(x) =

∫

{τn(x)≥t}

h(ϕn
t (x)) dγ(x). (1.39)
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Observe that (ϕn
t )∗(1{τn(x)≥t}γ) is absolutely continuous with respect to (ϕn

t )∗γ

and for almost surely ω, (ϕt)∗(1{τn(x)≥t}γ) converges to (ϕt)∗γ weakly as n→ +∞
since τn(x) → +∞, n→ ∞.

Assume that for each n ≥ 1

lim
t→0

sup
|x|≤n

∫

|y|≤n

∫ t

0

s−m/2 exp
{

− |x− y|2
2s

}

ds |µ|(dy) = 0, (1.40)

where µ = div a. Then for any n, the vector field an satisfies condition (1.7) in

Theorem 1.1; therefore the push forward measure (ϕn
t )∗γ is absolutely continuous

with respect to γ. Now let E be a Borel subset of Rm such that γ(E) = 0; then by

(1.39), then

∫

{τn(x)≥t}

1E(ϕt(x)) dγ(x) =

∫

{τn(x)≥t}

1E(ϕ
n
t (x)) dγ(x) ≤ [(ϕn

t )∗γ](E) = 0.

Letting n → +∞ yields [(ϕt)∗γ](E) = 0. in other words, (ϕt)∗γ is absolutely

continuous with respect to γ.

Note also that in this case

Aϕn

n (t) = Aϕm

m (t), t ∈ [0, τn(x)] a.s.

for all m ≥ n. Therefore we can define Aϕ(t) = limn→∞Aϕn

n (t) and expression (1.8)

also holds true if the reverse SDE (1.34) is conservative. �
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