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Uniform-in-time convergence result of numerical methods for

non-linear parabolic equations

J. Droniou∗ and R. Eymard†

October 28, 2014

Abstract

We prove that all Gradient Schemes – which include Finite Element, some Mixed Finite
Element and Finite Volume methods – converge uniformly in time when applied to a family
of nonlinear parabolic equations which contains the Richards, Stefan and Leray-Lions models.

AMS Subject Classification: 46N40

1 Introduction

1.1 Motivation

The following generic nonlinear parabolic model

∂tβ(u)− div (a(x, ν(u),∇ζ(u))) = f in Ω× (0, T ),
β(u)(x, 0) = β(uini)(x) in Ω,
ζ(u) = 0 on ∂Ω× (0, T )

(1)

where β, ζ are non-decreasing, ν is such that ν′ = β′ζ ′ and a is a Leray-Lions operator, arises in
various frameworks (see next section for precise hypotheses on the data). This model includes

1. Richards’ model, setting ζ(s) = s, ν = β and a(x, ν(u),∇ζ(u)) = Λ(x)K(x, β(u))∇u, which
describes the flow of water in a heterogeneous anisotropic underground medium,

2. Stefan’s model [4], setting β(s) = s, ν = ζ, a(x, ν(u),∇ζ(u)) = K(ζ(u))∇ζ(u), which arises
in the study of a simplified heat diffusion in a melting medium,

3. p−Laplace problem (and p−Laplace-like problems), setting β(s) = ζ(s) = ν(s) = s and
a(x, ν(u),∇ζ(u)) = |∇u|p−2∇u, which is involved in the motion of glaciers [29] or flows of
incompressible turbulent fluids through porous media [11].

The numerical approximation of these models has been extensively studied in the literature (see
the fundamental work on the Stefan problem [34], and [35] for a review of some numerical ap-
proximations, see [32] for the Richards problem and see [12, 16] and references therein for some
studies of convergence of numerical methods for the Leray-Lions problem). However, the conver-
gence analysis of the considered schemes received a much reduced coverage and consists mostly in
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establishing space-time averaged results (e.g. in L2(Ω× (0, T ))), see for example [23, 26]). Yet, the
quantity of interest is often not u on Ω× (0, T ) but u at a given time, for example t = T . Existing
numerical analysis results therefore do not ensure that this quantity of interest is indeed properly
approximated by numerical methods.
The usual way to obtain pointwise-in-time approximation results for numerical schemes is to prove
estimates in L∞(0, T ;L2(Ω)) on u − u, where u is the approximated solution. Establishing such
error estimates is however only feasible when uniqueness of the solution u to (1) can be proved,
which is the case for Richards’ and Stefan’s problems but not for more complex non-linear parabolic
problems as (1) or even p-Laplace problems. It moreover requires some regularity assumptions on
u, which clearly fail for (1) (and simpler p-Laplace problems) for which, because of the possible
plateaux of β and ζ, the solution can develop jumps in its gradient.
The purpose of this article is to prove that, using Discrete Functional Analysis techniques (i.e. the
translation to numerical analysis of nonlinear analysis techniques), an L∞(0, T ;L2(Ω)) convergence
result can be established for numerical approximations of (1), without having to assume non-
physical regularity assumptions on the data. Note that, although Richards’ and Stefan’s models
are formally equivalent when β and ζ are strictly increasing (consider β = ζ−1 to pass from
one model to the other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ζ is constant on the range of the solution) and
Richards’ model can become a non-transient elliptic equation (if β is constant on this range). The
innovative technique we develop in this paper is nonetheless generic enough to work directly on
(1) and with a vast number of numerical methods.
That being said, a particular numerical framework must be selected in order to write precise
equations and estimates. The framework we choose is that of Gradient Schemes, which has the
double benefit of covering a vast number of numerical methods and of having already been studied
for many models – elliptic, parabolic, linear or non-linear, possibly degenerate, etc. – with var-
ious boundary conditions. The schemes or family of schemes included in the Gradient Schemes
framework, and to which our results therefore directly apply, currently are:

• Galerkin methods, including conforming Finite Element schemes,

• Finite Element with mass lumping [7],

• The Crouzeix-Raviart non-conforming Finite Element, with or without mass lumping [9, 20],

• The Raviart-Thomas Mixed Finite Elements [5],

• The Vertex Approximate Gradient scheme [24],

• The Hybrid Mimetic Mixed family [15], which includes Mimetic Finite Differences [6], Mixed
Finite Volume [13] and the SUSHI scheme [22],

• The Discrete Duality Finite Volume scheme in dimension 2 [30, 2], and the CeVeFE-Discrete
Duality Finite Volume scheme in dimension 3 [8],

• The Multi-Point Flux Approximation O-method [1, 18].

We refer the reader to [14, 16, 21, 27, 25] for more details. Let us finally emphasize that the
unified convergence study of numerical schemes for Problem (1), which combines a general Leray-
Lions operator and nonlinear functions β or ζ, seems to be new even without the uniform-in-time
convergence result.

The paper is organised as follows. In Section 1.2, we present the assumptions and the notion of
weak solution for (1) and, in Section 1.3, we give an overview of the ideas involved in the proof
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of uniform-in-time convergence. This overview is given not in a numerical analysis context but in
in a context of pure stability analysis of (1) with very little regularity on the data, for which the
uniform-in-time convergence result also seems to be new. Section 2 presents the Gradient Schemes
for our generic model (1). We give in Section 3 some preliminaries to the convergence study. Section
4 contains the complete convergence proof of Gradient Schemes for (1), including the uniform-in-
time convergence result. An appendix, Section 5, concludes the article with important technical
results, and in particular a generalisation of Ascoli-Arzela compactness result to discontinuous
functions and a characterisation of uniform convergence of sequences of functions which is critical
to establishing our uniform-in-time convergence result.
Note that these results and their proofs have been sketched and illustrated by some numerical
examples in [17], for a(x, ν(u),∇ζ(u)) = ∇ζ(u).

1.2 Hypotheses and weak sense for the continuous problem

We consider the evolution problem (1) under the following hypotheses.

Ω is an open bounded connected polyhedral subset of Rd (d ∈ N?) and T > 0, (2a)

ζ ∈ C0(R) is non–decreasing, Lipschitz continuous with Lipschitz constant Lζ > 0
such that ζ(0) = 0 and, for some M0,M1 > 0, |ζ(s)| ≥M0|s| −M1 for all s ∈ R. (2b)

β is a non-decreasing Lipschitz continuous function with Lipschitz constant Lβ > 0
and β(0) = 0.

(2c)

∀s ∈ R , ν(s) =

∫ s

0

ζ ′(q)β′(q)dq. (2d)

a : Ω× R× Rd → Rd, with p ∈ (1,+∞), is a Caratheodory function, (2e)

(i.e. a function such that, for a.e. x ∈ Ω, (s, ξ) 7→ a(x, s, ξ) is continuous and, for any (s, ξ) ∈
R× Rd, x 7→ a(x, s, ξ) is measurable)

∃a ∈ (0,+∞) : a(x, s, ξ) · ξ ≥ a|ξ|p, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ Rd, (2f)

(a(x, s, ξ)− a(x, s,χ)) · (ξ − χ) ≥ 0, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ,χ ∈ Rd, (2g)

∃a ∈ Lp′(Ω) , ∃µ ∈ (0,+∞) :
|a(x, s, ξ)| ≤ a(x) + µ|ξ|p−1, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ Rd, (2h)

and

uini ∈ L2(Ω), f ∈ Lp′(Ω× (0, T )). (2i)

We denote by Rβ the range of β and define the pseudo-inverse function βr : Rβ → R of β by

∀s ∈ Rβ , βr(s) =

{
inf{t ∈ R |β(t) = s} if s ≥ 0,
sup{t ∈ R |β(t) = s} if s < 0,

= closest t to 0 such that β(t) = s.
(3)

Since β(0) = 0, we notice that βr ≥ 0 on Rβ ∩ R+ and βr ≤ 0 on Rβ ∩ R−. We then define
B : Rβ → [0,∞] by

B(z) =

∫ z

0

ζ(βr(s)) ds.

Since βr is non-decreasing, this expression is always well-defined in [0,∞). The signs of βr also
ensure that that B is non-decreasing on Rβ∩R+ and non-increasing on Rβ∩R−. We can therefore
extend B to Rβ by these limits (possibly +∞) at the potential endpoints of Rβ .
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The precise notion of solution to (1) that we consider is then the following:

u ∈ Lp(0, T ;Lp(Ω)) , ζ(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) ,

B(β(u)) ∈ L∞(0, T ;L1(Ω)), β(u) ∈ C([0, T ];L2(Ω)-w), ∂tβ(u) ∈ Lp′(0, T ;W−1,p′(Ω)),
β(u)(·, 0) = β(uini) in L2(Ω),∫ T

0

〈∂tβ(u)(·, t), v(·, t)〉W−1,p′ ,W 1,p
0

dt

+

∫ T

0

∫
Ω

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇v(x, t)dxdt =

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt ,

∀v ∈ Lp(0;T ;W 1,p
0 (Ω)).

(4)

where C([0, T ];L2(Ω)-w) denotes the space of continuous functions [0, T ] 7→ L2(Ω) for the weak-∗
topology of L2(Ω). Here and in the following, we denote by p′ the dual exponent p

p−1 to p and we

remove the mention of Ω in the duality bracket 〈·, ·〉W−1,p′ ,W 1,p
0

= 〈·, ·〉W−1,p′ (Ω),W 1,p
0 (Ω).

Remark 1.1 The derivative ∂tβ(u) is to be understood in the usual sense of distributions on
Ω× (0, T ). Since the set T = {

∑q
i=1 ϕi(t)γi(x) : q ∈ N, ϕi ∈ C∞c (0, T ), γi ∈ C∞c (Ω)} of tensorial

functions in C∞(Ω × (0, T )) is dense in Lp(0, T ;W 1,p
0 (Ω)), one can ensure that this distribution

derivative ∂tβ(u) belongs to Lp
′
(0, T ;W−1,p′(Ω)) = (Lp(0, T ;W 1,p

0 (Ω))′ by checking that the linear
form

ϕ ∈ T 7→ 〈∂tβ(u), ϕ〉D′,D = −
∫ T

0

∫
Ω

β(u)(x, t)∂tϕ(x, t)dxdt

is continuous for the norm of Lp(0, T ;W 1,p
0 (Ω)).

Note that the continuity property of β(u) natural. Indeed, the PDE in the sense of distributions
shows that Tϕ : t 7→ 〈β(u)(t), ϕ〉L2 belongs to W 1,1(0, T ), and is therefore continuous, for any
ϕ ∈ C∞c (Ω). The density in L2(Ω) of such ϕ, combined with the fact that β(u) ∈ L∞(0, T ;L2(Ω))
(coming from B(β(u)) ∈ L∞(0, T ;L1(Ω)) and (26)), proves the continuity of Tϕ for any ϕ ∈ L2(Ω),
that is to say the continuity of β(u) : [0, T ]→ L2(Ω)-w.
This notion of β(u) as a function continuous in time is nevertheless a subtle one. It is to be
understood in the sense that the function (x, t) 7→ β(u(x, t)) has an a.e. representative which
is continuous [0, T ] 7→ L2(Ω)-w. In other words, there is a function Z ∈ C([0, T ];L2(Ω)-w) such
that Z(t)(x) = β(u(x, t)) for a.e. (x, t) ∈ Ω × (0, T ). We must however make sure, when dealing
with pointwise values in time to separate Z from β(u(·, ·)) as β(u(·, t1)) may not make sense for a
particular t1 ∈ [0, T ].
That being said, in order to adopt a simple notation, we will denote by β(u)(·, ·) the function
Z, and by β(u(·, ·)) the a.e.-defined composition of β and u. Hence, it will make sense to talk
about β(u)(·, t) for a particular t1 ∈ [0, T ], and we will only write β(u)(x, t) = β(u(x, t)) for a.e.
(x, t) ∈ Ω× (0, T ). Note that from this a.e. equality we can ensure that β(u)(·, ·) takes its values
in the closure Rβ of the range of β.

1.3 General principle for the uniform-in-time convergence result

As explained in the introduction, the main innovative result of this article is the uniform-in-time
convergence result (Theorem 2.14 below). Although it’s stated and proved in the context of numer-
ical approximations of (1), we emphasize that its principle is also applicable to theoretical analysis
of PDEs. Let us informally present this principle on the following continuous approximation of
(1):

∂tβ(uε)− div (aε(x, ν(uε),∇ζ(uε))) = f in Ω× (0, T ),
β(uε)(x, 0) = β(uini)(x) in Ω,
ζ(uε) = 0 on ∂Ω× (0, T )

(5)
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where aε satisfies Assumptions (2e)–(2h) with constants not depending on ε and aε → a pointwise
as ε→ 0.
We want to show here how to deduce from averaged convergences a strong uniform-in-time conver-
gence result. We therefore assume the following convergences (up to a subsequence as ε→ 0), which
are compatible with basic compactness results that can be obtained on (uε)ε and also correspond
to the initial convergences (18) that can be obtained on numerical approximations of (1):

β(uε)→ β(u) in C([0, T ];L2(Ω)-w) , ν(uε)→ ν(u) strongly in L1(Ω× (0, T )),

ζ(uε)→ ζ(u) weakly in Lp(0, T ;W 1,p
0 (Ω)) ,

aε(·, ν(uε),∇ζ(uε))→ a(·, ν(u),∇ζ(u)) weakly in Lp(Ω× (0, T ))d.
(6)

We will prove from these convergences that, along the same subsequence, ν(uε) → ν(u) strongly
in C([0, T ];L2(Ω)), which is our uniform-in-time convergence result.
We start by noticing that the weak-in-space uniform-in-time convergence of β(uε) gives, for any
T0 ∈ [0, T ] and any family (Tε)ε>0 converging to T0 as ε→ 0, β(uε)(Tε, ·)→ β(u)(T0, ·) weakly in
L2(Ω). Classical strong-weak semi-continuity properties of convex functions (see Lemma 3.4) and
the convexity of B (see Lemma 3.3) then ensure that∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
ε→0

∫
Ω

B(β(uε)(x, Tε))dx. (7)

The second step is to notice that, by (2g) for aε,∫ Tε

0

∫
Ω

[aε(·, ν(uε),∇ζ(uε)− aε(·, ν(uε),∇ζ(u))] · [∇ζ(uε)−∇ζ(u)] dxdt ≥ 0.

Developing this expression and using the convergences (6), we find that

lim inf
ε→0

∫ Tε

0

∫
Ω

aε(·, ν(uε),∇ζ(uε) · ∇ζ(uε)(x, t)dxdt ≥
∫ T0

0

∫
Ω

a(·, ν(u),∇ζ(u)) · ∇ζ(u)dxdt. (8)

We then establish the following formula:∫
Ω

B(β(uε(x, Tε)))dx+

∫ Tε

0

∫
Ω

aε(x, ν(uε(x, t)),∇ζ(uε)(x, t)) · ∇ζ(uε)(x, t)dxdt

=

∫
Ω

B(β(uini(x)))dx+

∫ Tε

0

∫
Ω

f(x, t)ζ(uε)(x, t)dxdt. (9)

This energy estimate is formally obtained by multiplying (5) by ζ(uε) and integrating by parts,
using the fact that (B ◦ β)′ = ζβ′ (see Lemma 3.3). The rigorous justification of (9) is however
quite technical, see Lemma 3.6 and Corollary 3.8. Thanks to (8), we can pass to the lim sup in (9)
and we find, using the same energy estimate with (u,a, T0) instead of (uε,aε, Tε),

lim sup
ε→0

∫
Ω

B(β(uε(x, Tε)))dx ≤
∫

Ω

B(β(u(x, T0)))dx. (10)

Combined with (7), this shows that
∫

Ω
B(β(uε(x, Tε)))dx →

∫
Ω
B(β(u(x, T0)))dx. The uniform

convexity of B (see (28)) then allows us to deduce that ν(uε(·, Tε))→ ν(u(·, T0)) strongly in L2(Ω)
and thus that ν(uε)→ ν(u) strongly in C([0, T ];L2(Ω)) (see Lemma 6.3).

Remark 1.2 A close examination of this proof indicates that equality in the energy estimate (9)
is not required for uε. An inequality ≤ would be sufficient. This is particularly important in the
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context of numerical methods which may introduce additional numerical diffusion (for example due
to an implicit-in-time discretisation) and therefore only provide an upper bound in this energy
estimate, see for example Estimate (39).
It is however crucial that the limit solution u satisfies the equivalent of (9) with an equal sign (or
≥).

2 Gradient discretisations and gradient schemes

2.1 Definitions

We give here a minimal presentation of gradient discretisations and gradient schemes, limiting
ourselves to what is necessary to study the discretisation of (1). We refer the reader to [14, 24, 16]
for more details.
A gradient scheme can be viewed as a general formulation of several discretisations of (1) which
are based on a nonconforming approximation of the weak formulation of the problem. The ap-
proximation of the weak formulation of (1) is based on some discrete spaces and mappings, the set
of which we call a gradient discretisation. Throughout this paper, Ω is an open bounded subset of
Rd, d ∈ N?, and p ∈ (1,+∞).

Definition 2.1 (Space-Time gradient discretisation for homogeneous Dirichlet bound-
ary conditions)
We say that D = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) is a space-time gradient discretisation for
homogeneous Dirichlet boundary conditions if

1. the set of discrete unknowns XD,0 is a finite dimensional real vector space,

2. the linear mapping ΠD : XD,0 → L∞(Ω) is a piecewise constant reconstruction operator in
the sense that there exists a set I of degrees of freedom such that XD,0 = RI and there exists a
family (Ωi)i∈I of disjoint subsets of Ω such that Ω =

⋃
i∈I Ωi and, for all u = (ui)i∈I ∈ XD,0

and all i ∈ I,ΠDu = ui on Ωi,

3. the linear mapping ∇D : XD,0 → Lp(Ω)d gives a reconstructed discrete gradient. It must be
chosen such that ‖∇D · ‖Lp(Ω)d is a norm on XD,0,

4. ID : L2(Ω)→ XD,0 is a linear interpolation operator,

5. t(0) = 0 < t(1) < t(2) < . . . < t(N) = T .

We then set δt(n+ 1
2 ) = t(n+1) − t(n), for n = 0, . . . , N − 1, and δtD = maxn=0,...,N−1 δt

(n+ 1
2 ), and

we define the dual semi-norm |w|?,D of w ∈ XD,0 by

|w|?,D = sup

{∫
Ω

ΠDw(x)ΠDz(x)dx : z ∈ XD,0 , ||∇Dz||Lp(Ω)d = 1

}
. (11)

Remark 2.2 (Boundary conditions) Other boundary conditions can be seamlessly handled by
Gradient Schemes, see [14].

Remark 2.3 (Nonlinear function of the elements of XD,0) Let D be a gradient discretisa-
tion in the sense of Definition 2.1. For any χ : R 7→ R and any u = (ui)i∈I ∈ XD,0, we define
χI(u) ∈ XD,0 by χI(u) = (χI(u)i)i∈I with χI(u)i = χ(ui). As indicated by the subscript I, this
definition depends on the choice of the degrees of freedom in XD,0. That said, these degrees of

6



freedom are usually canonical and we therefore drop the index I. An important consequence of the
fact that ΠD is a piecewise constant reconstruction is the following:

∀χ : R 7→ R , ∀u ∈ XD,0 , ΠDχ(u) = χ(ΠDu). (12)

It is customary to also use the notations ΠD and ∇D for space-time dependent functions. We
will also need a notation for the jump-in-time of piecewise constant functions in time. Hence, if
(v(n))n=0,...,N ⊂ XD,0, we set

for a.e. x ∈ Ω, ΠDv(x, 0) = ΠDv
(0)(x) and ∀n = 0, . . . , N − 1 , ∀t ∈ (t(n), t(n+1)] :

ΠDv(x, t) = ΠDv
(n+1)(x) , ∇Dv(x, t) = ∇Dv(n+1)(x)

and δDv(t) = δ
(n+ 1

2 )

D v :=
v(n+1) − v(n)

δt(n+ 1
2 )

∈ XD,0.
(13)

Thanks to Remark 2.3, the related gradient scheme is merely the discretisation of the weak for-
mulation of (1) obtained by using the discrete space and mappings of the gradient discretisation.
If D = (XD,0,ΠD,∇D, ID, (t(n))n=0,...,N ) is a space-time gradient discretisation in the sense of
Definition 2.1, we define the following gradient scheme for Problem (1): we consider a sequence
(u(n))n=0,...,N ⊂ XD,0 such that

u(0) = IDuini and, for all v = (v(n))n=1,...,N ⊂ XD,0,∫ T

0

∫
Ω

[ΠDδDβ(u)(x, t)ΠDv(x, t) + a (x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dv(x, t)] dxdt

=

∫ T

0

∫
Ω

f(x, t)ΠDv(x, t)dxdt.

(14)

Remark 2.4 We could as well consider, instead of a fully implicit method, a Crank-Nicolson
scheme or any scheme in between those two. Such schemes are defined by taking α ∈ [ 1

2 , 1]

and replacing the terms u(n+1) appearing in a(x, ·, ·) in (14) for t ∈ (t(n), t(n+1)] with u(n+α) =
αu(n+1) + (1− α)u(n). All the results we establish for (14) would hold for such a scheme (see the
treatment in [16]).

2.2 Properties of gradient discretisations

In order to establish the convergence of the associated gradient schemes, sequences of space-
time gradient discretisations are required to satisfy four properties: coercivity, consistency, limit-
conformity and compactness.

Definition 2.5 (Coercivity) A sequence (Dm)m∈N of space-time gradient discretisations in the
sense of Definition 2.1 is said to be coercive if there exists CD such that, for any m ∈ N and any
v ∈ XDm,0, ||ΠDmv||Lp(Ω) ≤ CD||∇Dmv||Lp(Ω)d .

Definition 2.6 (Consistency) If D is a space-time gradient discretisation in the sense of Defi-
nition 2.1, we define

∀ϕ ∈ L2(Ω) ∩W 1,p
0 (Ω), ŜD(ϕ) = min

w∈XD,0

(
||ΠDw − ϕ||Lmax(p,2)(Ω) + ||∇Dw −∇ϕ||Lp(Ω)

)
. (15)

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition 2.1 is said
to be consistent if

• for all ϕ ∈ L2(Ω) ∩W 1,p
0 (Ω), ŜDm(ϕ)→ 0 as m→∞,
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• for all ϕ ∈ L2(Ω), ΠDmIDmϕ→ ϕ in L2(Ω) as m→∞, and

• δtDm → 0 as m→∞.

Definition 2.7 (Compactness) If D is a space-time gradient discretisation in the sense of Def-
inition 2.1, we define

∀ξ ∈ Rd , TD(ξ) = max
v∈XD,0\{0}

||ΠDv(·+ ξ)−ΠDv||Lp(Rd)

||∇Dv||Lp(Ω)
,

where ΠDv has been extended by 0 outside Ω.
A sequence (Dm)m∈N of space-time gradient discretisations is said to be compact if

lim
ξ→0

sup
m∈N

TD(ξ) = 0.

Definition 2.8 (Limit-conformity) If D is a space-time gradient discretisation in the sense of
Definition 2.1, we define

∀ϕ ∈W div,p′(Ω) , WD(ϕ) = max
u∈XD,0\{0}

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣
‖∇Du‖Lp(Ω)d

.
(16)

A sequence (Dm)m∈N of space-time gradient discretisations in the sense of Definition 2.1 is said
to be limit-conforming if, for all ϕ ∈W div,p′(Ω), WDm(ϕ) tends to 0 as m→∞.

We refer the reader to [16, 14] for a proof of the following lemma.

Lemma 2.9 (Consequence of limit-conformity) Let (Dm)m∈N be a sequence of space-time
gradient discretisations in the sense of Definition 2.1, which is limit-conforming in the sense of

Definition 2.8. Let, for any m ∈ N, vm = (v
(n)
m )n=0,...,Nm ⊂ XDm,0 be such that, with the notations

in (13), (∇Dmvm)m∈N is bounded in Lp(Ω× (0, T )).
Then there exists v ∈ Lp(0, T ;W 1,p

0 (Ω)) such that, up to a subsequence as m → ∞, ΠDmvm → v
weakly in Lp(Ω× (0, T )) and ∇Dmvm → ∇v weakly in Lp(Ω× (0, T ))d.

2.3 Main results

Our first theorem states weak or space-time averaged convergence properties of Gradient Schemes
for (1). These results are quite classical and have already been established for Richards’ and
Stefan’s models, see [21, 25]. The convergence proof we provide afterwards however covers more
non-linear model, as a do not need to be linear with respect to ξ, and is more compact than the
ones available in the literature.

Theorem 2.10 (Convergence of the Gradient Scheme) Under Assumptions (2), let (Dm)mp∈N
be a sequence of space-time gradient discretisations in the sense of Definition 2.1, which is coercive,
consistent, compact and limit-conforming (see Section 2.2).
Then for any m ∈ N there exists a solution um to (14) with D = Dm.
Moreover, if we assume that

(∀s ∈ R , β(s) = s) or (∀s ∈ R , ζ(s) = s), (17)
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then there exists a solution u to (4) such that, up to a subsequence, the following convergences hold
as m→∞:

ΠDmβ(um)→ β(u) weakly in L2(Ω) uniformly on [0, T ] (see Definition 6.4),
ΠDmν(um)→ ν(u) strongly in L1(0, T ;L1(Ω)),
ΠDmζ(um)→ ζ(u) weakly in Lp(Ω× (0, T )).
∇Dmζ(um)→ ∇ζ(u) weakly in Lp(Ω× (0, T ))d.

(18)

Remark 2.11 Since |ν| ≤ Lζ |β| and |ν| ≤ Lβ |ζ|, the L∞(0, T ;L2(Ω)) bound on β(um) and the
Lp(Ω× (0, T )) bound on ζ(um) (see Lemma 4.1 and Definition 2.5) allows us to see that the strong
convergence of ΠDmν(um) is also valid in Lq(0, T ;Lr(Ω)) for any (q, r) such that q <∞ and r < 2
or q, r < p (and, of course, any space interpolated between the two cases).

Remark 2.12 Note that we do not assume the existence of a solution u to the continuous problem,
our convergence analysis will establish this existence.

Remark 2.13 Assumption (17) covers Richards’ and Stefan’s models, as well as many other non-
linear parabolic equations. This assumption is actually not mandatory if p ≥ 2, see Section 5.
We decide however to first state and prove Theorem 2.10 with this assumption to simplify the
presentation. See also Remark 2.17.

The main innovation of this paper is the following theorem, which states the uniform-in-time
convergence of numerical methods for fully non-linear parabolic equations with no regularity as-
sumptions on the data.

Theorem 2.14 (Uniform-in-time convergence) Under Assumptions (2), let (Dm)mp∈N be a
sequence of space-time gradient discretisations in the sense of Definition (2.1), which is coercive,
consistent, compact and limit-conforming (see Section 2.2).
We assume that, for any m ∈ N, um is a solution to (14) with D = Dm, which converges to a
solution u of (4) in the sense (18).
Then, as m→∞, ΠDmν(um)→ ν(u) strongly in L∞(0, T ;L2(Ω)).

Remark 2.15 Note that since (ΠDmν(um))m∈N are piecewise constant in time, their convergence
in L∞(0, T ;L2(Ω)) is actually a uniforme-in-time convergence (not “uniform a.e. in time”).

The last theorem completes our convergence result by stating the strong space-time averaged
convergence of the discrete gradients. Its proof is inspired by the study of Gradient Schemes for
Leray-Lions operators made in [16].

Theorem 2.16 (Strong convergence of the gradients) Under Assumptions (2), let (Dm)mp∈N
be a sequence of space-time gradient discretisations in the sense of Definition (2.1), which is coer-
cive, consistent, compact and limit-conforming (see Section 2.2).
We assume that, for any m ∈ N, um is a solution to (14) with D = Dm, which converges to a
solution u of (4) in the sense (18). We also assume that a is strictly monotone in the sense:

(a(x, s, ξ)− a(x, s,χ)) · (ξ − χ) > 0, for a.e. x ∈ Ω, ∀s ∈ R, ∀ξ 6= χ ∈ Rd. (19)

Then, as m→∞, ΠDmζ(um)→ ζ(u) strongly in Lp(Ω× (0, T )) and ∇Dmζ(um)→ ∇ζ(u) strongly
in Lp(Ω× (0, T ))d.

Remark 2.17 Theorems 2.14 and 2.16 do not require the structural assumption (17); these theo-
rems only require that the convergences (18) hold.
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3 Preliminaries

We establish here a few results which will be used in the analysis of the Gradient Scheme (14).

3.1 Uniform-in-time compactness for space-time Gradient Discretisa-
tions

The first result is a consequence, in the framework of gradient discretisations, of the results in
Section 6.

Theorem 3.1 (Uniform-in-time L2(Ω)-weak compactness result) Let T > 0, and (Dm)m∈N =

(XDm,0,ΠDm ,∇Dm , IDm , (t
(n)
m )n=0,...,Nm)m∈N be a sequence of space-time discretisation in the sense

of Definition 2.1 which is consistent in the sense of Definition 2.6.

For any m ∈ N, let vm = (v
(n)
m )n=0,...,Nm ⊂ XDm,0. If there exists q > 1 and C > 0 such that, for

any m ∈ N,

||ΠDmvm||L∞(0,T ;L2(Ω)) ≤ C and

∫ T

0

|δmvm(t)|q?,Dmdt ≤ C, (20)

then the sequence (ΠDmvm)m∈N is relatively compact uniformly-in-time and weakly in L2(Ω), i.e.
it has a subsequence which converges according to Definition 6.4.
Moreover, any limit v of such a subsequence is continuous [0, T ]→ L2(Ω) for the weak topology.

Remark 3.2 The bound on |δmvm|?,Dm is often a consequence on a numerical scheme satisfied by
vm and on bounds on ||∇Dmvm||Lp(Ω×(0,T )), see the proof of Lemma 4.3 for example.

Proof. This result is a consequence of the generalised Ascoli-Arzela theorem (Theorem 6.2)
with K = [0, T ] and E the ball of radius C in L2(Ω), endowed with the weak topology. We let
(ϕl)l∈N ⊂ C∞c (Ω) be a dense sequence in L2(Ω) and endow E with the metric (78) from these ϕl,
which indeed defines the weak L2(Ω) topology (see Proposition 6.5).
The set E is metric compact and therefore complete, and all ΠDmvm take their values in E. It
remains to estimate dE(vm(s), vm(s′)). We drop the index m in the spaces for legibility of notations.
Let us define the interpolant PDϕl ∈ XD,0 by

PDϕl = argmin
w∈XD,0

(
||ΠDw − ϕl||Lmax(p,2)(Ω) + ||∇Dw −∇ϕl||Lp(Ω)

)
. (21)

For any 0 ≤ s ≤ s′ ≤ T , writing ΠDvm(s′)−ΠDvm(s) as the sum of its jumps δt(n+ 1
2 )ΠDδ

(n+ 1
2 )

D vm
at the points (t(n))n=n1,...,n2

lying between s and s′, the definition of | · |?,D and Estimate (20) give∣∣∣∣∫
Ω

(ΠDvm(x, s′)−ΠDvm(x, s)) ΠDPDϕl(x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ t(n2+1)

t(n1)

∫
Ω

ΠDδDv(t)(x)ΠDPDϕl(x)dxdt

∣∣∣∣∣ ≤ C1/q(t(n2+1) − t(n1))1/q′ ||∇DPDϕl||Lp(Ω)d .

By definition of PD, we have

||ΠDPDϕl − ϕl||L2(Ω) ≤ ŜD(ϕl)

and
||∇DPDϕl||Lp(Ω)d ≤ ŜD(ϕl) + ||ϕl||Lp(Ω) + ||∇ϕl||Lp(Ω)d ≤ Cϕl

10



with Cϕl not depending on D (and therefore on m). Since t(n2+1) − t(n1) ≤ |s′ − s| + δt and
(ΠDvm)m∈N is bounded in L∞(0, T ;L2(Ω)), we deduce that∣∣∣∣∫

Ω

(ΠDvm(x, s′)−ΠDvm(x, s))ϕl(x)dx

∣∣∣∣
≤ 2CŜD(ϕl) + C1/qCϕl |s′ − s|1/q

′
+ C1/qCϕlδt

1/q′ . (22)

Plugged into the definition (78) of the distance in E, this shows that

dE

(
ΠDvm(s′),ΠDvm(s)

)
≤

∑
l∈N

min(1, C1/q′Cϕl |s′ − s|1/q
′
)

2l
+
∑
l∈N

min(1, 2CŜDm(ϕl) + C1/q′Cϕlδt
1/q′

m )

2l

=: ω(s, s′) + δm.

Using the dominated convergence theorem for series, we see that ω(s, s′)→ 0 as s−s′ → 0 and that

δm → 0 as m → ∞ (we invoke the space consistency to establish that limm→∞ ŜDm(ϕl) → 0 for
any l). Hence, the assumptions of Theorem 6.2 are satisfied and the proof is complete.

3.2 Technical results

We state here a family of technical lemmas, starting with a few useful properties on ν and B.

Lemma 3.3 Under Assumptions (2), there holds

|ν(a)− ν(b)| ≤ Lβ |ζ(a)− ζ(b)|, (23)

(ν(a)− ν(b))2 ≤ LβLζ(ζ(a)− ζ(b))(β(a)− β(b)). (24)

The function B is convex on Rβ, the function B ◦ β : R→ [0,∞) is continuous,

∀s ∈ R , B(β(s)) =

∫ s

0

ζ(q)β′(q)dq , (25)

∃K0,K1,K2 > 0 such that ∀s ∈ R , K0β(s)2 −K1 ≤ B(β(s)) ≤ K2s
2 , (26)

∀a ∈ R ,∀r ∈ Rβ , B(r)−B(β(a)) ≥ ζ(a)(r − β(a)), (27)

and

∀s, s′ ∈ R , (ν(s)− ν(s′))2 ≤ 4LβLζ

[
B(β(s)) +B(β(s′))− 2B

(
β(s) + β(s′)

2

)]
. (28)

Proof.
Inequality (23) is a straightforward consequence of the estimate ν′ = ζ ′β′ ≤ Lβζ

′. Note that the
same inequality also holds with β and ζ swapped. Inequality (24) is then a direct application of
(23) and the similar inequality with β and ζ swapped.
Let us first notice that, since β ≥ 0 on R+ and β ≤ 0 on R−, βr(s) is always a real number when
s ∈ Rβ . Moreover, since β is non-decreasing, βr is also non-decreasing on Rβ and therefore locally
bounded on Rβ . Hence, B is well defined and locally Lipschitz-continuous, with an a.e. derivative
B′ = ζ(βr). B

′ is therefore non-decreasing and B is convex.
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To prove (25), we denote by P ⊂ Rβ the countable set of plateaux values of β, i.e. the y ∈ R
such that β−1({y}) is not reduced to a singleton. If s 6∈ β−1(P ) then β−1({β(s)}) is the singleton
{s} and therefore βr(β(s)) = s. Moreover, βr is continuous at β(s) and thus B is differentiable
at β(s). Since β is differentiable a.e., we therefore deduce that, for a.e. s 6∈ β−1(P ), (B(β))′(s) =
B′(β(s))β′(s) = ζ(βr(β(s)))β′(s) = ζ(s)β′(s). The set β−1(P ) is a union of intervals on which β
and thus B(β) are locally constant; hence, for a.e. s in this set, (B(β))′(s) = 0 and ζ(s)β′(s) = 0.
Hence, the locally Lipschitz-continuous functions B(β) and s →

∫ s
0
ζ(q)β′(q)dq have identical

derivatives a.e. on R and take the same value at s = 0. They are thus equal on R and the proof
of (25) is complete.
The continuity of B ◦ β is an obvious consequence of (25). The second inequality in (26) can also

be easily deduced from (25) by noticing that |ζ(s)β′(s)| ≤ LζLβ |s| (we can take K2 =
LβLζ

2 ).
For the first inequality in (26), we first infer from (2b) the existence of S > 0 such that |ζ(q)| ≥
M0

2 |q| ≥
M0

2Lβ
|β(q)| whenever |q| ≥ S. We then write, for s ≥ S,

B(β(s)) =

∫ S

0

ζ(q)β′(q)dq +

∫ s

S

ζ(q)β′(q)dq ≥ M0

2Lβ

∫ s

S

β(q)β′(q)dq =
M0

4Lβ

(
β(s)2 − β(S)2

)
.

A similar inequality holds for s ≤ −S (with β(−S) instead of β(S)) and the first inequality in (26)
therefore holds with K0 = M0

4Lβ
and K1 = M0

4Lβ
max[−S,S] β

2.

We now prove (27), which states that a belongs to the convex sub-differential of B at β(a). We
first start with the case r ∈ Rβ , that is r = β(b) for some b ∈ R. If βr is continuous at β(a) then
this inequality is an obvious consequence of the convexity of B since B is then differentiable at
β(a) with B′(β(a)) = ζ(βr(β(a))) = ζ(a). Otherwise, a plain reasoning also does the job as

B(r)−B(β(a)) = B(β(b)−B(β(a))∫ b

a

ζ(q)β′(q)dq =

∫ b

a

(ζ(q)− ζ(a))β′(q)dq + ζ(a)(β(b)− β(a)) ≥ ζ(a)(r − β(a)),

the inequality coming from the fact that β′ ≥ 0 and ζ(q) − ζ(a) has the same sign as b − a when
q is between a and b. The general case r ∈ Rβ is obtained by passing to the limit on bn such that
β(bn)→ r and using the fact that B has limits (possibly +∞) at the endpoints of Rβ .

Let us now take s, s′ ∈ R. Let s̄ ∈ R be such that β(s̄) = β(s)+β(s′)
2 . We notice that

B(β(s)) +B(β(s′))− 2B(β(s̄)) =

∫ s

s̄

(ζ(q)− ζ(s̄))β′(q)dq +

∫ s′

s̄

(ζ(q)− ζ(s̄))β′(q)dq.

We then use |ζ(q)− ζ(s̄)| ≥ 1
Lβ
|ν(q)− ν(s̄)| and β′(q) ≥ β′(q) ζ

′(q)
Lζ

= ν′(q)
Lζ

to write∫ s

s̄

(ζ(q)− ζ(s̄))β′(q)dq ≥ 1

LβLζ

∫ s

s̄

ν′(q)(ν(q)− ν(s̄))dq =
1

2LβLζ
(ν(s)− ν(s̄))2.

Thanks to
(ν(s)− ν(s′))2 ≤ 2((ν(s)− ν(s̄))2 + (ν(s′)− ν(s̄))2),

we deduce that (28) follows.

The next lemma is an easy consequence of Fatou’s lemma and the fact that strongly lower semi-
continuous convex functions are also weakly lower semi-continuous. We all the same provide its
short proof.
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Lemma 3.4 Let I be an interval of R and H : I → R be a convex function. We denote by L2(Ω; I)
the convex set of functions in L2(Ω) with values in I. Let v ∈ L2(Ω; I) and (vm)m∈N a sequence
of functions in L2(Ω; I) which converges weakly to v in L2(Ω). Then∫

Ω

H(v(x))dx ≤ lim inf
m→∞

∫
Ω

H(vm(x))dx.

Proof.
Let Φ : L2(Ω; I) → (−∞,∞] be defined by Φ(w) =

∫
Ω
H(w(x))dx. Since H is convex, it is

greater than a linear functional and Φ(w) is thus well defined in (∞,∞]. Moreover, if wk → w
strongly in L2(Ω; I) then, up to a subsequence, wk → w a.e. on Ω and therefore H(wk) → H(w)
a.e. on Ω. Combined with the linear lower bound of H, we can apply Fatou’s lemma to see that
Φ(w) ≤ lim infk→∞Φ(wk).
Hence, Φ is lower semi-continuous for the strong topology of L2(Ω; I). Since Φ (as H) is convex,
we deduce that this lower semi-continuity property is also valid for the weak topology of L2(Ω; I),
see [19]. The result of the lemma is just the translation of this weak lower semi-continuity of
Φ.

The last technical result is a consequence of the Minty trick. It has been proved and used in the
L2 case in [21, 14], but we need here an extension to the non-Hilbertian case.

Lemma 3.5 (Minty’s trick) Let H ∈ C0(R) be a nondecreasing function. Let (X,µ) be a mea-
surable set with finite measure and let (un)n∈N ⊂ Lp(X) with p > 1 such that

1. there exists u ∈ Lp(X) such that (un)n∈N weakly converges to u in Lp(X);

2. (H(un))n∈N ⊂ L1(X) and there exists w ∈ L1(X) such that (H(un))n∈N strongly converges
to w in L1(X);

Then w = H(u) a.e. on X.

Proof.
Let k > 0 and Tk(s) = max(−k,min(s, k)) be the usual truncation at level k. Since H is
non-decreasing, there exists hk → ∞ as k → ∞ such that H(Tk(s)) = Thk(H(s)). Thus,
H(Tk(un)) → Thk(w) in L1(X) as n → ∞. Given that (H(Tk(un)))n∈N remains bounded in
L∞(X), its convergence to Thk(w) also holds in Lp

′
(X).

Using fact that H ◦ Tk is non-decreasing, we write, for any g ∈ Lp(X),∫
X

(H(Tk(un))−H(Tk(g)))(un − g)dµ ≥ 0.

By strong convergence of H(Tk(un)) in Lp
′
(X) and weak convergence of un in Lp(X), as well as

the fact that H ◦ Tk is bounded, we can take the limit of this expression as n→∞ and we find∫
X

(Thk(w)−H(Tk(g)))(u− g)dµ ≥ 0. (29)

We then use Minty’s trick, that is pick a generic ϕ ∈ Lp(X), apply (29) to g = u− tϕ, divide by t
and let t→ ±0 (using the dominated convergence theorem and the fact that H ◦ Tk is continuous
and bounded) to find ∫

X

(Thk(w)−H(Tk(u)))ϕdµ = 0.

Selecting ϕ = sign(Thk(w) − H(Tk(u))), we deduce that Thk(w) = H(Tk(u)) a.e. on X. Letting
k →∞, we conclude that w = H(u) a.e. on X.
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3.3 Integration-by-parts for the continuous solution

The last series of preliminary results are properties on the solution to (4), all based on the following
integration-by-part property. This property, used in the proof of Theorem 2.10 and 2.14, allows to
compute the value of the linear form ∂tβ(v) ∈ Lp′(0, T ;W−1,p′(Ω)) on the function ζ(u). Because
of the lack of regularity on u and the many non-linearities in (1), justifying this integration-by-parts
is however not straightforward at all...

Lemma 3.6 Let us assume (2b) and (2c). Let v : Ω × (0, T ) 7→ R be measurable such that
ζ(v) ∈ Lp(0, T ;W 1,p

0 (Ω)), B(β(v)) ∈ L∞(0, T ;L1(Ω)), β(v) ∈ C([0, T ];L2(Ω)-w) and ∂tβ(v) ∈
Lp
′
(0, T ;W−1,p′(Ω)). Then t ∈ [0, T ] →

∫
Ω
B(β(v)(x, t))dx ∈ [0,∞) is continuous and, for all

t1, t2 ∈ [0, T ],∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉W−1,p′ ,W 1,p
0

dt =

∫
Ω

B(β(v)(x, t2))dx−
∫

Ω

B(β(v)(x, t1))dx. (30)

Remark 3.7 Like at the end of Section 1.2, it is important to in mind the separation of β(v(·, ·))
from its continuous representative β(v)(·, ·).

Proof.
Note that we obviously only need to make the proof when 0 ≤ t1 < t2 ≤ T .
Step 1: truncation, extensions and approximation of β(v).
We define β(v) : R→ L2(Ω) by setting

β(v)(t) =

 β(v)(t) if t ∈ [t1, t2],
β(v)(t1) if t ≤ t1,
β(v)(t2) if t ≥ t2.

By the continuity property of β(v), this definition and gives β(v) ∈ C(R;L2(Ω)-w) such that
∂tβ(v) = 1(t1,t2)∂tβ(v) ∈ Lp′(R;W−1,p′(Ω)) (no Dirac masses have been introduced at t = t1 or

t = t2). This regularity of ∂tβ(v) ensures that the function

t ∈ R 7→ Dhβ(v) :=
1

h

∫ t+h

t

∂tβ(v)(s)ds =
β(v)(t+ h)− β(v)(t)

h
in W−1,p′(Ω) (31)

tend to ∂tβ(v) in Lp
′
(R;W−1,p′(Ω)) as h→ 0.

Step 2: we prove that ||B(β(v)(t)||L1(Ω) ≤ ||B(β(v))||L∞(0,T ;L1(Ω)) for all t ∈ R (not only for a.e.
t).
Let t ∈ [t1, t2]. Since β(v)(·, ·) = β(v(·, ·)) a.e. on Ω× (t1, t2), there exists a sequence tn → t such
that β(v)(·, tn) = β(v(·, tn)) in L2 for all n and ||B(β(v)(·, tn))||L1(Ω) ≤ ||B(β(v))||L∞(0,T ;L1(Ω)).
As β(v) ∈ C([0, T ];L2(Ω)-w), we have β(v)(·, tn) → β(v)(·, t) weakly in L2(Ω). We then use the
convexity of B and Lemma 3.4 to write, thanks to our choice of tn,∫

Ω

B(β(v)(x, t))dx ≤ lim inf
n→∞

∫
Ω

B(β(v)(x, tn))dx ≤ ||B(β(v))||L∞(0,T ;L1(Ω))

and the proof is complete for t ∈ [t1, t2]. The result for t ≤ t1 or t ≥ t2 is obvious since β(v)(t) is
then either β(v)(t1) or β(v)(t2).

Step 3: We prove that for all τ ∈ R and a.e. t ∈ (t1, t2),

〈β(v)(τ)− β(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0
≤
∫

Ω

B(β(v)(x, τ))−B(β(v)(x, t))dx. (32)
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Note that if we could just replace the duality product W−1,p′–W 1,p
0 with an L2 inner product,

then this formula would be a straightforward consequence of (27). The problem is that nothing
ensures that ζ(v)(t) ∈ L2(Ω) for a.e. t.
We first notice that β(v)(τ)− β(v)(t) =

∫ τ
t
∂tβ(v)(s)ds indeed belongs to W−1,p′(Ω) so the right-

hand side of (32) makes sense provided that t is chosen such that ζ(v(·, t)) ∈ W 1,p
0 (Ω) (which we

do from here on). To deal with the fact that ζ(v(·, t)) does not necessarily belong to L2(Ω), we
replace it with a truncation. Denoting by Tk(s) = max(−k,min(s, k)) the classical truncation at
level k, by the growth assumption (2b) on ζ we see that there exists rk → +∞ as k → +∞ such
that ζ(Tk(v(·, t))) = Trk(ζ(v(·, t))). Hence, ζ(Tk(v(·, t)) ∈ W 1,p

0 (Ω) and converges, as k → ∞, to
ζ(v(·, t)) in W 1,p

0 (Ω).
We can therefore write

〈β(v)(τ)− β(v)(t), ζ(v)(t)〉W−1,p′ ,W 1,p
0

= lim
k→∞

〈β(v)(τ)− β(v)(t), ζ(Tk(v(·, t))〉W−1,p′ ,W 1,p
0

= lim
k→∞

∫
Ω

(
β(v)(x, τ)− β(v(x, t))

)
ζ(Tk(v(x, t))dx, (33)

the replacement of the duality product by an L2(Ω) inner product being justified since β(v)(τ)−
β(v)(t) and ζ(v(·, t)) both belong to L2(Ω). We also used the fact that, for a.e. t ∈ (t1, t2),
β(v)(·, t) = β(v(·, t)) a.e. on Ω, so (33) is valid for a.e. t ∈ (t1, t2).
We then write β(v(x, t)) = β(Tk(v(x, t))) + (β(v(x, t)) − β(Tk(v(x, t)))) and apply (27) with
r = β(v)(x, τ) and a = Tk(β(v(x, t))) to find∫

Ω

(
β(v)(x, τ)− β(v(x, t))

)
ζ(Tk(v(x, t))dx

=

∫
Ω

(
β(v)(x, τ)− β(Tk(v(x, t)))

)
ζ(Tk(v(x, t))dx

−
∫

Ω

(β(v(x, t))− β(Tk(v(x, t)))) ζ(Tk(v(x, t))dx

≤
∫

Ω

B(β(v)(x, τ))−B(β(Tk(v(x, t))))dx−
∫

Ω

(β(v(x, t))− β(Tk(v(x, t)))) ζ(Tk(v(x, t))dx.

Studying the cases v(x, t) ≥ k or v(x, t) ≤ −k, we notice that the last integrand is always non-
negative, so we actually can write∫

Ω

(
β(v)(x, τ)− β(v(x, t))

)
ζ(Tk(v(x, t))dx ≤

∫
Ω

B(β(v)(x, τ))−B(β(Tk(v(x, t))))dx.

We then use the continuity of B ◦ β and Fatou’s lemma to deduce

lim sup
k→∞

∫
Ω

(
β(v)(x, τ)− β(v(x, t))

)
ζ(Tk(v(x, t))dx

≤
∫

Ω

B(β(v)(x, τ))dx− lim inf
k→∞

∫
Ω

B(β(Tk(v(x, t))))dx

≤
∫

Ω

B(β(v)(x, τ))dx−
∫

Ω

B(β(v(x, t)))dx

which, combined with (33), concludes the proof of (32) (recall that t has been chosen such that
β(v(·, t)) = β(v)(·, t) a.e. on Ω).

Step 4: proof of the formula
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By convergence ofDhβ(v) to ∂tβ(v) in Lp
′
(0, T ;W−1,p′(Ω)) and since 1(t1,t2)ζ(v) ∈ Lp(R;W 1,p

0 (Ω)),
we have∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉W−1,p′ ,W 1,p
0

dt =

∫
R
〈∂tβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉W−1,p′ ,W 1,p

0
dt

= lim
h→0

∫
R
〈Dhβ(v)(t),1(t1,t2)(t)ζ(v(·, t))〉W−1,p′ ,W 1,p

0
dt

= lim
h→0

1

h

∫ t2

t1

〈β(v)(s+ h)− β(v)(t), ζ(v(·, t)〉W−1,p′ ,W 1,p
0

dt. (34)

We then use (32) for a.e. t ∈ (t1, t2) to obtain, for h small enough such that t1 + h < t2,

1

h

∫ t2

t1

〈β(v)(t+ h)− β(v)(t), ζ(v(·, t))〉W−1,p′ ,W 1,p
0

dt

≤ 1

h

∫ t2

t1

∫
Ω

B(β(v)(x, t+ h))−B(β(v)(x, t))dxdt

=
1

h

∫ t2+h

t2

∫
Ω

B(β(v)(x, t))dxdt− 1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt

=

∫
Ω

B(β(v)(x, t2))dx− 1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt

We now take the lim sup of this inequality, using the fact that B(β(v)(·, t2)) is integrable (Step 2)
to take its integral out of the lim sup. Coming back to (34) we obtain∫ t2

t1

〈∂tβ(v)(t), ζ(v(t))〉W−1,p′ ,W 1,p
0

dt

≤
∫

Ω

B(β(v)(x, t2))dx− lim inf
h→0

1

h

∫ t1+h

t1

∫
Ω

B(β(v)(x, t))dxdt. (35)

But since β(v) ∈ C([0, T ];L2(Ω)-w), as h → 0 we have 1
h

∫ t1+h

t1
β(v)(t)dt → β(v)(t1) weakly in

L2(Ω). Hence, the convexity of B, Lemma 3.4 and Jensen’s inequality give

∫
Ω

B(β(v)(x, t1))dx ≤ lim inf
h→0

∫
Ω

B

(
1

h

∫ t1+h

t1

β(v)(x, t)dt

)
dx

≤ lim inf
h→0

∫
Ω

1

h

∫ t1+h

t1

B(β(v)(x, t))dtdx.

Plugged into (35), this inequality shows that (30) holds with ≤ instead of =. The reverse inequality
is obtained by reversing the time. We consider ṽ(t) = v(t1 + t2 − t). Then ζ(ṽ), B(β(ṽ)) and β(ṽ)
have the same properties as ζ(v), B(β(v)) and β(v), and β(ṽ) takes values β(v)(t1) at t = t2
and β(v)(t2) at t = t1. Applying (30) with “≤” instead of “=” to ṽ and using the fact that
∂tβ(ṽ)(t) = −∂tβ(v)(t1 + t2 − t), we obtain (30) with “≥” instead of “=” and the proof of (30) is
complete.
The continuity of t ∈ [0, T ] 7→

∫
Ω
B(β(v)(x, t))dx is straightforward from (30) as the left-hand side

of this relation is continuous with respect to t1 and t2.

The following corollary states continuity properties and an essential formula on the solution to (4).
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Corollary 3.8 Under Assumptions (2a)–(2i), if u is a solution of (4) then:

1. the function t ∈ [0, T ] 7→
∫

Ω
B(β(u)(x, t))dx ∈ [0,∞) is continuous and bounded,

2. for any T0 ∈ [0, T ],∫
Ω

B(β(u)(x, T0))dx+

∫ T0

0

∫
Ω

a(x, ν(u(x, t)),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt

=

∫
Ω

B(β(uini(x)))dx+

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt, (36)

3. ν(u) is continuous [0, T ]→ L2(Ω).

Remark 3.9 The continuity of ν(u) has to be understood in the same sense as the continuity of
β(u), that is ν(u) is a.e. on Ω× (0, T ) equal to a continuous function [0, T ]→ L2(Ω). We use in
particular the same notation ν(u(·, ·)) for the continuous representative ν(u)(·, ·) as we did for the
continuous representative of β(u).

Proof.
The continuity of t ∈ [0, T ] 7→

∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) and Formula (36) are straightforward

consequences of Lemma 3.6 with v = u and using (4) with v = ζ(u). Note that the bound on∫
Ω
B(β(u)(x, t))dx can be seen as a consequence of (36), or from Step 2 in the proof of Lemma

3.6.
Let us prove the strong continuity of ν(u) : [0, T ] 7→ L2(Ω). Let T be the set of τ ∈ [0, T ] such
that β(u(·, τ)) = β(u)(·, τ) a.e. on Ω, and let (sl)l∈N and (tk)k∈N be two sequences in T which
converge to the same value s. Invoking (28) we can write∫

Ω

(ν(u(x, sl))− ν(u(x, tk)))2dx ≤ 4LβLζ

(∫
Ω

B(β(u)(x, sl))dx+

∫
Ω

B(β(u)(x, tk))dx

)
− 8LβLζ

∫
Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx. (37)

Since β(u)(·,sl)+β(u)(·,tk)
2 → β(u)(·, s) weakly in L2(Ω) as l, k →∞, Lemma 3.4 gives∫

Ω

B (β(u)(x, s)) dx ≤ lim inf
l,k→∞

∫
Ω

B

(
β(u)(x, sl) + β(u)(x, tk)

2

)
dx.

Taking the lim sup as l, k → ∞ of (37) and using the continuity of t 7→
∫

Ω
B(β(u)(x, t))dx thus

shows that
||ν(u(·, sl))− ν(u(·, tk))||L2(Ω) → 0 as l, k →∞. (38)

The existence of an a.e. representative of ν(u(·, ·)) which is continuous [0, T ] 7→ L2(Ω) is a direct
consequence of this convergence. Let s ∈ [0, T ] and (sl)l∈N ⊂ T which converges to s. Applied
with tk = sk, (38) shows that (ν(u(·, sl)))l∈N is a Cauchy sequence in L2(Ω) and therefore that
liml→∞ ν(u(·, sl)) exists in L2(Ω). Relation (38) moreover also shows that this limit, that we can
call ν(u)(·, s), does not depend on the Cauchy sequence in T which converges to s. With tk = s,
we also see that whenever s ∈ T we have ν(u(·, s)) = ν(u)(·, s) a.e. on Ω, and ν(u)(·, ·) is therefore
equal to ν(u(·, ·)) a.e. on Ω× (0, T ).
It remains to establish that ν(u) thus defined is continuous [0, T ] 7→ L2(Ω). For any (τr)r∈N ⊂ [0, T ]
which converges to τ ∈ [0, T ], we can pick sr ∈ T ∩ (τr − 1

r , τr + 1
r ) and tr ∈ T ∩ (τ − 1

r , τ + 1
r )

such that

||ν(u)(·, τr)− ν(u(·, sr))||L2(Ω) ≤
1

r
, ||ν(u)(·, τ)− ν(u(·, tr))||L2(Ω) ≤

1

r
.
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We therefore have

||ν(u)(·, τr)− ν(u)(·, τ)||L2(Ω) ≤
2

r
+ ||ν(u(·, sr))− ν(u(·, tr))||L2(Ω),

which proves by (38) with l = k = r that ν(u)(·, τr)→ ν(u)(·, τ) in L2(Ω) as r →∞ and completes
the proof.

4 Proof of the convergence theorems

4.1 Estimates on the approximate solution

As it is usual in the study of numerical methods for PDE with strong non-linearities or without
regularity assumptions on the data, everything starts with a priori estimates.

Lemma 4.1 (L∞(0, T ;L2(Ω)) estimate and discrete Lp(0, T ;W 1,p
0 (Ω)) estimate) Under As-

sumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1. Let u
be a solution to Scheme (14).
Then, for any T0 ∈ (0, T ], denoting by k = 1, . . . , N the index such that T0 ∈ (t(k−1), t(k)] we have∫

Ω

B(ΠDβ(u)(x, T0))dx+

∫ T0

0

∫
Ω

a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤
∫

Ω

B(ΠDβ(IDuini)(x))dx+

∫ t(k)

0

∫
Ω

f(x, t)ΠDζ(u)(x, t)dxdt. (39)

Consequently, there exists C1 > 0, only depending on p, Lβ, CP ≥ CD (see Definition 2.5),
Cini ≥ ‖ΠDIDuini‖L2(Ω), f and a such that

‖ΠDB(β(u))‖L∞(0,T ;L1(Ω)) ≤ C1 , ‖∇Dζ(u)‖Lp(Ω×(0,T ))d ≤ C1

and ‖ΠDβ(u)‖L∞(0,T ;L2(Ω)) ≤ C1.
(40)

Proof. Using (12) and (27), we notice that for any n = 0, . . . , N − 1, any t ∈ (t(n), t(n+1)],

ΠDδDβ(u)(t)ΠDζ(u(n+1)) =
1

δt(n+ 1
2 )

(
β(ΠDu

(n+1))− β(u(n))
)
ζ(ΠDu

(n+1))

≥ 1

δt(n+ 1
2 )

(
B(ΠDβ(u(n+1)))−B(ΠDβ(u(n)))

)
.

Hence, taking v = (ζ(u(0)), ζ(u(1)), . . . , ζ(u(k)), 0, . . . , 0) ⊂ XD,0 in (14), we find

∫
Ω

B(ΠDβ(u)(x, t(k)))dx+

∫ t(k)

0

∫
Ω

a(x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇Dζ(u)(x, t)dxdt

≤
∫

Ω

B(ΠDβ(u(0))(x))dx+

∫ t(k)

0

f(x, t)ΠDζ(u)(x, t)dxdt (41)

Equation (39) is a straightforward consequence of this estimate, of the relation β(u)(·, T0) =
β(u)(·, t(k)) (see (13)) and of the fact that the integrand involving a is nonnegative on [T0, t

(k)].
Using the Young inequality, we can write
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∫ t(k)

0

∫
Ω

f(x, t)ΠDζ(u)(x, t)dxdt

≤
21/(p−1)Cp

′

D
(pa)1/(p−1) p′

‖f‖p
′

Lp′ (Ω×(0,t(k)))
+

a

2CpD
‖ΠDζ(u)‖p

Lp(Ω×(0,t(k)))

and the first two estimates in (40) therefore follow from (41), the coercivity assumption (2f) on a
and (26). The estimate on ΠDβ(u) = β(ΠDu) in L∞(0, T ;L2(Ω)) is a consequence of the estimate
on B(β(ΠDu)) in L∞(0, T ;L1(Ω)) and of (26).

Corollary 4.2 (Existence of a solution to the Gradient Scheme) Under Assumptions (2),
if D is a gradient discretisation in the sense of Definition 2.1 then there exists at least a solution
to the Gradient Scheme (14).

Proof. For ρ ∈ [0, 1] we let βρ(u) = ρu+ (1− ρ)β(u), ζρ(u) = ρu+ (1− ρ)ζ(u) and aρ(x, s, ξ) =
ρξ+ (1− ρ)a(x, s, ξ). It is clear that βρ, ζρ and aρ satisfy the same assumptions as β, ζ and a for
some Lβ , M0, M1 and a not depending on ρ. We can therefore apply Lemma 4.1 to see that there
exists C2 not depending on s such that any solution uρ to (14) with β = βρ, ζ = ζρ and a = aρ
satisfies

||∇Dζρ(uρ)||Lp((0,T )×Ω)d ≤ C2.

Since ||∇D · ||Lp(Ω×(0,T ))d is a norm on XD,0, this shows that (ζρ(uρ))ρ∈[0,1] remains bounded in
this finite dimensional space, which implies in particular that for all i ∈ I, (ζρ(uρ)i)ρ∈[0,1]. Using
Assumption 2b for ζρ with constants not depending on ρ, we deduce that ((uρ)i)ρ∈[0,1] remains
bounded for any i ∈ I, and thus that (uρ)ρ∈[0,1] is bounded in XD,0.
But if ρ = 0 then (14) is a linear scheme. Any solution to this scheme being bounded in XD,0,
this shows that the underlying linear system is invertible. A topological degree argument [10] then
shows, combined with the uniform bound on (uρ)ρ∈[0,1], that the scheme corresponding to ρ = 1,
that is (14), possesses at least one solution.

Lemma 4.3 (Estimate on the dual semi-norm of the discrete time derivative)
Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition
2.1. Let u be a solution to Scheme (14). Then there exists C3, only depending on p, Lβ, CP ≥ CD,
Cini ≥ ‖ΠDIDuini‖L2(Ω), f , a, µ, a and T , such that∫ T

0

|δDβ(u)(t)|p
′

?,Ddt ≤ C3. (42)

Proof. Let us take a generic v = (v(n))n=1,...,N ⊂∈ XD,0 as test function in Scheme (14). We
have, thanks to Assumption (2h) on a,∫ T

0

∫
Ω

ΠDδDβ(u)(x, t)ΠDv(x, t)dxdt ≤
∫ T

0

∫
Ω

(a(x) + µ|∇Dζ(u)(x, t)|p−1)|∇Dv(x, t)|dxdt

+

∫ T

0

∫
Ω

f(x, t)ΠDv(x, t)dxdt.

Using Hölder’s inequality, Definition 2.5 and Estimates (40), this leads to the existence of C4 > 0
only depending on p, Lβ , CP , Cini, f , a, a and µ such that∫ T

0

∫
Ω

ΠDδDβ(u)(x, t)ΠDv(x, t)dxdt ≤ C4‖∇Dv‖Lp(0,T ;Lp(Ω))d .
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The proof of (42) is completed by selecting v = (|δ(n+ 1
2 )

D β(u)|p
′−1
?,D z(n))n=0,...,N with (z(n))n=0,...,N ⊂

XD,0 such that, for any n = 0, . . . , N−1, z(n+1) realises the supremum in (11) with w = δ
(n+ 1

2 )

D β(u).

Lemma 4.4 (Estimate on the time translates of ν(u))
Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1.
Let u be a solution to Scheme (14). Then there exists C5, only depending on p, Lβ, Lζ , CP ≥ CD,
Cini ≥ ‖ΠDIDuini‖L2(Ω), f , a, µ, a and T , such that

‖ΠDν(u)(·, ·+ τ)−ΠDν(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C5(τ + δt), ∀τ ∈ (0, T ). (43)

Proof. Let τ ∈ (0, T ). Thanks to (24), we get that∫
Ω×(0,T−τ)

(
ΠDν(u)(x, t+ τ)−ΠDν(u)(x, t)

)2

dxdt ≤ LβLζ
∫ T−τ

0

A(t)dt, (44)

where, for almost every t ∈ (0, T − τ),

A(t) =

∫
Ω

(
ΠDζ(u)(x, t+ τ)−ΠDζ(u)(x, t)

)(
ΠDβ(u)(x, t+ τ)−ΠDβ(u)(x, t)

)
dx.

Let t ∈ (0, T − τ). Letting n0(t), n1(t) = 0, . . . , N − 1 be such that t(n0(t)) ≤ t < t(n0(t)+1) and
t(n1(t)) ≤ t+ τ < t(n1(t)+1), we may write

A(t) =

∫
Ω

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)( n1(t)∑
n=n0(t)+1

δt(n+ 1
2 )ΠDδ

(n+ 1
2 )

D β(u)(x)
)

dx,

which also reads

A(t) =

∫
Ω

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)
×
(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )ΠDδ

(n+ 1
2 )

D β(u)(x)
)

dx, (45)

with χn(t, t + τ) = 1 if t(n) ∈ (t, t + τ ] and χn(t, t + τ) = 0 if t(n) /∈ (t, t + τ ]. We then let
v = (χn−1(t, t+ τ)(ζ(u(n1(t)+1))− ζ(u(n0(t)+1))))n=0,...,N in Scheme (14). Using (45), we get

A(t) = A3(t)−
N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )

∫
Ω

a
(
x,ΠDν(u(n+1)),∇Dζ(u(n+1))(x)

)
·
(
∇Dζ(u(n1(t)+1))(x)−∇Dζ(u(n0(t)+1))(x)

)
dx

with

A3(t) =

N−1∑
n=1

χn(t, t+ τ)

∫
Ω

∫ t(n+1)

t(n)

f(x, t)dt
(

ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)
)

dx.
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Using the Young inequality and the inequality a1a2 ≤ (p−1)1/p
′

p (ap1 + ap
′

2 ) for a1 ≥ 0 and a2 ≥ 0,
this yields:

A(t) ≤ (p− 1)1/p′

p
(A0(t) +A1(t) + 2A2(t)) +A3(t), (46)

with

A0(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )

∫
Ω

∣∣∣∇Dζ(u(n0(t)+1))(x)
∣∣∣p dx,

A1(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )

∫
Ω

∣∣∣∇Dζ(u(n1(t)+1))(x)
∣∣∣p dx,

and

A2(t) =

N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2 )

∫
Ω

∣∣∣a(x,ΠDν(u(n+1)),∇Dζ(u(n+1))(x)
)∣∣∣p′ dx.

Applying (80) of Lemma 6.6 yields∫ T−τ

0

A0(t) +A1(t)dt ≤ 2(τ + δt)‖∇Dζ(u)‖pLp(Ω×(0,T )). (47)

Applying (79) of Lemma 6.6 yields∫ T−τ

0

A2(t)dt ≤ τ‖a (·,ΠDν(u),∇Dζ(u)) ‖p
′

Lp′ (Ω×(0,T ))
, (48)

and, similarly, we obtain using Definition (2.5) and (40), the existence of C6 such that∫ T−τ
0

A3(t)dt ≤ C6((τ + δt) + τ‖f‖p
′

Lp′ (Ω×(0,T ))
). (49)

Using inequalities (44), (46) and (47)-(49), (43) is proved.

4.2 Proof of Theorem 2.10

Step 1 Application of compactness results.
Thanks to Theorem 3.1 and Estimates (40) and (42), we first extract a subsequence such that
(ΠDmβ(um))m∈N converges weakly in L2(Ω) uniformly in [0, T ] (in the sense of Definition 6.4)
to some function β ∈ C([0, T ];L2(Ω)-w) which satisfies β(·, 0) = β(uini) in L2(Ω). Using again
Estimates (40) and applying Lemma 2.9, we again extract a subsequence such that, for some
ζ ∈ Lp(0, T ;W 1,p

0 (Ω)), ΠDmζ(um) → ζ weakly in Lp(Ω× (0, T )) and ∇Dmζ(um) → ∇ζ weakly in
Lp(Ω × (0, T ))d. From Estimates (40), Definition 2.5 and the growth assumption (2b) on ζ, we
also see that (ΠDmum)m∈N is bounded in Lp(Ω × (0, T )) and we can therefore assume, up to a
subsequence, that it converges weakly to some u in this space.
We then remark that |ν(a)− ν(b)| ≤ Lβ |ζ(a)− ζ(b)|, which implies that, using Definition 2.7 with
v = ζ(um) and (40),

||ΠDmν(um)(·+ ξ)−ΠDmν(u)||Lp(Rd×(0,T )) ≤ LβC1TDm(ξ) (50)

where ΠDν(u) has been extended by 0 outside Ω and limξ→0 supm∈N TDm(ξ) = 0. Invoking Lemma
4.4, we also see that the time translates of ΠDmν(um) tend uniformly to 0 in L1(Ω× (0, T )). We
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use the fact that ΠDmβ(um), and therefore also ΠDmν(um), remains bounded in L∞(0, T ;L2(Ω))
to control the time translates at both ends of [0, T ]. Hence, applying Kolmogorov’s theorem, we
deduce that, up to the extraction of another subsequence, ΠDmν(um)→ ν in L1(Ω× (0, T )).
Under the first case in the structural hypothesis (17), we have β = Id and therefore β = u = β(u),
and ν = ζ. The strong convergence of ΠDmν(um) = ΠDmζ(um) to ν = ζ thus allows us to apply
Lemma 3.5 to see that ζ = ζ(u). Exchanging the roles of β and ζ, we see that β = β(u) and
ζ = ζ(u) still hold in the second case of (17). We notice that this is the only place where we need
this structural assumption (17) on β, ζ.
Upon extraction of another subsequence, we can also assume that a (·,ΠDν(u),∇Dζ(u)) has a
weak limit in Lp

′
(Ω× (0, T ))d, which we denote by A.

Finally, for any T0 ∈ [0, T ], since ΠDmβ(um(·, T0))→ β(u)(·, T0) weakly in L2(Ω), Lemma 3.4 gives∫
Ω

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫
Ω

B(β(ΠDmum)(x, T0))dx. (51)

This shows in particular that B(β(u)) ∈ L∞(0, T ;L1(Ω)).

Step 2 Passing to the limit in the scheme. We drop the indices m for legibility reasons.
Let ϕ ∈ C1

c (−∞, T ) and w ∈W 1,p
0 (Ω) ∩ L2(Ω). We introduce v = (ϕ(t(n−1))PDw)n=0,...,N (where

t(−1) = 0 for example, this value being irrelevant) as test function in (14), with PD defined by (21).

We get T
(m)
1 + T

(m)
2 = T

(m)
3 with

T
(m)
1 =

N−1∑
n=0

ϕ(t(n))δt(n+ 1
2 )

∫
Ω

ΠDδ
(n+ 1

2 )

D β(u)(x)ΠDPDw(x)dx,

T
(m)
2 =

N−1∑
n=0

ϕ(t(n))δt(n+ 1
2 )

∫
Ω

a
(
x,ΠDν(u(n+1)),∇Dζ(u(n+1))(x)

)
· ∇DPDw(x)dx,

and

T
(m)
3 =

N−1∑
n=0

ϕ(t(n))

∫ t(n+1)

t(n)

∫
Ω

f(x, t)ΠDPDw(x)dxdt.

Using discrete integrate-by-parts to transform the terms ϕ(t(n))(ΠDβ(u(n+1)) − ΠDβ(u(n))) ap-

pearing in T
(m)
1 into (ϕ(t(n))− ϕ(t(n+1)))ΠDβ(u(n+1)), we have

T
(m)
1 = −

∫ T

0

ϕ′(t)

∫
Ω

ΠDβ(u)(x, t)ΠDPDw(x)dxdt− ϕ(0)

∫
Ω

ΠDβ(u(0))(x)ΠDPDw(x)dx.

Setting ϕD(t) = ϕ(t(n)) for t ∈ (t(n), t(n+1)), we have

T
(m)
2 =

∫ T

0

ϕD(t)

∫
Ω

a (x,ΠDν(u)(x, t),∇Dζ(u)(x, t)) · ∇DPDw(x)dxdt

T
(m)
3 =

∫ T

0

ϕD(t)

∫
Ω

f(x, t)ΠDPDw(x)dxdt.

We may thus let m→∞ in T
(m)
1 + T

(m)
2 = T

(m)
3 to see that u satisfies

u ∈ Lp(Ω× (0, T )) , ζ(u) ∈ Lp(0, T ;W 1,p
0 (Ω)) , B(β(u)) ∈ L∞(0, T ;L1(Ω)),

−
∫ T

0

ϕ′(t)

∫
Ω

β(u(x, t))w(x)dxdt− ϕ(0)

∫
Ω

uini(x)w(x)dx

+

∫ T

0

ϕ(t)

∫
Ω

A(x, t) · ∇w(x)dxdt =

∫ T

0

ϕ(t)

∫
Ω

f(x, t)w(x)dxdt,

∀w ∈W 1,p
0 (Ω) ∩ L2(Ω), ∀ϕ ∈ C∞c (−∞, T ).

(52)
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Linear combinations of this relation show that it also holds with ϕ(t)w(x) replaced by a tensorial
functions in C∞c (Ω× (0, T )). This proves that ∂tβ(u) ∈ Lp′(0, T ;W−1,p′(Ω)). Standard arguments
then show that β(u) can be identified with an element of C0([0, T ];L2(Ω)-w) with the property
β(u(·, 0)) = β(uini) (cf. discussion at the end of Section 1.2). Using the density of tensorial
functions in Lp(0, T ;W 1,p

0 (Ω)), we then see that u satisfies∫ T

0

〈∂tβ(u)(·, t), v(·, t)〉(W−1,p′ (Ω))′W 1,p
0 (Ω)dt

+

∫ T

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt =

∫ T

0

∫
Ω

f(x, t)v(x, t)dxdt , ∀v ∈ Lp(0, T ;W 1,p
0 (Ω)).

(53)

Step 3 Proof that u is solution to (4).

The proof will be completed by showing that

A(x, t) = a(x, ν(u)(x, t),∇ζ(u)(x, t)), for a.e. (x, t) ∈ Ω× (0, T ). (54)

We take T0 ∈ [0, T ], write (39) with D = Dm and take the supremum limit as m→∞. We notice
that the t(k) = Tm from Lemma 4.1 converges to T0 as m→∞. Hence, using the quadratic growth
of B we obtain

lim sup
m→∞

∫ T0

0

∫
Ω

a(x,ΠDmν(um)(x, t),∇Dmζ(um)(x, t)) · ∇Dmζ(um)(x, t)dxdt

≤
∫

Ω

B(β(uini)(x))dx+

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt

− lim inf
m→∞

∫
Ω

B(β(ΠDmum)(x, T0))dx. (55)

We then apply Lemma 3.6 and take v = ζ(u) in (53) to get∫
Ω

B(β(u)(x, T0))dx−
∫

Ω

B(β(u)(x, 0))dx

+

∫ T0

0

∫
Ω

A(x, t) · ∇ζ(u)(x, t)dxdt =

∫ T0

0

∫
Ω

f(x, t)ζ(u)(x, t)dxdt.

This relation, combined with (55) and using (51), shows that

lim sup
m→∞

∫ T0

0

∫
Ω

a(x,ΠDmν(um)(x, t),∇Dmζ(um)(x, t)) · ∇Dmζ(um)(x, t)dxdt

≤
∫ T0

0

∫
Ω

A(x, t) · ∇ζ(u)x, t)dxdt. (56)

It is now possible to apply Minty’s trick. Consider, for G ∈ Lp(0, T ;Lp(Ω))d,∫ T0

0

∫
Ω

[a(·,ΠDν(u),∇Dζ(u))− a(·,ΠDν(u),G)] · [∇Dζ(u)−G] dxdt ≥ 0. (57)

By strong convergence of ΠDmν(um) to ν(u) in L1(Ω×(0, T )) and Assumptions (2e), (2h) on a, we
see that a(·,ΠDmν(um),G)→ a(·, ν(u),G) strongly in Lp

′
(Ω× (0, T )). We can therefore develop
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(57) (with T0 = T ) and use (56) to pass to the supremum limit on the only “weak-weak” term,
and we find, for any G ∈ Lp(0, T ;Lp(Ω))d,∫ T

0

∫
Ω

[A(x, t)− a(x, ν(u)(x, t),G(x, t))] · [∇ζ(u)(x, t)−G(x, t)] dxdt ≥ 0.

Application of Minty’s method [33] (i.e. taking G = ∇ζ(u) + rϕ for ϕ ∈ Lp(0, T ;Lp(Ω))d and
letting r → 0) then shows that (54) holds and concludes the proof that u is a weak solution to (4).

4.3 Proof of Theorem 2.14

Let T0 ∈ [0, T ] and (Tm)m≥1 be a sequence in [0, T ] which converges to T0. By setting T0 = Tm
and G = ∇ζ(u) in the developed form of (57), by taking the infimum limit (thanks to the strong
convergence of a(·,ΠDmν(um),∇ζ(u))) and by using (54), we find

lim inf
m→∞

∫ Tm

0

∫
Ω

a(x,ΠDmν(um)(x, t),∇Dmζ(um)(x, t)) · ∇Dmζ(um)(x, t)dxdt

≥
∫ T0

0

∫
Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (58)

We then write (39) with Tm instead of T0. We notice that the t(k) = t(k(m)) such that Tm ∈
(t(k−1), t(k)] converges to T0 as m→∞. Using (58) and Corollary 3.8, we therefore obtain

lim sup
m→∞

∫
Ω

B(β(ΠDmum(x, Tm)))dx ≤
∫

Ω

B(β(u)(x, T0))dx. (59)

By Lemma 6.3, the uniform-in-time weak convergence of β(ΠDmum) to β(ū) and the weak conti-
nuity of β(ū) : [0, T ] → L2(Ω), we have β(ΠDmum)(Tm) → β(ū)(T0) weakly in L2(Ω) as m → ∞.
Therefore, for any (sm)m∈N converging to T0, 1

2 (β(ΠDmum(Tm)) + β(u)(sm)) → β(u)(T0) weakly
in L2(Ω) as m→∞ and Lemma 3.4 gives, by convexity of B,∫

Ω

B(β(u)(x, T0))dx ≤ lim inf
m→∞

∫
Ω

B

(
β(ΠDmum(x, Tm)) + β(u)(x, sm)

2

)
dx. (60)

Property (28) of B and the two inequalities (59) and (60) allow us to conclude the proof. Let
(sm)m∈N be a sequence in T (see the proof of Corollary 3.8) which converges to T0. Then
ν(u(·, sm))→ ν(u)(·, T0) in L2(Ω) as m→∞. Using (28), we get

‖ν(ΠDmum(·, Tm))− ν(u)(·, T0)‖2L2(Ω)

≤ 2‖ν(ΠDmum(·, Tm))− ν(u(·, sm))‖2L2(Ω) + 2‖ν(u(·, sm))− ν(u)(·, T0))‖2L2(Ω)

≤ 8LβLζ

∫
Ω

[B(β(ΠDmum(x, Tm))) +B(β(u(x, sm)))] dx

− 16LβLζ

∫
Ω

B

(
β(ΠDmum(x, Tm)) + β(u(x, sm))

2

)
dx

+ 2‖ν(u(·, sm))− ν(u)(·, T0))‖2L2(Ω).

We then take the lim sup as m → ∞ of this expression. Thanks to (59) and the continuity of
t ∈ [0, T ] 7→

∫
Ω
B(β(u)(x, t))dx ∈ [0,∞) (see Corollary 3.8), the first term in the right-hand side
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has a finite lim sup, bounded above by 16LβLζ
∫

Ω
B(β(u)(x, T0))dx. We can therefore split the

lim sup of this right-hand side without risking writing ∞−∞ and we get, thanks to (60),

lim sup
m→∞

‖ν(ΠDmum(·, Tm))− ν(u)(·, T0)‖2L2(Ω) ≤ 0.

Thus, ν(ΠDmum(·, Tm)) → ν(u)(T0) strongly in L2(Ω). By Lemma 6.3 and the continuity of
ν(u) stated in Corollary 3.8, this concludes the proof of the convergence of ν(ΠDmum) to ν(u) in
L∞(0, T ;L2(Ω)).

Remark 4.5 Since β(ΠDmum)(Tm) → β(ū)(T0) weakly in L2(Ω) as m → ∞, Lemma 3.4 also
shows that

∫
Ω
B(β(u)(x, T0))dx ≤ lim infm→∞

∫
Ω
B(β(ΠDmum)(x, Tm))dx, and therefore, com-

bined with (59), that

lim
m→∞

∫
Ω

B(β(ΠDmum(x, Tm)))dx =

∫
Ω

B(β(u)(x, T0))dx. (61)

4.4 Proof of Theorem 2.16

Writing (39) for um with T0 = T , taking the lim sup as m → ∞, using (61) (with Tm = T ) and
the continuous integration-by-part formula (36) we find that

lim sup
m→∞

∫ T

0

∫
Ω

a(x,ΠDmν(um)(x, t),∇Dmζ(um)(x, t)) · ∇Dmζ(um)(x, t)dxdt

≤
∫ T0

0

∫
Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt.

Combined with (58), this shows that

lim
m→∞

∫ T

0

∫
Ω

a(x,ΠDmν(um)(x, t),∇Dmζ(um)(x, t)) · ∇Dmζ(um)(x, t)dxdt

=

∫ T0

0

∫
Ω

a(x, ν(u)(x, t),∇ζ(u)(x, t)) · ∇ζ(u)(x, t)dxdt. (62)

Let us define

fm = [a(x,ΠDmν(um),∇Dmζ(um))− a(x,ΠDmν(um)(·, t),∇ζ(u))] · [∇Dmζ(um)−∇ζ(u)] ≥ 0.

Developing this expression and using (62) and (18), we see that
∫ T

0

∫
Ω
fm(x, t)dxdt→ 0 as m→∞.

This shows that fm → 0 in L1(Ω × (0, T )) and therefore a.e. up to a subsequence. We can then
reason as in [16], using the strict monotony (19) of a, the coercivity assumption (2f) and Vitali’s
theorem, to deduce that ∇Dmζ(um)→ ∇ζ(u) strongly in Lp(Ω× (0, T ))d as m→∞.

5 About Assumption (17)

We discuss show here that, if p ≥ 2, Theorem 2.10 can be proved without the structural assumption
(17) – i.e. without assuming that β = Id or ζ = Id.
We first notice that we can always assume that

β + ζ is strictly increasing. (63)
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Indeed, if this is not the case then we have s1 < s2 such that (β + ζ)(s1) = (β + ζ)(s2) and, since

β and ζ are non-decreasing, that [s1, s2] is a common plateau of β and ζ. Denoting by β̃, ζ̃ and
ν̃ the functions obtained from β, ζ and ν by removing this common plateau (by a contraction of
the s-ordinate), we see that u is a solution to (1) if and only if u is a solution of the same problem

with β, ζ and ν replaced with β̃, ζ̃ and ν̃.

Remark 5.1 Note that a rigorous and global way to remove all common plateaux of β and ζ at
once is to actually consider, for f = β, ζ or ν, f̃ = f ◦ (β + ζ) ◦ (β + ζ)r, where (β + ζ)r is the
pseudo-inverse of α+ β constructed as in (3).

Once this reduction has been applied, we can state the following theorem.

Theorem 5.2 Under Assumptions (2), let (Dm)mp∈N be a sequence of space-time gradient discreti-
sations in the sense of Definition 2.1, which is coercive, consistent, compact and limit-conforming
(see Section 2.2). Let, for any m ∈ N, um be the solution to (14) with D = Dm, provided by
Theorem 2.10.
If we assume that Assumption (63) hold and that p ≥ 2, then there exists a solution u to (4) such
that, up to a subsequence:

• the convergences stated in (18) hold,

• ΠDmν(um)→ ν(u) strongly in L∞(0, T ;L2(Ω)) as m→∞,

• under the strict monotony of a (i.e. Assumption (19)), as m → ∞, ΠDmζ(um) → ζ(u)
strongly in Lp(Ω× (0, T )) and ∇Dmζ(um)→ ∇ζ(u) strongly in Lp(Ω× (0, T ))d.

Proof.
We only need to prove the first conclusion of the theorem, i.e. that the convergences (18) hold.
Indeed, Theorems 2.14 and 2.16 then provide the last two conclusions.
The only difference in the assumptions of Theorem 5.2 and 2.10 is the absence, here, of the
structural assumption (17) and the assumption that β + ζ is strictly increasing. The only place in
the proof of Theorem (2.10) where we used Assumption (17) is in Step 1, to identify the limits β,
ζ and ν of ΠDmβ(um), ΠDmζ(um) and ΠDmν(um). We will show that without assuming (17) but
by assuming (63), we can still identify those limits.
We first work with the first two limits. Lemmas 4.1 and 4.3 show that βm = β(um) and ζm = ζ(um)
satisfy the assumptions of the discrete compensated compactness theorem 5.4 below (we also use
that p ≥ 2 here). Hence, ΠDmβ(um)ΠDmζ(um)→ β ζ in the sense of measures on Ω× (0, T ). We
can then apply Lemma 5.6 with ϕ ≡ 1 and wm = ΠDmum. This gives a measurable u such that
β = β(u) and ζ = ζ(u) a.e. on Ω× (0, T ).
We now turn to ν. Estimates (50) and (43) and Kolmogorov’s compactness theorem show that
the convergence of ΠDmν(um) towards ν is actually strong on L2(Ω× (0, T )) (we use p ≥ 2 here).
Setting µ = β + ζ, we saw that µ(ΠDmum)→ µ := β(u) + ζ(u) weakly in L2(Ω× (0, T )). We can
therefore apply Lemma 5.6 with ϕ ≡ 1 and µ, ν instead of β, ζ, and we find a measurable w such
that ν = ν(w) and µ = µ(w). The second relation translates into (β + ζ)(u) = (β + ζ)(w), that is
w = u since β + ζ is strictly increasing. Hence, ν = ν(u).
To summarise, the limits of ΠDmβ(um), ΠDmζ(um) and ΠDmν(um) have been identified as β(u),
ζ(u) and ν(u) for some u. This allows to take over the proof of Theorem 2.10 from after the usage
of (17) and conclude that u is a solution to (4) and that the convergences (18) hold. The last two
conclusions of the theorem follow from Theorems 2.14 and 2.16.
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Remark 5.3 Note that it is not proved, in this context, that u is a weak limit of ΠDmum, but
such a limit is not stated in (18) and can actually be considered as irrelevant for the model (1), in
which the quantities of interest (physically relevant when this PDE models a natural phenomenon)
are β(u), ζ(u) and ν(u).

We now state the two key results that allowed us to replace Assumption (17) by Assumption
(17). The first is a discrete version of a compensated compactness result in [31]. The second is a
Minty-like result, useful to identify weak non-linear limits.
We note that Theorem 5.4 is a more general version than the one needed in the proof of Theorem
5.2 (which only requires ϕ ≡ 1), but we state this more general version nevertheless as it is the
genuine discrete equivalent of the compensated compactness result in [31].

Theorem 5.4 (Discrete compensated compactness) We take T > 0, p ≥ 2 and a sequence

(Dm)m∈N = (XDm,0,ΠDm ,∇Dm , IDm , (t
(n)
m )n=0,...,Nm)m∈N of space-time discretisation in the sense

of Definition 2.1 which is consistent, limit-conforming and compact in the sense of Definitions 2.6,
2.8 and 2.7.

For any m ∈ N, let βm = (β
(n)
m )n=0,...,Nm ⊂ XDm,0 and ζm = (ζ

(n)
m )n=0,...,Nm ⊂ XDm,0 such that

• The sequences (
∫ T

0
|δmβm(t)|?,Dm)m∈N and (||∇Dmζm||L2(0,T ;Lp(Ω)d))m∈N are bounded,

• As m→∞, ΠDmβm → β and ΠDmζm → ζ weakly in L2(Ω× (0, T )).

Then ΠDmβmΠDmζm → β ζ in the sense of measures on Ω×(0, T ), that is, for all ϕ ∈ C(Ω×[0, T ]),

lim
m→∞

∫ T

0

∫
Ω

ΠDmβm(x, t)ΠDmζm(x, t)ϕ(x, t)dxdt =

∫ T

0

∫
Ω

β(x, t) ζ(x, t)ϕ(x, t)dxdt. (64)

Proof.
The idea of the proof is to reduce to the case where ΠDmζm are tensorial functions, in order to
separate the space and time variables and make use of the separate compactness of ΠDmζm and
ΠDmβm with respect to each of these variables. Note that this proof also provides an apparently
new proof for the continuous equivalent of this compensated compactness result.

Step 1: reduction of ΠDmζm to tensorial functions.
Let us take δ > 0 and consider a covering (Aδk)k=1,...,K of Ω in disjoint cubes of length δ. Let us
denote Rδ : L2(Ω)→ L2(Ω) the operator defined by:

∀k = 1, . . . ,K , ∀x ∈ Aδk : Rδf(x) =
1

meas(Aδk)

∫
Akδ

f(y)dy,

where f has been extended by 0 outside Ω. Let x ∈ Aδk. Using Jensen’s inequality, fact that
meas(Aδk) = δd and the change of variable y ∈ Aδk 7→ ξ = y − x ∈ (−δ, δ)d, we can write

|Rδf(x)− f(x)|2 ≤ δ−d
∫
Aδk

|f(y)− f(x)|2dy ≤ δ−d
∫

(−δ,δ)d
|f(x+ ξ)− f(x)|2dξ.

Integrating over x ∈ Aδk and summing over k = 1, . . . ,K then gives

||Rδf − f ||2L2(Ω) ≤ δ−d
∫

(−δ,δ)d

∫
Ω

|f(x+ ξ)− f(x)|2dxdξ

≤ 2d sup
ξ∈(−δ,δ)d

∫
Ω

|f(x+ ξ)− f(x)|2dx. (65)
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On the other side, the compactness of (Dm)m∈N (Definition 2.7) and the fact that p ≥ 2 give ε(ξ)
such that ε(ξ)→ 0 as ξ → 0 and, for all m ∈ N and all v ∈ XDm,0,

||ΠDmv(·+ ξ)−ΠDmv||2L2(Ω) ≤ ε(ξ)||∇Dmv||2Lp(Ω)d .

Combining this with (65) and using the bound on ||∇Dmζm||L2(0,T ;Lp(Ω)d) shows that

||RδΠDmζm −ΠDmζm||L2(Ω×(0,T )) ≤ C sup
|ξ|≤δ

√
ε(ξ) =: ω(δ) (66)

where C does not depend on m and ω(δ) → 0 as δ → 0. Note that a similar estimate holds
with ΠDmζm replaced with ζ since ζ ∈ L2(Ω × (0, T )) and, therefore, its translates tend to 0 in
L2(Ω× (0, T )).
If we respectively denote by Am(ΠDmζm) and A(ζ) the left-hand side and right-hand side (64),
then since (ΠDmβm)m∈N is bounded in L2(Ω× (0, T )) we have, by (66),

|Am(ΠDmζm)−A(ζ)| ≤ Cω(δ) + |Am(RδΠDmζm)−A(Rδζ)|.

Let us assume that we can prove that, for a fixed δ,

Am(RδΠDmζm)→ A(Rδζ) as m→∞. (67)

Then the previous inequality gives lim supm→∞ |Am(ΠDmζm) − A(ζ)| ≤ Cω(δ). Letting δ → 0 in
this inequality gives Am(ΠDmζm)→ A(ζ) as wanted.

Hence, we only need to prove 67. The definition ofRδ shows thatRδf =
∑K
k=1 1Aδkmeas(Aδk)−1[f ]Aδk

where 1Aδk is the characteristic function of Aδk and [f ]A =
∫
A
f(x)dx. Hence, (67) will follow if we

can prove that, for any measurable set A of non-zero measure,

lim
m→∞

∫ T

0

∫
Ω

ΠDmβm(x, t)[ΠDmζm]A(t)ϕ(t,x)1A(x)dxdt

=

∫ T

0

∫
Ω

β(x, t)[ ζ ]A(t)ϕ(t,x)1A(x)dxdt (68)

where, for g ∈ L2(Ω× (0, T )), we set [g]A(t) =
∫
A
g(t,y)dy.

Step 2: further reductions.
We now reduce ϕ to a tensorial function and 1A to a smooth function. It is well-known that there
exists tensorial functions ϕr =

∑Lr
l=1 θl,r(t)γl,t(x), with θl,r ∈ C∞([0, T ]) and γl,r ∈ C∞(Ω), such

that ϕr → ϕ uniformly on Ω × (0, T ) as r → ∞. Moreover, there exists ρr ∈ C∞c (Ω) such that
ρr → 1A in L2(Ω) as r →∞.
Hence, as r → ∞ the function (t,x) 7→ ϕr(t,x)ρr(x) converges in L∞(0, T ;L2(Ω)) to the func-
tion (t,x) 7→ ϕ(t,x)1A(x). Since the sequence of functions (t,x) 7→ ΠDmβ(t,x)[ΠDmζm]A(t) is
bounded in L1(0, T ;L2(Ω)) (notice that ([ΠDmζm]A)m∈N is bounded in L2(0, T ) since (ΠDmζm)m∈N
is bounded in L2(Ω × (0, T ))), a reasoning similar as the one used in Step 1 shows that we only
need to prove (68) with ϕ(t,x)1A(x) replaced with ϕr(t,x)ρr(x) for a fixed r.

We have ϕr(t,x)ρr(x) =
∑Lr
l=1 θl,r(t)(γl,tρ)(x) and γl,rρr ∈ C∞c (Ω). Hence, (68) with ϕ(t,x)1A(x)

replaced with ϕr(t,x)ρr(x) will follow if we can establish that: for any θ ∈ C∞([0, T ]), any
ψ ∈ C∞c (Ω) and any measurable set A ⊂ Ω,

lim
m→∞

∫ T

0

∫
Ω

θ(t)ΠDmβm(x, t)[ΠDmζm]A(t)ψ(x)dxdt =

∫ T

0

∫
Ω

θ(t)β(x, t)[ ζ ]A(t)ψ(x)dxdt. (69)
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Step 3: proof of (69).
We now use the estimates on δmβm to conclude. We first write∫ T

0

∫
Ω

θ(t)ΠDmβm(x, t)[ΠDmζm]A(t)ψ(x)dxdt =

∫ T

0

θ(t)[ΠDmζm]A(t)Fm(t). (70)

with Fm(t) =
∫

Ω
ΠDmβm(x, t)ψ(x)dx. It is clear from the weak convergence of ΠDmζm that

[ΠDmζm]A → [ ζ ]A weakly in L2(0, T ). Hence, if we can prove that Fm → F :=
∫

Ω
β(x, ·)ψ(x)dx

strongly in L2(0, T ), we can pass to the limit in (70) and obtain (69). Since Fm weakly converges
to F in L2(0, T ) (thanks to the weak convergence in L2(Ω × (0, T )) of ΠDmβm), we only have to
prove that (Fm)m∈N is relatively compact in L2(0, T ).
To prove the strong convergence of Fm, we introduce the interpolant PDm defined by (21) and we
define Gm as Fm with ψ replaced with ΠDmPDmψ. We then have

|Fm(t)−Gm(t)| ≤ ||ΠDmβm(·, t)||L2(Ω)SDm(ψ).

The consistency of (Dm) then shows that

Fm −Gm → 0 strongly in L2(Ω) as m→∞. (71)

We now study the strong convergence of Gm. This function is, as ΠDmβm, piecewise constant on
(0, T ) and, by definition of | · |?,Dm , its discrete derivative satisfies

|δmGm(t)| ≤ |δmβm(t)|?,Dm ||PDmψ||XDm,0 .

Since ||PDmψ||XDm,0 ≤ SDm(ψ) + ||∇ψ||Lp(Ω)d is bounded uniformly with respect to m, the
assumption on δmβm proves that (||δmGm||L1(0,T ))m∈N is bounded. Hence, Gm is bounded in
BV (0, T ) ∩ L1(0, T ) and therefore relatively compact in L2(0, T ) (see [3, Theorem 10.1.4]). Com-
bined with (71), this proves that (Fm)m∈N is relatively compact in L2(0, T ) and concludes the
proof.

Remark 5.5 If we assume that (ΠDmβm)m∈N is bounded in L∞(0, T ;L2(Ω)) and that, for some

q > 1, (
∫ T

0
|δmβm(t)|q?,Dm)m∈N is bounded, then Step 2 becomes a trivial consequence of Theorem

3.1. Indeed, this theorem then shows that (ΠDmβm)m∈N is relatively compact uniformly-in-time
and weakly in L2(Ω), which translates into the relative compactness of (Fm)m∈N in L∞(0, T ).

Lemma 5.6 Let N ∈ N? and V be a non-empty measurable subset of RN . Let β, ζ ∈ C0(R) be two
nondecreasing functions, such that β(0) = ζ(0) = 0 and β + ζ is strictly increasing. We assume
that there exists a sequence (wm)m∈N of measurable functions on V and two functions β, ζ ∈ L2(V )
such that:

• β(wm)→ β and ζ(wm)→ ζ weakly in L2(V ),

• there exists ϕ ∈ L∞(V ) such that ϕ > 0 a.e. on V and

lim
m→∞

∫
V

ϕ(z)β(wm(z))ζ(wm(z))dz =

∫
V

ϕ(z)β(z) ζ(z)dz. (72)

Then

β = β(w) and ζ = ζ(w) a.e. in V , where w =

(
β + ζ

2

)−1(
β + ζ

2

)
. (73)
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Proof. We first notice that β(w), ζ(w) ∈ L2(V ), given that β+ζ
2 ∈ L2(V ) and β ◦ (β+ζ

2 )−1 and

ζ ◦ (β+ζ
2 )−1 are sub-linear (the sum of both is 2Id and each one has the same sign as s). Since β

and ζ are non-decreasing, we can therefore write∫
V

ϕ(z) [β(wm(z))− β(w(z))] [ζ(wm(z))− ζ(w(z))] dz ≥ 0.

Letting m → ∞ in the above inequality, and using the convergences of β(wm), ζ(wm) and (72),
we obtain ∫

V

ϕ(z)
[
β(z)− β(w(z))

] [
ζ(z)− ζ(w(z))

]
dz ≥ 0. (74)

We then remark that
β + ζ

2
=
β(w) + ζ(w)

2
, (75)

which gives β(w) = β+ζ
2 +

(
β−ζ

2

)
(w) and ζ(w) = β+ζ

2 −
(
β−ζ

2

)
(w). Hence, (74) leads to

−
∫
V

ϕ(z)

(
β − ζ

2
(z)−

(
β − ζ

2

)
(w(z))

)2

dz ≥ 0.

Since ϕ is almost everywhere strictly positive on V , we deduce that β−ζ
2 = β(w)−ζ(w)

2 a.e. in V ,
and (73) follows from (75).

6 Appendix: uniform-in-time compactness results for time-
dependent problems

We establish in this appendix some generic results, unrelated to the framework of Gradient
Schemes, that form the starting point for our uniform-in-time convergence results.

Solutions of numerical schemes for parabolic equations are usually piecewise constant, and therefore
not continous, in time. As their jump nevertheless tend to become small with the time step, it
is possible to establish some uniform-in-time convergence results using a generalisation to non-
continuous functions of the classical Ascoli-Arzela theorem.

Definition 6.1 If (K, dK) and (E, dE) are metric spaces, we denote by F(K,E) the space of
functions K → E, endowed with the uniform metric dF (v, w) = sups∈K dE(v(s), w(s)) (note that
this metric may take infinite values).

Theorem 6.2 (Generalised Ascoli-Arzela’s theorem) Let (K, dK) be a compact metric space,
(E, dE) be a complete metric space and (F(K,E), dF ) as in Definition 6.1.
Let (vm)m∈N be a sequence in F(K,E) such that there exists a function ω : K ×K → [0,∞] and
a sequence (δm)m∈N ⊂ [0,∞) satisfying

lim
dK(s,s′)→0

ω(s, s′) = 0 , lim
m→∞

δm = 0 ,

∀(s, s′) ∈ K2 , ∀m ∈ N , dE(vm(s), vm(s′)) ≤ ω(s, s′) + δm. (76)

We also assume that, for all s ∈ K, {vm(s) : m ∈ N} is relatively compact in (E, dE).
Then (vm)m∈N is relatively compact in (F(K,E), dF ) and any adherence value of (vm)m∈N in this
space is continuous K → E.
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Proof. Let us first notice that the last conclusion of the theorem, i.e. that any adherence value
v of (vm)m∈N in F(K,E) is continuous, is trivially obtained by passing to the limit along this
subsequence in (76), showing that the modulus of continuity of v is bounded above by ω.
The proof of the compactness result an easy generalisation of the proof of the classical Ascoli-
Arzela compactness result. We start by taking a countable dense subset {sl : l ∈ N} in K (the
existence of this set is ensured since K is compact metric). Since each set {vm(sl) : m ∈ N} is
relatively compact in E, by diagonal extraction we can select a subsequence of (vm)m∈N, denoted
the same way, such that for any l ∈ N, (vm(sl))m∈N converges in E. We then proceed in showing
that (vm)m∈N is a Cauchy sequence in (F(K,E), dF ). Since this space is complete, this will show
that this sequence converges in this space and will therefore complete the proof.
Let ε > 0 and, using (76), take δ > 0 and M ∈ N such that ω(s, s′) ≤ ε whenever dK(s, s′) ≤ δ and
δm ≤ ε whenever m ≥M . Select a finite set {sl1 , . . . , slN } such that any s ∈ K is within distance
δ of a sli . Then, for any m,m′ ≥M , by (76),

dE(vm(s), vm′(s)) ≤ dE(vm(s), vm(sli)) + dE(vm(sli), vm′(sli))

+dE(vm′(sli), vm′(s))

≤ ω(s, sli) + δm + dE(vm(sli), vm′(sli)) + ω(s, sli) + δm′

≤ 4ε+ dE(vm(sli), vm′(sli)).

Since {(vm(sli))m∈N : i = 1, . . . , N} form a finite number of converging sequences in E, we can
find M ′ ≥ M such that, whenever m,m′ ≥ M ′ and i = 1, . . . , N , dE(vm(sli), vm′(sli)) ≤ ε. This
shows that, for all m,m′ ≥M ′ and all s ∈ K, dE(vm(s), vm′(s)) ≤ 5ε and concludes the proof that
(vm)m∈N is a Cauchy sequence in (F(K,E), dF ).

The following lemma states an equivalent condition for the uniform convergence of functions, which
proves extremely useful to establish uniform-in-time convergence of numerical schemes for parabolic
equations when no smoothness is assumed on the data.

Lemma 6.3 Let (K, dK) be a compact metric space, (E, dE) be a metric space and (F(K,E), dF )
as in Definition 6.1. Let (vm)m∈N be a sequence in F(K,E) and v : K 7→ E be continuous.
Then vm → v for dF if and only if, for any s ∈ K and any sequence (sm)m∈N ⊂ K converging to
s for dK , we have vm(sm)→ v(s) for dE.

Proof. If vm → v for dF then for any sequence (sm)m∈N converging to s,

dE(vm(sm), v(s)) ≤ dE(vm(sm), v(sm)) + dE(v(sm), v(s)) ≤ dF (vm, v) + d(v(sm), v(s))

and the right-hand side tends to 0 by definition of vm → v for dF and by continuity of v.
Let us now prove the converse by contraposition. If (vm)m∈N does not converge to v for dF then
there exists ε > 0 and a subsequence (vmk)k∈N, such that, for any k ∈ N, sups∈K dE(vmk(s), v(s)) ≥
ε. We can then find a sequence (rk)k∈N ⊂ K such that, for any k ∈ N,

dE(vmk(rk), v(rk)) ≥ ε/2. (77)

K being compact, up to another subsequence denoted the same way, we can assume that rk → s
in K as k →∞. It is then trivial to construct a sequence (sm)m∈N converging to s and such that
smk = rk (just take sm = s when m is not an mk). We then have vm(sm) → v(s) in E and, by
continuity of v, v(sm) → v(s) in E. This shows that dE(vm(sm), v(sm)) → 0, which contradicts
(77) and concludes the proof.

Uniform-in-time convergence of numerical solutions to schemes for parabolic equations starts with
a weak convergence with respect to the time variable. This weak convergence is then used to prove
a stronger convergence. The following definition and proposition recall standard notions related
to the weak topology on L2(Ω).
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Definition 6.4 (Uniform-in-time L2(Ω)-weak convergence) A sequence of functions um :
[0, T ] → L2(Ω) converges weakly in L2(Ω) uniformly on [0, T ] to a function u : [0, T ] → L2(Ω)
if, for all ϕ ∈ L2(Ω), as m → ∞ the sequence of functions t ∈ [0, T ] → 〈um(t), ϕ〉L2(Ω) converges
uniformly on [0, T ] to t ∈ [0, T ]→ 〈u(t), ϕ〉L2(Ω), where 〈·, ·〉L2(Ω) is the inner product in L2(Ω).

The next result is classical, but its short proof is recalled for the reader’s convenience.

Proposition 6.5 Let E be closed bounded ball in L2(Ω) and (ϕl)l∈N be a dense sequence in L2(Ω).
Then, on E, the weak topology of L2(Ω) is the topology given by the metric

dE(v, w) =
∑
l∈N

min(1, |〈v − w,ϕl〉L2(Ω)|)
2l

. (78)

Moreover, a sequence of functions um : [0, T ] → E converges uniformly to u : [0, T ] → E for the
weak topology of L2(Ω) if and only if, as m→∞, dE(um, u) : [0, T ]→ [0,∞) converges uniformly
to 0.

Proof. The sets Eϕ,ε = {v ∈ E : |〈v, ϕ〉L2(Ω)| < ε}, for ϕ ∈ L2(Ω) and ε > 0, define a basis of
neighborhood of 0 for the weak L2(Ω) topology on E, and a basis of neighborhood of any other
points is obtained by translation of this particular basis. If R is the radius of the ball E then for
any ϕ ∈ L2(Ω), l ∈ N and v ∈ E we have

|〈v, ϕ〉L2(Ω)| ≤ R||ϕ− ϕl||L2(Ω) + |〈v, ϕl〉L2(Ω)|.

By density of (ϕl)l∈N we can select l ∈ N such that ||ϕ− ϕl||L2(Ω) < ε/(2R) and we then see that
Eϕl,ε/2 ⊂ Eϕ,ε. Hence, a basis of neighborhood of 0 in E for the weak L2(Ω) is also given by
(Eϕl,ε)l∈N, ε>0.
From the definition of dE we see that, for any l ∈ N, min(1, |〈v, ϕl〉L2(Ω)|) ≤ 2ldE(0, v). If dE(0, v) <

2−l this shows that |〈v, ϕl〉L2(Ω)| ≤ 2ldE(0, v) and therefore that

BdE (0,min(2−l+1, ε2−l)) ⊂ Eϕl,ε.

Hence, any neighborhood of 0 in E for the L2(Ω) weak topology is a neighborhood of 0 for dE .
Conversely, for any ε > 0, selecting N ∈ N such that

∑
l≥N+1 2−l < ε/2 gives, from the definition

(78) of dE ,
N⋂
l=1

Eϕl,ε/4 ⊂ BdE (0, ε).

Hence, any ball for dE centered at 0 is a neighborhood of 0 for the L2(Ω) weak topology. Since dE
and the L2(Ω) weak neighborhood are invariant by translation, this concludes the proof that this
weak topology is identical to the topology generated by dE .
The conclusion on weak uniform convergence of sequences of functions follows from the preceding
result, and more precisely by noticing that all previous inclusions are, when applied to um(t)−u(t),
uniform with respect to t ∈ [0, T ].

The following lemma has been established in [28, Proposition 9.3] but its proof is recalled for the
reader’s convenience.

Lemma 6.6
Let (t(n))n∈Z be a stricly increasing sequence of real values such that δt(n+ 1

2 ) := t(n+1) − t(n) is
uniformly bounded by δt > 0, lim

n→−∞
t(n) = −∞ and lim

n→∞
t(n) = ∞. For all t ∈ R, we denote by
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n(t) the element n ∈ Z such that t ∈ [t(n), t(n+1)). Let (a(n))n∈Z be a family of non negative real
values with a finite number of non zero values. Then∫

R

n(t+τ)∑
n=n(t)+1

(δt(n+ 1
2 )a(n+1))dt = τ

∑
n∈Z

(δt(n+ 1
2 )a(n+1)), ∀τ ∈ (0,+∞), (79)

and∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 an(t+ζ)+1dt

≤ (τ + δt)
∑
n∈Z

(δt(n+ 1
2 )a(n+1)), ∀τ ∈ (0,+∞), ∀ζ ∈ R. (80)

Proof.
Let us define the function χ(t, n, τ) by χ(t, n, τ) = 1 if t < t(n) and t+ τ ≥ t(n), else χ(t, n, τ) = 0.
We have ∫

R

n(t+τ)∑
n=n(t)+1

(δt(n+ 1
2 )a(n+1))dt =

∫
R

∑
n∈Z

(δt(n+ 1
2 )a(n+1)χ(t, n, τ))dt

=
∑
n∈Z

(
δt(n+ 1

2 )a(n+1)

∫
R
χ(t, n, τ)dt

)
.

Since
∫
R χ(t, n, τ)dt =

∫ t(n)

t(n)−τ dt = τ , thus (79) is proven.
We now turn to the proof of (80). We define the function χ̃(n, t) by χ̃(n, t) = 1 if n(t) = n, else
χ̃(n, t) = 0. We have ∫

R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt

=

∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

∑
m∈Z

a(m+1)χ̃(m, t+ ζ)dt,

which yields ∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt

=
∑
m∈Z

a(m+1)

∫ tm+1−ζ

tm−ζ

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

dt. (81)

Since we have
n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 ) =

∑
n∈Z, t<t(n)≤t+τ

(t(n+1) − t(n)) ≤ τ + δt,

we can write from (81)∫
R

 n(t+τ)∑
n=n(t)+1

δt(n+ 1
2 )

 a(n(t+ζ)+1)dt ≤ (τ + δt)
∑
m∈Z

a(m+1)

∫ t(m+1)−ζ

t(m)−ζ
dt

= (τ + δt)
∑
m∈Z

a(m+1)δt(m+ 1
2 ),
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which is exactly (80).
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