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Let (X t ) t≥0 be a Brownian flow on R m , that is, W t = X t -X 0 is a standard Brownian motion; then for a function u ∈ C 2 (R m ), Itô formula says that

u(X t ) -u(X 0 ) = t 0 ∇u(X s ) • dW s + t 0 1 2 ∆u(X s ) ds.
(1.1)

In a celebrated paper [START_REF] Fukushima | A decomposition of additive functionals of finite energy[END_REF] M. Fukushima extended a C 2 function u in (1.1) to a function u in the Sobolev space H 1 (R m ); in order to reach this end, he used an additive functional N

[u] t of X • to express the last term in (1.1), moreover he showed that N

[u] t /t tends to [START_REF] Pilipenko | Transport equation and Cauchy problem for BV vector fields[END_REF] 2 ∆u in distribution sense. In this work, we will be concerned with the stochastic differential equation (SDE) on R m dϕ t (x) = dW t + a(ϕ t (x))dt, ϕ 0 (x) = x ∈ R m , (

where a : R m → R m is a measurable map.

The SDE (1.2), due to the non-degenerated noise W t , makes illuminating difference with ordinary differential equations (ODE). In the context of ODE, the existence of a flow of quasi-invariant measurable maps associated to a vector field a on R m belonging to Sobolev space, having a bounded divergence div(a), was established in a seminal paper by Di Perna and Lions in Ref. [START_REF] Perna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] ; their result was extended later in Ref. [START_REF] Pilipenko | Transport equation and Cauchy problem for BV vector fields[END_REF] by L. Ambrosio to a vector field having only bounded variation regularity and bounded divergence (see also Ref. [START_REF] Cipriano | Flows associated with irregular R d -vector fields[END_REF] ).

There are various considerations to SDE (1.2). When a is bounded, it was proved by Veretennikov in Ref. [START_REF] Veretennikov | On strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF] that there exists a unique strong solution ϕ t (x) to SDE (1.2). Moreover if a is Hölderian, it was proved in Ref. [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF] as well as in Ref. [START_REF] Zhang | Stochastic flows of SDEs with irregular coefficients and stochastic transport equations[END_REF] that x → ϕ t (x) is a flow of diffeomorphisms. Recently, it was proved in Ref. [START_REF] Aryasova | On differentiability of stochastic flow for multidimensional SDE with discontinuous drift[END_REF] that if a is of bounded variation, and µ k,j = ∂a k ∂xj are signed measures satisfying (1.19) for all k, j,, then the solution ϕ t to SDE (1.2) is in Sobolev space:

ϕ t (•) ∈ ∩ p≥1 W 1 p,loc (R m , R m ), t ≥ 0.
Moreover, the Sobolev derivative ∇ϕ t is a solution to the equation

∇ϕ t = I + t 0 Āϕ (ds)∇ϕ s (x), t ≥ 0,
where Āϕ is the additive functional associated to ∇a.

In Ref. [START_REF] Zhang | Strong solutions of SDES with singular drift and Sobolev diffusion coefficients[END_REF] , X. Zhang allowed a to be time-dependent, and established the existence of strong solutions under integrability conditions on the drift a, while in Ref, [START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF] Krylov and Röckner considered such a SDE on a domain of R m and established the existence of strong solutions. In another direction, in Ref. [START_REF] Bass | Brownian motion with singular drift[END_REF] Bass and Chen took the point of view of additive functionals

A i t = t 0 a i (ϕ s (x)) ds,
where a i denotes the ith-component of a, to generalize the drift a; a i (x)dx seen as the Revuz measure associated to A i t , was extended to the Kato class K α for some α > 0, where K α is the class of signed measures on R m defined by

K α = π(dx); lim ε→0 sup x∈R m B(x,ε) |x -y| α |π|(dy) = 0 (1.3)
where |π| denotes the total variation of π. More precisely, they proved that if the Revuz measures π 1 , . . . , π m are in K m-1 with m ≥ 3, then with help of associated additive functionals A t = (A 1 t , . . . , A m t ), the SDE

X t = x + W t + A t
admits a unique weak solution. The interest of considering π 1 , . . . , π m in Kato class is they are not necessarily absolutely continuous with respect to the Lebesgue measures. In the case where a = ∇ log ρ, by considering

E(u, v) = R m ∇u • ∇v ρ(x)dx,
the theory of Dirichlet forms provides a powerful tool, which allows ρ to be only locally integrable (see Refs. [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF][START_REF] Fukushima | On a stochastice calculus related to Dirichlet forms and distorted Brownian motion[END_REF] ).

In this work, we are interested in push-forward measures under the map x → ϕ t (x) defined by SDE (1.2). It is well-known that if a is smooth and bounded, then x → ϕ t (x) is a diffeomorphism of R m and the inverse flow ϕ -1 t can be expressed by SDE with reversed Brownian motion. More precisely, for t > 0 given, let W t s = W (ts) -W (t), and ψ t s solve the SDE

dψ t s (x) = -a(ϕ t s (x))dt + dW t s , s ∈ [0, t], ψ t 0 (x) = x; (1.4) then ϕ -1 t = ψ t t .
Let γ be the standard Gaussian measure on R m . By Kunita 21 the push forward measure (ϕ -1 t ) * γ admits the density Kt with respect to γ given by

Kt (x) = exp - t 0 ϕ s (x), •dW s - t 0 δ(a)(ϕ s (x)) ds (1.5) 
where •dW s means the stochastic integral in Stratanovich's sense, and δ(a) is the divergence with respect to γ, that is,

R m ∇f, a dγ = R f δ(a) dγ for all f ∈ C 1 0 (R m ).
We have δ(a)(x) = a, xdiv(a) so that

t 0 δ(a)(ϕ s (x)) ds = t 0 a(ϕ s (x)), ϕ s (x) ds - t 0 div(a)(ϕ s (x)) ds. (1.6)
Here is the main result of this paper Theorem 1.1. Let a : R m → R m be a bounded measurable map. Assume that the divergence div(a) in generalized sense is a signed measure µ satisfying the condition

lim t→0 sup x∈R m R m t 0 s -m/2 e -|x-y| 2 /(2s) ds |µ|(dy) = 0, (1.7)
where |µ| denotes the total variation of µ. Let ϕ t be given by SDE (1.2); then almost surely the push forward measure (ϕ t ) * γ is equivalent to γ, and the density Kt of the push forward measure (ϕ -1 t ) * γ with respect to γ has the expression

Kt (x) = exp -A t + t 0 a(ϕ s (x)), ϕ s (x) ds - t 0 ϕ s (x), dW s - mt 2 , (1.8) 
where A t is the additive functional associated to div(a). Shizan Fang and Andrey Pilipenko

Notice that if f is a positive function in the Kato class K m-2 , then (see Ref. [START_REF] Bass | Brownian motion with singular drift[END_REF] ),

lim t→0 sup x∈R m E t 0 f (W s + x) ds = 0,
that is nothing but (1.7) for µ(dy) = f (y)dy.

The organization of the paper is as follows. In section 1.2, we will recall and collect some facts concerning continuous additive functionals. Section 1.3 is devoted to the proof of Theorem 1.1. In section 1.4, we will consider some examples of vector fields a whose divergence div(a) is a signed measure, but is not absolutely to Lebesgue measure. In section 1.5, we will discuss briefly generalizations of Theorem 1.1.

Continuous additive functionals

In this section, we recall some definitions and facts about continuous additive functionals of Markov processes. There are a lot of publications in the litterature on this topic, see for example Refs. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF][START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF][START_REF] Gihman | The theory of stochastic processes[END_REF][START_REF] Gikhman | The theory of stochastic processes[END_REF][START_REF] Revuz | Continuous martingales and Brownian motion[END_REF][START_REF] Uemura | Positive continuous additive functionals of mutidimensional Brownian motion and the Brownian local time[END_REF] . Here we will follow Chapters 6 -8 in Ref. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF] Chapter II, section 6 in Ref. [START_REF] Gikhman | The theory of stochastic processes[END_REF] . We don't need the theory on the whole generality; so some assumptions, statements or definitions are simplified in our exposition.

Let {X t , t ≥ 0} be a continuous R m -valued homogeneous Markov processes adapted to a filtration {F t , t ≥ 0} with infinite life-time, P x be the distribution of

X • given X 0 = x. Denote N t = σ(X s , s ∈ [0, t]). Definition 1.1. A non negative additive functional of X is a R + -valued, N t - adapted process A = {A t (X), t ≥ 0} such that 1) it is almost surely continuous in t and A 0 (X) = 0; 2) it is additive, i.e. ∀t ≥ 0 ∀s ≥ 0 ∀x ∈ R m : A t+s (X) = A s (X) + A t (θ s X), P x -a.s.,
where θ s is the shift operator.

Following the terminology of Dynkin 9 , we introduce the notion of W -functional.

Definition 1.2. A non negative continuous additive functional

A t (X) is called W - functional if ∀t ≥ 0 : sup x E x (A t (X)) < ∞.
(1.9)

The function

f t (x) = E x (A t (X)) is called the characteristics of A t (X).
Here is an obvious example

Example 1.1. Let b : R m → [0, ∞) be a bounded measurable function. Then A t (X) := t 0 b(X s )ds (1.10) is a W -functional of X.
Assume that for any t > 0, X t has a transition density p(t, x, y). Then the characteristics of A t (X) defined in (1.10) is equal to

f t (x) = E x t 0 b(X s )ds = t 0 R m b(y)p(s, x, y)dyds = R m t 0 p(s, x, y)ds b(y)dy.
(

1.11)

There are a close relations between convergence of W -functionals and their characteristics. The first one is the following Proposition 1.1. (see Ref. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF] , Theorem 6.3) A W -functional is defined by its characteristics uniquely up to the equivalence.

The second one concerns the convergence, that is,

Theorem 1.2. (Ref. 9 , Theorem 6.4, Lemma 6.1 ′ ) Let {A (n) t (X)} be a sequence of W -functionals of X and f (n) t (x) = E x A (n) t (X) be their characteristics. Assume that a function f t (x) is such that for each t > 0 lim n→∞ sup 0≤s≤t sup x∈ R m |f (n) s (x) -f s (x)| = 0.
(1.12)

Then f t (x) is the characteristics of a W -functional A t (X). Moreover, for each t > 0, lim n→+∞ E x (|A t (X) -A (n) t (X)| 2 ) = 0,
and in probability,

lim n→+∞ sup s∈[0,t] |A (n) s (X) -A s (X)| = 0. Example 1.2. Let {X t = B t , t ≥ 0} be a one-dimensional Brownian motion; set A (n) t := t 0 2n1 B(s)∈ -1 n , 1 n ds.
Then a function b n in expression (1.10) is equal to 2n1 {|x|≤1/n} and converges to the Dirac mass δ 0 at 0. It is easy to verify that (1.12) holds with

f t (x) = R t 0 p(s, x, y)dsδ 0 (dy) = t 0 p(s, x, 0)ds, where p(s, x, y) = 1 √ 2πs exp |x -y| 2 2s
is the transition density of a Brownian motion. The limiting additive functional is the local time of a Brownian motion at 0. Now let us write (1.11) as

f t (x) = R d t 0 p(s, x, y)ds µ(dy), (1.13) 
with µ(dy) = a(y)dy. Note that representation (1.13) makes a sense even µ is not absolutely continuous with respect to Lebesgue measure.

Similarly to Example 1.2, sometimes it is possible to assign a W -functional to a measure. For example, assume that there exists a sequence of non-negative bounded, measurable functions {b n , n ≥ 1} such that for t > 0

lim n→0 sup x R m t 0 p(s, x, y)ds (µ n (dy) -µ(dy)) = 0,
where µ n (dy) = b n (y)dy. Then a function f t (x) defined in (1.13) is the characteristic of a W -functional. We will formally denote it by

A t := t 0 dµ dy (X s )ds.
If there are some a priori estimates on the transition density of X t , then using the described approach it is possible to characterize a class of measures corresponding to its W -functionals. See for example Ref. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF] , Ch.8 for W -functionals of a Brownian motion.

Let's come back to SDE (1.2). It is known in Ref. [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] that the transition density of ϕ t (x) exists and there are constants c 1 , c 2 > 0 depending only on sup x |a(x)| such that ∀t ∈ (0, T ],

c -1 1 t -m/2 exp - |x -y| 2 c 2 t ≤ p(t, x, y) ≤ c 1 t -m/2 exp - c 2 |x -y| 2 t . (1.14)
Observe that ( Ref. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF] Ch.8)

t 0 p(s, x, y)ds ≍ ω(|x -y|),
where

ω(r) =        1, m = 1, ln(r -1) ∨ 1, m = 2, r 2-m , m ≥ 3,
More precisely, for each t > 0, there exists a positive constant C such that for all x = y ∈ R m with m > 1, 

C -1 ω(|x -y|) ≤ t 0 p(s, x, y)ds ≤ Cω(|x -y|). ( 1 
(X) = A + t (X) -A - t (X)
, where {A ± t (X), t ≥ 0} are continuous non negative additive functionals of X.

For a signed measure µ = µ + -µ -such that lim t→0 sup x R m t 0 s -m/2 exp - |x -y| 2 2s ds |µ|(dy) = 0, (1.19) 
where |µ| is the total variation of µ, we can construct a signed W-functional A t = A + t -A - t , where functionals A + t , A - t correspond to µ + , µ -respectively (see Ref. [START_REF] Dynkin | Markov Processes. Fizmatlit[END_REF] ).

Proof of Theorem 1.1

Let a be a bounded measurable vector field on R m .

Definition 1.4. We say that a signed measure µ on R m is the divergence in a generalized sense of a if for any test function

g ∈ C ∞ 0 (R m ) : R m a(x), ∇g(x) dx = - R m g(x)µ(dx),
where dx on the left hand side denotes the Lebesgue measure; we denote µ = div(a).

In what follows, we will assume that div(a) exists and satisfies condition (1.7).

Let {g n , n ≥ 1} ⊂ C ∞ 0 (R m ) be a sequence of non-negative smooth functions with compact support such that R m g n (x)dx = 1, and g n (x) = 0 for |x| > 1 n .

Put

a n (x) := a * g n (x) = R m a(x -y)g n (y)dy. (1.20) Note that a n ∈ C ∞ (R m , R m ), Shizan Fang and Andrey Pilipenko a n ∞ = sup x |a n (x)| ≤ sup x |a(x)| = a ∞ , (1.21) 
and a n converges to a in all L p loc (R m , R m ). Without loss of generality we may assume that as n → +∞, a n (x) → a(x) for almost everywhere x ∈ R m .

(1.22)

Let ϕ n t (x) be the stochastic flow of diffeomorphisms defined by

dϕ n t (x) = dW t + a n (ϕ n t (x))dt, ϕ n 0 (x) = x ∈ R m . (1.23)
Let γ be the standard Gaussian measure on R m . We set

K n t (x) = d(ϕ n t ) * γ dγ , Kn t (x) = d(ϕ n t ) -1 * γ dγ .
It is well-known (see Ref. [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] ) that

K n t (ϕ n t (x)) = 1 Kn t (x) , (1.24) 
and

Kn t (x) = exp - t 0 (δa n )(ϕ n s (x))ds - t 0 ϕ n s (x), •dW s = exp - t 0 (δa n )(ϕ n s (x))ds - t 0 ϕ n s (x), dW s - mt 2 , (1.25) 
where δa n (x) = (div a n )(x)a n (x), x . In, 10 the L p estimates on densities were established and used to prove the absolute continuity for a limit of push-forward measures. Here we will use the following result of Gikhman and Skorokhod Ref. [START_REF] Gihman | Densities of probability measures in function spaces. (Russian) Uspehi Mat. Nauk[END_REF] .

Theorem 1.3. (see Ref. [START_REF] Gihman | Densities of probability measures in function spaces. (Russian) Uspehi Mat. Nauk[END_REF] ) Let (X 1 .F, µ 1 ) be a probability space, X 2 be a complete separable metric space, µ 2 be a probability measure on the Borel σ-algebra B(X 2 ).

Assume that a sequence of measurable mappings {F n :

X 1 → X 2 , n ≥ 0} is such that 1) as n → +∞, F n converges to F 0 in measure µ 1 ;
2) for all n ≥ 1, the push forward measure (F n ) * µ 1 is absolutely continuous with respect to µ 2 ;

3) the sequence of the densities ρ n := d(Fn) * µ1 dµ2

, n ≥ 1 is uniformly integrable with respect to µ 2 . Then the push forward measure (F 0 ) * µ 1 is absolutely continuous with respect to µ 2 . Moreover, if ρ n converges to ρ in measure µ 2 , then ρ = d(F0) * µ1 dµ2 .

Let us apply Theorem 1.3 to the sequence {ϕ n t , n ≥ 1}. First of all, we remark that although in Ref. [START_REF] Luo | Absolute continuity under flows generated by SDE with measurable drift coefficients[END_REF] D. Luo assumed that the drift admits the divergence as a function satisfying some integrability condition, but in the proof of Theorem 3.4 in Ref., [START_REF] Luo | Absolute continuity under flows generated by SDE with measurable drift coefficients[END_REF] he only used Krylov estimate for non-degenerated diffusions, without involving the divergence. Since a n converges to a in all L p loc , we can use directly Theorem 3.4 in Ref. [START_REF] Luo | Absolute continuity under flows generated by SDE with measurable drift coefficients[END_REF] to get that for each x ∈ R m , we have 

lim n→+∞ E sup t∈[0,T ] |ϕ n t (x) -ϕ t (x)| = 0. ( 1 
|ϕ n t (x) -ϕ t (x)| = 0 = 1. (1.27)
It follows that for almost surely ω, for all t ∈ [0, T ], ϕ n t converges to ϕ t in measure with respect to γ.

Next, we will establish the uniform integrability of {K n t ; n ≥ 1}.

Proposition 1.2. We have

sup n≥1 E sup t∈[0,T ] R m K n t (x)| ln K n t (x)|γ(dx) < +∞.
(1.28)

Proof. We have

R m K n t (x)| ln(K n t (x))| dγ(x) = R m | ln(K n t (ϕ n t (x)))| dγ(x).
But by (1.24) and (1.25), we have

ln(K n t (ϕ n t (x))) = t 0 (div(a n )(ϕ n s (x)) ds - t 0 a n (ϕ n s (x)), ϕ n s (x) ds + t 0 ϕ n s (x), dW s + mt 2 .
Let T > 0 be fixed; then

E sup t∈[0,T ] R m K n t (x)| ln K n t (x)|γ(dx) ≤ R m E sup t∈[0,T ] | t 0 (div a n )(ϕ n s (x))ds| + E sup t∈[0,T ] | t 0 ϕ n s (x), dW s | + E T 0 |a n (ϕ n s (x))| |ϕ n s (x)|ds + mT dγ(x).
(1.29) Shizan Fang and Andrey Pilipenko By (1.21), it is well-known that there exists a constant c 0 > 0 independent of n such that

sup n E sup t∈[0,T ] |ϕ n t (x)| ≤ c 0 (1 + |x|), (1.30) 
Using Burkholder's inequality and (1.30), we also have

sup n E sup t∈[0,T ] | t 0 ϕ n s (x), dW s | ≤ c 0 (1 + |x|). (1.31) Let us estimate E sup t∈[0,T ] | t 0 (div a n )(ϕ n s (x))ds| . Denote µ(dy) = (div a)(dy), µ n (dy) = div a n (y)dy. We have div(a n ) = div(a * g n ) = div a * g n = µ * g n . Let A n (t) = t 0 (div a n )(ϕ n s (x))ds;
then A n is a signed additive functional of ϕ n . Let p n (t, x, y) be the transition density of ω → ϕ n t (x, ω). By (1.14), there are two constants c 1 , c 2 > 0 independent of n such that

e -|x-y| 2 /c22t c 1 t m/2 ≤ p n (t, x, y) ≤ c 1 e -c2|x-y| 2 /2t t m/2 .
So there exists a constant β > 0 independent of n such that

t 0 p n (s, x, y) ds ≤ β t/c2 0 e -|x-y| 2 /2s s m/2 ds. Let k t (r) = t/c2 0 e -r 2 /2s s m/2 ds.
It follows that

E(|A n (t)|) ≤ R m t 0 p n (s, x, y)| div a n (y)| dsdy ≤ β R m k t (|x -y|)|µ n |(dy).
(1.32)

We have

| div(a n )(y)| ≤ R m g n (y -z) |µ|(dz), so that R m k t (|x -y|)|µ n (y)| dy ≤ R m ×R m k t (|x -y|)g n (y -z) |µ|(dz)dy = R m R m k t (|x + z -y|)g n (y) |µ|(dz) dy ≤ σ(t),
where

σ(t) = sup x,y R m k t (|x + z -y|) |µ|(dz).
Then by condition (1.7), C T := sup t∈[0,T ] σ(t) < +∞. Now combining this with (1.30) and (1.31), and by (1.29), we finally obtained (1.28).

Now by Fatou's lemma,

E lim n→∞ sup t∈[0,T ] R m K n t (x)| ln K n t (x)|ν(dx) ≤ lim n→∞ E sup t∈[0,T ] R m K n t (x)| ln K n t (x)|ν(dx) < ∞.
So, for almost surely ω :

lim n→∞ sup t∈[0,T ] R m K n t (x)| ln K n t (x)|ν(dx) < ∞.
Hence for almost surely ω, there exists a random subsequence {n k } such that

sup k sup t∈[0,T ] R m K n k t (x)| ln K n k t (x)|ν(dx) < ∞. (1.33) 
Now we can apply Theorem 1.3 to conclude that for almost surely ω, and for all t ∈ [0, T ], the push-forward measure (ϕ t ) * γ is absolutely continuous with respect to γ. Actually it remains to prove that (ϕ t ) * γ is equivalent to γ.

Proposition 1.3. The map x → ϕ t (x) admits an inverse map x → ψ t (x), which is given by the reserved SDE

dψ s (x) = dW t s -a(ψ s (x)) ds, ψ 0 (x) = x, s ∈ [0, t]. (1.34) 
Proof. For each n, the inverse map of x → ϕ n t (x) is given by ψ n t where ψ n s solves

dψ n s (x) = dW t s -a(ψ n s (x)) ds, ψ n 0 (x) = x, s ∈ [0, t].
In the same way, we have

lim n→+∞ E sup s∈[0,t] |ψ n s (x) -ψ s (x)| = 0.
In order to prove that ψ t is the inverse map of ϕ t , we will use the following result Lemma 1.1. Let X, Y be complete, separable metric spaces, ν be a finite measure on X.

Assume that a sequence of X-valued random elements {ξ n , n ≥ 0} and a sequence of measurable functions f n : X → Y are such that 1) ξ n → ξ 0 in probability, as n → ∞;

2) f n → f 0 in measure with respect to ν, as n → ∞;

3) the push forward measure (ξ n ) * P is absolutely continuous with respect to ν;

4) the sequence of densities d(ξ n ) * P dν , n ≥ 1 is uniformly integrable with respect to ν. Then as n → +∞

f n (ξ n ) → f 0 (ξ 0 ) in probability.
We refer to Corollary 9.9.11 in Ref., [START_REF] Bogachev | Measure Theory[END_REF] as well as to Lemma 2 in Ref. [START_REF] Kulik | Nonlinear transformations of smooth measures on infinite-dimensional spaces[END_REF] for a proof.

Proof (continued) of Proposition 1.3. For almost surely ω, up to a subsequence, the family of densities {K n t ; n ≥ 1} is uniformly integrable. In Lemma 1.1, we take

X = Y = R m , ξ n = ϕ n t , f n = ψ n t .
Then ϕ n t (ψ n t ) converges to ϕ t (ψ t ) in probability. So that ϕ t • ψ t = Id. In the same way, we prove that ψ t • ϕ t = Id.

End of the proof of Theorem 1.1. Let A t be a signed additive functional of ϕ t that corresponds to the measure µ = div a. Then using Theorem 1.2, similarly to the proof of Lemma 3 in Ref. 

A(t) = t 0 dµ(X(s)) dx ds is well-defined.
Remark that for m = 1, any finite measure µ satisfies condition (1.18). Indeed,

sup x R m t 0 s -1/2 exp - |x -y| 2 s dsµ(dy) ≤ µ(R) t 0 s -1/2 ds → 0, t → 0 + .
b) Functions of bounded variation. Assume that derivatives ∂ai ∂x k considered in a generalized sense are measures. Such function a = (a 1 , . . . , a m ) are called functions of bounded variation (BV). If this measures are of the form (1.36) with bounded b j , then a satisfies condition (1.7). Let now g ∈ C 1 (R m , R m ), D be a bounded domain with C 1 boundary. Then a(x) = g(x)1 {x∈D} also satisfies condition (1.7) since the generalized divergence div a equals to (div g(x))1 {x∈D} dx + g(x), n(x) σ ∂D (dx), where n(x) is the normal vector at x ∈ ∂D (see Ref. [START_REF] Federer | Geometric measure theory[END_REF] ). Linear combinations of the form

b 0 (x) + k j=1 g j (x)1 x∈Dj also satisfy condition (1.7), if b 0 ∈ Lip, g j ∈ C 1 , D j are bounded with C 1 boundary.
It should be noted that if a = (a 1 , . . . , a m ) is a vector field of bounded variation and µ k,j = ∂a k ∂xj satisfies (1.19) for all k, j, it has been proved in Ref.

3 P ϕ t (•) ∈ ∩ p≥1 W 1 p,loc (R m , R m ), t ≥ 0 = 1.
Moreover, the Sobolev derivative is a solution of the equation Hence it follows from Ch. 9.2 in Ref. [START_REF] Bogachev | Differentiable measures and the Malliavin calculus[END_REF] the absolute continuity (ϕ t ) * γ with respect to γ.

∇ϕ t = I + t 0 Āϕ (ds)∇ϕ s (x), t ≥ 0, ( 1 
c) Example of a / ∈ BV with div a = 0. Functions of bounded variation is not unique example satisfying condition (1.7). For m = 2, let

a(x 1 , x 2 ) = (g(x 1 -x 2 ), g(x 2 -x 1 )),
where g is only measurable, bounded function. Then div a = 0 in the generalized sense, but partial derivatives ∂a ∂x k may not be measures.

Generalizations and localization.

In this section, we give briefly some generalization of Theorem 1.1.

Assume now that the vector field a is locally bounded and for any x ∈ R m . Assume that SDE (1.2) is conservative in the sense of Kunita 21 , that is, if τ (x) is the life-time of ϕ t (x), then P ({ω; τ (x) = +∞}) = 1.

For example, this is the case if a has a linear growth.

Let {f n ; n ≥ 1} be a sequence of functions in C ∞ 0 (R m ) such that sup Let ϕ n t be the solution to SDE (1.2) with a n instead of a. Observe that a n is a bounded vector field on R m . By uniqueness of solutions, almost surely, for t ≤ τ n (x), ϕ t (x) = ϕ n t (x). So for any bounded Borel function h : R m → R, {τn(x)≥t} h(ϕ t (x)) dγ(x) = {τn(x)≥t} h(ϕ n t (x)) dγ(x).

(1.39)

Observe that (ϕ n t ) * (1 {τn(x)≥t} γ) is absolutely continuous with respect to (ϕ n t ) * γ and for almost surely ω, (ϕ t ) * (1 {τn(x)≥t} γ) converges to (ϕ t ) * γ weakly as n → +∞ since τ n (x) → +∞, n → ∞.

Assume that for each n ≥ 1 where µ = div a. Then for any n, the vector field a n satisfies condition (1.7) in Theorem 1.1; therefore the push forward measure (ϕ n t ) * γ is absolutely continuous with respect to γ. Now let E be a Borel subset of R m such that γ(E) = 0; then by (1.39), then {τn(x)≥t} 1 E (ϕ t (x)) dγ(x) = {τn(x)≥t} 1 E (ϕ n t (x)) dγ(x) ≤ [(ϕ n t ) * γ](E) = 0.

Letting n → +∞ yields [(ϕ t ) * γ](E) = 0. in other words, (ϕ t ) * γ is absolutely continuous with respect to γ. Note also that in this case A ϕ n n (t) = A ϕ m m (t), t ∈ [0, τ n (x)] a.s.

for all m ≥ n. Therefore we can define A ϕ (t) = lim n→∞ A ϕ n n (t) and expression (1.8) also holds true if the reverse SDE (1.34) is conservative.

(

  |f n (x)| + |∇f n (x)|) < ∞; f n (x) = 1, for |x| ≤ n. Denote a n (x) = a(x)f n (x),andτ n (x) = inf{t ≥ 0 : |ϕ t (x)| ≥ n}.

  [START_REF] Aryasova | On differentiability of stochastic flow for multidimensional SDE with discontinuous drift[END_REF] , we get A t in L 2 , as n → ∞.Using again Lemma 1.1, we have for s fixed, a n • ϕ s converges to a • ϕ s in measure. 0} be a Markov process in R m with transition density satisfying condition(1.14). Let D 1 , . . . , D k be bounded domains of R m with C 1 boundary, and σ ∂Dj be the surface measure on ∂D j . , . . . , b k are bounded measurable functions. Then conditions (1.16) and (1.18) are satisfied. So the additive functional
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Additive functionals and push forward measures under Veretennikov's flow