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Abstract8

A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed.

The viscous dissipation occurring in the pores is described using the dynamic permeability model

developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are

proportional to the square root of the frequency. In the time-domain, these coefficients introduce

shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffu-

sive representation, the convolution kernel is replaced by a finite number of memory variables

that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive ap-

proximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed:

hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive ap-

proximation, two approaches are analyzed: Gaussian quadratures and optimization methods in

the frequency range of interest. The nonlinear optimization is shown to be the better way of de-

termination. A splitting strategy is then applied to approximate numerically the Biot-DA equa-

tions. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid,

whereas the diffusive part is solved exactly. An immersed interface method is implemented to

take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions

at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show

the efficiency and the accuracy of the approach, and some numerical experiments are performed

to investigate wave phenomena in complex media, such as multiple scattering across a set of

random scatterers.

Keywords: porous media; elastic waves; Biot-JKD model; fractional derivatives; time splitting;9

finite-difference methods; immersed interface method10

1. Introduction11

A porous medium consists of a solid matrix saturated with a fluid that circulates freely12

through the pores [1, 2, 3]. Such media are involved e.g. in natural rocks, engineering com-13

posites [4] and biological materials [5]. The most widely-used model describing the propagation14
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of mechanical waves in porous media has been proposed by Biot in 1956 [1, 6]. It includes two15

classical waves (one ”fast” compressional wave and one shear wave), in addition to a second16

”slow” compressional wave, which is highly dependent on the saturating fluid. This slow wave17

was observed experimentally in 1981 [7], thus confirming the validity of Biot’s theory.18

Two frequency regimes have to be distinguished when dealing with poroelastic waves. In19

the low-frequency range (LF), the flow inside the pores is of Poiseuille type [1]. The viscous20

efforts are then proportional to the relative velocity of the motion between the fluid and the solid21

components. In the high-frequency range (HF), modeling the dissipation is a more delicate task.22

Biot first presented an expression for particular pore geometries [6]. In 1987, Johnson-Koplik-23

Dashen (JKD) published a general expression for the HF dissipation in the case of random pores24

[8], where the viscous efforts depend on the square root of the frequency. When writing the25

evolution equations in the time domain, time fractional derivatives are introduced, which involves26

convolution products [9].27

Since the 90’s, many time-domain simulation methods have been developed in the low-28

frequency range for isotropic media: see [10] and the introduction of [11] for general reviews.29

To increase the scope of such numerical methods, two significant difficulties must be tackled.30

The first one is to take into account more realistic constitutive laws in the simulations. Indeed,31

rocks or bones for example are anisotropic, and usually described by transversely isotropy. The32

second difficulty concerns the high-frequency range where many applications are performed, like33

ultrasonic imaging. Due to the presence of fractional derivatives, the past of the solution needs34

to be stored, increasing dramatically the memory requirements and the computational time. The35

aim of this paper is to present a numerical method for the propagation of waves in transversely36

isotropic media and in the high-frequency range.37

In the high-frequency range, only two numerical approaches have been proposed in the liter-38

ature to integrate the Biot-JKD equations directly in the time-domain. The first approach consists39

in a straightforward discretization of the fractional derivatives defined by a convolution product40

in time [12]. In the example given in [12], the solution is stored over 20 time steps. The second41

approach is based on the diffusive representation of the fractional derivative [13]. The convolu-42

tion product is replaced by a continuum of memory variables satisfying local differential equa-43

tions [14]. This continuum is then discretized using Gaussian quadrature formulae [15, 16, 17],44

resulting in the Biot-DA (diffusive approximation) model. In the example proposed in [13], 2545

memory variables are used, which is equivalent, in terms of memory requirement, to storing 2546

time steps.47

For transversely isotropic poroelastic media, the earliest work in the low-frequency range48

is based on an operator splitting in conjuction with a Fourier pseudospectral method [18]. Re-49

cently, a Cartesian-grid finite volume method has been developed [19]. One of the first work50

combining anistropic media and high-frequency range is proposed in [20]. However, the dif-51

fusive approximation proposed in the latter article has three limitations. Firstly, the quadrature52

formulae make the convergence towards the original fractional operator very slow. Secondly, in53

the case of small frequencies, the Biot-DA model does not converge towards the Biot-LF model.54

Lastly, the number of memory variables required for a given accuracy is not specified.55

In our previous works, we focused on isotropic poroelasticity, in the low-frequency range56

[21, 11, 22], and then in the high-frequency range [23, 24]. Here we extend this approach to57

transversely isotropic media, introducing also an important improvement concerning the approx-58

imation of the fractional derivatives. Thanks to a non linear optimization of the quadrature coef-59

ficients, the number of memory variables is drastically reduced. Moreover, the quadrature coef-60

ficients are always positive, which ensures the stability of the Biot-DA model and the stability of61
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its numerical discretization.62

This article is organized as follows. The original Biot-JKD model is outlined in § 2 and the63

diffusive representation of fractional derivatives is described. The energy decrease is proven, and64

a dispersion analysis is done. In § 3, approximation of the diffusive model is presented, leading65

to the Biot-DA system. The properties of this system are also analyzed: energy, hyperbolicity66

and dispersion. Determination of the quadrature coefficients involved in the Biot-DA model are67

investigated in § 3.4. Gaussian quadrature formulae and optimization methods are successively68

proposed and compared, the latter being finally preferred. The numerical modeling of the Biot-69

DA system is addressed in § 4, where the equations of evolution are split into two parts: the70

propagative part is discretized using a fourth-order finite-difference scheme, and the diffusive71

part is solved exactly. An immersed interface method is implemented to account for the jump72

conditions and for the geometry of the interfaces on a Cartesian grid when dealing with hetero-73

geneous media. Numerous numerical experiments are presented in § 5, validating the method74

developed in this paper. In § 6, a conclusion is drawn and some futures lines of research are75

suggested.76

2. Physical modeling77

2.1. Biot model78

We consider a transversely isotropic porous medium, consisting of a solid matrix saturated79

with a fluid that circulates freely through the pores [1, 2, 3]. The subscripts 1, 3 represent the x,80

z axes, where z is the symmetry axis. The perturbations propagate with a wavelength λ.81

The Biot model involves 15 positive physical parameters: the density ρ f , the dynamic vis-82

cosity η and the bulk modulus K f of the fluid, the density ρs and the bulk modulus Ks of the83

grains, the porosity 0 6 φ 6 1, the tortuosities T1 > 1, T3 > 1, the absolute permeabilities at84

null frequency κ1, κ3, and the symmetric definite positive drained elastic matrix C85

C =



c11 c13 0 0

c13 c33 0 0

0 0 c55 0

0 0 0
c11 − c12

2


. (1)

The linear Biot model is valid if the following hypotheses are satisfied [25]:86

H1 : the wavelength λ is large in comparison with the characteristic radius of the pores r;87

H2 : the amplitudes of the waves in the solid and in the fluid are small;88

H3 : the single fluid phase is continuous;89

H4 : the solid matrix is purely elastic;90

H5 : the thermo-mechanical effects are neglected, which is justified when the saturating fluid91

is a liquid.92

In the validity domain of homogenization theory (H1), two frequency ranges have to be distin-93

guished. The frontier between the low-frequency (LF) range and the high-frequency (HF) range94
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is reached when the viscous efforts are similar to the inertial effects. The frequency transitions95

are given by [3]96

fci =
η φ

2 πTi κi ρ f

=
ωci

2 π
, i = 1, 3. (2)

Denoting us and u f the solid and fluid displacements, the unknowns in a velocity-stress for-97

mulation are the solid velocity vs =
∂us

∂ t
, the filtration velocity w = ∂W

∂ t
= ∂

∂ t
φ (u f − us), the98

elastic symmetric stress tensor σ and the acoustic pressure p. Under the hypothesis of small99

perturbations (H2), the symmetric strain tensor ε is100

ε =
1

2
(∇us + ∇us

T ). (3)

Using the Voigt notation, the stress tensor and the strain tensor are arranged into vectors σ and ε101


σ = (σ11 , σ33 , σ13)T ,

ε = (ε11 , ε33 , 2 ε13)T .
(4)

Setting



ξ = −∇.W, Cu = C + mββT , (5a)

β = (β1 , β1 , β3)T , β1 = 1 − c11 + c12 + c13

3 Ks

, β3 = 1 − 2 c13 + c33

3 Ks

, (5b)

K = Ks (1 + φ (Ks/K f − 1)), m =
K2

s

K − (2 c11 + c33 + 2 c12 + 4 c13)/9
, (5c)

where Cu is the undrained elastic matrix and ξ is the rate of fluid, the poroelastic linear constitu-

tive laws are

σ = Cu ε − mβ ξ, (6a)

p = m
(
ξ − βT ε

)
. (6b)

Using (5a) and (5b), we obtain equivalently102


σ = C ε − β p,

p = m
(
ξ − βT ε

)
.

(7)

The symmetry of σ implies compatibility conditions between spatial derivatives of the stresses103

and the pressure, leading to the Beltrami-Michell equation [26, 27]104

∂2σ13

∂ x ∂ z
= Θ0

∂2σ11

∂ x2
+ Θ1

∂2σ33

∂ x2
+ Θ2

∂2 p

∂ x2
+ Θ3

∂2σ11

∂ z2
+ Θ0

∂2σ33

∂ z2
+ Θ4

∂2 p

∂ z2
,

Θ0 = −c55

c13

c11 c33 − c2
13

, Θ1 = −
c11

c13

Θ0, Θ2 = β1Θ0 + β3Θ1,

Θ3 = −
c33

c13

Θ0, Θ4 = β3Θ0 + β1 Θ3.

(8)

If the medium is isotropic and in the elastic limit case (β1 = β3 = 0), we recover the usual105

equation of Barré de Saint-Venant.106
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Introducing the densities107

ρ = φ ρ f + (1 − φ) ρs, ρwi =
Ti

φ
ρ f , i = 1, 3, (9)

the conservation of momentum yields



ρ
∂ vs

∂ t
+ ρ f

∂w

∂ t
= ∇ .σ, (10a)

ρ f

∂ vs

∂ t
+ diag (ρwi)

∂w

∂ t
+ diag

(
η

κi

Fi(t)

)
∗ w = −∇ p, (10b)

where diag (di) denotes the 2 × 2 diagonal matrix ( d1

0

0

d3
), ∗ denotes the time convolution prod-108

uct and Fi(t) are viscous operators. In LF, the flow in the pores is of Poiseuille type, and the109

dissipation efforts in (10b) are given by110

Fi(t) ≡ FLF
i (t) = δ(t)⇐⇒ FLF

i (t) ∗ wi(x, z, t) = wi(x, z, t), i = 1, 3, (11)

where δ is the Dirac distribution, which amounts to the Darcy’s law.111

2.2. High frequency dissipation: the JKD model112

In HF, a Prandtl boundary layer occurs at the surface of the pores, where the effects of vis-113

cosity are significant. Its width is inversely proportional to the square root of the frequency. Biot114

first presented in 1956 an expression of the dissipation process for particular pore geometries115

[6]. In 1987, a general expression of the viscous operator has been proposed by Johnson, Koplik116

and Dashen, valid for random networks of pores with constant radii [8]. This function is the117

most-simple one fitting the LF and HF limits and leading to a causal model. The only additional118

parameters are the viscous characteristic length Λi. We take119

Pi =
4Ti κi

φΛ2
i

, Ωi =
ωci

Pi

=
η φ2Λ2

i

4T 2
i
κ2

i
ρ f

, i = 1, 3, (12)

where Pi are the Pride number (typically Pi ≈ 1/2). Based on the Fourier transform in time,120

F̂i(ω) = F (Fi(t)) =
∫
R

Fi(t)e
− jωt dt, the viscous operators given by the JKD model are121

F̂ JKD
i

(ω) =

1 + jω
4T 2

i
κ2

i
ρ f

ηΛ2
i
φ2


1/2

,

=

(
1 + j Pi

ω

ωci

)1/2

,

=
1√
Ωi

(Ωi + jω)1/2.

(13)

Therefore, the terms Fi(t) ∗ wi(x, z, t) involved in (6b) are122

F JKD
i

(t) ∗ wi(x, z, t) = F −1

(
1√
Ωi

(Ωi + jω)1/2ŵi(x, z, ω)

)
,

=
1√
Ωi

(D + Ωi)
1/2wi(x, z, t).

(14)
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In the last relation of (14), (D + Ωi)
1/2 is an operator. D1/2 is a fractional derivative in time of123

order 1/2, generalizing the usual derivative characterized by
∂wi

∂ t
= F −1 (

jω ŵi

)
. The notation124

(D + Ωi)
1/2 accounts for the shift Ωi in (14).125

2.3. The Biot-JKD equations of evolution126

The system (10) is rearranged by separating
∂ vs

∂ t
and ∂w

∂ t
and using the definitions of ε and ξ.127

Taking128

γi =
η

κi

ρ

χi

1√
Ωi

, i = 1, 3, (15)

one obtains the following system of evolution equations



∂ vs1

∂ t
− ρw1

χ1

(
∂σ11

∂ x
+
∂σ13

∂ z

)
−
ρ f

χ1

∂ p

∂ x
=
ρ f

ρ
γ1 (D + Ω1)1/2 w1 +Gvs1

, (16a)

∂ vs3

∂ t
− ρw3

χ3

(
∂σ13

∂ x
+
∂σ33

∂ z

)
−
ρ f

χ3

∂ p

∂ z
=
ρ f

ρ
γ3 (D + Ω3)1/2 w3 +Gvs3

, (16b)

∂w1

∂ t
+
ρ f

χ1

(
∂σ11

∂ x
+
∂σ13

∂ z

)
+
ρ

χ1

∂ p

∂ x
= −γ1 (D + Ω1)1/2 w1 +Gw1

, (16c)

∂w3

∂ t
+
ρ f

χ3

(
∂σ13

∂ x
+
∂σ33

∂ z

)
+
ρ

χ3

∂ p

∂ z
= −γ3 (D + Ω3)1/2 w3 +Gw3

, (16d)

∂σ11

∂ t
− cu

11

∂ vs1

∂ x
− cu

13

∂ vs3

∂ z
− m β1

(
∂w1

∂ x
+
∂w3

∂ z

)
= Gσ11

, (16e)

∂σ13

∂ t
− cu

55

(
∂ vs3

∂ x
+
∂ vs1

∂ z

)
= Gσ13

, (16f)

∂σ33

∂ t
− cu

13

∂ vs1

∂ x
− cu

33

∂ vs3

∂ z
− m β3

(
∂w1

∂ x
+
∂w3

∂ z

)
= Gσ33

, (16g)

∂ p

∂ t
+ m

(
β1

∂ vs1

∂ x
+ β3

∂ vs3

∂ z
+
∂w1

∂ x
+
∂w3

∂ z

)
= Gp. (16h)

The terms Gvs1
, Gvs3

, Gw1
, Gw3

, Gσ11
, Gσ13

, Gσ33
and Gp have been introduced to model the129

forcing.130

2.4. The diffusive representation131

The shifted fractional derivatives [28] in (14) can be written (i = 1, 3)132

(D + Ωi)
1/2wi(x, z, t) =

∫ t

0

e−Ωi(t−τ)

√
π (t − τ)

(
∂wi

∂ t
(x, z, τ) + Ωi wi(x, z, τ)

)
dτ. (17)

The operators (D + Ωi)
1/2 are not local in time and involve the entire time history of w. Based133

on Euler’s Gamma function, the diffusive representation of the totally monotone function 1√
π t

is134

[14]135

1√
π t
=

1

π

∫ ∞

0

1√
θ

e−θtdθ. (18)
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Substituting (18) into (17) gives136

(D + Ωi)
1/2wi(x, z, t) =

1

π

∫ ∞

0

1√
θ
ψi(x, z, θ, t) dθ, (19)

where the memory variables are defined as137

ψi(x, z, θ, t) =

∫ t

0

e−(θ+Ωi)(t−τ)

(
∂wi

∂ t
(x, z, τ) + Ωi wi(x, z, τ)

)
dτ. (20)

For the sake of clarity, the dependence on Ωi and wi are omitted in ψi. From (20), it follows that

the two memory variables ψi satisfy the ordinary differential equation



∂ ψi

∂ t
= −(θ + Ωi)ψi +

∂wi

∂ t
+ Ωi wi, (21a)

ψi(x, z, θ, 0) = 0. (21b)

The diffusive representation therefore transforms a non-local problem (17) into a continuum of138

local problems (19). It should be emphasized at this point that no approximation have been made139

up to now. The computational advantages of the diffusive representation will be seen in § 3 and140

5, where the discretization of (19) and (21a) will yield a numerically tractable formulation.141

2.5. Energy of Biot-JKD142

Now, we express the energy of the Biot-JKD model (16).143

Proposition 1 (Decrease of the energy). Let us consider the Biot-JKD model (16) without forc-144

ing, and let us denote145

E = E1 + E2 + E3, (22)

with146

E1 =
1

2

∫

R2

(
ρ vs

T vs + 2 ρ f vs
T w + wT diag (ρwi) w

)
dx dz,

E2 =
1

2

∫

R2

(
(σ + p β)T C−1 (σ + p β) +

1

m
p2

)
dx dz,

E3 =
1

2

∫

R2

η

π

∫ ∞

0

(w − ψ)T diag

(
1

κi

√
Ωi θ (θ + 2Ωi)

)
(w − ψ) dθ dx dz.

(23)

Then, E is an energy which satisfies147

d E

d t
= −

∫

R2

η

π

∫ ∞

0

{
ψT diag

(
θ + Ωi

κi

√
Ωi θ (θ + 2Ωi)

)
ψ

+wT diag

(
Ωi

κi

√
Ωi θ (θ + 2Ωi)

)
w

}
dθ dx dz 6 0.

(24)

148

Proposition 1 is proven in Appendix A. It calls for the following comments:149

• the Biot-JKD model is stable;150
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• when the viscosity of the saturating fluid is neglected (η = 0), the energy of the system is151

conserved;152

• the terms E1 and E2 in (23) have a clear physical significance: E1 is the kinetic energy,153

and E2 is the strain energy;154

• the energy analysis is valid for continuously variable parameters.155

2.6. Dispersion analysis156

In this section, we derive the dispersion relation of the waves which propagate in a poroelastic157

medium. This relation describes the frequency dependence of phase velocities and attenuations158

of waves. For this purpose, we search for a general plane wave solution of (16)159


V = (v1 , v3 , w1 , w3)T = V0 e j(ωt−k.r),

T = (σ11 , σ13 , σ33 , −p)T = T0 e j(ωt−k.r),
(25)

where k = k (cos(ϕ), sin(ϕ))T is the wavevector, k is the wavenumber, V0 and T0 are the polar-160

izations, r = (x, z)T is the position, ω = 2 π f is the angular frequency and f is the frequency.161

On one hand, (25) is injected in (16e)-(16h). We obtain the 4 × 4 linear system:162

ωT = −k



cu
11

cϕ cu
13

sϕ β1 m cϕ β1 m sϕ

cu
55

sϕ cu
55

cϕ 0 0

cu
13

cϕ cu
33

sϕ β3 m cϕ β3 m sϕ

β1 m cϕ β3 m sϕ m cϕ m sϕ


︸                                                ︷︷                                                ︸

V,

C

(26)

where cϕ = cos(ϕ) and sϕ = sin(ϕ). On the other hand, substituting (25) into (16a)-(16d) gives163

another 4 × 4 linear system:164

−k



cϕ sϕ 0 0

0 cϕ sϕ 0

0 0 0 cϕ

0 0 0 sϕ


︸                     ︷︷                     ︸

T = ω



ρ 0 ρ f 0

0 ρ 0 ρ f

ρ f 0
Ŷ JKD

1
(ω)

jω
0

0 ρ f 0
Ŷ JKD

3
(ω)

jω


︸                                         ︷︷                                         ︸

V,

L Γ

(27)

where Ŷ JKD
1

and Ŷ JKD
3

are the viscodynamic operators [29]:165

Ŷ JKD
i = jωρwi +

η

κi

F̂ JKD
i (ω), i = 1, 3. (28)

Since the matrix Γ is invertible, the equations (26) and (27) lead to the eigenproblem166

Γ
−1
LC V =

(
ω

k

)2

V. (29)
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The equation (29) is solved numerically. The two quasi-compressional waves are denoted qP f167

(fast) and qPs (slow), and the quasi-shear wave is denoted qS . The wavenumbers thus obtained168

depend on the frequency and on the angle ϕ. One of the eigenvalues is zero with multiplicity169

two, and the other non-zero eigenvalues correspond to the wave modes ±kp f (ω, ϕ), ±kps(ω, ϕ)170

and ±ks(ω, ϕ). Therefore three waves propagates symmetrically along the directions cos(ϕ) x +171

sin(ϕ) z and − cos(ϕ) x − sin(ϕ) z.172

The wavenumbers give the phase velocities cp f (ω, ϕ) = ω/ℜe(kp f ), cps(ω, ϕ) = ω/ℜe(kps),173

and cs(ω, ϕ) = ω/ℜe(ks), with 0 < cps < cp f and 0 < cs. The attenuations αp f (ω, ϕ) =174

−ℑm(kp f ), αps(ω, ϕ) = −ℑm(kps) and αs(ω, ϕ) = −ℑm(ks) are also deduced. Both the phase175

velocities and the attenuations of Biot-LF and Biot-JKD are strictly increasing functions of the176

frequency. The high-frequency limits (ω → ∞ in (29)) of phase velocities c∞
p f

(ϕ), c∞ps(ϕ) and177

c∞s (ϕ) are recovered by diagonalizing the left-hand side of (16).178

In figure 1, the physical parameters are those of medium Ω0 (cf table 1), where the frequen-179

cies of transition are fc1 = 25.5 kHz, fc3 = 85 kHz. Figure 1 shows the dispersion curves in terms180

of the frequency at ϕ = 0 rad. Note that the vertical scales of the figures are radically different181

for the three waves. The high-frequency limit of the phase velocities of the quasi-compressional182

waves are c∞
p f

(0) = 5244 m/s and c∞ps(0) = 975 m/s, which justifies the denomination ”fast” and183

”slow”. Figure 1 calls for the following comments:
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Figure 1: dispersion curves in terms of the frequency. Comparison between Biot-LF and Biot-JKD models at ϕ = 0 rad.

184

• when f < fci, the Biot-JKD and Biot-LF dispersion curves are very similar as might be185

expected, since F̂ JKD
i

(0) = F̂LF
i

(0) = 1;186

• the frequency evolution of the phase velocity and of the attenuation is radically different187

for the three waves, whatever the chosen model (LF or JKD): the effect of viscous losses188

is negligible on the fast wave, small on the shear wave, whereas it is very important on the189

slow wave;190

• when f ≪ fci, the slow compressional wave is almost static [30, 27]. When f > fci, the191

slow wave propagates but is greatly attenuated.192

9



Taking193

U1 =



1 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0



, U3 =



0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1



, (30)

the energy velocity vector Ve is [18, 31]:194



Ve =
〈P〉

〈Es + Ek〉
=
〈P〉
〈E〉 ,

〈P〉 = −1

2
ℜe

((−→ex (U1.T)T + −→ez (U3.T)T
)
.V

)
,

〈E〉 = 1

4
ℜe

((
1 +

(ω/k)2

|ω/k|2
)

VT
ΓV

)
,

(31)

where V is the complex conjugate of V, 〈P〉 is the Umov-Poynting vector, 〈Ek〉 and 〈Es〉 are the195

average kinetic and strain energy densities, and 〈E〉 is the mean energy density. The theoreti-196

cal wavefronts are the locus of the end of energy velocity vector Ve multiplied by the time of197

propagation. We will use this property in § 5 to validate the simulations.198

3. The Biot-DA (diffusive approximation) model199

The aim of this section is to approximate the Biot-JKD model, using a numerically tractable200

approach.201

3.1. Diffusive approximation202

The diffusive representation of fractional derivatives (19) is approximated by using a quadra-203

ture formula on N points, with weights ai
ℓ

and abcissae θi
ℓ

(i = 1, 3):204

(D + Ωi)
1/2wi(x, z, t) =

1

π

∫ ∞

0

1√
θ
ψi(x, z, θ, t) dθ

≃
N∑

ℓ=1

ai
ℓ ψ

i(x, z, θi
ℓ, t),

≡
N∑

ℓ=1

ai
ℓ ψ

i
ℓ(x, z, t).

(32)

From (21a), the 2 N memory variables ψi
ℓ

satisfy the ordinary differential equations205



∂ ψi
ℓ

∂ t
= −(θi

ℓ + Ωi)ψ
i
ℓ +

∂wi

∂ t
+ Ωi wi,

ψi
ℓ(x, z, 0) = 0.

(33)
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3.2. The Biot-DA first-order system206

The fractional derivatives involved in the Biot-JKD system (16) are replaced by their diffusive207

approximation (32), with evolution equations (33). After some algebraic operations, the Biot-DA208

system is written as a first-order system in time and in space, used in the numerical simulations209

of § 5 ( j = 1, · · ·N)210



∂ vs1

∂ t
− ρw1

χ1

(
∂σ11

∂ x
+
∂σ13

∂ z

)
−
ρ f

χ1

∂ p

∂ x
=
ρ f

ρ
γ1

N∑

ℓ=1

a1
ℓ ψ

1
ℓ +Gvs1

,

∂ vs3

∂ t
− ρw3

χ3

(
∂σ13

∂ x
+
∂σ33

∂ z

)
−
ρ f

χ3

∂ p

∂ z
=
ρ f

ρ
γ3

N∑

ℓ=1

a3
ℓ ψ

3
ℓ +Gvs3

,

∂w1

∂ t
+
ρ f

χ1

(
∂σ11

∂ x
+
∂σ13

∂ z

)
+
ρ

χ1

∂ p

∂ x
= − γ1

N∑

ℓ=1

a1
ℓ ψ

1
ℓ +Gw1

,

∂w3

∂ t
+
ρ f

χ3

(
∂σ13

∂ x
+
∂σ33

∂ z

)
+
ρ

χ3

∂ p

∂ z
= − γ3

N∑

ℓ=1

a3
ℓ ψ

3
ℓ +Gw3

,

∂ σ11

∂ t
− cu

11

∂ vs1

∂ x
− cu

13

∂ vs3

∂ z
− m β1

(
∂w1

∂ x
+
∂w3

∂ z

)
= Gσ11

,

∂ σ13

∂ t
− cu

55

(
∂ vs3

∂ x
+
∂ vs1

∂ z

)
= Gσ13

,

∂ σ33

∂ t
− cu

13

∂ vs1

∂ x
− cu

33

∂ vs3

∂ z
− m β3

(
∂w1

∂ x
+
∂w3

∂ z

)
= Gσ33

,

∂ p

∂ t
+ m

(
β1

∂ vs1

∂ x
+ β3

∂ vs3

∂ z
+
∂w1

∂ x
+
∂w3

∂ z

)
= Gp,

∂ ψ1
j

∂ t
+
ρ f

χ1

(
∂σ11

∂ x
+
∂σ13

∂ z

)
+
ρ

χ1

∂ p

∂ x
= Ω1 w1 − γ1

N∑

ℓ=1

a1
ℓ ψ

1
ℓ − (θ1

j + Ω1)ψ1
j +Gw1

,

∂ ψ3
j

∂ t
+
ρ f

χ3

(
∂σ13

∂ x
+
∂σ33

∂ z

)
+
ρ

χ3

∂ p

∂ z
= Ω3 w3 − γ3

N∑

ℓ=1

a3
ℓ ψ

3
ℓ − (θ3

j + Ω3)ψ3
j +Gw3

.

(34)

Taking the vector of unknowns211

U = (vs1 , vs3 , w1 , w3 , σ11 , σ13 , σ33 , p , ψ1
1 , ψ

3
1 , · · · , ψ1

N , ψ
3
N)T , (35)

and the forcing212

G =
(
Gvs1

, Gvs3
, Gw1

, Gw3
, Gσ11

, Gσ13
, Gσ33

, Gp , Gw1
, Gw3

, Gw1
, Gw3

)T
, (36)

the system (34) is written in the form:213

∂U

∂ t
+ A

∂U

∂ x
+ B

∂U

∂ z
= −S U + G, (37)

where A and B are the (2 N + 8) × (2 N + 8) propagation matrices and S is the diffusive matrix214

(given in Appendix B). The number of unknowns increases linearly with the number of memory215

variables. Only the matrix S depends on the coefficients of the diffusive approximation.216
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3.3. Properties217

Some properties are stated to characterize the first-order differential system (34). First, one218

notes that the only difference between the Biot-LF model, the Biot-JKD model and the Biot-DA219

model occurs in the viscous operators220

F̂i(ω) =



F̂LF
i (ω) = 1 Biot-LF,

F̂ JKD
i (ω) =

1√
Ωi

(Ωi + jω)1/2 Biot-JKD,

F̂DA
i (ω) =

Ωi + jω√
Ωi

N∑

ℓ=1

ai
ℓ

θi
ℓ
+ Ωi + jω

Biot-DA.

(38)

The dispersion analysis of the Biot-DA model is obtained by replacing the viscous operators221

F̂ JKD
i

(ω) by F̂DA
i

(ω) in (28). One of the eigenvalues of Γ−1
LC (29) is still zero with multiplicity222

two, and the other non-zero eigenvalues correspond to the wave modes ±kp f (ω, ϕ), ±kps(ω, ϕ)223

and ±ks(ω, ϕ). Consequently, the diffusive approximation does not introduce spurious wave.224

Proposition 2. The eigenvalues of the matrix M = cos(ϕ) A + sin(ϕ) B are225

sp(M) =
{
0 , ±c∞p f (ϕ) , ±c∞ps(ϕ) , ±c∞s (ϕ)

}
, (39)

with 0 being of multiplicity 2 N + 2.226

The non-zero eigenvalues do not depend on the viscous operators F̂i(ω). Consequently, the high-227

frequency limits of the phase velocities c∞
p f

(ϕ), c∞ps(ϕ) and c∞s (ϕ), defined in § 2.6, are the same228

for both Biot-LF, Biot-JKD and Biot-DA models. An argumentation similar to [19] shows that229

the matrix M is diagonalizable for all ϕ in [0, 2 π[, with real eigenvalues. The three models are230

therefore hyperbolic.231

Proposition 3 (Decrease of the energy). An energy analysis of (34) is performed. Let us con-232

sider the Biot-DA model (34) without forcing, and let us denote233

E = E1 + E2 + E3, (40)

where234

E1 =
1

2

∫

R2

(
ρ vs

T vs + 2 ρ f vs
T w + wT diag (ρwi) w

)
dx dz,

E2 =
1

2

∫

R2

(
(σ + p β)T C−1 (σ + p β) +

1

m
p2

)
dx dz,

E3 =
1

2

∫

R2

η

π

N∑

ℓ=1

(w − ψℓ)T diag


ai
ℓ

κi

√
Ωi θ

i
ℓ

(θi
ℓ
+ 2Ωi)


(w − ψℓ) dx dz.

(41)
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Then, E satisfies235

d E

d t
= −

∫

R2

η

π

N∑

ℓ=1


ψℓ

T diag


ai
ℓ

(θi
ℓ
+ Ωi)

κi

√
Ωi θ

i
ℓ

(θi
ℓ
+ 2Ωi)


ψℓ

+wT diag


ai
ℓ
Ωi

κi

√
Ωi θ

i
ℓ

(θi
ℓ
+ 2Ωi)


w


dx dz.

(42)

236

The proof of the proposition 3 is similar to the proof of the proposition 1 and will not be repeated237

here. Proposition 3 calls the following comments:238

• the terms E1 and E2 are the same in both the Biot-DA and Biot-JKD models;239

• E3 and the time evolution of E are modified by the diffusive approximation;240

• the abscissae θi
ℓ

are always positive, as explained in § 3.4, but not necessarily the weights241

ai
ℓ
. Consequently, in the general case, we cannot say that the Biot-DA model is stable.242

However, in the particular case where the coefficients θi
ℓ
, ai

ℓ
are all positive, E is an energy,243

and d E
d t
< 0: the Biot-DA model is therefore stable in this case.244

Proposition 4. Let us assume that the abscissae θi
ℓ

have been sorted in increasing order245

θi
1 < θ

i
2 < · · · < θi

N , i = 1, 3, (43)

and that the coefficients θi
ℓ
, ai

ℓ
of the diffusive approximation (32) are positive. Then zero is an246

eigenvalue with multiplicity 6 of S. Moreover, the 2 N + 2 non-zero eigenvalues of S (denoted si
ℓ
,247

ℓ = 1, · · · ,N + 1) are real positive, and satisfy248

0 < si
1
< θi

1
+ Ωi < · · · < si

N
< θi

N
+ Ωi < si

N+1
, i = 1, 3. (44)

249

Proposition 4 is proven in Appendix C. As we will see in § 4, the proposition 4 ensures the250

stability of the numerical method. Positivity of quadrature abscissae and weights is again the251

fundamental hypothesis.252

3.4. Determining the Biot-DA parameters253

For the sake of clarity, the space coordinates and the subscripts due to the anisotropy are254

omitted. The quadrature coefficients aim to approximate improper integrals of the form255

(D + Ω)1/2w(t) =
1

π

∫ ∞

0

1√
θ
ψ(t, θ) dθ ≃

N∑

ℓ=1

aℓ ψ(t, θℓ). (45)

Moreover, the positivity of the quadrature coeffiients is crucial for the stability of the Biot-DA256

model and its numerical implementation, as shown in propositions 3 and 4. Two approaches can257

be employed for this purpose. While the most usual one is based on orthogonal polynomials, the258

second approach is associated with an optimization procedure applied to the viscous operators259

(38).260
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3.4.1. Gaussian quadratures261

Various orthogonal polynomials exist to evaluate the improper integral (45). The first method,262

proposed in [15], is to use the Gauss-Laguerre quadrature formula, which approximates improper263

integrals overR+. Slow convergence of this method is explained and corrected in [16]. It consists264

in replacing the Gauss-Laguerre quadrature by a Gauss-Jacobi quadrature, more suitable for265

functions which decrease algebraically. A last improvement, proposed in [17], consists in using266

a modified Gauss-Jacobi quadrature formula, recasting the improper integral (45) as267

1

π

∫ ∞

0

1√
θ
ψ(θ) dθ =

1

π

∫ +1

−1

(1 − θ̃)γ(1 + θ̃)δψ̃(θ̃) dθ̃ ≃ 1

π

N∑

ℓ=1

ãℓ ψ̃(θ̃ℓ), (46)

with the modified memory variable ψ̃ defined as268

ψ̃(θ̃) =
4

(1 − θ̃)γ−1(1 + θ̃)δ+3

(
1 + θ̃

1 − θ̃

)
ψ


(

1 − θ̃
1 + θ̃

)2
 . (47)

The abscissae θ̃ℓ, which are the zeros of the Gauss-Jacobi polynomials, and the weights ãℓ can269

be computed by standard routines [32]. In [17], the author proves that for fractional derivatives270

of order 1/2, the optimal coefficients to use are γ = 1 and δ = 1. The coefficients of the diffusive271

approximation θℓ and aℓ (45) are therefore related to the coefficients θ̃ℓ and ãℓ (46) by272

θℓ =

(
1 − θ̃ℓ
1 + θ̃ℓ

)2

, aℓ =
1

π

4 ãℓ

(1 − θ̃ℓ) (1 + θ̃ℓ)3
. (48)

By construction, they are strictly positive.273

3.4.2. Optimization procedures274

In [23, 24], we proposed a different method to determine the coefficients θℓ and aℓ of the275

diffusive approximation (45). This method is based on the frequency expressions of the viscous276

operators and takes into account the frequency content of the source. Our requirement is therefore277

to approximate the viscous operator F̂ JKD(ω) by F̂DA(ω) (38) in the frequency range of interest278

I = [ωmin, ωmax], centered on the central angular frequency of the source. This leads to the279

minimization of the quantity χ2 with respect to the abcissae θℓ and to the weights aℓ280

χ2 =

K∑

k=1

∣∣∣∣∣∣
F̂DA(ωk)

F̂ JKD(ωk)
− 1

∣∣∣∣∣∣

2

=

K∑

k=1

∣∣∣∣∣∣∣

N∑

ℓ=1

aℓ
(Ω + jωk)1/2

θℓ + Ω + jωk

− 1

∣∣∣∣∣∣∣

2

, (49)

where the angular frequencies ωk are distributed linearly in I on a logarithmic scale of K points281

ωk = ωmin

(
ωmax

ωmin

) k−1
K−1

, k = 1 · · ·K. (50)

In [23, 24], the abcissae θℓ were arbitrarily put linearly on a logarithmic scale, as (50). Only282

the weights aℓ were optimized with a linear least-squares minimization procedure of (49). Some283

negative weights were obtained, which represents a major drawback, at least theoretically, since284

the stability of the Biot-DA model can not be guaranteed.285

To remove this drawback and improve the minimization of χ2, a nonlinear constrained opti-286

mization is developed, where both the abcissae and the weights are optimized. The coefficients θℓ287
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and aℓ are now constrained to be positive. An additional constraint θℓ 6 θmax is also introduced288

to ensure the computational accuracy in the forthcoming numerical method (§ 4). Setting289

θℓ = (θ′ℓ)
2, aℓ = (a′ℓ)

2, (51)

the number of constraints decreases from 3 N to N leading to the following minimization prob-290

lem:291

min
(θ′
ℓ
,a′
ℓ
)
χ2, θ′ℓ 6

√
θmax. (52)

The constrained minimization problem (52) is nonlinear and non-quadratic with respect to ab-292

scissae θ′
ℓ
. To solve it, we implement the program SolvOpt [33, 34], used in viscoelasticity [35].293

Since this Shor’s algorithm is iterative, it requires an initial estimate θ′0
ℓ

, a′0
ℓ

of the coefficients294

which satisfies the constraints of the minimization problem (52). For this purpose, θ0
ℓ

and a0
ℓ

are295

initialized with the method based on the modified Gauss-Jacobi quadrature formula (48):296

θ′0ℓ =
1 − θ̃ℓ
1 + θ̃ℓ

, a′0ℓ =

√
1

π

4 ãℓ

(1 − θ̃ℓ) (1 + θ̃ℓ)3
. (53)

Different initial guess have been used, derived from Gaus-Legendre and Gauss-Jacobi methods,297

leading to the same final coefficients θℓ and aℓ.298

In what follows, we always use the parameters299

ωmin = ω0/10, ωmax = 10ω0, θmax = 100ω0, K = 2 N, (54)

where ω0 = 2 π f0 is the central angular frequency of the source.300

3.4.3. Discussion301

To compare the quadrature methods presented in § 3.4.1 and 3.4.2, we first define the error302

of model εmod as303

εmod =

∣∣∣∣∣∣

∣∣∣∣∣∣
F̂DA(ω)

F̂ JKD(ω)
− 1

∣∣∣∣∣∣

∣∣∣∣∣∣
L2

=


∫ ωmax

ωmin

∣∣∣∣∣∣
F̂DA(ω)

F̂ JKD(ω)
− 1

∣∣∣∣∣∣

2

dω



1/2

. (55)

The variation of εmod in terms of the number N of memory variables, for f0 = 200 kHz and304

fc = 3.84 kHz, is represented on figure 2-a. The Gauss-Jacobi method converges very slowly,305

and the error is always larger than 1 % even for N = 50. Moreover, for values of N 6 10,306

the error is always larger than 60 %. For both the linear and the nonlinear optimizations, the307

errors decrease rapidly with N. Nevertheless, the nonlinear procedure outperforms the results308

obtained in the linear case. For N = 8 for instance, the relative error of the nonlinear optimization309

(εmod ≃ 7.16 10−3 %) is 514 times smaller that the error of the linear optimization (εmod ≃ 3.68310

%). For larger values of N, the system is poorly conditioned and the order of convergence311

deteriorates; in practice, this is not penalizing since large values of N are not used. An example312

of a priori parametric determination of N in terms of both the frequency range and the desired313

accuracy is also given in figure 2-b for the nonlinear procedure. The case N = 0 corresponds to314

the Biot-LF model.315

It is also important to compare the influence of the quadrature coefficient on the physical ob-316

servables. For that purpose, we represent on figure 3 the phase velocity and the attenuation of the317
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Figure 2: (a): relative error εmod in terms of N for both the modified Gauss-Jacobi quadrature and the nonlinear con-

strained optimization. (b): required values of N in terms of f0/ fc1 and the required accuracy εmod for the nonlinear

optimization.

slow wave of the Biot-DA model, obtained with the different quadrature methods. As expected,318

the results given by the Gauss-Jacobi method are extremely poor. On the contrary, the linear319

and non-linear procedures are able to represent very accurately the variations of these quantities320

on the considered range of frequencies, even for small values of N. Based on these results and321

the positivity requirement, the nonlinear constrained optimization is therefore considered as the322

better way to determine the coefficients of the diffusive approximation. This method is used in323

all what follows.324

4. Numerical modeling325

4.1. Splitting326

In order to integrate the Biot-DA system (37), a uniform grid is introduced, with mesh size327

∆ x,, ∆ z and time step ∆ t. The approximation of the exact solution U(xi = i∆ x, z j = j∆ z, tn =328

n∆ t) is denoted by Un
i j, with 0 6 i 6 Nx, 0 6 j 6 Nz. If ∆ x = ∆ z, a straightforward329

discretization of (37) by an explicit time scheme typically leads to the following condition of330

stability331

∆t 6 min

Υ
∆x

max
ϕ∈[0,π/2]

c∞
p f

(ϕ)
,

2

R(S)

 , (56)

where R(S) is the spectral radius of S, and Υ > 0 is obtained by a Von-Neumann analysis when332

S = 0. The first term of (56), which depends of the propagation matrices A and B, is the333

classical CFL condition. The second term of (56) depends only on the diffusive matrix S. From334

proposition 4, we deduce that the spectral radius of S satisfies335

R(S) > max
ℓ=1,···,N

(θ1
ℓ + Ω1, θ

3
ℓ + Ω3) (57)

if the coefficients θi
ℓ

and ai
ℓ

of the diffusive approximation are positive. With highly dissipative336

fluids, the second term of (56) can be so small that numerical computations are intractable.337
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Figure 3: phase velocity (a), (b) and attenuation (c), (d) of the slow quasi-compressional wave. Comparison between the

Biot-DA model and the Biot-JKD model. Left: N = 3, right: N = 6.
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A more efficient strategy is adopted here, based on the second-order Strang splitting [36]. It338

consists in splitting the original system (37) into a propagative part339

∂U

∂ t
+ A

∂U

∂ x
+ B

∂U

∂ z
= 0, (Hp) (58)

and a diffusive part with forcing340

∂U

∂ t
= −S U + G, (Hd) (59)

where Hp and Hd are the operators associated with each part. One solves alternatively the341

propagative part and the diffusive part:342

Un+1 = Hd

(
tn+1,

∆t

2

)
◦ Hp(∆t) ◦ Hd

(
tn,
∆t

2

)
Un. (60)

The discrete operator Hp associated with the propagative part (58) is an ADER 4 (Arbitrary343

DERivatives) scheme [37]. This scheme is fourth-order accurate in space and time, is dispersive344

of order 4 and dissipative of order 6 [38], and has a stability limit Υ = 1. On Cartesian grids,345

ADER 4 amounts to a fourth-order Lax-Wendroff scheme.346

The solution of (59) is given by347

Hd

(
tk,
∆t

2

)
U(t0) = e−S∆t/2 U (t0) +

∫ t0+∆t/2

t0

e−S (t0+∆t/2−τ) G(τ) dτ,

≃ e−S ∆t
2 U(t0) − (I − e−S ∆t

2 ) S−1 G(tk),

(61)

with k = n or n + 1. The exponential matrix e−S∆t/2 is computed numerically using the (6, 6)348

Padé approximation in the ”scaling and squaring method” [39]. Proposition 4 ensures that the349

numerical integration of the diffusive step (59) is unconditionally stable [23]. Without forcing,350

i.e. G = 0, the integration of the diffusive part (59) is exact.351

The full algorithm is therefore stable under the optimum CFL condition of stability352

∆t = Υ
∆x

max
ϕ∈[0,π/2]

c∞
p f

(ϕ)
, Υ 6 1, (62)

which is always independent of the Biot-DA model coefficients. Since the matrices A, B and S353

do not commute, the order of convergence decreases from 4 to 2. Using a fourth-order ADER354

scheme is nevertheless advantageous, compared with the second-order Lax-Wendroff scheme:355

the stability limit is improved, and numerical artifacts (dispersion, attenuation, anisotropy) are356

greatly reduced.357

4.2. Immersed interface method358

Let us consider two transversely isotropic homogeneous poroelastic media Ω0 and Ω1 sep-359

arated by a stationary interface Γ, as shown in figure 4. The governing equations (37) in each360

medium have to be completed by a set of jump conditions. The simple case of perfect bonding361

and perfect hydraulic contact along Γ is considered here, modeled by the jump conditions [40]:362

[vs] = 0, [w.n] = 0,
[
σ.n

]
= 0,

[
p
]
= 0. (63)
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Figure 4: interface Γ between two poroelastic media Ω0 and Ω1.

The discretization of the interface conditions requires special care. A straightforward stair-step363

representation of interfaces introduces first-order geometrical errors and yields spurious numeri-364

cal diffractions. In addition, the jump conditions (63) are not enforced numerically if no special365

treatment is applied. Lastly, the smoothness requirements to solve (58) are not satisfied, decreas-366

ing the convergence rate of the ADER scheme.367

To remove these drawbacks while maintaining the efficiency of Cartesian grid methods, im-368

mersed interface methods constitute a possible strategy [41, 42, 11]. The latter studies can be369

consulted for a detailed description of this method. The basic principle is as follows: at the ir-370

regular nodes where the ADER scheme crosses an interface, modified values of the solution are371

used on the other side of the interface instead of the usual numerical values.372

Calculating these modified values is a complex task involving high-order derivation of jump373

conditions (63), high-order derivation of the Beltrami-Michell equation (8) and algebraic ma-374

nipulation, such as singular value decompositions. All these time consuming procedures can375

be carried out during a preprocessing stage and only small matrix-vector multiplications need376

to be performed during the simulation. After optimizing the code, the extra CPU cost can be377

practically negligible, i.e. lower than 1% of that required by the time-marching procedure.378

Compared with § 3-3 of [11], the modifications induced by anisotropy concern379

• step 1: the derivation of the jump conditions,380

• step 2: the derivation of the Beltrami-Michell equation.381

These modifications are tedious and hence will not be repeated here. They are straightforwardly382

deduced from the new expressions (8) and (34).383

5. Numerical experiments384

Configuration385

In order to demonstrate the ability of the present method to be applied to a wide range of386

applications, the numerical tests will be run on two different transversely isotropic porous media.387

The medium Ω0 is composed of thin layers of epoxy and glass, strongly anisotropic if the wave-388

lengths are large compared to the thick of the layers [18]. The medium Ω1 is water saturated389

Berea sandstone, which is sedimentary rock commonly encountered in petroleum engineering.390

The grains are predominantly sand sized and composed of quartz bonded by silica [18, 43].391

The values of the physical parameters are given in table 1. The viscous characteristic lengths392

Λ1 and Λ3 are obtained by setting the Pride numbers P1 = P3 = 0.5. We also report in these393
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tables some useful values, such as phase velocities, critical frequencies, and quadrature param-394

eters computed for each media. The central frequency of the source is f0 = 200 kHz, and the395

quadrature coefficients θi
ℓ
, ai

ℓ
, i = 1, 3, are determined by nonlinear constrained optimization with396

N = 3 memory variables. The error of model εmod (55) is also given. We note that the transition397

frequencies fc1 and fc3 are the same for bothΩ0 andΩ1. In this particular case, the coefficients of398

the diffusive approximation are therefore also the same. In all the numerical simulations, the time399

step is computed from the physical parameters of the media through relations (62), setting the400

CFL number Υ = 0.95. The numerical experiments are performed on an Intel Core i7 processor401

at 2.80 GHz.402

In the first test, the computational domain [−0.15, 0.15]2 m is discretized with Nx = Nz =403

2250 grid nodes in each direction, which amounts to 20 points per slow compressional wave-404

length in Ω0. In the other tests, the computational domain is discretized with Nx = Nz = 1500,405

which amounts also to 20 points per slow compressional wavelength in Ω0 and in Ω1.406

407

Test 1: homogeneous medium408

In the first test, the homogeneous mediumΩ0 (table 1) is excited by a source point located at409

(0 m, 0 m). The only non-null component of the forcing F (36) is Gσ13
= g(t) h(x, z), where g(t)410

is a Ricker signal of central frequency f0 and of time-shift t0 = 2/ f0 = 10−5 s:411

g(t) =



2 π2 f 2
0

(
t − 1

f0

)2

− 1

 exp

(
−π2 f 2

0 (t − 1

f0
)2

)
if 0 6 t 6 t0,

0 otherwise,

(64)

and h(x, z) is a truncated Gaussian centered at point (0, 0), of radius R0 = 6.56 10−3 m and412

Σ = 3.28 10−3 m:413

h(x, z) =



1

π Σ2
exp

(
− x2 + z2

Σ2

)
if 0 6 x2 + z2 6 R2

0
,

0 otherwise.

(65)

We use a truncated gaussian for h(x, z) rather than a Dirac distribution to avoid spurious numerical414

artifacts localized around the source point. This source generates cylindrical waves of all types:415

fast and slow quasi-compressional waves and quasi-shear waves, which are denoted by qP f , qPs416

and qS , respectively, in figure 5. The three waves are observed in the pressure field. Comparison417

with the theoretical wavefront, represented by a black dotted line in figure 5, shows that the418

computed waves are well positionned at this instant (t1 ≃ 2.72 10−5 s). No special care is applied419

to simulate outgoing waves (with PML, for instance), since the simulation is stopped before the420

waves have reached the edges of the computational domain. The cusp of the shear wave is seen421

in the numerical solution.422

423

Test 2: diffraction of a plane wave by a plane interface424

In all the following tests, the source is a plane right-going fast compressional wave, whose425

wavevector k makes an angle θ = 0 degree with the horizontal x-axis. Its time evolution is the426

same Ricker signal as in the first test (64). We use periodic boundary conditions at the top and at427

the bottom of the domain.428

In the second test, the validity of the method is checked in the particular case of heteroge-429

neous transversely isotropic media, where a semi-analytical solution can be obtained easily. The430
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Parameters Ω0 Ω1

Saturating fluid ρ f (kg/m3) 1040 1040

η (Pa.s) 10−3 10−3

K f (GPa) 2.5 2.5

Grain ρs (kg/m3) 1815 2500

Ks (GPa) 40 80

Matrix φ 0.2 0.2

T1 2 2

T3 3.6 3.6

κ1 (m2) 6. 10−13 6. 10−13

κ3 (m2) 10−13 10−13

c11 (GPa) 39.4 71.8

c12 (GPa) 1 3.2

c13 (GPa) 5.8 1.2

c33 (GPa) 13.1 53.4

c55 (GPa) 3 26.1

Λ1 (m) 6.93 10−6 2.19 10−7

Λ3 (m) 3.79 10−6 1.20 10−7

Dispersion c∞
p f

(0) (m/s) 5244.40 6004.31

cp f ( f0 , 0) kHz (m/s) 5227.10 5988.50

c∞
p f

(π/2) (m/s) 3583.24 5256.03

cp f ( f0 , π/2) (m/s) 3581.42 5245.84

c∞ps(0) (m/s) 975.02 1026.45

cps( f0, 0) (m/s) 901.15 949.33

c∞ps(π/2) (m/s) 604.41 745.59

cps( f0, π/2) (m/s) 534.88 661.32

c∞s (0) (m/s) 1368.36 3484.00

cs( f0 , 0) (m/s) 1361.22 3470.45

c∞s (π/2) (m/s) 1388.53 3522.07

cs( f0 , π/2) (m/s) 1381.07 3508.05

fc1 (Hz) 2.55 104 2.55 104

fc3 (Hz) 8.50 104 8.50 104

Optimization θ1
1

(rad/s) 1.64 105 1.64 105

θ1
2

(rad/s) 2.80 106 2.80 106

θ1
3

(rad/s) 3.58 107 3.58 107

a1
1

(rad1/2/s1/2) 5.58 102 5.58 102

a1
2

(rad1/2/s1/2) 1.21 103 1.21 103

a1
3

(rad1/2/s1/2) 7.32 103 7.32 103

ε1
mod

(%) 1.61 1.61

θ3
1

(rad/s) 3.14 105 3.14 105

θ3
2

(rad/s) 5.06 107 5.06 107

θ3
3

(rad/s) 4.50 106 4.50 106

a3
1

(rad1/2/s1/2) 7.57 102 7.57 102

a3
2

(rad1/2/s1/2) 8.79 103 8.79 103

a3
3

(rad1/2/s1/2) 1.38 103 1.38 103

ε3
mod

(%) 0.53 0.53

Table 1: Physical parameters of the transversely isotropic media used in the numerical experiments. The phase velocities

cp f ( f0 , ϕ), cps( f0 , ϕ) and cs( f0 , ϕ) are computed at f = f0 = 200 kHz when the wavevector k makes an angle ϕ with the

horizontal x-axis, and c∞
p f

(ϕ), c∞ps(ϕ), c∞s (ϕ) denote the high-frequency limit of the phases velocities.
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Figure 5: test 1. Fast and slow quasi-compressional waves, respectively qP f and qPs, and quasi-shear wave qS emitted

by a source point at (0 m, 0 m). Pressure at t1 ≃ 2.72 10−5 s.

media Ω0 and Ω1 are separated by a vertical wave plane interface at x = 0 m. The incident431

P f -wave (Ip f ) propagates in the medium Ω1. The figure 6 shows a snapshot of the pressure432

at t1 ≃ 1.48 10−5 s, on the whole computational domain. The reflected fast and slow quasi-433

compressional waves, denoted respectively Rp f and Rps, propagate in the medium Ω1; and the434

transmitted fast and slow quasi-compressional waves, denoted respectively T p f and T ps, propa-435

gate in the mediumΩ0. In this case, we compute the exact solution of Biot-DA thanks to standard

(a) (b)

Ω1 Ω0
Ipf Rpf Rps Tps Tpf

Figure 6: test 2. Snapshot of pressure at initial time (a) and at t1 ≃ 1.48 10−5 s (b). The plane interface is denoted by a

straight black line, separating Ω1 (on the left) and Ω0 (on the right).

436

tools of Fourier analysis. The figure 7 shows the excellent agreement between the analytical and437

the numerical values of the pressure along the line z = 0 m. Despite the relative simplicity of438
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this configuration (1D evolution of the waves and lack of shear waves), it can be viewed as a439

validation of the numerical method which is fully 2D whatever the geometrical setting.440

Pressure Zoom on the slow compressional waves
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Figure 7: test2. Pressure along the line z = 0 m; vertical line denotes the interface. Comparison between the numerical

values (circle) and the analytical values (solid line) of p at t1 ≃ 1.48 10−5 s.

441

Test 3: diffraction of a plane wave by cylinders442

In the previous test, the interface was plane, but more complex geometries can be handled443

on a Cartesian grid thanks to the immersed interface method. As an example, we simulate the444

interaction of a plane wave with a cylindrical scatterer filled by medium Ω1, and immersed in445

medium Ω0. The cylinder, of radius 0.015 m, is centered at point (0.01 m, 0 m). The incident446

plane wave propagates in the medium Ω0. The initial conditions are illustrated in figure 8-(a),447

while the snapshot of p at time t1 ≃ 1.69 10−5 s is represented on figure 8-(b). Classical waves448

conversions and scattering phenomena are observed. Since the phase velocity cp f in the medium449

Ω1 is greater than in the medium Ω0, the transmitted fast compressional wave has a curved450

wavefront. Moreover, the shape of the reflected waves illustrates the anisotropy of the medium451

Ω0.452

453

Test 4: multiple ellipsoidal scatterers454

To illustrate the ability of the proposed numerical strategy to handle even more complex455

geometries, 200 ellipsoidal scatterers of medium Ω1, with major and minor radii of 0.025 m and456

0.02 m, are randomly distributed in a matrix of medium Ω0, leading to a concentration of 25 %.457

The pressure is represented at the initial time on figure 9 and at time t1 ≃ 1.43 10−4 s on figure458

10. This simulation has taken approximately 11.5 h of preprocessing and 8.5 h of time-stepping.459

Similar numerical experiments are also performed for a concentration of scatterer of 10 % and460

15 %.461

At each time step, the components of Un
i j are stored inside the subdomain containing the462

inclusions. For this purpose, a uniform network consisting of Nl = 800 lines and Nc = 25463

columns of receivers is put in the subdomain. The position of the receivers is given by (xi, z j),464

where i = 0, · · · ,Nc − 1 and j = 0, · · · ,Nl − 1. The field Un
i j recorded on each array (each line465

of receivers), represented on figure 11-a, corresponds to a field propagating along one horizontal466

line of receivers. A main wave train is clearly visible, followed by a coda. Summing the time467
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(a) (b)

Ω0

Ω1

Ipf

Figure 8: test 3. Snapshot of pressure at initial time (a) and at t1 ≃ 1.69 10−5 s (b). The cylinder is denoted by a black

circle, separating the porous media Ω0 (outside) and Ω1 (inside).

Ω0
IqPf

Figure 9: test 4. Multiple scattering in random media. Snapshot of p at the initial time. The matrix is Ω0 , whereas the

200 scatterers are Ω1.
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Figure 10: test 4. Multiple scattering in random media. Snapshot of p at time t1 ≃ 1.43 10−4 s. The matrix isΩ0, whereas

the 200 scatterers are Ω1 .
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histories of these Nc arrays gives a coherent field propagating in the x direction:468

U
n

i =
1

Nl

Nl−1∑

j=0

Un
i j. (66)

On the coherent seismogram thus obtained, represented on figure 11-b, the coda has disappeared,469

and the main wave train behaves like a plane wave propagating in a homogeneous (but disper-470

sive and attenuating) medium. The coherent phase velocity c(ω), represented in figure 12-a, is471

computed by applying a p −ω transform to the space-time data on the coherent field (66), where472

p = 1/c is the slowness of the waves [44, 45]. The horizontal lines represent a simple average of473

the phase velocities weighted by the concentration. The coherent attenuation α(ω) is estimated474

from the decrease in the amplitude spectrum of the coherent field during the propagation of the475

waves, see 12-b. An error estimate is also deduced, represented in figure 12 by vertical lines.
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Figure 11: test 4. Incident plane qPs-wave in a medium with 25% inclusion concentration. (a): pressure recorded along

an array, (b): coherent pressure obtained afer summation.

476

6. Conclusion477

An explicit finite-difference method has been developed here to simulate transient poroelastic478

waves in the full range of validity of the Biot-JKD model, which involves order 1/2 fractional479

derivatives. A diffusive representation transforms the fractional derivatives, non-local in time,480

into a continuum of local problems, approximated by quadrature formulae. The Biot-JKD model481

is then replaced by an approximate Biot-DA model, much more tractable numerically. The co-482

efficients of the diffusive approximation are determined by a nonlinear constrained optimization483

procedure, leading to a small number of memory variables. The hyperbolic Biot-DA system of484

partial differential equations is discretized using various tools of scientific computing: Strang485

splitting, fourth-order ADER scheme, immersed interface method. It enables to treat efficiently486

and accurately the propagation of transient waves in transversely isotropic porous media.487

Some future lines of research are suggested:488
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Figure 12: test 4. Effective phase velocity (a) and effective attenuation (b) at various inclusion concentrations. The

vertical lines represents the error bars. The horizontal lines in (a) give the average phase velocity weighted by the

concentration.

• Multiple scattering. Many theoretical methods of multiple scattering have been developed489

to determine the effective wavenumber of media with random scatterers; see for instance490

the Independent Scattering Approximation and the Waterman-Truell method [46]. The491

main drawback of these methods is that their validity is restricted to small concentrations492

of scatterers, typically less than 10 %. On the contrary, numerical methods do not suf-493

fer from such a limitation if suitable efforts are done. In particular, the errors due to the494

discretization (numerical dispersion, numerical dissipation, spurious diffractions on inter-495

faces, ...) must be much smaller than the physical quantities of interest. In [47], numerical496

simulations were used in the elastic case to estimate the accuracy of standard theoretical497

models, and also to show the improvement induced by recent models of multiple scattering498

[48]. As shown in test 4 of § 5, the numerical tools presented here make possible a similar499

study poroelastic random media and comparisons with theoretical models [49, 50].500

However, realistic configurations would involve approximately 1500 scatterers, and sizing501

of the experiments leads to Nx×Nz = 100002, and 10000 time iterations are required. Con-502

sequently, the numerical method has to be parallelized, for instance by Message Passing503

Interface (MPI).504

• Thermic boundary-layer. In cases where the saturating fluid is a gas, the effects of thermal505

expansion of both pore fluid and the matrix have to be taken into account. In the HF506

regime, the thermal exchanges between fluid and solid phase occur in a small layer close507

to the surface of the pores. In this case, the dynamic thermal permeability is introduced508

[51], leading in the time-domain to an additional shifted fractional derivative of order509

1/2. The numerical method developed in this paper can be applied without difficulty by510

introducing additional memory variables.511

• Fractional derivatives in space. The Biot theory is very efficient to predict the macro-512

scopic behavior of long-wavelength sound propagation in porous medium with relatively513

simple microgeometries. However, it remains far to describe correctly the coarse-grained514

dynamics of the medium when the microgeometry of the porous medium become more515

complex, for instance fractal. For rigid-framed porous media permeated by a viscothermal516
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fluid, a generalized macroscopic nonlocal theory of sound propagation has been developed517

to take into account not only temporal dispersion, but also spatial dispersion [52]. In this518

case, the coefficients depends on the frequency and on the wavenumber. In the space-time519

domain, it introduces not only time-fractional derivatives, but also space-fractional deriva-520

tives. Numerical modeling of space-fractional differential equations has been addressed521

by several authors [53, 54], by using a Grünwald-Letnikov approximation. The diffusive522

approximation of such derivatives constitutes an interesting challenge.523
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Appendix A. Proof of proposition 1528

The equation (10a) is multiplied by vs
T and integrated529

∫

R2

(
ρ vs

T ∂ vs

∂ t
+ ρ f vs

T ∂w

∂ t
− vs

T (∇.σ)

)
dx dz = 0. (A.1)

The first term in (A.1) is written530

∫

R2

ρ vs
T ∂ vs

∂ t
dx dz =

d

dt

1

2

∫

R2

ρ vs
T vs dx dz. (A.2)

Integrating by part and using (7), we obtain531

−
∫

R2

vs
T (∇.σ) dx dz =

∫

R2

σT ∂ ε

∂ t
dx dz,

=

∫

R2

σT

(
C−1 ∂σ

∂ t
− C−1 β

∂ p

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

σT C−1 σ dx dz +

∫

R2

σT C−1 β
∂ p

∂ t
dx dz,

=
d

dt

1

2

∫

R2

(
σT C−1 σ + 2σT C−1 β p

)
dx dz −

∫

R2

(
∂σ

∂ t

)T

C−1 β p dx dz.

(A.3)

Equation (10b) is multiplied by wT and integrated532

∫

R2

{
ρ f wT ∂ vs

∂ t
+ wT diag (ρwi)

∂w

∂ t
+ wT ∇p

+wT diag
(
η

κi

1
Ωi

(D + Ωi)
1/2

)
w
}

dx dz = 0.

(A.4)

The second term in (A.4) can be written533

∫

R2

wT diag (ρwi)
∂w

∂ t
dx dz =

d

dt

1

2

∫

R2

wT diag (ρwi) w dx dz. (A.5)
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Integrating by part the third term of (A.4), we obtain534

∫

R2

wT ∇p dx dz = −
∫

R2

p∇.w dx dz,

=

∫

R2

p
∂ ξ

∂ t
dx dz,

=

∫

R2

p

(
1

m

∂ p

∂ t
+ βT ∂ ε

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

p βT

(
C−1 ∂σ

∂ t
+ C−1 β

∂ p

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

βT C−1 ∂σ

∂ t
p dx dz +

∫

R2

βT C−1 β p
∂ p

∂ t
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

βT C−1 ∂σ

∂ t
p dx dz +

d

dt

1

2

∫

R2

βT C−1 β p2 dx dz.

(A.6)

We add (A.1) and the three first terms of (A.4). Using the symmetry of C, there remains535

∫

R2

ρ f

(
vs

T ∂w

∂ t
+ wT ∂ vs

∂ t

)
dx dz =

d

dt

1

2

∫

R2

2 ρ f vs
T w. (A.7)

Equations (19) and (A.1)-(A.7) yield536

d

dt
(E1 + E2) = −

∫

R2

∫ ∞

0

η

π
√
θ

wT diag

(
1

κi

√
Ωi

)
ψ dθ dx dz. (A.8)

To calculate the right-hand side of (A.8), equation (21a) is multiplied by wT or ψT
537



wT ∂ψ

∂ t
− wT ∂w

∂ t
+ wT diag (θ + Ωi) ψ − wT diag (Ωi) w = 0,

ψT ∂ψ

∂ t
− ψT ∂w

∂ t
+ ψT diag (θ + Ωi) ψ − ψT diag (Ωi) w = 0.

(A.9)

Some algebraic operations on (A.9) yield538

ψT diag (θ + 2Ωi) w =
∂

∂ t

1

2
(w − ψ)T (w − ψ)

+ψT diag (θ + Ωi) ψ + wT diag (Ωi) w.

(A.10)

Injecting (A.10) in (A.8) leads to the relation (24)539

d

dt
(E1 + E2 + E3) = −

∫

R2

∫ ∞

0

η

π
√
θ

{
ψT diag

(
θ + Ωi

κi

√
Ωi (θ + 2Ωi)

)
ψ

+wT diag

(
Ωi

κi

√
Ωi (θ + 2Ωi)

)
w

}
dθ dx dz.

(A.11)
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It remains to prove that E (22) is a positive definite quadratic form. Concerning E1, we write540

ρ vs
T vs + wT diag (ρwi) w + 2 ρ f vs

T w = X1
T H1 X1 + X3

T H3 X3, (A.12)

where541

Xi = (vsi wi)
T , Hi =


ρ ρ f

ρ f ρwi

 , i = 1, 3. (A.13)

Taking Si and Pi to denote the sum and the product of the eigenvalues of matrix Hi, we obtain542



Pi = det Hi = ρ ρwi − ρ2
f
= χi > 0,

Si = tr Hi = ρ + ρw > 0.
(A.14)

The eigenvalues of Hi are therefore positive. This proves that E1 is a positive definite quadratic543

form. The terms E2, E3 and − dE
dt

are obviously positive definite quadratic form because the544

involved matrices are definite positive. �545

Appendix B. Matrices of propagation and dissipation546

The matrices in (37) are547

A =



04,4 A1 04,2N

A2 04,4 04,2N

02N,4 A3 02N,2N


, A3 =



ρ f

χ1

0 0
ρ

χ1

0
ρ f

χ3

0 0

...
...

...
...

ρ f

χ1

0 0
ρ

χ1

0
ρ f

χ3

0 0



, (B.1)

A1 =



−ρw1

χ1

0 0 −
ρ f

χ1

0 −ρw3

χ3

0 0

ρ f

χ1

0 0
ρ

χ1

0
ρ f

χ3

0 0



, A2 =



−cu
11

0 −β1 m 0

0 −cu
55

0 0

−cu
13

0 −β3 m 0

β1 m 0 m 0



,
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548

B =



04,4 B1 04,2N

B2 04,4 04,2N

02N,4 B3 02N,2N


, B3 =



0
ρ f

χ1

0 0

0 0
ρ f

χ3

ρ

χ3

...
...

...
...

0
ρ f

χ1

0 0

0 0
ρ f

χ3

ρ

χ3



, (B.2)

B1 =



0 −ρw1

χ1

0 0

0 0 −ρw3

χ3

−
ρ f

χ3

0
ρ f

χ1

0 0

0 0
ρ f

χ3

ρ

χ3



, B2 =



0 −cu
13

0 −β1 m

−cu
55

0 0 0

0 −cu
33

0 −β3 m

0 β3 m 0 m



,

and S is the diffusive matrix549

S =



04,4 04,4 S1

04,4 04,4 04,2N

S3 02N,4 S2


, S3 =



0 0 −Ω1 0

0 0 0 −Ω3

...
...

...
...

0 0 −Ω1 0

0 0 0 −Ω3



, (B.3)

S1 =



−
ρ f

ρ
γ1 a1

1 0 · · · −
ρ f

ρ
γ1 a1

N 0

0 −
ρ f

ρ
γ3 a3

1 · · · 0 −
ρ f

ρ
γ3 a3

N

γ1 a1
1 0 · · · γ1 a1

N 0

0 γ3 a3
1 · · · 0 γ3 a3

N



,

S2 =



γ1 a1
1
+ (θ1

1
+ Ω1) 0 · · · γ1 a1

N
0

0 γ3 a3
1
+ (θ3

1
+ Ω3) · · · 0 γ3 a3

N

...
...

...
...

...

γ1 a1
1

0 · · · γ1 a1
N
+ (θ1

N
+ Ω1) 0

0 γ3 a3
1

· · · 0 γ3 a3
N
+ (θ3

N
+ Ω3)



.
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Appendix C. Proof of proposition 4550

We denote PB the change-of-basis matrix satisfying551

U = PB (U1 , U3 , σ , p)T , (C.1)

with552

Ui = (vsi , wi , ψ
i
1 , · · · , ψi

N )T , i = 1, 3. (C.2)

The matrix PB is thus invertible, and the matrices S (Appendix B) and SB = P−1
B SPB are similar.553

The matrix SB writes554

SB =



S̃1 0N+2,N+2 0N+2,3 0N+2,1

0N+2,N+2 S̃3 0N+2,3 0N+2,1

03,N+2 03,N+2 03,3 03,1

01,N+2 01,N+2 01,3 0



(C.3)

with (i = 1, 3)555

S̃i =



0 0 −
ρ f

ρ
γi ai

1 −
ρ f

ρ
γi ai

2 · · · −
ρ f

ρ
γi ai

N

0 0 γi ai
1

γi ai
2

· · · γi ai
N

0 −Ωi γi ai
1
+ (θi

1
+ Ωi) γ1 ai

2
· · · γi ai

N

0 −Ωi γi ai
1

γi ai
2
+ (θi

2
+ Ωi) · · · γi ai

N

...
...

...
...

...
...

0 −Ωi γi ai
1

γi ai
2

· · · γi ai
N
+ (θi

N
+ Ωi)



. (C.4)

The characteristic polynomial of S is556

PS(s) = s4 P ˜S1

(s) P ˜S3

(s), (C.5)

where P ˜Si

(s) denotes the characteristic polynomial of the matrix S̃i, i.e. S̃i(s) = det(S̃i − s IN+2)557

with IN+2 the (N + 2)-identity matrix. This (N + 2)-determinant is expanded along the first558

column. The line I and the column J of the (N + 1)-determinant thus obtained are denoted LI559

and CJ , respectively (0 6 I, J 6 N). The following algebraic manipulations are then performed560

successively:561

(i) Lℓ ← Lℓ − L0, ℓ = 1, · · · ,N,

(ii) C0 ← C0

N∏
ℓ=1

(θi
ℓ
+ Ωi − s),

(iii) C0 ← C0 − (s − Ω1)
N∏

k=1
k,ℓ

(θi
k
+ Ωi − s) Cℓ, ℓ = 1, · · · ,N.

(C.6)
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One deduces562

P ˜Si

(s) = −sQi(s) = s2

N∏

ℓ=1

(θi
ℓ + Ωi − s) + γi s (s −Ωi)

N∑

ℓ=1

ai
ℓ

N∏

k=1
k,ℓ

(θi
k + Ωi − s). (C.7)

From equation (C.7), one has P ˜Si

(0) , 0 while Qi(0) , 0, therefore 0 is an eigenvalue of the563

matrix S̃i with multiplicity 1. In what follows, the positivity of the coefficients θi
ℓ
, ai

ℓ
of the564

diffusive approximation is used. In the limit s→ 0+, then asymptotically565

P ˜Si

(s) ∼
s→0+
−γiΩi s

N∑

ℓ=1

ai
ℓ

N∏

k=1
k,ℓ

(θi
k + Ωi)⇒ sgn

(
P ˜Si

(0+)

)
= −1. (C.8)

Moreover, using (43), then at the quadrature abscissae one has for all ℓ = 1, · · · ,N566

P ˜Si

(θi
ℓ + Ωi) = γi θ

i
ℓ (θi

ℓ + Ωi) ai
ℓ

N∏

k=1
k,ℓ

(θi
k − θi

ℓ)⇒ sgn

(
P ˜Si

(θi
ℓ + Ωi)

)
= (−1)ℓ+1. (C.9)

Finally, the following limit holds567

P ˜Si

(s) ∼
s→+∞

(−1)N sN+2 ⇒ sgn

(
P ˜Si

(+∞)

)
= (−1)N . (C.10)

We introduce the following intervals568

Ii
N =]θi

N + Ωi,+∞[, Ii
ℓ =]θi

ℓ, θ
i
ℓ+1 + Ωi], for ℓ = 1, · · · ,N − 1, Ii

0 =]0, θi
1 + Ωi]. (C.11)

The real-valued continuous function P ˜Si

changes of sign on each interval Ii
ℓ
. Consequently,569

according to the intermediate value theorem, P ˜Si

has at least one zero in each interval. Since P ˜Si

570

has at the most N + 1 distinct zeros in ]0,+∞[, we deduce that ∃ ! si
ℓ
∈ Ii

ℓ
/P ˜Si

(si
ℓ
) = 0, ℓ =571

1, · · · ,N + 1. Using equation (C.5), the characteristic polynomial of S (C.7) is therefore572

PS(s) = s6

N+1∏

ℓ=1

(s − s1
ℓ ) (s − s3

ℓ ), (C.12)

which concludes the proof. �573
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