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Uniform-in-time convergence result of numerical methods for
non-linear parabolic equations

J. Droniou* and R. Eymardf

October 28, 2014

Abstract

We prove that all Gradient Schemes — which include Finite Element, some Mixed Finite
Element and Finite Volume methods — converge uniformly in time when applied to a family
of nonlinear parabolic equations which contains the Richards, Stefan and Leray-Lions models.

AMS Subject Classification: 46N40

1 Introduction

1.1 Motivation

The following generic nonlinear parabolic model

of(@) — div (a(z,v(u),V((@))) = f in Q x (0,7),
B(@)(x,0) = B(uini) () in €, (1)
¢(w) =0o0n 00 x (0,T)

where /3, ( are non-decreasing, v is such that v/ = 3¢’ and a is a Leray-Lions operator, arises in
various frameworks (see next section for precise hypotheses on the data). This model includes

1. Richards’ model, setting ((s) = s, v = B and a(x,v(7), V{(u)) = Al(z) K (x, 8(u)) VT, which
describes the flow of water in a heterogeneous anisotropic underground medium,

2. Stefan’s model [4], setting 3(s) = s, v = (, a(x,v(u), V{(a)) = K(¢(u))V((ua), which arises
in the study of a simplified heat diffusion in a melting medium,

3. p—Laplace problem (and p—Laplace-like problems), setting 8(s) = ((s) = v(s) = s and
a(x,v(u),V{(u)) = |VuP~2Vau, which is involved in the motion of glaciers [29] or flows of
incompressible turbulent fluids through porous media [11].

The numerical approximation of these models has been extensively studied in the literature (see
the fundamental work on the Stefan problem [34], and [35] for a review of some numerical ap-
proximations, see [32] for the Richards problem and see [12, 16] and references therein for some
studies of convergence of numerical methods for the Leray-Lions problem). However, the conver-
gence analysis of the considered schemes received a much reduced coverage and consists mostly in
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establishing space-time averaged results (e.g. in L*(Q x (0,7))), see for example [23, 26]). Yet, the
quantity of interest is often not @ on  x (0,7) but @ at a given time, for example ¢t = T'. Existing
numerical analysis results therefore do not ensure that this quantity of interest is indeed properly
approximated by numerical methods.

The usual way to obtain pointwise-in-time approximation results for numerical schemes is to prove
estimates in L>°(0,T; L?(Q)) on u — %, where u is the approximated solution. Establishing such
error estimates is however only feasible when uniqueness of the solution u to (1) can be proved,
which is the case for Richards’ and Stefan’s problems but not for more complex non-linear parabolic
problems as (1) or even p-Laplace problems. It moreover requires some regularity assumptions on
u, which clearly fail for (1) (and simpler p-Laplace problems) for which, because of the possible
plateaux of 8 and ¢, the solution can develop jumps in its gradient.

The purpose of this article is to prove that, using Discrete Functional Analysis techniques (i.e. the
translation to numerical analysis of nonlinear analysis techniques), an L>(0,T; L?(£2)) convergence
result can be established for numerical approximations of (1), without having to assume non-
physical regularity assumptions on the data. Note that, although Richards’ and Stefan’s models
are formally equivalent when 8 and ( are strictly increasing (consider 3 = ¢~! to pass from
one model to the other), they change nature when these functions are allowed to have plateaux.
Stefan’s model can degenerate to an ODE (if ¢ is constant on the range of the solution) and
Richards’ model can become a non-transient elliptic equation (if 3 is constant on this range). The
innovative technique we develop in this paper is nonetheless generic enough to work directly on
(1) and with a vast number of numerical methods.

That being said, a particular numerical framework must be selected in order to write precise
equations and estimates. The framework we choose is that of Gradient Schemes, which has the
double benefit of covering a vast number of numerical methods and of having already been studied
for many models — elliptic, parabolic, linear or non-linear, possibly degenerate, etc. — with var-
ious boundary conditions. The schemes or family of schemes included in the Gradient Schemes
framework, and to which our results therefore directly apply, currently are:

e Galerkin methods, including conforming Finite Element schemes,

e Finite Element with mass lumping [7],

e The Crouzeix-Raviart non-conforming Finite Element, with or without mass lumping [9, 20],
e The Raviart-Thomas Mixed Finite Elements [5],

e The Vertex Approximate Gradient scheme [24],

e The Hybrid Mimetic Mixed family [15], which includes Mimetic Finite Differences [6], Mixed
Finite Volume [13] and the SUSHI scheme [22],

e The Discrete Duality Finite Volume scheme in dimension 2 [30, 2], and the CeVeFE-Discrete
Duality Finite Volume scheme in dimension 3 [8],

e The Multi-Point Flux Approximation O-method [1, 18].

We refer the reader to [14, 16, 21, 27, 25] for more details. Let us finally emphasize that the
unified convergence study of numerical schemes for Problem (1), which combines a general Leray-
Lions operator and nonlinear functions S or ¢, seems to be new even without the uniform-in-time
convergence result.

The paper is organised as follows. In Section 1.2, we present the assumptions and the notion of
weak solution for (1) and, in Section 1.3, we give an overview of the ideas involved in the proof



of uniform-in-time convergence. This overview is given not in a numerical analysis context but in
in a context of pure stability analysis of (1) with very little regularity on the data, for which the
uniform-in-time convergence result also seems to be new. Section 2 presents the Gradient Schemes
for our generic model (1). We give in Section 3 some preliminaries to the convergence study. Section
4 contains the complete convergence proof of Gradient Schemes for (1), including the uniform-in-
time convergence result. An appendix, Section 5, concludes the article with important technical
results, and in particular a generalisation of Ascoli-Arzela compactness result to discontinuous
functions and a characterisation of uniform convergence of sequences of functions which is critical
to establishing our uniform-in-time convergence result.

Note that these results and their proofs have been sketched and illustrated by some numerical
examples in [17], for a(x,v(u), V{(u)) = V{(u).

1.2 Hypotheses and weak sense for the continuous problem

We consider the evolution problem (1) under the following hypotheses.

) is an open bounded connected polyhedral subset of R? (d € N*) and T > 0, (2a)
¢ € C°(R) is non-decreasing, Lipschitz continuous with Lipschitz constant Ly > 0 (2b)
such that ¢(0) = 0 and, for some Mo, My > 0, |¢(s)] > Mo|s| — M, for all s € R.

B is a non-decreasing Lipschitz continuous function with Lipschitz constant Lg > 0 (2¢)
and 4(0) = 0.

VseR, v(s) :/ ¢'(q)B (q)dgq. (2d)

0
a : QxRxRY— R with p € (1,+00), is a Caratheodory function, (2e)

(i.e. a function such that, for a.e. & € Q, (s,&) — a(x,s,£) is continuous and, for any (s,&) €
R x R, x — a(x, s, £) is measurable)
Ja € (0,+00) : a(x,s,&) &> alg|P, for ae. x € Q, Vs € R, V& € RY, (2f)
(a(x,s,€) —alx,s,x)) (€ —x) >0, forae x €, VscR, V& x €RY, (2g)
Ja e L (), Jp € (0,400) :
la(x,s, &) < a(x) + pl€|P~, forae. £ €Q, Vs €R, V&€ € RY,

and

uimi € L2(Q), f e LY (Qx (0,T)). (2i)
We denote by Rg the range of 3 and define the pseudo-inverse function 3, : Rg — R of § by

B inf{t e R|B(t) =s} ifs>0,
a sup{t e R|B(t) =s} ifs<0, (3)
= closest t to 0 such that (t) = s.

Vs € Rﬁ ) 57‘(8)

Since (0) = 0, we notice that 3, > 0 on Rg NR' and 5, < 0 on Rg NR~. We then define
B: Rg — [0,00] by

B(z) = / (B (s)) ds.

Since 3, is non-decreasing, this expression is always well-defined in [0, 00). The signs of 3, also
ensure that that B is non-decreasing on Rg NR* and non-increasing on RgNR~. We can therefore
extend B to Rg by these limits (possibly +00) at the potential endpoints of Rg.



The precise notion of solution to (1) that we consider is then the following:

u e LP(0,T; LP()), ¢(u) € LP(0, T; Wy (),
B(3(m)) € L*(0, T LH(©), 5(m) € C([0,T]: L2(Q)-w), 8,5(3) € L¥ (0,7 W1+ (),
ﬁ(g)(a 0) = 6(uini) in LQ(Q)a
| OB@ 0.5 gt (4)
T T
+ /0 /Q a(@, v(T(e, 1)), VC(@) (@, 1)) - Vi, t)dadt = /O /Q o, )5, 1) dadt,
Vo e LP(0; T; W) P ().

where C([0,T]; L?(2)-w) denotes the space of continuous functions [0, 7] + L%(Q) for the weak-x
topology of L?(Q2). Here and in the following, we denote by p’ the dual exponent % to p and we
remove the mention of Q in the duality bracket (-,-)y;, 1.,/ whe = (- '>W*1>P/(Q) Whe Q)

Remark 1.1 The derivative 0;5(@) is to be understood in the usual sense of distributions on
Q% (0,T). Since the set T ={> ¢_, @i(t)vi(x) : ¢ €N, p; € C°(0,T),v; € C(Q)} of tensorial
functions in C>°(Q x (0,T)) is dense in LP(0,T; Wy (Q)), one can ensure that this distribution
derivative 9,4(w) belongs to L (0,T; W19 (Q)) = (LP(0,T; Wy (Q))’ by checking that the linear

form ;
p €T = (0B@),0)p D= —/ / B@)(x, t)Opp(x, t)dxdt
0o Ja

is continuous for the norm of LP(0,T; Wy*(2)).

Note that the continuity property of 8(%) natural. Indeed, the PDE in the sense of distributions
shows that T}, : t — (B(u)(t), p)r> belongs to W11(0,T), and is therefore continuous, for any
¢ € C=°(9Q). The density in L?() of such ¢, combined with the fact that 5(u) € L>(0,T; L*(Q))
(coming from B(B(u)) € L>(0,T; L*(2)) and (26)), proves the continuity of T,, for any ¢ € L*(Q),
that is to say the continuity of 3(a) : [0,T] — L?(2)-w.

This notion of S(w) as a function continuous in time is nevertheless a subtle one. It is to be
understood in the sense that the function (x,t) — S(@(x,t)) has an a.e. representative which
is continuous [0, 7] — L%*(Q)-w. In other words, there is a function Z € C([0,T]; L?(Q)-w) such
that Z(t)(x) = B(u(x,t)) for a.e. (x,t) € Q@ x (0,7). We must however make sure, when dealing
with pointwise values in time to separate Z from §(u(-,-)) as S(u(-,¢1)) may not make sense for a
particular ¢; € [0, 7.

That being said, in order to adopt a simple notation, we will denote by 5(@)(-,) the function
Z, and by B(@(-,-)) the a.e.-defined composition of 8 and uw. Hence, it will make sense to talk
about B(w)(-,t) for a particular ¢; € [0,T], and we will only write 8()(x,t) = B(u(z,t)) for a.e.
(z,t) € Q x (0,T). Note that from this a.e. equality we can ensure that S(w)(,-) takes its values
in the closure Rg of the range of 3.

1.3 General principle for the uniform-in-time convergence result

As explained in the introduction, the main innovative result of this article is the uniform-in-time
convergence result (Theorem 2.14 below). Although it’s stated and proved in the context of numer-
ical approximations of (1), we emphasize that its principle is also applicable to theoretical analysis
of PDEs. Let us informally present this principle on the following continuous approximation of
(1):

o B(u:) — div (ac(x,v(u.), V{(u:))) = f in Q x (0,7,

ﬂ(ﬂs)(w7 0) = B(uini)(a’) in Q, (5)

¢(ue) =0o0n 092 x (0,T)



where a. satisfies Assumptions (2e)—(2h) with constants not depending on € and a. — a pointwise
ase — 0.

We want to show here how to deduce from averaged convergences a strong uniform-in-time conver-
gence result. We therefore assume the following convergences (up to a subsequence as € — 0), which
are compatible with basic compactness results that can be obtained on (u.). and also correspond
to the initial convergences (18) that can be obtained on numerical approximations of (1):

B(u.) — B(u) in C([0,T); L*(Q)-w) , v(u.) — v(u) strongly in L*(Q x (0,7)),
C(@.) — ¢(m) weakly in LP(0,T; W, P(Q)), (6)
a.(-,v(u.),V((u.)) = a(-,v(a), V¢(u)) weakly in LP(2 x (0,7T))%.

We will prove from these convergences that, along the same subsequence, v(@.) — v(u) strongly
in C([0,T7]; L*(Q)), which is our uniform-in-time convergence result.

We start by noticing that the weak-in-space uniform-in-time convergence of 5(@.) gives, for any
Tp € [0,T] and any family (7;).>o converging to Ty as € — 0, 5(u.)(Te, ) — B(@)(To, ) weakly in
L?(9). Classical strong-weak semi-continuity properties of convex functions (see Lemma 3.4) and
the convexity of B (see Lemma 3.3) then ensure that

/QB(ﬂ(ﬂ)(:c, To))dx <liminf [ B(B(u.)(x,T:))dx. (7)

e—0 Q

The second step is to notice that, by (2g) for a.,

/0 E /Q la-(-,v(u.), V() — a(-v(a.), V¢(@)] - [VE(@.) — VE(@)] dedt > 0.

Developing this expression and using the convergences (6), we find that

liminf/o /Qag(-,z/(ﬂe),vg(ﬂs)-VC(EE)(:c,t)d:cdtZ/O /Qa(~7u(ﬂ),V§(H))-V((E)dwdt. (8)

e—0

We then establish the following formula:

Te
/BW@@@»M+/ /%@W@@WW&M@@%W@M%MNt
Q 0 Q

Te
= [ Bwa@e+ [ [ fa0c@) e it o)

This energy estimate is formally obtained by multiplying (5) by ((@.) and integrating by parts,
using the fact that (B o )" = (8’ (see Lemma 3.3). The rigorous justification of (9) is however
quite technical, see Lemma 3.6 and Corollary 3.8. Thanks to (8), we can pass to the limsup in (9)
and we find, using the same energy estimate with (@, a,Tp) instead of (u., a., %),

limsup/ B(B(te(x,T:)))dx < / B(B(u(x,Tp)))dx. (10)
e—0 Q Q

Combined with (7), this shows that [, B(8(t(z,T:)))dx — [, B(B(u(x,Ty)))dz. The uniform
convexity of B (see (28)) then allows us to deduce that v(u. (-, 7)) — v(u(-, To)) strongly in L?(£2)
and thus that v(u.) — v(a) strongly in C([0,T]; L*(Q)) (see Lemma 6.3).

Remark 1.2 A close examination of this proof indicates that equality in the energy estimate (9)
is not required for u.. An inequality < would be sufficient. This is particularly important in the



context of numerical methods which may introduce additional numerical diffusion (for example due
to an implicit-in-time discretisation) and therefore only provide an upper bound in this energy
estimate, see for example Estimate (39).

It is however crucial that the limit solution u satisfies the equivalent of (9) with an equal sign (or

>).

2 Gradient discretisations and gradient schemes

2.1 Definitions

We give here a minimal presentation of gradient discretisations and gradient schemes, limiting
ourselves to what is necessary to study the discretisation of (1). We refer the reader to [14, 24, 16]
for more details.

A gradient scheme can be viewed as a general formulation of several discretisations of (1) which
are based on a nonconforming approximation of the weak formulation of the problem. The ap-
proximation of the weak formulation of (1) is based on some discrete spaces and mappings, the set
of which we call a gradient discretisation. Throughout this paper, €2 is an open bounded subset of
R? d € N*, and p € (1, +00).

Definition 2.1 (Space-Time gradient discretisation for homogeneous Dirichlet bound-
ary conditions)

We say that D = (Xp.o,p, Vo, Ip, (t7™)n=0
homogeneous Dirichlet boundary conditions if

N) 1S a space-time gradient discretisation for

.....

1. the set of discrete unknowns Xp o is a finite dimensional real vector space,

2. the linear mapping p : Xpo— L>®(Q) is a piecewise constant reconstruction operator in
the sense that there exists a set I of degrees of freedom such that Xp o = R! and there ezists a
family (Q;)ier of disjoint subsets of 2 such that ) = Uielﬁi and, for all u = (u;)ier € Xp o
and all i € I,IIpu = u; on €,

3. the linear mapping Vp : Xpo — LP(Q)? gives a reconstructed discrete gradient. It must be
chosen such that ||Vp - || »(q)e i a norm on Xp o,

4. Ip : L*(Q) — Xpo is a linear interpolation operator,
510 =0 <t® <@ < <t =T,
We then set &("T2) = t(n+1) _ t™" forn=0,...,N—1, and &p = max,=o,.. N—1 &("+%), and

we define the dual semi-norm |w|.p of w € Xp o by

»D = Sup {/ Hpw(x)llpz(x)dx : 2z € Xpo, [|[Vp2||pri) = 1} . (11)
Q

|w

Remark 2.2 (Boundary conditions) Other boundary conditions can be seamlessly handled by
Gradient Schemes, see [1/].

Remark 2.3 (Nonlinear function of the elements of Xp ) Let D be a gradient discretisa-
tion in the sense of Definition 2.1. For any x : R — R and any v = (u;)ier € Xp,o, we define
xr(u) € Xpo by xr(u) = (xr(w)i)ier with xr(w); = x(u;). As indicated by the subscript I, this
definition depends on the choice of the degrees of freedom in Xpo. That said, these degrees of



freedom are usually canonical and we therefore drop the index I. An important consequence of the
fact that Tlp is a piecewise constant reconstruction is the following:

Vx:R—=R,Vue Xpy, Ipx(u)=x{Ilpu). (12)

It is customary to also use the notations IIp and Vp for space-time dependent functions. We
will also need a notation for the jump-in-time of piecewise constant functions in time. Hence, if
(v(”))nzo,,_“’N C Xp,o, we set

for a.e. & € Q, Hpv(x,0) = Mpv@(x) and Vo =0,...,N — 1, Vt € (t() t(r+1)] .
Mpv(x,t) = H,Dv(nJrl)(m)’ Vou(x,t) = VDU(n+1)(m)
(D) _ ()

s(nt32)

(13)
_ snt3)
and dpv(t) =0p v := € Xpo.
Thanks to Remark 2.3, the related gradient scheme is merely the discretisation of the weak for-
mulation of (1) obtained by using the discrete space and mappings of the gradient discretisation.
If D = (Xp,0,1p,Vp,Ip, (t("))nzo,m,N) is a space-time gradient discretisation in the sense of
Definition 2.1, we define the following gradient scheme for Problem (1): we consider a sequence
(u("))n=07.,,7N C Xp, such that

u® = Tpui,; and, for all v = (v("))nzl,m’N C Xpo,

/0 /Q MpopB(u)(x, t)Ipv(x,t) + a (x, Hpr(u)(x,t), Vol (u)(x, t)) - Vpu(z,t)] dedt (14)
:/0 /Qf(a:,t)ﬂpv(m,t)dmdt.

Remark 2.4 We could as well consider, instead of a fully implicit method, a Crank-Nicolson
scheme or any scheme in between those two. Such schemes are defined by taking o € [%71]
and replacing the terms u™tY appearing in a(x,-,-) in (14) for t € (t(),t+D] with u(*+e) =
au™ D 4 (1 — a)u™. All the results we establish for (14) would hold for such a scheme (see the
treatment in [16]).

2.2 Properties of gradient discretisations

In order to establish the convergence of the associated gradient schemes, sequences of space-
time gradient discretisations are required to satisfy four properties: coercivity, consistency, limit-
conformity and compactness.

Definition 2.5 (Coercivity) A sequence (Dp,)men of space-time gradient discretisations in the
sense of Definition 2.1 is said to be coercive if there exists Cp such that, for any m € N and any
v € Xp,, 0, |[p,,vl[r) < Cpl|VD,,vl|Le(0)a-

Definition 2.6 (Consistency) If D is a space-time gradient discretisation in the sense of Defi-
nition 2.1, we define

V(p c LZ(Q) M Wol’p<Q), S\D(@) = min (||HD’LU - (p||Lmax(p.2)(Q) + ||pr - V(IDHLP(Q)) . (15)

weEXp,o

A sequence (Dp)men of space-time gradient discretisations in the sense of Definition 2.1 is said
to be consistent if

o for all p € L2(Q) NW3P(Q), Sp, () — 0 as m — oo,



e for all p € L?(Q), llp, Ip, » — ¢ in L?(Q) as m — oo, and
o dp, — 0 asm — oo.

Definition 2.7 (Compactness) If D is a space-time gradient discretisation in the sense of Def-
inition 2.1, we define

[[TIpv(- + &) — Ipv|| e (ray

VeEeRY, T = max
¢ () vE€Xp,0\{0} IV ov||Le )

)

where lpv has been extended by 0 outside Q.
A sequence (Dp)men of space-time gradient discretisations is said to be compact if

lim sup Tp(€) = 0.
€20 meN

Definition 2.8 (Limit-conformity) If D is a space-time gradient discretisation in the sense of
Definition 2.1, we define

(16)

[ (Vou(@) - p(@) + lpu(e)dive(@)) da
Ve € W' (Q , W = max &
it (1)), Wole) u€Xp,0\{0} IVoull L (a)a

A sequence (Dyn)men of space-time gradient discretisations in the sense of Definition 2.1 is said
to be limit-conforming if, for all o € WV (Q), Wp, () tends to 0 as m — oo.

We refer the reader to [16, 14] for a proof of the following lemma.

Lemma 2.9 (Consequence of limit-conformity) Let (D,,)men be a sequence of space-time
gradient discretisations in the sense of Definition 2.1, which is limit-conforming in the sense of
Definition 2.8. Let, for any m € N, v, = (vy(,?))nzo _____ N,, C Xp,, 0 be such that, with the notations
n (13), (Vp,, Um)men s bounded in LP(2 x (0,T)).

Then there exists v € LP(0,T; Wol’p(Q)) such that, up to a subsequence as m — oo, Ilp_ v, — v

weakly in LP(Q x (0,T)) and Vp,, vy — Vv weakly in LP(2 x (0,T))4.

2.3 Main results

Our first theorem states weak or space-time averaged convergence properties of Gradient Schemes
for (1). These results are quite classical and have already been established for Richards’ and
Stefan’s models, see [21, 25]. The convergence proof we provide afterwards however covers more
non-linear model, as a do not need to be linear with respect to &, and is more compact than the
ones available in the literature.

Theorem 2.10 (Convergence of the Gradient Scheme) Under Assumptions (2), let (Dp,)mpen
be a sequence of space-time gradient discretisations in the sense of Definition 2.1, which is coercive,
consistent, compact and limit-conforming (see Section 2.2).

Then for any m € N there exists a solution u,, to (14) with D = D,,.

Moreover, if we assume that

(VseR, B(s)=s) or (¥VseR, {(s)=2s), (17)



then there exists a solution uw to (4) such that, up to a subsequence, the following convergences hold
as m — 0o:

Up, B(um) — B(w) weakly in L*(Q) uniformly on [0,T] (see Definition 6.4),

Op, v(um) — v(T) strongly in L*(0,T; L*(£)), 18
Ip,, ¢ (um) — ¢(a) weakly in LP(Q2 x (0,T)). (18)
Vo, (um) — V(@) weakly in LP(Q x (0,T))<.

Remark 2.11 Since |v| < L¢|B| and |v| < Lg|¢|, the L>=(0,T; L*(Q2)) bound on B(um,) and the
LP(Qx (0,T)) bound on {(um) (see Lemma 4.1 and Definition 2.5) allows us to see that the strong
convergence of p, v(uy,) is also valid in L1(0,T; L™(Q)) for any (q,r) such that ¢ < oo and r < 2
or q,v < p (and, of course, any space interpolated between the two cases).

Remark 2.12 Note that we do not assume the existence of a solution @ to the continuous problem,
our convergence analysis will establish this existence.

Remark 2.13 Assumption (17) covers Richards’ and Stefan’s models, as well as many other non-
linear parabolic equations. This assumption is actually not mandatory if p > 2, see Section 5.
We decide however to first state and prove Theorem 2.10 with this assumption to simplify the
presentation. See also Remark 2.17.

The main innovation of this paper is the following theorem, which states the wuniform-in-time
convergence of numerical methods for fully non-linear parabolic equations with no regularity as-
sumptions on the data.

Theorem 2.14 (Uniform-in-time convergence) Under Assumptions (2), let (Dp)mpen be a
sequence of space-time gradient discretisations in the sense of Definition (2.1), which is coercive,
consistent, compact and limit-conforming (see Section 2.2).

We assume that, for any m € N, u,, is a solution to (14) with D = D,,, which converges to a
solution w of (4) in the sense (18).

Then, as m — oo, llp, v(uy,) — v(w) strongly in L°°(0,T; L?(£2)).

Remark 2.15 Note that since (Ilp,, v(um))men are piecewise constant in time, their convergence
in L>=(0,T; L?(Q)) is actually a uniforme-in-time convergence (not “uniform a.e. in time”).

The last theorem completes our convergence result by stating the strong space-time averaged
convergence of the discrete gradients. Its proof is inspired by the study of Gradient Schemes for
Leray-Lions operators made in [16].

Theorem 2.16 (Strong convergence of the gradients) Under Assumptions (2), let (D )mpen
be a sequence of space-time gradient discretisations in the sense of Definition (2.1), which is coer-
cive, consistent, compact and limit-conforming (see Section 2.2).

We assume that, for any m € N, u,, is a solution to (14) with D = D,,, which converges to a
solution @ of (4) in the sense (18). We also assume that a is strictly monotone in the sense:

(a(x,s,€) —a(x,s,x)) - (E—x) >0, forae xcQ, VseR, VE#x R (19)

Then, as m — oo, Hp, ((um) — C(@) strongly in LP(Q2 x (0,T)) and Vp,, C(um) — V() strongly
in LP(2 x (0,T))%.

Remark 2.17 Theorems 2.14 and 2.16 do not require the structural assumption (17); these theo-
rems only require that the convergences (18) hold.



3 Preliminaries

We establish here a few results which will be used in the analysis of the Gradient Scheme (14).

3.1 Uniform-in-time compactness for space-time Gradient Discretisa-
tions

The first result is a consequence, in the framework of gradient discretisations, of the results in
Section 6.

Theorem 3.1 (Uniform-in-time L?({2)-weak compactness result) LetT > 0, and (Dp)men
(Xp,,0.p,,,VD, . Ip,,,( ﬁ))nzo,“,’Nm)meN be a sequence of space-time discretisation in the sense
of Definition 2.1 which is consistent in the sense of Definition 2.6.

For any m € N, let v, = (uﬁ,?))n:(),,,_,Nm C Xp,,0. If there exists ¢ > 1 and C > 0 such that, for
any m € N,

T
T, v 02220 < C and / Gmom(8)[p, dt < C, (20)
0

then the sequence (Ilp, vy )men is relatively compact uniformly-in-time and weakly in L*(S)), i.e.
it has a subsequence which converges according to Definition 6.4.
Moreover, any limit v of such a subsequence is continuous [0, T] — L%(Q) for the weak topology.

Remark 3.2 The bound on |0y vm |« p,, is often a consequence on a numerical scheme satisfied by
Um and on bounds on ||V p,, vm||Lr(x(0,1)), See the proof of Lemma 4.8 for example.

Proof.  This result is a consequence of the generalised Ascoli-Arzela theorem (Theorem 6.2)
with K = [0,7] and E the ball of radius C in L*(Q), endowed with the weak topology. We let
(01)1en C C°(2) be a dense sequence in L?(Q2) and endow E with the metric (78) from these ¢y,
which indeed defines the weak L?(Q) topology (see Proposition 6.5).

The set E is metric compact and therefore complete, and all IIp, v, take their values in E. It
remains to estimate dg (v ($), vm(s’)). We drop the index m in the spaces for legibility of notations.
Let us define the interpolant Ppy; € Xp o by

Ppp; = argmin (|[Ilpw — ¢
weXp,o

Lmax(p,2) (Q) + ||va - VQOZHLT’(Q)) . (21)

1
For any 0 < s < &' < T, writing IIpv,,,(s’) — Ilpvy,(s) as the sum of its jumps &(n+%)HD5§;+2)v

at the points (t(™),—n, .. n, lying between s and s’, the definition of |- |, p and Estimate (20) give

m

/Q (pvy,(x, ') — Upvm(x, s)) llp Ppy;(x)de

t(n2+1)

< CYa(tn2 D) _ YD |17 Ppgy|| Loy

/Q HD(SDU(t) (:I:)HDPDQOZ (:c)dmdt

t(n1)
By definition of Pp, we have
IIp Ppgr — @illz2a) < Sp(e1)

and
[IVp Pogil| e )e < Sp(er) + lleilloe) + Vel Le)e < Cp,
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with C,, not depending on D (and therefore on m). Since t("2F1) — ¢(") < |s' — 5| + & and
(IIpVym )men is bounded in L (0,T; L?(£2)), we deduce that

/Q (v (2, 5) — Tpvm (@, 5)) @1 (2)dz

< 2C8p(p)) + CYC,,|s' — s|/9 + CYac, a7 (22)

Plugged into the definition (78) of the distance in FE, this shows that

dg (Hpvm(s'), HDvm(s))

min(1,CY7C,, |s' — s|*/9) min(l,?C’ngm(w)—i—Cl/q/C &},{q/)
< > o +2 2! N

leN leN
=: w(s,s) + .

Using the dominated convergence theorem for series, we see that w(s,s’) — 0 as s—s’ — 0 and that

0m — 0 as m — oo (we invoke the space consistency to establish that lim,,— o :S'\Dm (¢1) — 0 for
any [). Hence, the assumptions of Theorem 6.2 are satisfied and the proof is complete. ]

3.2 Technical results

We state here a family of technical lemmas, starting with a few useful properties on v and B.

Lemma 3.3 Under Assumptions (2), there holds

v(a) —v(b)| < Lgl¢(a) — C(D)], (23)
(v(a) = v(b)* < LaL¢(¢(a) — ((0))(B(a) — B(b)). (24)
The function B is convex on Rg, the function Bo 3 :R — [0,00) is continuous,
vseR, BEE) = [ @ ads. (25)
0
IKo, K1, Ky > 0 such that Vs € R, KyB(s)? — K1 < B(B(s)) < Kas?, (26)
Va€R,Vre R, B(r)—B(B(a)) = ((a)(r - B(a)), (27)
and
Vs,s' €R, (v(s) —v(s))? < 4LgL¢ [B(B(s)) + B(B(s")) — 2B (6(8)—25(8))] . (28)
Proof.

Inequality (23) is a straightforward consequence of the estimate v/ = ('3’ < Lg(’. Note that the
same inequality also holds with § and ¢ swapped. Inequality (24) is then a direct application of
(23) and the similar inequality with 8 and ¢ swapped.

Let us first notice that, since 8 > 0 on RT and 8 < 0 on R, §,.(s) is always a real number when
s € Rg. Moreover, since [ is non-decreasing, 3, is also non-decreasing on Rg and therefore locally
bounded on Rg. Hence, B is well defined and locally Lipschitz-continuous, with an a.e. derivative
B’ = ((B,). B’ is therefore non-decreasing and B is convex.

11



To prove (25), we denote by P C Rg the countable set of plateaux values of 3, i.e. the y € R
such that 371({y}) is not reduced to a singleton. If s ¢ S~1(P) then 8~1({B(s)}) is the singleton
{s} and therefore ,.(5(s)) = s. Moreover, S, is continuous at 8(s) and thus B is differentiable
at B(s). Since j3 is differentiable a.e., we therefore deduce that, for a.e. s & 371(P), (B(B))'(s) =
B'(B(s)8'(s) = ¢(B-(B(5))B'(s) = €(s)B'(s). The set S~1(P) is a union of intervals on which
and thus B(f) are locally constant; hence, for a.e. s in this set, (B(3))'(s) = 0 and ¢(s)8'(s) = 0.
Hence, the locally Lipschitz-continuous functions B(f) and s — foé ¢(q)B'(¢)dg have identical
derivatives a.e. on R and take the same value at s = 0. They are thus equal on R and the proof
of (25) is complete.

The continuity of B o 3 is an obvious consequence of (25). The second inequality in (26) can also
be easily deduced from (25) by noticing that [((s)5'(s)| < L¢Lgl|s| (we can take Ky = L‘?QLC .
For the ﬁrst inequality in (26), we first infer from (2b) the existence of S > 0 such that |{(q)| >
(¢)| whenever |¢q| > S. We then write, for s > S,

s
)):/0 C(q)B dq+/ ¢(q)B (q)dq 22[/[3/ Blq dqﬁ; (5(5)2*5(5)2)'

A similar inequality holds for s < -5 (w1th ,8 (—S) instead of 5(5)) and the first inequality in (26)
therefore holds with Ky = ﬁ and Ky = 4L max_g,gj B2.

We now prove (27), which states that a belongs to the convex sub-differential of B at 5(a). We
first start with the case r € Rg, that is » = B(b) for some b € R. If 8, is continuous at S(a) then
this inequality is an obvious consequence of the convexity of B since B is then differentiable at

B(a) with B'(B(a)) = ((5-(B(a))) = ((a). Otherwise, a plain reasoning also does the job as
B(r) = B(8(a)) = B(5(b) — B(5(a))
b
/ ((9)B'(q)dg = / (¢(q) = ¢(a))B'(9)dq + ¢(a)(B(b) — Bla)) = ((a)(r — B(a)),

the inequality coming from the fact that 8’ > 0 and ((¢q) — ((a) has the same sign as b — a when
g is between a and b. The general case r € Rg is obtained by passing to the limit on b, such that
B(b,) — r and using the fact that B has limits (possibly +00) at the endpoints of Rg.

Let us now take s,s’ € R. Let § € R be such that 5(3) = w We notice that

/

B(S(s) + B(3(s) ~ 2B(5(3)) = [ (¢(g) - C(3)8 (a)dg + / " (¢() - ¢(5)8 (g)da.

5

We then use |((q) — ¢(5)| > L%\V(q) —v(5)| and B'(q) > B’(q)%f) = L(q) to write

Thanks to
(v(s) = v(s))* < 2((v(s) = v(5))* + (U(s) = v(5))?),
we deduce that (28) follows. m

The next lemma is an easy consequence of Fatou’s lemma and the fact that strongly lower semi-
continuous convex functions are also weakly lower semi-continuous. We all the same provide its
short proof.

12



Lemma 3.4 Let I be an interval of R and H : I — R be a convex function. We denote by L*(Q; 1)
the convex set of functions in L?(Q)) with values in I. Let v € L*(Q;1) and (vm)men a sequence
of functions in L*(; 1) which converges weakly to v in L*()). Then

/ H(v(x))de < lim inf/ H (v, (x))de.

Q m—r oo Q

Proof.

Let ® : L*(;1) — (—o0,00] be defined by ®(w) = [, H(w(x))dx. Since H is convex, it is
greater than a linear functional and ®(w) is thus well defined in (oo, 00]. Moreover, if wy — w
strongly in L?(£2; ) then, up to a subsequence, w;, — w a.e. on § and therefore H(wy) — H(w)
a.e. on ). Combined with the linear lower bound of H, we can apply Fatou’s lemma to see that
O(w) < liminfg_yeo P(wy).

Hence, ® is lower semi-continuous for the strong topology of L?(Q;1). Since ® (as H) is convex,
we deduce that this lower semi-continuity property is also valid for the weak topology of L?(£2;1),
see [19]. The result of the lemma is just the translation of this weak lower semi-continuity of
. (]

The last technical result is a consequence of the Minty trick. It has been proved and used in the
L? case in [21, 14], but we need here an extension to the non-Hilbertian case.

Lemma 3.5 (Minty’s trick) Let H € C°(R) be a nondecreasing function. Let (X, u) be a mea-
surable set with finite measure and let (un)nen C LP(X) with p > 1 such that

1. there exists u € LP(X) such that (up)nen weakly converges to u in LP(X);

2. (H(up))nen C LY(X) and there exists w € LY(X) such that (H(u,))nen strongly converges
to w in LY(X);
Then w = H(u) a.e. on X.
Proof.
Let & > 0 and Ty(s) = max(—k, min(s,k)) be the usual truncation at level k. Since H is
non-decreasing, there exists hy — oo as k — oo such that H(Ty(s)) = Ty, (H(s)). Thus,
H(Ty(up)) — Th,(w) in LY(X) as n — oco. Given that (H(Tk(un)))nen remains bounded in

L>°(X), its convergence to T, (w) also holds in L (X).
Using fact that H o T}, is non-decreasing, we write, for any g € LP(X),

[ (@) ~ TG (0~ ) 2 0

By strong convergence of H(Ty(uy)) in L' (X) and weak convergence of u,, in LP(X), as well as
the fact that H o T} is bounded, we can take the limit of this expression as n — oo and we find

/X (Th (w) — H(Ti())) (u — g)dps > 0. (20)

We then use Minty’s trick, that is pick a generic ¢ € LP(X), apply (29) to g = u — ty, divide by ¢
and let t — £0 (using the dominated convergence theorem and the fact that H o T}, is continuous
and bounded) to find

/X (T, () — H(Ti(u)))pddp = 0.

Selecting ¢ = sign(Ty, (w) — H(Tk(u))), we deduce that Tp, (w) = H(Tk(u)) a.e. on X. Letting
k — oo, we conclude that w = H(u) a.e. on X. ]

13



3.3 Integration-by-parts for the continuous solution

The last series of preliminary results are properties on the solution to (4), all based on the following
integration-by-part property. This property, used in the proof of Theorem 2.10 and 2.14, allows to
compute the value of the linear form 8,4(v) € L¥' (0, T; W' (€)) on the function ¢ (). Because
of the lack of regularity on @ and the many non-linearities in (1), justifying this integration-by-parts
is however not straightforward at all...

Lemma 3.6 Let us assume (2b) and (2¢). Let v : Q x (0,T) — R be measurable such that
((v) € LP(0,T;Wy(Q)), B(B(v)) € L=(0,T; L} (R)), B(v) € C([0,T]; L*(Q)-w) and 9,8(v) €
LY(0,T; W52 (Q)). Then t € [0,T] — [, B(B(v)(z,t))dx € [0,00) is continuous and, for all
t1,12 € [O,T],

to
/ (OuB(0) (1), C(0()) 1 gt = / B(B(v)(z, t2))dz — / B(BO) (@, t))dz.  (30)
t Q
Remark 3.7 Like at the end of Section 1.2, it is important to in mind the separation of B(v(-,-))
from its continuous representative S(v)(-,-).

Proof.

Note that we obviously only need to make the proof when 0 <t; <t <T.
Step 1: truncation, extensions and approximation of 5(v).

We define 3(v) : R — L?(2) by setting

B(U)(t> ifte [t17t2],
B)(t) =9 B)(tr) ift<t,
B(v)(tz) ift > ta.

By the continuity property of 3(v), this definition and gives B(v) € C(R;L?*(2)-w) such that
AB(v) = L, 1,)0:6(v) € LP (R; W17 () (no Dirac masses have been introduced at ¢ = t; or
t = t9). This regularity of 9;3(v) ensures that the function

trh B(v) — p(v /
teR— DpB(v) = %/t OB (v)(s)ds = )t + h})L (©)®) in W' (Q) (31)

tend to 9;B(v) in L¥ (R; W~12'(Q)) as h — 0.
Step 2: we prove that |[B(B(v)(t)||z1 (o) < [|B(B(v))||Le= (0,101 () for all t € R (not only for a.e.

t).

Let t € [t1,t2]. Since B(v)(-, ) = B(v(+,-)) a.e. on Q x (t1,t2), there exists a sequence t,, — ¢ such
tMﬂMW—ummmﬁmwmmwummmmswwwmmmm
As B(v) € C([0,T); L*(Q)-w), we have B(v)(-,t,) — B(v)(-,t) weakly in L*(2). We then use the
convexity of B and Lemma 3.4 to write, thanks to our choice of t,,

[ B @ )z <tmint [ B0 t)de < [BEO)|=oro)
Q Q

n—oo

and the proof is complete for ¢ € [t1,t2]. The result for ¢t < ¢; or t > to is obvious since B(v)(t) is
then either S(v)(t1) or B(v)(t2).
Step 3: We prove that for all 7 € R and a.e. t € (t1,t2),

(B(0)(7) = BW)(#), Cw( )y -1 o < /QB(%(%T)) — B(B(v)(=,t))de. (32)
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Note that if we could just replace the duality product T/V*LPLVVO1 P with an L? inner product,
then this formula would be a straightforward consequence of (27). The problem is that nothing
ensures that ((v)(t) € L?(Q) for a.e. t. -

We first notice that B(v)(r) — B(v)(t) = [ 9,8(v)(s)ds indeed belongs to W17 (Q) so the right-
hand side of (32) makes sense provided that ¢ is chosen such that ¢(v(-,t)) € Wg*(€) (which we
do from here on). To deal with the fact that ((v(-,t)) does not necessarily belong to L?(£2), we
replace it with a truncation. Denoting by T (s) = max(—k, min(s, k)) the classical truncation at
level k, by the growth assumption (2b) on ¢ we see that there exists rp — 400 as k — +o0 such
that ((Tx(v(-,1))) = Tr, (C(v(-,1))). Hence, ¢(Ti(v(-,t)) € Wy () and converges, as k — oo, to
(ol 1) in WP (@),

We can therefore write

(B(u)() = B(0)(#), C()(E) -1 e = Nim (B(0)(7) = B0) (1), C(Tk (v (-, 1)) yyr—1.07 2o

k—o0

~ lim Q(5<v><w,r>—ﬂ(v(w,t»)c<Tk<v<w,t>>dw, (33)

k—o0

the replacement of the duality product by an L?(£2) inner product being justified since B(v)(r) —
B(v)(t) and ((v(-,t)) both belong to L?(2). We also used the fact that, for a.e. t € (t1,t2),
Bw)(-,t) = B(v(-,t)) a.e. on €, so (33) is valid for a.e. t € (¢1,%2).

We then write S(v(x,t)) = B(Tk(v(x,t))) + (B(v(z,t)) — B(Tk(v(z,t)))) and apply (27) with
r=Bw)(x,7) and a = Ti(B(v(x,t))) to find

/Q (M(a} T ) da
/( BTk (v(, )))) (T (v(z, t))de
,/Q(ﬂ(v(m,t))*,B(Tk(v(zc,t))))((Tk(v(m’t))dm

S/B(W(%T))*B(ﬂ(Tk(v(w,t))))dﬂ?*/ (Bu(@, 1)) = B(Th(v(@,1)))) ((Th(v(e, t))da.
Q Q

Studying the cases v(x,t) > k or v(x,t) < —k, we notice that the last integrand is always non-
negative, so we actually can write

[ (B0)(@.7) = Bloe,t) ¢(Tulo(a, )iz < [ BEw)@,7) - BET(o(,0))de,
Q Q
We then use the continuity of B o 8 and Fatou’s lemma to deduce

limsup/Q (W(wﬁ) — B(v(w,t))) C(Ti(v(x, t))dx

k—o0

§/QB(m(a:,T))da:fliminf/ﬂB(B(Tk(v(m,t))))da:

k—oco
< /Q BBW)(x.7))dz — /Q B(B(v(, 1)))dz

which, combined with (33), concludes the proof of (32) (recall that ¢ has been chosen such that
B(v(,t)) = B(v)(-t) ae. on Q).

Step 4: proof of the formula
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By convergence of Dy, 3(v) to 8,3(v) in LP (0, T; W~1#'(2)) and since 1, )¢ (v) € LP(R; WyP()),

we have

| @B N1 gt = [ O L O Oy g

ty R

= }ILHI%) <Dhm(t)7 1(t1,t2)(t><(v('7 t))>W71,p”W01~Pdt
—YJR

1%h (W)(s+h) = BOY(E), S0 D) yyrr iwdt. (34)

We then use (32) for a.e. t € (t1,%2) to obtain, for h small enough such that t; + h < ¢,

;l/tlQ <B(U)(t + h) _W(ﬂ’C(U("t))>w—1‘p’7wol~pdt

1t - o
h /t /Q B(B(v)(x,t+h)) — B(B(v)(x, t))dedt

1 ta+h ti+h
= E/ B(B(v)(x,t) dar:dt—f/ /B ))dadt
ta Q

t1+h
mmwmmmu—ﬁf [ BB (@, 1))dwt

Q

We now take the lim sup of this inequality, using the fact that B(5(v)(-,t2)) is integrable (Step 2)
to take its integral out of the limsup. Coming back to (34) we obtain

JRCE GRS -

ty
ti+h
< /QB(ﬁ(’U)({B,tQ))d{B—hlr_'ln*}(r)lf*/ / ))dedt.  (35)
But since S(v) € C([0,7T]; L*(2)-w), as h — 0 we have 0 ft1+h t)dt — B(v)(t1) weakly in

L?(Q). Hence, the convexity of B, Lemma 3.4 and Jensen’s 1nequahty give

ti+h
B(B(v)(x,t1))dz < liminf /Q B (;L/ 5(v)(:c,t)dt> dax

Q h—0 ty
1 t1+h
Sliminf/ 7/ B(B(v)(x,t))dtdx.
=0 Jo h Jy,

Plugged into (35), this inequality shows that (30) holds with < instead of =. The reverse inequality
is obtained by reversing the time. We consider v(t) = v(t1 + t2 —t). Then ((v), B(8(v)) and 8(v)
have the same properties as ((v), B(8(v)) and B(v), and (V) takes values S(v)(t1) at t = to
and B(v)(t2) at ¢ = t;. Applying (30) with “<” instead of “=" to v and using the fact that
0B(0)(t) = —0B(v)(t1 + t2 — t), we obtain (30) with “>” instead of “=" and the proof of (30) is
complete.

The continuity of t € [0,T] = [, B(8(v)(x,t))dx is straightforward from (30) as the left-hand side
of this relation is continuous with respect to t; and ts. n

The following corollary states continuity properties and an essential formula on the solution to (4).
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Corollary 3.8 Under Assumptions (2a)—(2i), if @ is a solution of (4) then:
1. the function t € [0,T] — [, B(6(w)(x,t))dx € [0,00) is continuous and bounded,

2. for any Ty € [0,T7,
/B(ﬂ(ﬂ)(w,To))dw—&—/ 0/ a(z,v(u(z,t)), V(@) (x,t)) - V{(u)(x, t)dedt
Q 0

To
B(B(uini(x daz+/ /f x,t)¢(u)(x, t)dedt, (36)

Q
3. v(a) is continuous [0, T] — L2(9).

Remark 3.9 The continuity of v(u) has to be understood in the same sense as the continuity of
B(w), that is v(T) is a.e. on Q x (0,T) equal to a continuous function [0,T] — L*(Q). We use in
particular the same notation v(u(-, )) for the continuous representative v(u)(-,-) as we did for the
continuous representative of B(T).

Proof.

The continuity of ¢ € [0,T] — [, B(3(w)(x,t))dz € [0,00) and Formula (36) are straightforward
consequences of Lemma 3.6 with v = @ and using (4) with v = ((u). Note that the bound on
fQ (z,t))dex can be seen as a consequence of (36), or from Step 2 in the proof of Lemma

Let us prove the strong continuity of v(u) : [0,T] — L?(Q2). Let T be the set of 7 € [0,7] such

that B(u(-,7)) = B@)(-,7) a.e. on Q, and let (s;);eny and (tx)ren be two sequences in T which
converge to the same value s. Invoking (28) we can write

[ wiate,s) = vl )l < 4LsLc ( | Bo@@sia [ B(ﬁ(u)(w,tk»dw)
star [ 8 <5(U)(w,8z) N ﬁ(u)(w,m) A

2

Since 5(5)("5’)'55@)(”“) — B(u)(-, s) weakly in L?(Q) as I,k — oo, Lemma 3.4 gives

/QB (B@)(x,s))dz < liminf/Q B <ﬁ(u)(w,sl) + ﬂ(u)(m,tk)> dz.

I,k—o00 2

Taking the limsup as [,k — oo of (37) and using the continuity of ¢ — [, B(8(w)(x,t))dz thus
shows that
llv(@(:, s1)) —v(@(, tg))l| 2 — 0 as i,k — oo. (38)

The existence of an a.e. representative of v(u(-,-)) which is continuous [0, T] + L2?(Q2) is a direct
consequence of this convergence. Let s € [0,7] and (s;);ey € T which converges to s. Applied
with t; = si, (38) shows that (v(u(-,s;)))ien is a Cauchy sequence in L2(£2) and therefore that
limy_ oo v(U(, 81)) exists in L?(2). Relation (38) moreover also shows that this limit, that we can
call v(@)(, s), does not depend on the Cauchy sequence in 7 which converges to s. With ¢, = s,
we also see that whenever s € T we have v(u(-, s)) = v(u)(-, s) a.e. on €, and v(w)(-, -) is therefore
equal to v(u(-,-)) a.e. on  x (0,T).

It remains to establish that v(u) thus defined is continuous [0, T] — LQ(Q). For any (7, )ren C [0, 7]
which converges to 7 € [0,T], we can pick s, € TN (7, — 1,7, + L) and t, e TN(r— 1,7+ 1)
such that

S =
%\»—\

@) (- 7) = v(@C s )z < =5 @) 7) = v(@s &)l 2 @) <
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We therefore have
_ _ 2 _ _
@), ) = (@ Dllzz@) < -+ (@l sr) — vt i)l ),

which proves by (38) with [ = k = r that v(a)(-, 7.) — v(u)(-, 7) in L?(Q) as » — oo and completes
the proof. [

4 Proof of the convergence theorems

4.1 Estimates on the approximate solution

As it is usual in the study of numerical methods for PDE with strong non-linearities or without
regularity assumptions on the data, everything starts with a priori estimates.

Lemma 4.1 (L>(0,T; L*(Q2)) estimate and discrete L?(0,T;W,"”(Q)) estimate) Under As-
sumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1. Let u
be a solution to Scheme (14).

Then, for any Ty € (0,T), denoting by k =1,..., N the index such that Ty € (t*~1 t*)] we have

/Q B(IlpB(u)(z, Ty))de + /O ' /Q a(@, Tlpw(u) (@, ), Vol (u) (@, 1)) - Vo (u) (@, ) dadt
£ ()

< / B(IlpB(Totims) (2))dz + / P, DTIpC(u) (, )dadt.  (39)
Q 0

Q

Consequently, there exists C1 > 0, only depending on p, Lg, Cp > Cp (see Definition 2.5),
Cini > [IpZpuinillz2(Q), [ and a such that

ITp B(B(w))l| Lo 0,7:01 () < C15 [VDC(W)|lLr@x(0,1))¢ < C1

(40)
and ||[TIpB(w)| Lo 0,m;22(0)) < C1-
Proof. Using (12) and (27), we notice that for any n =0,...,N — 1, any t € (¢t ¢(n+1)],
Tpdp A (u)(t)p¢ (u 1) ﬁ (BITpu™ 1) = B™) ) ¢(Mput+)
1
> — (BUIB™Y) — Blos(u™))).
Hence, taking v = (C(u(®),{(uM), ..., ((u¥),0,...,0) C Xp, in (14), we find
t(k)
[ Bos @ e+ [ [ ate Tov(w(e. ). Voo(w(e. ) - Vog(u) (e ded:
Q 0 Q
e
< / B(pAu'?)(x))dx + f(z, )pC(u)(x, t)dxdt  (41)
Q 0

Equation (39) is a straightforward consequence of this estimate, of the relation S(u)(-,Tp) =
B(u)(-,t*)) (see (13)) and of the fact that the integrand involving a is nonnegative on [Tp, t*)].
Using the Young inequality, we can write
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()

J

/Qf(%t)ﬂpﬁ(u)(w,t)dwdt

21/ (=1

’ a
S (pg)l/(P_l) p/ Hf”zl)lp’(QX(O’t(k))) + 20% HHDg(u)Hiz}(Qx(oyt(k)))

and the first two estimates in (40) therefore follow from (41), the coercivity assumption (2f) on a
and (26). The estimate on IlpB(u) = B(Ilpu) in L>(0,T; L*(9)) is a consequence of the estimate
on B(B(Ilpu)) in L>=(0,T; L*(Q)) and of (26). L]

Corollary 4.2 (Existence of a solution to the Gradient Scheme) Under Assumptions (2),
if D is a gradient discretisation in the sense of Definition 2.1 then there exists at least a solution
to the Gradient Scheme (14).

Proof. For p € [0,1] we let B,(u) = pu+ (1 — p)B(u), (,(u) = pu+ (1 — p)¢(u) and a,(x,s,§) =
p€+ (1 —pla(x,s,€). It is clear that 3,, ¢, and a, satisfy the same assumptions as 3, ( and a for
some Lg, My, My and a not depending on p. We can therefore apply Lemma 4.1 to see that there
exists Cy not depending on s such that any solution u, to (14) with 8 = §,, ( =(, and a = a,
satisfies

VD Co(up)l e 0,1y x0)e < Co.

Since [|Vp - [|r@x(0,7))¢ 18 @ norm on Xp g, this shows that (¢,(u,)),c(0,1) remains bounded in
this finite dimensional space, which implies in particular that for all i € I, (¢,(u,)i)pef0,1]- Using
Assumption 2b for (, with constants not depending on p, we deduce that ((u,):),e[0,1] Temains
bounded for any i € I, and thus that (u,),c[0,1) is bounded in Xp o.

But if p = 0 then (14) is a linear scheme. Any solution to this scheme being bounded in Xp g,
this shows that the underlying linear system is invertible. A topological degree argument [10] then
shows, combined with the uniform bound on (u,),¢[0,1), that the scheme corresponding to p = 1,
that is (14), possesses at least one solution. L]

Lemma 4.3 (Estimate on the dual semi-norm of the discrete time derivative)

Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition
2.1. Let u be a solution to Scheme (14). Then there exists Cs, only depending on p, Lg, Cp > Cp,
Cini > |IpIpuini| 2y, f, @ p, @ and T, such that

/0 160 B(u) (1) pdt < Cs. (42)

Proof. Let us take a generic v = (v(”))nzL___,N Ce Xp,o as test function in Scheme (14). We
have, thanks to Assumption (2h) on a,

/ /Hpépﬂ(u)(:mt)HDv(w,t)dwdtS/ /(E(:B)—|—,u|VDC(u)(w,t)|p_1)|va(w,t)|da:dt
0 Jo o Ja

T
+/0 /Qf(m,t)ﬂpv(m,t)dmdt.

Using Hoélder’s inequality, Definition 2.5 and Estimates (40), this leads to the existence of Cy > 0
only depending on p, Lg, Cp, Cini, f, @, @ and p such that

T
/ / Tpdp () (i, o (e, )dzdt < C4l| Vol Lo(o.r:Lr (-
0 Q
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The proof of (42) is completed by selecting v = (\6g+%)5(u) v 512(”))n:07___,N with (2(),—o n C
Xp o suchthat, foranyn =0,..., N—1, 2("+1) realises the supremum in (11) with w = 5$+%)ﬂ(u).

Lemma 4.4 (Estimate on the time translates of v(u))

Under Assumptions (2), let D be a space-time gradient discretisation in the sense of Definition 2.1.
Let u be a solution to Scheme (14). Then there exists Cs, only depending on p, Lg, L¢, Cp > Cp,
Cini > |[UpIpuinillz2(Q), [, @ 1, @ and T, such that

v (u) (-, +7) = Tpr(u) () |Z2 @xor-m) < Cs(7 + &), V7 €(0,T). (43)

Proof. Let 7 € (0,7). Thanks to (24), we get that
2 T—1
/ (pr(u)(m,t—l—T) - HDv(u)(sc,t)) dadt < LyLe / A()dt, (44)
Qx(0,T—7) 0
where, for almost every t € (0,7 — 7),
At) = / (HDC(u)(:B, t+7)—pl(u)(x, t)) (Hpﬁ(u)(:v, t+7)—Ipp(u)(x, t))da:.
Q

Let t € (0,7 — 7). Letting no(t), n1(t) = 0,..., N — 1 be such that t("®) < ¢ < ¢(re(O)+1) and
tm®) <t 47 <O+ we may write

ni (t)

A0 = [ (o™ OM)@) - Tpg™ O ) (@) (3 8 lipsl s (@) )de,
Q

n=ng(t)+1

which also reads

A = [ (o™ ) @) ~ Ting(ul ) @))
N-1

< (3 wnltst + 18" D150 () @) da, (45)

n=1

with X, (¢t +7) = 1if t) € (t,t + 7] and xn(t,t +7) = 0 if t() ¢ (t,¢ + 7]. We then let
v = (Xn_1(t,t + 7)(C(um®FD) — ((yo®OFY)), oy in Scheme (14). Using (45), we get

AW = 40 - 3 Xa(t,t 4+ 7)&H) /Q a (2, Tpr(u™*V), Vo (™)) (@)
(T¢I (@) — V() (@) )da
with
N-1 $(n+1)
Moty = Saltsttn) [ [ s (g ) @) o) @)t
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_1/e /
Using the Young inequality and the inequality ajas < %(a’f +ab ) for a3 > 0 and as > 0,
this yields:

(p— )
Alt) < (Ao(t) + Ax(t) +242(1)) + As(t), (46)
with
N—-1 . »
A(0) = Y- xaltst+ )& [ [T @) o) da,
n=1 Q
Nl 1 p
)= 3wt 1A [ [9p0n ) @) da.
n=1 Q
and
N-—1 . p/
INOEDY Xn(t,t+7)(5t("+§)/ ‘a(w,npy(u<”+1>),vpg(m”“))(m))’ de.
n=1 Q2

Applying (80) of Lemma 6.6 yields

T—1
| 400+ Ai0at < 27+ 8)190C0 o (47)

Applying (79) of Lemma 6.6 yields

T—1
| At < rlla (o). o) 11 0 oy (48)
and, similarly, we obtain using Definition (2.5) and (40), the existence of Cg such that

Jo 7T As(t)dt < Co((r + &) + 7 £

p
Lp’(Qx(o,T)))' (49)

Using inequalities (44), (46) and (47)-(49), (43) is proved. L]

4.2 Proof of Theorem 2.10

Step 1 Application of compactness results.

Thanks to Theorem 3.1 and Estimates (40) and (42), we first extract a subsequence such that
(Up,, B(tm))men converges weakly in L?(Q) uniformly in [0,77] (in the sense of Definition 6.4)
to some function 3 € C([0,T]; L?(Q2)-w) which satisfies 5(-,0) = B(uin;) in L2(Q2). Using again
Estimates (40) and applying Lemma 2.9, we again extract a subsequence such that, for some
C e Lr(0,T; WyP (), Ip, C(um) — C weakly in LP(Q x (0,T)) and Vop,, ¢ () — VC weakly in
LP(Q x (0,T))% From Estimates (40), Definition 2.5 and the growth assumption (2b) on ¢, we
also see that (Ilp,, Um)men is bounded in LP(2 x (0,7)) and we can therefore assume, up to a
subsequence, that it converges weakly to some u in this space.

We then remark that |v(a) —v(b)| < Lg|¢(a) — ¢(b)|, which implies that, using Definition 2.7 with
v = ((um) and (40),

M, v (um)(- + &) = o, v(w)l|Lr@ix 1) < LsCiTD, () (50)

where IIpv(u) has been extended by 0 outside € and limg_,o sup,,,cy I'p,, (§) = 0. Invoking Lemma
4.4, we also see that the time translates of Ilp, v(u,,) tend uniformly to 0 in L'(£2 x (0,7)). We
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use the fact that IIp,, B(u,,), and therefore also Ip,, v(u,,), remains bounded in L>(0,T; L?(€))
to control the time translates at both ends of [0,T]. Hence, applying Kolmogorov’s theorem, we
deduce that, up to the extraction of another subsequence, Ilp, v(uy,) — 7 in L (2 x (0,7T)).
Under the first case in the structural hypothesis (17), we have 3 = Id and therefore 3 = u = (1),
and v = (. The strong convergence of Ilp v(u,,) = Hp, ((u,,) to 7 = ¢ thus allows us to apply
Lemma 3.5 to see that ( = ((u). Exchanging the roles of 3 and (, we see that § = B(u) and
¢ = ¢(u) still hold in the second case of (17). We notice that this is the only place where we need
this structural assumption (17) on 3, ¢.

Upon extraction of another subsequence, we can also assume that a (-, IIpr(u), Vp{(u)) has a
weak limit in LP' (Q x (0, 7)), which we denote by A.

Finally, for any Ty € [0, T, since Ip, . B(um (-, To)) — B(@)(-, Tp) weakly in L?(£2), Lemma 3.4 gives

B(B@)(z, Ty))da < liminf | B(8(IIp, um)(x, Tp))dz. (51)

Q m—r oo Q
This shows in particular that B(8(w)) € L*°(0,T; L' (Q2)).
Step 2 Passing to the limit in the scheme. We drop the indices m for legibility reasons.
Let ¢ € C}(—o0,T) and w € Wy () N L2(Q). We introduce v = (o(t" V) Ppw)n—o... . (where
t(=1) = 0 for example, this value being irrelevant) as test function in (14), with Pp defined by (21).
We get Tl(m) + TQ(m) = T(m) with
N— 1
(™ = Z 1)) / pés "2 8(u)(2)Tp Pow(z)dz,
Q

N—-1
T = 37 p(e™)a ) /Q a (a;,npy(um“)),vpg(u<n+1>)(m)) - VpPpuw(z)de,
n=0

and
L(n+1)

N-1
Tém) _ Z w(t("))/ / f(z, t)lIp Ppw(x)dadt.
0 t(n) Q

Using discrete integrate-by-parts to transform the terms (™) (TlpB(u("*+)) — MpB(u™)) ap-
pearing in Tl(m) into ((t™) — (" tINIHB(u™Y), we have

T
T — / S (1) / Tp B (u) (e, )Tlp Pow(x)dadt — o(0) / TpB(u®) (@)Ip Ppuw(x)da.
0 Q Q
Setting op(t) = @(t™) for t € (¢, t("+1) we have
T
Tz(m) :/ cpp(t)/ a (z,lpv(u)(x,t), Vpl(u)(x,t)) - Vo Ppw(z)dedt
0 Q
i = /0 on(®) /Q (@, H)TTp Pow () dadt.

We may thus let m — oo in Tl(m) + T = T8 to see that 7 satisfies

we (@ x (0.7))., (@) € LP(0. TsWg™ (), BB() € L*(0.T5 L (@),

/ /fB (z,t))w(z)dzdt — (0 )/ Uini (x)w(x)de
+/0 so(t)/A(w,t)Vw(x)dgcdt:/ /f 2, tyw(x)dzdt,

YVw € W%’p(ﬂ) NL%*(Q), Vo € O (—cc
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Linear combinations of this relation show that it also holds with ¢(t)w(x) replaced by a tensorial
functions in C°(Q x (0,T)). This proves that 8,3(w) € L (0,T; W~1#'(Q)). Standard arguments
then show that 8(u) can be identified with an element of C°([0,T]; L?(Q)-w) with the property
B(u(-,0)) = B(uini) (cf. discussion at the end of Section 1.2). Using the density of tensorial
functions in LP(0, T; Wy (), we then see that 7 satisfies

T
<8tﬂ(7)( ) ( t)>(W 1,p (Q))lwl p(ﬂ)dt

(53)
/ / A(z,t) - Vi(z,t)dedt = / / fx, t)o(x, t)dedt, Vo € LP(0,T; Wy P (Q)).
Step 3 Proof that @ is solution to (4).
The proof will be completed by showing that
A(x,t) = a(z,v(u)(xz,t), V{(u)(x,t)), for ae. (x,t) € Qx(0,T). (54)

We take Ty € [0,T], write (39) with D = D,,, and take the supremum limit as m — co. We notice
that the t*!) = T}, from Lemma 4.1 converges to Ty as m — co. Hence, using the quadratic growth
of B we obtain

To
limsup/ /a(wﬂpmv(um)(w,t%VD,,,LC(um)(-’B»t))'VD,,LC(um)(«’B,t)dwdt
Q

o </ B(B(uini) (x dm+/T0/ f(z, t)¢(u)(x, t)dedt

fliminf/QB(ﬂ(HDmum)(m,TO))dm. (55)

m— o0

We then apply Lemma 3.6 and take 7 = (@) in (53) to get

/ B(B() (. Ty))dz — /Q B(B(m) (. 0))da

/TO/A z,t) - V¢(u)(x, t)dedt = /TO/ f(z, t)¢(u)(x, t)dxdt.

This relation, combined with (55) and using (51), shows that

To
lim sup / / 2, T, 0t ) (@, £), Vo, (1) (@) - Vi, () (2, £) dzdlt
m—o0 Q
To
< / / A(zx,t) - V((u)z,t)dedt. (56)
o Ja
It is now possible to apply Minty’s trick. Consider, for G € LP(0,T; LP(2)),
To

/ / (- Tpw(u), Vol (w)) — a(- Tpr(u), G)] - [Vpl(u) — Gldedt > 0. (57)
By strong convergence of lp_ v(uy,) to v(w) in L1 (Qx (0,T)) and Assumptions (2e), (2h) on a, we

see that a(-,Ilp, v(um), G) — a(-, (@), G) strongly in L¥' (Q x (0,T)). We can therefore develop

23



(57) (with Top = T') and use (56) to pass to the supremum limit on the only “weak-weak” term,
and we find, for any G € L?(0,T; L?(Q)),

/0 /Q [A(z,t) — a(z,v(u)(x,t), G(z,t))] - [VC(T)(x, t) — G(z,t)] dedt > 0.

Application of Minty’s method [33] (i.e. taking G = V((u) + r¢ for ¢ € LP(0,T; LP(22))? and
letting » — 0) then shows that (54) holds and concludes the proof that @ is a weak solution to (4).

4.3 Proof of Theorem 2.14

Let Ty € [0,T] and (Ty,)m>1 be a sequence in [0, 7] which converges to Tp. By setting Ty = Ty,
and G = V((u) in the developed form of (57), by taking the infimum limit (thanks to the strong
convergence of a(-, IIp, v(unm), V((@))) and by using (54), we find

m—r o0

hminf/Tm/a’(m’HDmy(um)(w’t)’vaC(um)(m7t))'V’DmC(Um)(:I),t)da;dt
0 Q
To
> /0 /Q a(z,v@)(x,t), V(@) (z, ) - V(@) (z, t)dedt.  (58)

We then write (39) with T}, instead of Tp. We notice that the t(¥) = ¢t(*(™) such that T}, €
(t*=1 +()] converges to Ty as m — oo. Using (58) and Corollary 3.8, we therefore obtain

lim sup / B(B(lp, tm (1, Tyn)))da < / B(3(w)(@, Ty))dz. (59)

m—0o0

By Lemma 6.3, the uniform-in-time weak convergence of S(Ilp, um) to 5(4) and the weak conti-
nuity of 3(a) : [0, T] — L*(Q), we have B(Ilp,, um)(Tn) — B(a)(Tp) weakly in L2(2) as m — oo.
Therefore, for any (s, )men converging to Ty, 3(8(Ip,, um(Tm)) + B@)(sm)) = B()(Tp) weakly
in L?(Q) as m — oo and Lemma 3.4 gives, by convexity of B,

<ﬁ(HDmum(w, Tm2)) + B(a) (=, Sm)> da.

/QB(ﬂ(ﬂ)(w,To))dm <liminf | B (60)

m— 00 Q

Property (28) of B and the two inequalities (59) and (60) allow us to conclude the proof. Let
(Sm)men be a sequence in T (see the proof of Corollary 3.8) which converges to Ty. Then
v(u(-, sm)) — v(@)(-,Tp) in L*(Q) as m — oo. Using (28), we get

lv(Tp,, (-, Ton)) = (@) To)| 720
< 2v(Up,, tm (, Tn)) = v(@(, 5m)) 120y + 2V (@(, 5m)) = v(@) (- To)) 1720

< 8L6L</Q[B(B(Homum(m,Tm)))+B(ﬂ(a(m,sm)))] dz
_ 16LﬁL</ B (B(Hpmum(a:,:rm)) + ﬂ(u(m,sm))) i
Q

2
+2[v(@(, sm)) = v(@)(, 1o))ll72(0)-

We then take the limsup as m — oo of this expression. Thanks to (59) and the continuity of
t€[0,T] — [, B(B(w)(z,t))dx € [0,00) (see Corollary 3.8), the first term in the right-hand side
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has a finite limsup, bounded above by 16LgL¢ [, B(B(u)(x, Ty))dx. We can therefore split the
lim sup of this right-hand side without risking writing co — co and we get, thanks to (60),

limsup [|v(Ilp,, (-, Tm)) = v(@)(, To) |12 < 0-

m—r oo

Thus, v(Ip, wm (-, Tn)) — v(@)(Tp) strongly in L?(2). By Lemma 6.3 and the continuity of
v(u) stated in Corollary 3.8, this concludes the proof of the convergence of v(Ilp,, ty,) to v(T) in
L°(0,T; L2(9)).

Remark 4.5 Since S(Ilp,, um)(Tm) — B(4)(Ty) weakly in L*(Q)) as m — oo, Lemma 3.4 also

m

shows that [, B(B(w)(x,Tp))de < liminf, o [, B(B(Ip,, um)(x, T),))de, and therefore, com-
bined with (59), that

lim B(ﬁ(HDmum(w,Tm)))dw:/QB(ﬂ(E)(&TO))d:B. (61)

m—0o0 O

4.4 Proof of Theorem 2.16

Writing (39) for u,, with Ty, = T, taking the limsup as m — oo, using (61) (with T,,, = T') and
the continuous integration-by-part formula (36) we find that

lim sup /OT /Q a(z,Ilp,, v(um)(x,t), Vo, ((un)(x,1t)) - Vp, ((Un)(x,t)dzdt

To
S/O /Qa(w»y(“)(w’t)’VC(U)(xvt))'VC(u)(m,t)dmdt,

Combined with (58), this shows that

T
lim /0 /Qa(m,HDmyu(um)(m,t),VDmC(um)(m,t)) -V, ((um)(z, t)dedt

m—r oo

- /0 K /Q a(@, V(@) (. £), V(@) (@, 1)) - V(@) (, )dadt. (62)
Let us define
fm = la(z, p, v(um), Vo, ((um)) — a(,Ip,, v(um) (-, 1), VC@))] - [V, (um) — V(@)] = 0.
Developing this expression and using (62) and (18), we see that fOT Jo fm (2, t)dedt — 0 as m — oc.
This shows that f,,, — 0 in L*(Q x (0,7)) and therefore a.e. up to a subsequence. We can then

reason as in [16], using the strict monotony (19) of a, the coercivity assumption (2f) and Vitali’s
theorem, to deduce that Vp_ ((umm) — V{(u) strongly in LP(2 x (0,7))% as m — oo.

5 About Assumption (17)

We discuss show here that, if p > 2, Theorem 2.10 can be proved without the structural assumption
(17) — i.e. without assuming that 8 = Id or ¢ = Id.
We first notice that we can always assume that

B + ( is strictly increasing. (63)
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Indeed, if this is not the case then we have s; < s such that (8+ ()(s1) = (8 + ¢)(s2) and, since
B and ¢ are non-decreasing, that [s, s2] is a common plateau of 8 and (. Denoting by 5, Z and
v the functions obtained from 3, ¢ and v by removing this common plateau (by a contraction of
the s-ordinate), we see that w is a solution to (1) if and only if u is a solution of the same problem
with 8, ¢ and v replaced with 5, z and 7.

Remark 5.1 Note that a rigorous and global way to remove all common plateauz of B and ¢ at

once is to actually consider, for f = B, C orv, f = fo(B+) o (B+ (), where (B + (), is the
pseudo-inverse of o+ B constructed as in (3).

Once this reduction has been applied, we can state the following theorem.

Theorem 5.2 Under Assumptions (2), let (Dy,)mpen be a sequence of space-time gradient discreti-
sations in the sense of Definition 2.1, which is coercive, consistent, compact and limit-conforming
(see Section 2.2). Let, for any m € N, w,, be the solution to (14) with D = D,,, provided by
Theorem 2.10.

If we assume that Assumption (63) hold and that p > 2, then there exists a solution @ to (4) such
that, up to a subsequence:

o the convergences stated in (18) hold,
o lip, v(uy) — v(u) strongly in L>=(0,T; L*(Q)) as m — oo,

o under the strict monotony of a (i.e. Assumption (19)), as m — oo, Ip, ((um) — ((7)
strongly in LP(Q x (0,T)) and Vp,,((um) — V(@) strongly in LP(Q x (0,7T))<.

Proof.

We only need to prove the first conclusion of the theorem, i.e. that the convergences (18) hold.
Indeed, Theorems 2.14 and 2.16 then provide the last two conclusions.

The only difference in the assumptions of Theorem 5.2 and 2.10 is the absence, here, of the
structural assumption (17) and the assumption that 3+ ( is strictly increasing. The only place in
the proof of Theorem (2.10) where we used Assumption (17) is in Step 1, to identify the limits 3,
¢ and ¥ of lp,, B(um), Up,, ((um) and Ip, v(u,y,). We will show that without assuming (17) but
by assuming (63), we can still identify those limits.

We first work with the first two limits. Lemmas 4.1 and 4.3 show that 8, = (um,) and (= ((um)
satisfy the assumptions of the discrete compensated compactness theorem 5.4 below (we also use
that p > 2 here). Hence, Ilp,, B(tm)p,, ¢(uy,) — B¢ in the sense of measures on Q x (0,7). We
can then apply Lemma 5.6 with ¢ = 1 and w,, = IIp, u,,. This gives a measurable % such that
B =) and ¢ = ((u) a.e. on Q x (0,7).

We now turn to 7. Estimates (50) and (43) and Kolmogorov’s compactness theorem show that
the convergence of Ilp_ v(u,,) towards ¥ is actually strong on L?(Q x (0,7)) (we use p > 2 here).
Setting = B+ ¢, we saw that u(Ilp, uy) — @ = B(u) + ((u) weakly in L%(Q2 x (0,7)). We can
therefore apply Lemma 5.6 with ¢ = 1 and u, v instead of 3, (, and we find a measurable w such
that 7 = v(w) and @ = p(w). The second relation translates into (8 4 ¢)(uw) = (8 + ¢)(w), that is
w = T since B + ( is strictly increasing. Hence, 7 = v(a).

To summarise, the limits of Ilp_ B(uy,), Up, ((un) and Up, v(u,,) have been identified as 5(w),
¢(w) and v(w) for some u. This allows to take over the proof of Theorem 2.10 from after the usage
of (17) and conclude that @ is a solution to (4) and that the convergences (18) hold. The last two
conclusions of the theorem follow from Theorems 2.14 and 2.16. [
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Remark 5.3 Note that it is not proved, in this context, that w is a weak limit of Ilp  um, but
such a limit is not stated in (18) and can actually be considered as irrelevant for the model (1), in
which the quantities of interest (physically relevant when this PDE models a natural phenomenon)

are B(w), ((u) and v(u).

We now state the two key results that allowed us to replace Assumption (17) by Assumption
(17). The first is a discrete version of a compensated compactness result in [31]. The second is a
Minty-like result, useful to identify weak non-linear limits.

We note that Theorem 5.4 is a more general version than the one needed in the proof of Theorem
5.2 (which only requires ¢ = 1), but we state this more general version nevertheless as it is the
genuine discrete equivalent of the compensated compactness result in [31].

Theorem 5.4 (Discrete compensated compactness) We take T > 0, p > 2 and a sequence
(Dm)men = (Xp,,0,1Ip,,, VD, ,IpD,,, (tg,?))n:o,wNm)meN of space-time discretisation in the sense
of Definition 2.1 which is consistent, limit-conforming and compact in the sense of Definitions 2.6,
2.8 and 2.7.

o The sequences (fOT 0 B (D) ]5,D,, Jmen and (||Vp,, Cmll 20,1500 (2)4))men are bounded,
e Asm — oo, lip,, B — B and Ilp,, (m — ¢ weakly in L*(Q x (0,T)).
Then Up,, BmIlp,, Cm — B in the sense of measures on Q% (0,T), that is, for all o € C(Q2x[0,T]),

T T
lim / / T, Bon(@, )T, Co (@, £)o(, ) dadt — / / B(@, ) T, O)plm, dadt.  (64)
m=.Jo Jo 0 Ja

Proof.

The idea of the proof is to reduce to the case where Ilp, (., are tensorial functions, in order to
separate the space and time variables and make use of the separate compactness of Ilp (., and
IIp,, Bm with respect to each of these variables. Note that this proof also provides an apparently
new proof for the continuous equivalent of this compensated compactness result.

Step 1: reduction of IIp_ (,, to tensorial functions.
Let us take § > 0 and consider a covering (Ai)kzlw,K of Q in disjoint cubes of length §. Let us
denote Rs : L*(Q)) — L?(f2) the operator defined by:

1

Vk=1,.... K, Vre Al : R =
5 ) , VI S k 5f($) meas(Az)

f(y)dy,
A%

where f has been extended by 0 outside 2. Let = € Ai. Using Jensen’s inequality, fact that
meas(A9) = d¢ and the change of variable y € A} — &€ =y — x € (—6,6)%, we can write

Rof(@) — f@F <57 [ 1)~ s@Py <7 [ @) - fl@)de.

(=5,8)¢

Integrating over x € Ai and summing over k = 1,..., K then gives
Isf = Mley < 67 [ [ 1f@+€) - f@)Pdede
(-5,6)¢ Ja

< 24 sup [f(x+§&) — fz)de. (65)
ge(—6,0) o
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On the other side, the compactness of (Dp,)men (Definition 2.7) and the fact that p > 2 give €(&)
such that (&) — 0 as € — 0 and, for all m € N and all v € Xp__ o,

I, v(- + &) = p, vl[f2q) < e(€)l|VD,, vlT0 (-

Combining this with (65) and using the bound on ||Vp,, (mll12(0,7;00(0)4) shows that

[|RsIp,, G — Up,, GunllL2(@x 0,1) < C El|l<P§ Ve(g) = w(d) (66)

where C' does not depend on m and w(d) — 0 as 6 — 0. Note that a similar estimate holds
with IIp,, ¢, replaced with ¢ since ¢ € L2(2 x (0,7T)) and, therefore, its translates tend to 0 in
L2(Q x (0,T)).

If we respectively denote by A,,(Ilp, () and A(() the left-hand side and right-hand side (64),
then since (Ip,, B )men is bounded in L2(2 x (0,7)) we have, by (66),

|Am (I, Cm) — A(Q)] < Cw(d) + [Am(Rsllp,, Gn) — A(RsQ)].

Let us assume that we can prove that, for a fixed 6,
A (RsTlp,, Cm) — A(RsC) as m — o0. (67)

Then the previous inequality gives limsup,, . [Am(IIp,,(m) — A(C)| < Cw(d). Letting § — 0 in
this inequality gives A,,(Ilp,, ¢(m) — A(¢) as wanted.
Hence, we only need to prove 67. The definition of R; shows that Rsf = Zszl 1,5 meas(A9) ! [f1as

where 15 is the characteristic function of A} and [f]a = [, f(x)dx. Hence, (67) will follow if we
can prove that, for any measurable set A of non-zero measure,

lim/ /Hpmﬁm(a:,t)[HDmCm]A(t)ap(t,w)lA(a:)d:cdt
o Ja

T
:/0 /QB(w’t)[Z]A(t)‘P(tvm)lA(w)dazdt (68)

where, for g € L*(Q x (0,T)), we set [g]a(t) = [, g(t,y)dy.

Step 2: further reductions.

We now reduce ¢ to a tensorial function and 14 to a smooth function. It is well-known that there
exists tensorial functions ¢, = Zf;l 01.-(t)v1.e(x), with 0, ,. € C>([0,T]) and v, € C*°(Q), such
that @, — ¢ uniformly on Q x (0,T) as r — oo. Moreover, there exists p, € C°(Q) such that
pr — 14 in L*(Q) as r — oc.

Hence, as r — oo the function (¢,z) — ©,(t,2)p,(x) converges in L>(0,T;L?*(Q)) to the func-
tion (¢, ) — @(t,x)14(x). Since the sequence of functions (t,x) — Ilp_ B(t,)[IIp,, (m]a(t) is
bounded in L(0, T; L*(Q)) (notice that ([IIp,, (m]a)men is bounded in L%(0, T) since (Ip,, (m)men
is bounded in L?(Q2 x (0,7))), a reasoning similar as the one used in Step 1 shows that we only
need to prove (68) with (¢, )1 4(x) replaced with ¢, (¢, x)p,(x) for a fixed r.

We have ¢, (t, ) pr(x) = Zlerl 01, () (7i,tp)(x) and v, rpr € C(§2). Hence, (68) with ¢(t, )1 4(x)
replaced with ¢, (¢,x)p.(x) will follow if we can establish that: for any § € C°°([0,T]), any
1 € C°(Q) and any measurable set A C €,

lim / / B(t) T, fon(@, 1) T, ] a (1))t = / / 0(t)B(, )[T]a(t)(@)dadt. (69)

m—o0
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Step 3: proof of (69).
We now use the estimates on 9,,,3,, to conclude. We first write

T T
/ / B(t) L, B (. ) I, Conla (£)ib(@)ddt = / 6()TIp, Cula(DFm(D).  (70)
0 Q 0

with F,,(t) = [, IIp,, Bm(z,t)¢(z)de. It is clear from the weak convergence of Ilp,, (p that
[Mp,,¢mla — [(]a weakly in L?(0,T). Hence, if we can prove that Fy, — F := [, B(z, )¢ (z)dx
strongly in L2(0,T), we can pass to the limit in (70) and obtain (69). Since F,, weakly converges
to Fin L?(0,7T) (thanks to the weak convergence in L?(Q x (0,7)) of Ilp,, B ), we only have to
prove that (F,,)men is relatively compact in L2(0,T).

To prove the strong convergence of Fy,, we introduce the interpolant Pp, defined by (21) and we
define G,, as F,,, with ¥ replaced with IIp_Pp_1. We then have

m m

[Em(t) = G ()| < [p,, Bm (-, 1)l 22(0) 5D, ()
The consistency of (D,,) then shows that
F,, — Gy, — 0 strongly in L?(Q) as m — oo. (71)

We now study the strong convergence of Gy,. This function is, as IIp,, B, piecewise constant on
(0,T) and, by definition of | - |, p,,, its discrete derivative satisfies

m)

0m G (t)] < 16mBm (D) |s.D,. [ PD,,, Y| xp,, o

Since ||Pp,, ¥||xp,, 0 < Sp,. (¥) + [[VY]|1r(0)e is bounded uniformly with respect to m, the
assumption on 6,,83,, proves that (||6,,Gm|[11(0,7))men is bounded. Hence, G, is bounded in
BV(0,T) N LY(0,T) and therefore relatively compact in L?(0,T) (see [3, Theorem 10.1.4]). Com-
bined with (71), this proves that (F,,)men is relatively compact in L?(0,T) and concludes the

proof. [

Remark 5.5 If we assume that (Ilp,, B )men s bounded in L>(0,T; L*(2)) and that, for some

q>1, (fOT |0 B (T) z,Dm)meN is bounded, then Step 2 becomes a trivial consequence of Theorem

3.1. Indeed, this theorem then shows that (Ilp,, Bm)men is relatively compact uniformly-in-time
and weakly in L*(Q), which translates into the relative compactness of (Fy,)men in L>(0,T).

Lemma 5.6 Let N € N* and V be a non-empty measurable subset of RN . Let 3, € CO(R) be two
nondecreasing functions, such that (0) = ((0) = 0 and B + ( is strictly increasing. We assume
that there exists a sequence (W, )men of measurable functions on V and two functions 3, € L*(V)
such that:

e B(wy) — B and ((wy,) — ¢ weakly in L*(V),

o there exists p € L>(V') such that ¢ >0 a.e. onV and

i [ @5 (@) ()iz = [ (BT (72
v 1%
Then = -
B = B(w) and { = {(w) a.e. inV, where w = (6;<> (5‘2FC> (73)
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Proof. We first notice that B(w),((w) € L*(V), given that @ € L2(V) and Bo (£4)~! and
Co (%)‘1 are sub-linear (the sum of both is 2Id and each one has the same sign as s). Since 8
and ( are non-decreasing, we can therefore write

/V<p(Z) [B(wm(2)) = B(w(2))] [((wm(2)) - ((w(2))]dz = 0.

Letting m — oo in the above inequality, and using the convergences of S(wy,), ¢(w,,) and (72),
we obtain

lﬁwumﬂa—ﬂwuwnaa—cwumdzzo (74)

We then remark that

B+C _ Blw)+((w)

e pwltel), (75)

which gives S(w) = % + (ﬁ%) (w) and ((w) = % - <ﬂ%) (w). Hence, (74) leads to
B-¢ B¢ :
- [ (e (5 wen) axzo
v

Since ¢ is almost everywhere strictly positive on V', we deduce that @ = w a.e. inV,
and (73) follows from (75). m

6 Appendix: uniform-in-time compactness results for time-
dependent problems

We establish in this appendix some generic results, unrelated to the framework of Gradient
Schemes, that form the starting point for our uniform-in-time convergence results.

Solutions of numerical schemes for parabolic equations are usually piecewise constant, and therefore
not continous, in time. As their jump nevertheless tend to become small with the time step, it
is possible to establish some uniform-in-time convergence results using a generalisation to non-
continuous functions of the classical Ascoli-Arzela theorem.

Definition 6.1 If (K,dx) and (E,dg) are metric spaces, we denote by F(K,E) the space of
functions K — E, endowed with the uniform metric dr(v,w) = sup,c i dp(v(s),w(s)) (note that
this metric may take infinite values).

Theorem 6.2 (Generalised Ascoli-Arzela’s theorem) Let (K, dk) be a compact metric space,
(E,dg) be a complete metric space and (F(K, E),dr) as in Definition 6.1.

Let (Um)men be a sequence in F(K, E) such that there exists a function w : K x K — [0,00] and
a sequence (Om)men C [0,00) satisfying

lim  w(s,s)=0, lim §, =0,
dk (s,s")—0 m—0o0

V(s,s') € K?, ¥m €N, dp(om(s), vm(s))) < w(s, ) + . (76)
We also assume that, for all s € K, {vy,(s) : m € N} is relatively compact in (E,dg).

Then (vm)men s relatively compact in (F(K, E),dr) and any adherence value of (Upm)men in this
space is continuous K — E.
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Proof. Let us first notice that the last conclusion of the theorem, i.e. that any adherence value
v of (Um)men in F(K, E) is continuous, is trivially obtained by passing to the limit along this
subsequence in (76), showing that the modulus of continuity of v is bounded above by w.

The proof of the compactness result an easy generalisation of the proof of the classical Ascoli-
Arzela compactness result. We start by taking a countable dense subset {s; : | € N} in K (the
existence of this set is ensured since K is compact metric). Since each set {vp,(s;) : m € N} is
relatively compact in E, by diagonal extraction we can select a subsequence of (v, )men, denoted
the same way, such that for any | € N, (v,,(8;))men converges in E. We then proceed in showing
that (v )men is a Cauchy sequence in (F(K, E),dz). Since this space is complete, this will show
that this sequence converges in this space and will therefore complete the proof.

Let € > 0 and, using (76), take 6 > 0 and M € N such that w(s, s') < ¢ whenever dk (s,s’) < ¢ and

dm < & whenever m > M. Select a finite set {s;,,..., s, } such that any s € K is within distance
d of a s;,. Then, for any m,m’ > M, by (76),
dE(”Um(S), Um (S)) < dE(Um(S)a Um(sli)) + dE(vm(sli)v Um (517))

+dg (Um’ (Sli)v Um/ (5))

W(Sa Sli) + O + dE(Um<Sli)? Um'(sli)) + w(87 Sli) + 0

de + dp(vm(si;), vm (s1,))-

Since {(vm(s1;))men @ @ =1,...,N} form a finite number of converging sequences in E, we can
find M’ > M such that, whenever m,m’ > M’ and i = 1,..., N, dg(vim(s1;),vm/(s1;)) < . This
shows that, for all m,m’ > M’ and all s € K, dg(vm(s), vm(s)) < 5e and concludes the proof that
(Um)men is a Cauchy sequence in (F(K, E),dr). m

IAIA

The following lemma states an equivalent condition for the uniform convergence of functions, which
proves extremely useful to establish uniform-in-time convergence of numerical schemes for parabolic
equations when no smoothness is assumed on the data.

Lemma 6.3 Let (K,dk) be a compact metric space, (E,dg) be a metric space and (F(K, E),dr)
as in Definition 6.1. Let (Up)men be a sequence in F(K, E) and v : K — E be continuous.

Then vy, — v for dr if and only if, for any s € K and any sequence (Sm)men C K converging to
s for dg, we have vy, (sm) — v(s) for dg.

Proof. If v,, — v for dz then for any sequence ($,,)men converging to s,
dE(Um,(sm)7 U(S)) S dE(Um,(sm)7 U(Sm)) + dE(U(Sm,)7 U(S)) S d}‘(’Um, ’U) + d(’U(Sm)7 U(S))

and the right-hand side tends to 0 by definition of v,, — v for dz and by continuity of v.

Let us now prove the converse by contraposition. If (v,,)men does not converge to v for dx then
there exists € > 0 and a subsequence (v, )ken, such that, for any k € N, sup,¢ i dg(vm, (s),v(s)) >
€. We can then find a sequence (rg)gen C K such that, for any k € N,

dp(0m, (1), v(ry)) = €/2. (77)

K being compact, up to another subsequence denoted the same way, we can assume that ry — s
in K as k — oco. It is then trivial to construct a sequence (S,,)men converging to s and such that
Sm,, = rr (just take s, = s when m is not an my). We then have vy, (s,,) = v(s) in E and, by
continuity of v, v(sy) — v(s) in E. This shows that dg(vm(sm),v(sm)) — 0, which contradicts
(77) and concludes the proof. ]

Uniform-in-time convergence of numerical solutions to schemes for parabolic equations starts with
a weak convergence with respect to the time variable. This weak convergence is then used to prove
a stronger convergence. The following definition and proposition recall standard notions related
to the weak topology on L?(€2).
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Definition 6.4 (Uniform-in-time L?())-weak convergence) A sequence of functions u,, :
[0,7] — L%*(Q) converges weakly in L*(Q)) uniformly on [0,T] to a function u : [0,T] — L?(£2)
if, for all ¢ € L*(Q), as m — oo the sequence of functions t € [0,T] — (um(t),0)r2(q) converges
uniformly on [0,T] to t € [0,T] = (u(t), ) r2(q), where (-,-)12(q) is the inner product in L%(Q).

The next result is classical, but its short proof is recalled for the reader’s convenience.

Proposition 6.5 Let E be closed bounded ball in L*(2) and (¢1)ien be a dense sequence in L*().
Then, on E, the weak topology of L*() is the topology given by the metric

min(1, |[{(v —w, v1)r2(0)|)
dg(v,w) = Z ol = (78)
leN

Moreover, a sequence of functions u,, : [0,T] — E converges uniformly to u : [0,T] — E for the
weak topology of L?(Q) if and only if, as m — oo, dg(um,u) : [0,T] — [0,00) converges uniformly
to 0.

Proof. Thesets E,. ={v € E : [(v,9)12(0)| < e}, for ¢ € L?(Q) and € > 0, define a basis of
neighborhood of 0 for the weak L?(£2) topology on E, and a basis of neighborhood of any other
points is obtained by translation of this particular basis. If R is the radius of the ball F then for
any ¢ € L*(Q),l € N and v € E we have

[(v, 0) 2| < Rlle — @illr2) + [{v, 1) 20|

By density of (¢1)ien we can select [ € N such that |[¢ — ¢i|[z2(0) < €/(2R) and we then see that
Eg, /2 C E, . Hence, a basis of neighborhood of 0 in E for the weak L?(Q) is also given by
(Ecpl,s)lEN7£>0-
From the definition of d we see that, for any [ € N, min(1, [{v, ¢1) 2(0)|) < 2ldp(0,v). Ifdg(0,v) <
27! this shows that [(v, ;) 12(0)| < 2'dE(0,v) and therefore that

Bg,, (0,min(27" £27Y) € B, ..
Hence, any neighborhood of 0 in E for the L?() weak topology is a neighborhood of 0 for dg.
Conversely, for any € > 0, selecting N € N such that » ;5 v, 27! < £/2 gives, from the definition
(78) of dE, B

N

() Ep.c/a € Bay (0,6).
=1

Hence, any ball for dp centered at 0 is a neighborhood of 0 for the L?(£2) weak topology. Since dp
and the L?(Q)) weak neighborhood are invariant by translation, this concludes the proof that this
weak topology is identical to the topology generated by dg.

The conclusion on weak uniform convergence of sequences of functions follows from the preceding
result, and more precisely by noticing that all previous inclusions are, when applied to w,, (t) —u(t),
uniform with respect to ¢ € [0, 7. m

The following lemma has been established in [28, Proposition 9.3] but its proof is recalled for the
reader’s convenience.

Lemma 6.6

Let (t™) ez be a stricly increasing sequence of real values such that &) = ) () g
uniformly bounded by & > 0, lim t™ = —oco and lim t" = co. For all t € R, we denote by
n— —oo n—r00
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(t) the element n € Z such that t € [t tFTV). Let (a™),ez be a family of non negative real
values with a finite number of non zero values. Then

n(t+7)

Z (&(n+%)a(n+1))dt =T Z(&(”"‘%)a(”Jrl))’ Y7 € (0, -|-oo) (79)

R n=n(t)+1 nez

and
n(t+7)
/ Z &(nJr ) an(t-l—()-‘rldt
R \n=n (t)+1

< (r+0) Y (@ Hal) yr e (0,+00), Y ER. (80)

neZ

Proof.

Let us define the function x(¢,n,7) by x(t,n,7) = 1if t <t and t +7 >t else x(t,n,7) =0
We have

n(t+7)
/ Z st 3) g (n+1) )dt /Z st 3) o (n+1) x(t,n,7))dt

n=n(t)+1 neZ

—Z( (n+3) "H)/X(t,n,T)dt).
nez R

Since [, x(t,n,7)dt = ftm) dt = 7, thus (79) is proven.

We now turn to the proof of (80). We define the function x(n,t) by x(n,t) = 1 if n(t) = n, else
X(n,t) = 0. We have

n(t+7)
/ S &) | g0 gy
R n=n(t)+1
n(t+7)
[ a0
R \n= n(t)+1 meZ
which yields
n(t+7)
/ Z g(t32) | o (nE+O+D) gy
R n=n(t)+1
tm+l_< n(t+7)
= > ame | Z g | e, (s1)
mez tm—¢ £)+1
Since we have
n(t+7)
Z stz — Z (t(n+1) _ t(")) <744,
n=n(t)+1 n€zZ, t<t(m <t+r1
we can write from (81)
n(t+7) tm+1) _¢
/ S &) | g0 g < (r i) 3 gl dar
R \n=n(t)+1 mez tm —¢
=(T+a&) Z alm D gm+3),
mEZ
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which is exactly (80).
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