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Abstract

The aim of this paper is to study the existence of solutions and some

approximations for a class of implicit evolution variational inequalities

that represents a generalization of several quasistatic contact prob-

lems in elasticity. Using appropriate estimates for the incremental

solutions, the existence of a continuous solution and convergence re-

sults are proved for some corresponding internal approximation and

backward difference scheme. To solve the fully discrete problems, gen-

eral additive subspace correction algorithms are considered, for which

global convergence is proved and some error estimates are established.

1 Introduction

This paper concerns the mathematical and numerical analysis of a system of
evolution variational inequalities that represents a generalization of several
quasistatic frictional contact problems in small deformation elasticity.

The results presented here are based on a unified approach, which contains
in particular the contact problems studied in [1], [2], and can also be applied
to various quasistatic problems, including unilateral or bilateral contact with
nonlocal friction, normal compliance conditions with friction or more complex
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interaction laws, as, for example, interface laws coupling unilateral contact,
adhesion and nonlocal friction between two elastic bodies [3].

The uniqueness of the solution does not hold in general, as was shown in
[4] for a quasistatic frictional contact problem, even for an arbitrarily small
coefficient of friction.

In this paper, we consider a class of implicit evolution variational inequal-
ities involving a nonlinear operator, for which approximation and existence
results are proved by using a semi-discrete scheme. The case of a linear oper-
ator was investigated in [1]. Also, for a problem which represents a particular
case of the one considered here, some similar results were announced in [5].

To solve the general quasi-variational inequalities of the second kind that
are obtained by the previous incremental procedure, two additive subspace
correction algorithms are introduced, for which global convergence is proved
and error estimates are established.

In [6] (see also [7] and [8]), one- and two-level multiplicative methods
have been introduced for variational and quasi-variational inequalities of the
second kind. Also, their application to contact problems with friction has
been analyzed. The additive methods, even if they are a little slower than
the multiplicative ones, have the advantage of being totally parallelizable. In
the present paper, we use the same techniques as in the multiplicative case,
but the convexity of the functionals plays a more important role here. Some
details in these proofs are omitted, but they can be found in [9], [6] or [7].
In a subsequent paper, we shall use these results to prove the convergence of
the one- and two-level additive methods for contact problems with friction.

The paper is organized as follows. In Section 2, the formulation of a
general system of evolution inequalities and some examples are presented.
Using an implicit time discretization scheme and some estimates, strong con-
vergences are proved and an existence result is established.

In Section 3, convergence results are proved for a method based on a
semi-discrete internal approximation.

In Section 4, two subspace correction algorithms, of additive type, are
proposed for the solution of the problem discretized in time. These algorithms
are introduced in a general framework and in a Hilbert space. We suppose
here an assumption on the convex set and the correction subspaces, which will
be essential in the proof of the convergence of the algorithms. Mainly, this
hypothesis refers to the decomposition of the elements in the convex set, and
introduces a constant C0 which will play an important role in the writing of
the convergence rate. Another hypothesis is made on the non differentiable
term in the inequality. Under these assumptions, we prove that the two
subspace correction algorithms are convergent and give an estimation of the
convergence rate. As for the multiplicative algorithms introduced in [6], the
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introduced assumptions are satisfied in the particular case of the frictional
contact problems if the coefficient of friction is sufficiently small.

2 Existence results for a system of evolution

inequalities

Let (V, 〈. , .〉), (H, (·, ·)H) be two real Hilbert spaces with the associated norms
‖ · ‖ and ‖ · ‖H , respectively. Let K be a closed convex cone contained in V
with its vertex at 0 and (K(g))g∈V be a family of nonempty closed subsets
of K satisfying the following conditions: 0 ∈ K(0) and

if gn → g in V, vn ∈ K(gn) and vn → v in V then v ∈ K(g). (1)

Consider a functional F : V → R differentiable on V , and assume that its
derivative F ′ : V → V is strongly monotone and Lipschitz continuous, that
is there exist two constants α, β > 0 for which

α‖v − u‖2 ≤ 〈F ′(v)− F ′(u), v − u〉 (2)

and
‖F ′(v)− F ′(u)‖V ≤ β‖v − u‖ (3)

for all u, v ∈ V .
Using the relations

F (v)− F (u) =

1
∫

0

〈F ′(u+ r(v − u)), v − u〉dr

= 〈F ′(u), v − u〉+
1
∫

0

〈F ′(u+ r(v − u))− F ′(u), v − u〉dr

and (2), (3), it is easily seen that for all u, v ∈ V it results

〈F ′(u), v − u〉+ α

2
‖v − u‖2 ≤ F (v)− F (u)

≤ 〈F ′(u), v − u〉+ β

2
‖v − u‖2. (4)

We remark that since F satisfies (4), it follows that F is strictly convex and
sequentially weakly lower semicontinuous on V .
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Let γ : V ×K → H be an operator such that γ(0, 0) = 0,

if gn → g in V, vn ∈ K and vn ⇀ v in V

then γ(gn, vn) → γ(g, v) in H
(5)

and for all gi ∈ V , vi ∈ K, i = 1, 2,

‖γ(g1, v1)− γ(g2, v2)‖H ≤ k1(‖g1 − g2‖+ ‖v1 − v2‖), (6)

where k1 is a positive constant.
Let j : V ×K×V → R be a functional satisfying the following conditions:

j(g, v, ·) is sequentially weakly continuous on V ∀ g ∈ V, v ∈ K, (7)

j(g, v, ·) is sub-additive for all g ∈ V, v ∈ K, that is (8)

j(g, v, w1 + w2) ≤ j(g, v, w1) + j(g, v, w2) ∀ g, w1,2 ∈ V, v ∈ K,

j(g, v, ·) is positively homogeneous for all g ∈ V, v ∈ K, (9)

that is j(g, v, θw) = θj(g, v, w) ∀ g, w ∈ V, v ∈ K, θ ≥ 0,

j(0, 0, w) = 0 ∀w ∈ V, (10)

and there exists k2 > 0 such that

|j(g1, v1, w2) + j(g2, v2, w1)− j(g1, v1, w1)− j(g2, v2, w2)|
≤ k2(‖g1 − g2‖+ ‖γ(g1, v1)− γ(g2, v2)‖H)‖w1 − w2‖

∀ gi, wi ∈ V, vi ∈ K, i = 1, 2.

(11)

We assume that k1 and k2 satisfy the following property:

k1k2 < α. (12)

For each g ∈ V , let b(g, ·, ·) : K(g)× V → R be a functional such that

∀ v ∈ K(g), b(g, v, ·) is linear on V, (13)

|b(g, v, w)| ≤ k3(‖g‖+ ‖v‖)‖w‖ ∀ v ∈ K(g), ∀w ∈ V, (14)

where k3 is a positive constant,

if gn → g in V, vn ∈ K(gn), vn → v in V

and wn → w in V, then b(gn, vn, wn) → b(g, v, w).
(15)
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From the above properties of F, j and K and by a classical argument, it
follows that for all g ∈ V, d ∈ K, w ∈ K(g) the elliptic variational inequality

u ∈ K 〈F ′(u), v − u〉+ j(g, w, v − d)− j(g, w, u− d) ≥ 0 ∀ v ∈ K

has a unique solution, so that we can define the mapping Sg,d : K(g) → K
by Sg,d(w) = u. We assume that for all g ∈ V, d ∈ K

K(g) is stable under Sg,d i.e. Sg,d(K(g)) ⊂ K(g). (16)

For all g ∈ V, d ∈ K, we consider the following problems:

(P̃ )















u ∈ K(g) 〈F ′(u), v − u〉+ j(g, u, v − d)− j(g, u, u− d)

≥ b(g, u, v − u) ∀ v ∈ V,

b(g, u, z − u) ≥ 0 ∀ z ∈ K,

(Q̃) u ∈ K(g) 〈F ′(u), v − u〉+ j(g, u, v − d)− j(g, u, u− d) ≥ 0 ∀ v ∈ K,

and we assume that

if u is a solution of (Q̃), then u is a solution of (P̃ ). (17)

Remark 2.1. If u satisfies (P̃ ), then u obviously satisfies (Q̃).

Remark 2.2. i) From (11) and (6) it follows that

|j(g1, v1, w2) + j(g2, v2, w1)− j(g1, v1, w1)− j(g2, v2, w2)|
≤ ((k1 + 1)k2‖g1 − g2‖+ k1k2‖v1 − v2‖)‖w1 − w2‖

∀ gi, wi ∈ V, vi ∈ K, i = 1, 2.

(18)

ii) Since, by (9) j(·, ·, 0) = 0, from (11), for w2 = 0, w1 = w, it results that

|j(g2, v2, w)− j(g1, v1, w)|

≤ k2(‖g1 − g2‖+ ‖γ(g1, v1)− γ(g2, v2)‖H)‖w‖

≤ ((k1 + 1)k2‖g1 − g2‖+ k1k2‖v1 − v2‖)‖w‖ (19)

∀ gi, w ∈ V, vi ∈ K, i = 1, 2.

iii) As j satisfies (8), (9), j(g, v, ·) is convex, and from (10) and (18), with
g2 = g, v2 = v, g1 = v1 = 0, it follows that

|j(g, v, w1)− j(g, v, w2)| ≤ ((k1 + 1)k2‖g‖+ k1k2‖v‖)‖w1 − w2‖
∀ g ∈ V, v ∈ K, ∀wi ∈ V, i = 1, 2.
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iv) Using (5) and (19) we have

if gn → g in V, vn ∈ K and vn ⇀ v in V

then j(gn, vn, w) → j(g, v, w) ∀w ∈ V.
(20)

Let f ∈ W 1,2(0, T ;V ) be given. Using the hypotheses (2), (3), (16)
and (18), it follows that Sf(0),0 : K(f(0)) → K(f(0)) is a contraction if
the condition (12) holds. Thus, the following implicit elliptic variational
inequality has a unique solution u0 ∈ K(f(0)) (see, e.g. [10]):

〈F ′(u0), w − u0〉+ j(f(0), u0, w)− j(f(0), u0, u0) ≥ 0 ∀w ∈ K.

We consider the following evolution problem involving an implicit variational
inequality.
Problem P: Find u ∈ W 1,2(0, T ;V ) such that

(P )



























u(0) = u0, u(t) ∈ K(f(t)) ∀ t ∈]0, T [,

〈F ′(u(t)), v − u̇(t)〉+ j(f(t), u(t), v)− j(f(t), u(t), u̇(t))

≥ b(f(t), u(t), v − u̇(t)) ∀ v ∈ V a.e. on ]0, T [,

b(f(t), u(t), w − u(t)) ≥ 0 ∀w ∈ K, ∀ t ∈]0, T [.

The quasistatic unilateral contact problems with nonlocal friction in lin-
earized elasticity studied in [2], [1] can be considered as particular cases of
problem P corresponding to a quadratic functional F .

We shall briefly present two examples involving nonlinear operators F ′.
We consider an elastic body occupying an open, bounded, connected set

Ω ⊂ R
d, d = 2, 3 with a Lipschitz continuous boundary Γ = Γ1 ∪ Γ2 ∪ Γ3,

where Γ1, Γ2, Γ3 are open and disjoint parts of Γ with meas(Γ1) > 0. Assume
the small deformation hypothesis and that the inertial effects are negligible.

We denote by u the displacement field, by ε the infinitesimal strain
tensor and by σ the stress tensor, with the components u = (ui), ε = (εij)
and σ = (σij), respectively. We use the classical decompositions u = uNn+
uT , uN = u · n, σn = σNn+ σT , σN = (σn) · n, where n is the outward
normal unit vector to Γ with the components n = (ni). Also, the usual
summation convention will be used for i, j, k, l = 1, . . . , d.

Assume that in Ω a body force ϕ1 ∈ W 1,2(0, T ; [L2(Ω)]d) is prescribed,
on Γ1 the displacement vector equals zero and on Γ2 a traction ϕ2 ∈
W 1,2(0, T ; [L2(Γ2)]

d) is applied.
The displacement fields will be assumed to belong to the following space:

V0 := {v ∈ [H1(Ω)]d ; v = 0 a.e. on Γ1}.
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The body can be in contact with a support on Γ3, so that the displace-
ments and the stress vector on this part of the boundary will satisfy some
frictional contact conditions. The initial gap between the contact surface and
the support is assumed to be zero.

Example 1. (Unilateral contact with nonlocal friction for a nonlinear Hencky
material)

Consider an elastic body satisfying the following nonlinear Hencky-Mises
constitutive equation (see [11], [12]):

σ(u) = ψ̂(u) = (k − 2

3
µ̂(γ̂(u)))(tr ε(u)) I + 2 µ̂(γ̂(u)) ε(u),

where k is the constant bulk modulus, µ̂ is a continuously differentiable
function in [ 0,+∞[ satisfying

0 < µ̂0 ≤ µ̂(r) ≤ 3

2
k, 0 < µ̂1 ≤ µ̂(r) + 2

∂µ̂(r)

∂r
r ≤ µ̂2, ∀ r ≥ 0,

γ̂(u) := γ̂(u,u), γ̂(u,v) = −2

3
ϑ(u)ϑ(v) + 2 ε(u) · ε(v),

with
ϑ(u) := tr ε(u) = div u ∀u, v ∈ V0.

Assume Signorini contact conditions with a nonlocal friction law on Γ3.
The classical formulation of the quasistatic contact problem is as follows.

Problem P1

c
: Find a displacement field u = u(x, t) which satisfies the

initial condition u(0) = u0 in Ω such that for all t ∈] 0, T [

(P 1
c )







































































div σ(u) = −ϕ1 in Ω,

σ(u) = ψ̂(u) in Ω,

u = 0 on Γ1,

σn = ϕ2 on Γ2,

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ3,

|σT | ≤ µ|(Rσ)N | on Γ3

and

{

|σT | < µ|(Rσ)N | ⇒ u̇T = 0,

|σT | = µ|(Rσ)N | ⇒ ∃λ ≥ 0, u̇T = −λσT ,

where µ ∈ L∞(Γ3) with µ ≥ 0 a.e. on Γ3 is the coefficient of friction and Rσ
is a regularization of the stress tensor that will be presented below.
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To obtain a variational formulation for this problem, we use the following
notations:

K0 := {v ∈ V0 ; vN ≤ 0 a.e. on Γ3}, (· , ·) := (· , ·)[H1(Ω)]d ,

H
1

2 (Γ3) := {w : Γ3 → R; w ∈ H
1

2 (Γ), w = 0 a.e. on Γ1},

∀L ∈ V0 SL := {v ∈ V0;

∫

Ω

ψ̂(v) · ε(φ)dx = (L,φ)

∀φ ∈ V0 such that φ = 0 a.e. on Γ3}.

We assume that R : [L2
sym(Ω)]d

2 → [H1(Ω)]d
2

is a regularization operator
satisfying R0 = 0 and

if vn ∈ K0 and vn ⇀ v in V0 then Rψ̂(vn) → Rψ̂(v) in [H1(Ω)]d
2

,

‖Rψ̂(v1)−Rψ̂(v2)‖[H1(Ω)]d
2 ≤ k4‖v1 − v2‖[H1(Ω)]d ∀vi ∈ K0, i = 1, 2,

where k4 is a positive constant. Similar regularizations were described in
[13], [14] for a viscoelastic body. For each L ∈ V0 and v ∈ SL, we define

the stress vector σ(v)n ∈ ([H
1

2 (Γ3)]
d)′ by

∀w ∈ [H
1

2 (Γ3)]
d 〈σ(v)n,w〉Γ3

=

∫

Ω

ψ̂(v) · ε(w̄)dx− (L, w̄),

where 〈· , ·〉Γ3
denotes the duality pairing on ([H

1

2 (Γ3)]
d)′ × [H

1

2 (Γ3)]
d, w̄ ∈

V0 satisfies w̄ = w a.e. on Γ3, and we define the normal component of the
stress vector σN(v) ∈ (H

1

2 (Γ3))
′ by

∀w ∈ H
1

2 (Γ3) 〈σN(v), w〉Γ3
=

∫

Ω

ψ̂(v) · ε(w̄)dx− (L, w̄),

where 〈· , ·〉Γ3
denotes also the duality pairing on (H

1

2 (Γ3))
′×H

1

2 (Γ3), w̄ ∈
V0 satisfies w̄T = 0 a.e. on Γ3, w̄N = w a.e. on Γ3. It is easy to verify
that for all v ∈ SL the definitions of σ(v)n and of σN(v) do not depend
on the choices of w̄ having the above properties, respectively.

Let J1 : K0 × V0 → R be a functional defined by

J1(v,w) =

∫

Γ3

µ|(Rψ̂(v))N | |wT |ds ∀v ∈ K0, w ∈ V0,

and L ∈ V0 be given by the relation

(L,v) = (ϕ1,v)[L2(Ω)]d + (ϕ2,v)[L2(Γ2)]d ∀v ∈ V0. (21)
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We have the following variational formulation of (P 1
c ).

Problem P1

v
: Find u ∈ W 1,2(0, T ;V0) such that

(P 1
v )































u(0) = u0, u(t) ∈ K0 ∀ t ∈] 0, T [,
∫

Ω

ψ̂(u(t)) · ε(v − u̇(t))dx+ J1(u(t),v)− J1(u(t), u̇(t))

≥ (L(t),v − u̇(t)) + 〈σN(u(t)), vN − u̇N(t)〉Γ3
∀v ∈ V0 a.e. on ] 0, T [,

〈σN(u(t)), zN − uN(t)〉Γ3
≥ 0 ∀ z ∈ K0, ∀ t ∈] 0, T [.

We define the functional F : V0 → R by

F (v) =
1

2
k

∫

Ω

ϑ2(v)dx+
1

2

∫

Ω

(

∫ γ̂(v)

0

µ̂(r)dr

)

dx ∀v ∈ V0.

One can verify, see, e.g. [11], Ch. 8, that F is differentiable on V0 and for all
u, v ∈ V0

(F ′(u),v) =

∫

Ω

[(k − 2

3
µ̂(γ̂(u)))ϑ(u)ϑ(v) + 2 µ̂(γ̂(u)) ε(u) · ε(v)]dx.

Taking V = V0, K = K0, H = L2(Γ3), f = L, K(f) = K0 ∩ SL,

γ(L,v) = |(Rψ̂(v))N |, j(L,v,w) = J1(v,w)− (L,w),

b(L,v,w) = 〈σN(v), wN〉Γ3
,

it results that (P 1
v ) can be written in the form (P ), where L is defined by

(21). It is easily seen that if the coefficient of friction is sufficiently small
then the condition (12) is satisfied.

Example 2. (Frictional contact with normal compliance)
We consider a linearly elastic body and we denote by E the elasticity

tensor, with the Cartesian coordinates E = (aijkl) satisfying the usual prop-
erties of symmetry and ellipticity.

Let us define a : V0 × V0 → R by

a(v,w) =

∫

Ω

aijklεij(v)εkl(w)dx =

∫

Ω

σ(v) · ε(w)dx ∀v,w ∈ V0.

We suppose that the frictional contact between Γ3 and the support is de-
scribed by a normal compliance law, see, e.g. [15] and references therein for
more general laws.
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The classical formulation of the contact problem is as follows.
Problem P2

c
: Find a displacement field u = u(x, t) which satisfies the

initial condition u(0) = u0 in Ω such that for all t ∈] 0, T [

(P 2
c )







































































div σ(u) = −ϕ1 in Ω,

σ(u) = E ε(u) in Ω,

u = 0 on Γ1,

σn = ϕ2 on Γ2,

σN = −CN(uN)+ on Γ3 with CN > 0,

|σT | ≤ µ|σN | on Γ3

and

{

|σT | < µ|σN | ⇒ u̇T = 0,

|σT | = µ|σN | ⇒ ∃λ ≥ 0, u̇T = −λσT .

Let J2 : V0 × V0 → R and pN : V0 × V0 → R be two functionals defined by

J2(v,w) =

∫

Γ3

µCN(vN)+ |wT |ds ∀v, w ∈ V0,

pN(v,w) =

∫

Γ3

CN(vN)+wNds ∀v, w ∈ V0.

A variational formulation of (P 2
c ) is as follows.

Problem P2

v
: Find u ∈ W 1,2(0, T ;V0) such that u(0) = u0 and

(P 2
v )

{

a(u(t),v − u̇(t)) + pN(u(t),v − u̇(t)) + J2(u(t),v)− J2(u(t), u̇(t))

≥ (L(t),v − u̇(t)) ∀v ∈ V0 a.e. on ] 0, T [,

where L ∈ V0 is given by the relation (21).
Let us define the functional F : V0 → R by

F (v) =
1

2
a(v,v) +

CN

2

∫

Γ3

(vN)
2
+ ds ∀v ∈ V0.

F is differentiable on V0 and for all u, v ∈ V0

(F ′(u),v) = a(u,v) + pN(u,v).

Taking V = K = K(f) = V0, H = L2(Γ3), f = L,

γ(L,v) = CN(vN)+, j(L,v,w) = J2(v,w)− (L,w),

b(L,v,w) ≡ 0,
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it results that (P 2
v ) can be written in the form (P ).

We remark that CN can be chosen arbitrarily positive and that if the
coefficient of friction is sufficiently small then the condition (12) is satisfied.

Now, we shall prove the existence of a solution to problem P by using an
implicit time discretization scheme and its convergence properties.

For ν ∈ N∗, we set ∆t := T/ν, ti := i∆t and Ki := K(f(ti)), i =
0, 1, ..., ν. If θ is a continuous function of t ∈ [0, T ] valued in some vector space,
we use the notations θi := θ(ti) unless θ = u, and if ζ i, ∀ i ∈ {0, 1, ..., ν},
are elements of some vector space, then we set

∂ζ i :=
ζ i+1 − ζ i

∆t
∀ i ∈ {0, 1, ..., ν − 1}.

We denote u0 := u0 and we approximate (P ) using the following sequence
of incremental problems (P i

ν)i=0,1,...,ν−1 .
Problem Pi

ν : Find ui+1 ∈ Ki+1 such that

(P i
ν)















〈F ′(ui+1), v − ∂ui〉+ j(f i+1, ui+1, v)− j(f i+1, ui+1, ∂ui)

≥ b(f i+1, ui+1, v − ∂ui) ∀ v ∈ V,

b(f i+1, ui+1, w − ui+1) ≥ 0 ∀w ∈ K.

By (17) and Remark 2.1 for g = f i+1, d = ui, it is easily seen that for
all i ∈ {0, 1, ..., ν − 1} the problem P i

ν is equivalent to the following quasi-
variational inequality.
Problem Qi

ν : Find ui+1 ∈ Ki+1 such that

(Qi
ν)

{

〈F ′(ui+1), w − ui+1〉+ j(f i+1, ui+1, w − ui)

−j(f i+1, ui+1, ui+1 − ui) ≥ 0 ∀w ∈ K.

From the hypotheses (2), (12), (16) and (18), it follows that Sf i+1,ui : Ki+1 →
Ki+1 is a contraction. Therefore (Qi

ν) has a unique solution which is equally
the unique solution of (P i

ν), for all i ∈ {0, 1, ..., ν − 1}.
Remark 2.3. i) Since K is a cone with the vertex at 0, the solutions u of
(P ) and ui+1 of (P i

ν) obviously satisfy

b(f(t), u(t), u(t)) = 0 on [0, T ]

and
b(f i+1, ui+1, ui+1) = 0 ∀ i ∈ {0, 1, ..., ν − 1}.

ii) It follows also that (see, e.g. [1])

b(f(t), u(t), u̇(t)) = 0 a.e. on [0, T ].
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Let us define the following functions:



































uν(0) = ûν(0) = u0, fν(0) = f 0 and

∀ i ∈ {0, 1, ..., ν − 1}, ∀ t ∈]ti, ti+1],

uν(t) = ui+1,

ûν(t) = ui + (t− ti)∂u
i,

fν(t) = f i+1.

Then for all ν ∈ N∗ the sequence of inequalities (P i
ν)i=0,1,...,ν−1 is equivalent

to the following incremental formulation: for almost every t ∈ [0, T ]

(Pν)























uν(t) ∈ K(fν(t)), 〈F ′(uν(t)), v −
d

dt
ûν(t)〉+ j(fν(t), uν(t), v)

−j(fν(t), uν(t),
d

dt
ûν(t)) ≥ b(fν(t), uν(t), v −

d

dt
ûν(t)) ∀ v ∈ V,

b(fν(t), uν(t), w − uν(t)) ≥ 0 ∀w ∈ K.

Also, the sequence (Qi
ν)i=0,1,...,ν−1 implies the following inequality: for almost

every t ∈ [0, T ]

(Rν) 〈F ′(uν(t)), w − uν(t)〉+ j(fν(t), uν(t), w − uν(t)) ≥ 0 ∀w ∈ K,

which, by (4), is clearly equivalent to the following inequality: for almost
every t ∈ [0, T ]

(R̂ν) F (w)−F (uν(t))+j(fν(t), uν(t), w−uν(t)) ≥
α

2
‖w−uν(t)‖2 ∀w ∈ K.

Using straightforward generalizations of the linear case presented in [1] one
can prove the following two lemmas.

Lemma 2.1. For all ν ∈ N∗ we have

‖uν(t)‖ ≤ M0‖F ′(0)‖+M1‖f‖C([0,T ];V ) ∀ t ∈ [0, T ], (22)

‖uν(s)− uν(t)‖ ≤ M1

min{t+∆t,T}
∫

s

‖ḟ(τ)‖ dτ ∀ s, t ∈ [0, T ], s < t,

‖uν(t)− ûν(t)‖ ≤ T

ν

∥

∥

∥

∥

d

dt
ûν(t)

∥

∥

∥

∥

a.e. t ∈ [0, T ],

‖uν − ûν‖L2(0,T ;V ) =
T

ν
√
3

∥

∥

∥

∥

d

dt
ûν

∥

∥

∥

∥

L2(0,T ;V )

, (23)
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∥

∥

∥

∥

d

dt
ûν

∥

∥

∥

∥

L2(0,T ;V )

≤ M1‖ḟ‖L2(0,T ;V ),

where

M0 =
1

α− k1k2
, M1 =

(k1 + 1)k2
α− k1k2

.

Lemma 2.2. There exist a subsequence of (uν , ûν)ν, denoted by (uνp , ûνp)p ,
and an element u ∈ W 1,2(0, T ;V ) such that

uνp(t) ⇀ u(t) in V ∀ t ∈ [0, T ], (24)

ûνp ⇀ u in W 1,2(0, T ;V ),

d

dt
ûνp ⇀ u̇ in L2(0, T ;V ). (25)

Also, we have

lim inf
p→∞

T
∫

0

j(fνp(t), uνp(t),
d

dt
ûνp(t)) dt ≥

T
∫

0

j(f(t), u(t), u̇(t)) dt. (26)

Note that since F ′ is nonlinear, it is not possible to use a simple extension
of the linear case presented in [1] in order to pass to the limit for the terms
involving F ′ or F .

Now, we prove the following strong convergence and existence result.

Theorem 2.1. Under the assumptions (1)–(3), (5)–(17) every convergent
subsequence of (uν , ûν)ν, still denoted by (uν , ûν)ν, and its limit u ∈ W 1,2(0, T ;V ),
given by lemma 2.2, satisfy the following properties:

uν(t) → u(t) in V ∀ t ∈ [0, T ], (27)

ûν → u in L2(0, T ;V ), (28)

and u is a solution of problem P.

Proof. Let (uν)ν be the subsequence given by lemma 2.2 and u its weak limit.
Taking w = u(t) in (R̂ν), we obtain for all t ∈ [0, T ]

F (u(t))− F (uν(t)) + j(fν(t), uν(t), u(t)− uν(t)) ≥
α

2
‖u(t)− uν(t)‖2.
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Since F is sequentially weakly lower semicontinuous, by using the previous
relation, (19), (24), (5) and (7), we have that for all t ∈ [0, T ]

lim sup
ν→∞

α

2
‖u(t)− uν(t)‖2

≤ F (u(t)) + lim sup
ν→∞

(−F (uν(t)))

+ lim
ν→∞

(j(fν(t), uν(t), u(t)− uν(t))− j(f(t), u(t), u(t)− uν(t))

+ lim
ν→∞

j(f(t), u(t), u(t)− uν(t))

≤ F (u(t))− lim inf
ν→∞

F (uν(t))

+ lim
ν→∞

k2(‖fν(t)− f(t)‖+ ‖γ(fν(t), uν(t))− γ(f(t), u(t))‖H)‖u(t)− uν(t)‖

+ lim
ν→∞

j(f(t), u(t), u(t)− uν(t)) ≤ 0,

which proves (27). By applying Lebesgue’s dominated convergence theorem,
it follows from (27) and (22) that

uν → u in L2(0, T ;V ), (29)

and using (23) we obtain (28).
It remains to prove that the limit u is a solution of problem P.
First, by (1) we obtain that u(t) ∈ K(f(t)) ∀ t ∈]0, T [ and by (15)

one can pass to the limit in the second inequality of (Pν) for all t ∈]0, T [
so that the second inequality of (P ) is satisfied. Second, integrating both
sides in the first inequality of (Pν) over [0, T ] and passing to the limit, by the
relations (27), (29), (25), (3), (20), (26) and Remark 2.3 i), we have for all
v ∈ L2(0, T ;V )

T
∫

0

〈F ′(u(t)), v(t)− u̇(t)〉dt+
T
∫

0

j(f(t), u(t), v(t))dt

−
T
∫

0

j(f(t), u(t), u̇(t))dt ≥
T
∫

0

b(f(t), u(t), v(t))dt. (30)

By Lebesgue’s theorem and Remark 2.3 ii), it follows that u is a solution of
the first inequality of problem P.

14



3 Internal approximation and convergence re-

sults

In this section we shall consider a semi-discrete approximation of (P ), which
extends the classical internal approximations as presented in, e.g. [16], [17].
We shall prove a convergence result for a method based on an internal approx-
imation and a backward difference scheme that represents a generalization of
the case studied in [1], where F ′ is linear and there is no internal approxima-
tion for the functional j, which is a limitation on the numerical realization
of the discrete problem.

For a positive parameter h converging to 0, let (Vh)h be an internal ap-
proximation of V , that is a family of finite-dimensional subspaces of V which
satisfies:

there exists U ⊂ V such that U = V and

∀ v ∈ U, ∃ vh ∈ Vh for each h, such that vh → v in V.
(31)

Let (Kh)h be a family of closed convex cones with their vertices at 0 such
that Kh ⊂ Vh for all h and (Kh)h is an internal approximation of K, i.e.

if vh ∈ Kh for all h and vh ⇀ v then v ∈ K, (32)

∀ v ∈ K, ∃ vh ∈ Kh for each h, such that vh → v in V. (33)

Let (Kh(g))g∈V be a family of nonempty closed subsets of Kh such that
0 ∈ Kh(0) for all h, satisfying the following conditions:

if gn → g in V, vhn ∈ Kh(gn) and vhn → vh in Vh then vh ∈ Kh(g),
(34)

if vh ∈ Kh(g) for all h and vh → v then v ∈ K(g) ∀ g ∈ V. (35)

We assume that there exists an operator γh : V × Kh → H such that
γh(0, 0) = 0 and for all gi ∈ V , vhi ∈ Kh, i = 1, 2,

‖γh(g1, vh1)− γh(g2, vh2)‖H ≤ k1(‖g1 − g2‖+ ‖vh1 − vh2‖). (36)

Let jh : V ×Kh×Vh → R be a functional satisfying the following conditions
for all g ∈ V :

if vh ∈ Kh for all h, vh ⇀ v in V and wh ⇀ w in V

then lim
h→0

jh(g, vh, wh) = j(g, v, w),
(37)

for all h and vh ∈ Kh jh(g, vh, ·) is sub-additive, (38)
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for all h and vh ∈ Kh jh(g, vh, ·) is positively homogeneous,

jh(0, 0, wh) = 0 ∀wh ∈ Vh, (39)

and

if vh(t) ∈ Kh for all h and t ∈ [0, T ], vh ⇀ v in W 1,2(0, T ;V )

then lim inf
h→0

T
∫

0

jh(g(t), vh(t), v̇h(t)) dt ≥
T
∫

0

j(g(t), v(t), v̇(t)) dt (40)

for all g ∈ C([0, T ];V ),

|jh(g1, vh1, wh2) + jh(g2, vh2, wh1)− jh(g1, vh1, wh1)− jh(g2, vh2, wh2)|
≤ k2(‖g1 − g2‖+ ‖γh(g1, vh1)− γh(g2, vh2)‖H)‖wh1 − wh2‖ (41)

∀ gi ∈ V, vhi ∈ Kh, whi ∈ Vh, i = 1, 2.

From the properties of F, jh and Kh, it follows that for all g ∈ V, dh ∈
Kh, wh ∈ Kh(g), the elliptic variational inequality: uh ∈ Kh

〈F ′(uh), vh − uh〉+ jh(g, wh, vh − dh)− jh(g, wh, uh − dh) ≥ 0 ∀ vh ∈ Kh

has a unique solution. Hence we can define a mapping Sh
g,dh

: Kh(g) → Kh

by Sh
g,dh

(wh) = uh. We suppose that for all g ∈ V, dh ∈ Kh

Sh
g,dh

(Kh(g)) ⊂ Kh(g). (42)

For all g ∈ V, dh ∈ Kh, we consider the following problems:

(P̃h)















uh ∈ Kh(g), 〈F ′(uh), vh − uh〉+ jh(g, uh, vh − dh)

−jh(g, uh, uh − dh) ≥ b(g, uh, vh − uh) ∀ vh ∈ Vh,

b(g, uh, zh − uh) ≥ 0 ∀ zh ∈ Kh,

and

(Q̃h)

{

uh ∈ Kh(g), 〈F ′(uh), vh − uh〉+ jh(g, uh, vh − dh)

−jh(g, uh, uh − dh) ≥ 0 ∀ vh ∈ Kh.

Assume that

if uh is a solution of (Q̃h), then uh is a solution of (P̃h). (43)

Remark 3.1. If uh satisfies (P̃h), then uh obviously satisfies (Q̃h).
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Remark 3.2. Using similar arguments as in Remark 2.2, one can easily
prove the following properties:

|jh(g1, vh1, wh2) + jh(g2, vh2, wh1)− jh(g1, vh1, wh1)− jh(g2, vh2, wh2)|
≤ ((k1 + 1)k2‖g1 − g2‖+ k1k2‖vh1 − vh2‖)‖wh1 − wh2‖
∀ gi, whi ∈ Vh, vhi ∈ Kh, i = 1, 2,

|jh(g2, vh2, wh)− jh(g1, vh1, wh)|
≤ ((k1 + 1)k2‖g1 − g2‖+ k1k2‖vh1 − vh2‖)‖wh‖

∀ gi ∈ V, wh ∈ Vh, vhi ∈ Kh, i = 1, 2,

|jh(g, vh, wh1)− jh(g, vh, wh2)|
≤ ((k1 + 1)k2‖g‖+ k1k2‖vh‖)‖wh1 − wh2‖

∀ g ∈ V, vh ∈ Kh, ∀whi ∈ Vh, i = 1, 2,

if gn → g in V, vhn ∈ Kh and vhn ⇀ vh in Vh

then jh(gn, vhn, wh) → jh(g, vh, wh) ∀wh ∈ Vh.

We introduce the following semi-discrete approximation of problem P.
Problem Ph: Find uh ∈ W 1,2(0, T ;Vh) such that

(Ph)



























uh(0) = u0h, uh(t) ∈ Kh(f(t)) ∀ t ∈]0, T [,
〈F ′(uh(t)), vh − u̇h(t)〉+ jh(f(t), uh(t), vh)− jh(f(t), uh(t), u̇h(t))

≥ b(f(t), uh(t), vh − u̇h(t)) ∀ vh ∈ Vh a.e. on ]0, T [,

b(f(t), uh(t), zh − uh(t)) ≥ 0 ∀ zh ∈ Kh, ∀ t ∈]0, T [,

where u0h ∈ Kh(f(0)) is the unique solution of the variational inequality

〈F ′(u0h), wh − u0h〉+ jh(f(0), u0h, wh)

−jh(f(0), u0h, u0h) ≥ 0 ∀wh ∈ Kh.

By (4), it follows that (Ph) implies the following relation:

(R̂h)











F (wh)− F (uh(t)) + jh(f(t), uh(t), wh − uh(t))

≥ α

2
‖wh − uh(t)‖2 ∀wh ∈ Kh a.e. on ]0, T [.
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The full discretization of (Ph) is obtained by using an implicit scheme as for
(P ). For u0

h := u0h and i ∈ {0, 1, ..., ν − 1}, we define ui+1
h as the solution

of the following problem.
Problem Pi

hν : Find ui+1
h ∈ Ki+1

h such that

(P i
hν)















〈F ′(ui+1
h ), vh − ∂ui

h〉+ jh(f
i+1, ui+1

h , vh)− jh(f
i+1, ui+1

h , ∂ui
h)

≥ b(f i+1, ui+1
h , vh − ∂ui

h) ∀ vh ∈ Vh,

b(f i+1, ui+1
h , zh − ui+1

h ) ≥ 0 ∀ zh ∈ Kh,

where Ki+1
h := Kh(f

i+1).
As in Section 2, it follows that for all i ∈ {0, 1, ..., ν − 1} the problem

(P i
hν) is equivalent to the following variational inequality:
find ui+1

h ∈ Ki+1
h such that

(Qi
hν)

{

〈F ′(ui+1
h ), wh − ui+1

h 〉+ jh(f
i+1, ui+1

h , wh − ui
h)

−jh(f
i+1, ui+1

h , ui+1
h − ui

h) ≥ 0 ∀wh ∈ Kh.

From (2), (36), (41), (12) and (42) it results that the mapping Sh
f i+1,ui

h

:

Ki+1
h → Ki+1

h is a contraction, so that (Qi
hν) has a unique solution which is

also the unique solution of (P i
hν), for all i ∈ {0, 1, ..., ν − 1}.

If we define the functions























uhν(0) = ûhν(0) = u0h and

∀ i ∈ {0, 1, ..., ν − 1}, ∀ t ∈]ti, ti+1],

uhν(t) = ui+1
h ,

ûhν(t) = ui
h + (t− ti)∂u

i
h,

then for all ν ∈ N∗ the sequence of inequalities (P i
hν)i=0,1,...,ν−1 is equivalent

to the following incremental formulation: for almost every t ∈ [0, T ]

(Phν)























uhν(t) ∈ Kh(fν(t)), 〈F ′(uhν(t)), vh −
d

dt
ûhν(t)〉+ jh(fν(t), uhν(t), vh)

−jh(fν(t), uhν(t),
d

dt
ûhν(t)) ≥ b(fν(t), uhν(t), vh −

d

dt
ûhν(t)) ∀ vh ∈ Vh,

b(fν(t), uhν(t), wh − uhν(t)) ≥ 0 ∀wh ∈ Kh.

We have the following analogue to theorem 2.1 in the finite-dimensional
case.
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Theorem 3.1. Assume that (2), (3), (12)–(15), (34), (36), (38), (39), (41)–
(43) hold. Then there exists a subsequence of (uhν , ûhν)ν, still denoted by
(uhν , ûhν)ν, such that

uhν(t) → uh(t) in V ∀ t ∈ [0, T ],

ûhν → uh in L2(0, T ;V ),

where uh is a solution of (Ph).

By similar arguments as in lemma 2.1 and passing to the limit by using
the previous theorem, we find the following a priori estimates for the solutions
of (Ph) which are limits of subsequences of (uhν)ν .

Lemma 3.1. If uh is a solution of (Ph) then

‖uh(t)‖ ≤ M0‖F ′(0)‖+M1‖f‖C([0,T ];V ) ∀ t ∈ [0, T ], (44)

‖uh(s)− uh(t)‖ ≤ M1

t
∫

s

‖ḟ(τ)‖dτ ∀ s, t ∈ [0, T ], s < t,

‖uh‖W 1,2(0,T ;V ) ≤ M2,

where

M2 =
√

2M2
0T‖F ′(0)‖2 + 2M2

1T‖f‖2C([0,T ];V ) +M2
1‖ḟ‖2L2(0,T ;V ) .

We have the following convergence and existence result.

Theorem 3.2. Under the assumptions (2), (3), (12)–(15), (31)–(43) there
exists a subsequence of (uh)h such that

uh(t) → u(t) in V ∀ t ∈ [ 0, T ], (45)

uh → u in L2(0, T ;V ), (46)

u̇h ⇀ u̇ in L2(0, T ;V ), (47)

where u is a solution of (P ).

Proof. From lemma 3.1 it follows that there exists a subsequence of (uh)h
and an element u ∈ W 1,2(0, T ;V ) such that

uh(t) ⇀ u(t) in V ∀ t ∈ [0, T ], (48)

uh ⇀ u in W 1,2(0, T ;V ). (49)
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which implies (47).
As one can easily prove that

u0h → u0 in V,

from (48) it follows that u(0) = u0.
For each t ∈ [0, T ], by (33) one can find (ûh)h such that ûh ∈ Kh and

ûh → u(t) in V . Taking wh = ûh in (R̂h), we have for all h

F (ûh)− F (uh(t)) + jh(f(t), uh(t), ûh − uh(t)) ≥
α

2
‖ûh − uh(t)‖2.

Since F is strongly continuous and sequentially weakly lower semicontinuous,
by using the previous relation, (48) and (37), we obtain

lim sup
h→0

α

2
‖ûh − uh(t)‖2

≤ limh→0 F (ûh)− lim inf
h→0

F (uh(t)) + lim
h→0

jh(f(t), uh(t), ûh − uh(t))

≤ F (u(t))− F (u(t)) + j(f(t), u(t), 0) = 0,

which proves (45).
From (44) and (45), by applying Lebesgue’s dominated convergence the-

orem, we obtain (46).
Now, we shall prove that the limit u is a solution of problem P.
Using (33), (45), (35) and passing to the limit in the second inequality

of (Ph) for all t ∈]0, T [, we obtain that u(t) ∈ K(f(t)) ∀ t ∈ [0, T ] and the
second inequality of (P ).

Let πhv be the projection of v ∈ V on Vh defined by 〈πhv, wh〉 =
〈v, wh〉 ∀wh ∈ Vh. Thus if v ∈ L2(0, T ;V ) then πhv ∈ L2(0, T ;Vh) and
using (33) we have πhv(t) → v(t) in V a.e. on [0, T ]. For all v ∈ L2(0, T ;V ),
integrating both sides in the first inequality of (Ph) over [0, T ] with vh = πhv
and passing to the limit, by the relations (3), (45), (46), (49), (37) and (40)
it follows that (30) is satisfied, which, by Lebesgue’s theorem, implies that u
is a solution to the first inequality of problem P.

Using theorems 3.1 and 3.2, we obtain the following main approximation
result.

Theorem 3.3. Under the assumptions of theorem 3.2, there exists a subse-
quence of (uhν)hν such that

uhν(t) → u(t) in V ∀ t ∈ [0, T ], (50)

u̇hν ⇀ u̇ in L2(0, T ;V ), (51)

where u ∈ W 1,2(0, T ;V ) is a solution of (P ).
Furthermore every cluster point of (uhν)hν is a solution of (P ).
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4 Subspace correction approximation

The aim of this section is to give, for a fixed time step i, two additive subspace
correction algorithms for problem Qi

ν , prove their global convergence and
estimate the convergence rate.

The methods we deal here generalize the projected multilevel relaxation
method suggested in [18] and [19] for complementarity problems. This method
was later developed in [20]–[22] and named as monotone multigrid method.
On the other hand, the application of this method to other types of convex
sets in general abstract spaces and monotone minimizing functionals have
been investigated in [23], [24] and [25], for instance. Also, the case where the
inequality contains extra terms which do not stem from the minimization of
a functional has been investigated in [26]. Additional non-linear terms have
also to be considered in the case of quasi-variational, or implicit, inequalities.

As in the previous section, we consider a Hilbert space V and let V1, . . . , Vm,
m ≥ 2, be some closed subspaces. We also consider a closed convex subset
K ⊂ V and assume that the following assumption is satisfied.

Assumption 4.1. There exists a constant C0 > 0 such that for each w, v ∈ K
there exist vι ∈ Vι, ι = 1, . . . ,m, which satisfy

vι ∈ K − w for ι = 1, . . . ,m, (52)

v − w =
m
∑

ι=1

vι, (53)

and
m
∑

ι=1

‖vι‖ ≤ C0‖v − w‖. (54)

This assumption is satisfied for various convex sets in Sobolev spaces and
will be used in the proofs, where v is the exact solution and w is the current
approximation.

Now, we consider a functional ϕ : V × V → R and we assume that it is
convex and lower semicontinuous with respect to the second variable, and

|ϕ(v1, w2) + ϕ(v2, w1)− ϕ(v1, w1)− ϕ(v2, w2)|
≤ k1k2‖v1 − v2‖ ‖w1 − w2‖ ∀ v1, v2, w1, w2 ∈ V. (55)

Also, we suppose

Assumption 4.2.
m
∑

ι=1

ϕ(u, w + vι) ≤ (m− 1)ϕ(u, w) + ϕ(u, v) (56)
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for each u ∈ K and for v, w ∈ K and vι ∈ Vι, ι = 1, . . . ,m, as in Assumption
4.1.

This assumption has been introduced for technical proof reasons.
As in the previous section, let F : V → R be a differentiable functional

satisfying (2), (3) and (12), and we consider the problem of finding û ∈ K,
the solution of the following quasi-variational inequality

〈F ′(û), v − û〉+ ϕ(û, v)− ϕ(û, û) ≥ 0 ∀ v ∈ K. (57)

Since ϕ satisfies (55), with similar arguments as for problem Qi
ν , we can prove

that problem (57) admits a unique solution.
Evidently, since ϕ is convex with respect to the second variable, F is

differentiable and satisfies (4), problem (57) is equivalent to the problem

û ∈ K F (û) + ϕ(û, û) ≤ F (v) + ϕ(û, v) ∀ v ∈ K.

Also, in view of (4), we see that the solution û of (57) satisfies

α

2
‖v − û‖2 ≤ F (v)− F (û) + ϕ(û, v)− ϕ(û, û) ∀ v ∈ K. (58)

A first algorithm corresponding to the subspaces V1, . . . , Vm and the con-
vex set K is the following.

Algorithm 4.1. We start the algorithm with an arbitrary u0 ∈ K. At
iteration n+1, having un ∈ K, n ≥ 0, we simultaneously solve the inequalities

wn+1
ι ∈ Vι ∩ (K − un)

〈F ′(un + wn+1
ι ), vι − wn+1

ι 〉+ ϕ(un + wn+1
ι , un + vι)

−ϕ(un + wn+1
ι , un + wn+1

ι ) ≥ 0 ∀ vι ∈ Vι ∩ (K − un), (59)

for ι = 1, . . . ,m, and then we update un+1 = un +
r

m

m
∑

ι=1

wn+1
ι , where r is a

fixed constant such that 0 < r ≤ 1.

A simplified variant of Algorithm 4.1 can be written as

Algorithm 4.2. We start the algorithm with an arbitrary u0 ∈ K. At
iteration n+ 1, having un ∈ K, n ≥ 0, we solve the inequalities

wn+1
ι ∈ Vι ∩ (K − un)

〈F ′(un + wn+1
ι ), vι − wn+1

ι 〉+ ϕ(un, un + vι)

−ϕ(un, un + wn+1
ι ) ≥ 0 ∀ vι ∈ Vι ∩ (K − un), (60)
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for ι = 1, . . . ,m, and then we update un+1 = un +
r

m

m
∑

ι=1

wn+1
ι , where r is a

fixed constant such that 0 < r ≤ 1.

The following theorem proves that if k1k2 is small enough in comparison
with α, then Algorithms 4.1 and 4.2 are convergent.

Theorem 4.1. Let us assume that Assumptions 4.1 and 4.2 are satisfied. If
û is the solution of problem (57), un, n ≥ 0, are its approximations obtained
from one of Algorithms 4.1 or 4.2, there exists a constant χ0 satisfying 1 >
χ0 > 0, such that if

k1k2
α

≤ χ0 (61)

then the two algorithms are globally convergent and we have the following
error estimations

F (un) + ϕ(û, un)− F (û)− ϕ(û, û)

≤
(

C1

C1 + 1

)n
[

F (u0) + ϕ(û, u0)− F (û)− ϕ(û, û)
]

, (62)

‖un − û‖2 ≤ 2

α

(

C1

C1 + 1

)n
[

F (u0) + ϕ(û, u0)− F (û)− ϕ(û, û)
]

, (63)

where the constant C1 > 0 depends on α, β, k1, k2, the number of subspaces
m and on the constant C0 introduced in Assumption 4.1.

Remark 4.1. Condition (12) is an existence and uniqueness condition for
the solution of problems P i

ν and Qi
ν in Section 2. Theorem 4.1 proves that

the algorithms introduced in this section for problem Qi
ν are convergent if

condition (61) is satisfied. We see that the two conditions are similar, but the
convergence condition is more restrictive than the existence and uniqueness
one. This fact seems to be natural, and, roughly speaking, these conditions
hold for frictional contact problems if the coefficient of friction is sufficiently
small.

Proof. Since the proof of the theorem is almost the same for both algorithms,
we prove the theorem only for Algorithm 4.1. Also, in view of (58), we notice
that (63) can be obtained from (62).

Now, we prove (62). Let us denote

ũn+1 = un +
m
∑

ι=1

wn+1
ι . (64)
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Applying Assumption 4.1 for w = un and v = û, we get a decomposition
un
1 , . . . , u

n
m of û−un. From (52), we can replace vι by un

ι in (59), and in view
of (4) and the convexity of F , we obtain

F (un+1)− F (û) + ϕ(û, un+1)− ϕ(û, û) +
r

m

α

2
‖û− ũn+1‖2

≤ (1− r

m
) [F (un)− F (û)] +

r

m

[

F (ũn+1)− F (û) +
α

2
‖û− ũn+1‖2

]

+ϕ(û, un+1)− ϕ(û, û)

≤ (1− r

m
)[F (un)− F (û)] +

r

m
〈F ′(ũn+1), ũn+1 − û〉+ ϕ(û, un+1)− ϕ(û, û)

≤ (1− r

m
)[F (un)− F (û)] +

r

m

m
∑

ι=1

〈F ′(un + wn+1
ι )− F ′(ũn+1), un

ι − wn+1
ι 〉

+
r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+ϕ(û, un+1)− ϕ(û, û).

Consequently, we have

F (un+1)− F (û) + ϕ(û, un+1)− ϕ(û, û) +
r

m

α

2
‖û− ũn+1‖2

≤ (1− r

m
)[F (un)− F (û) + ϕ(û, un)− ϕ(û, û)]

+
r

m

m
∑

ι=1

〈F ′(un + wn+1
ι )− F ′(ũn+1), un

ι − wn+1
ι 〉

+
r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+
r

m
[ϕ(û, un)− ϕ(û, û)] + ϕ(û, un+1)− ϕ(û, un). (65)

Using (3), (54) and the Hölder inequality, we get (see (3.21) in [9], for p =
q = 2),

m
∑

ι=1

〈F ′(un + wn+1
ι )− F ′(ũn+1), un

ι − wn+1
ι 〉

≤ βm

[

1 + C0(1 +
1

2ε1
)

] m
∑

ι=1

‖wn+1
ι ‖2 + βC0

ε1
2
‖û− ũn+1‖2 (66)

for each ε1 > 0. In view of the convexity of ϕ in the second variable, we have

ϕ(û, un+1) ≤ (1− r)ϕ(û, un) +
r

m

m
∑

ι=1

ϕ(û, un + wn+1
ι ).
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From this equation, by (56), (55) and (54), we obtain

r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+
r

m
[ϕ(û, un)− ϕ(û, û)] + ϕ(û, un+1)− ϕ(û, un)

≤ r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+
r

m

m
∑

ι=1

ϕ(û, un + wn+1
ι )− r

m
[(m− 1)ϕ(û, un) + ϕ(û, û)]

≤ r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+
r

m

m
∑

ι=1

[ϕ(û, un + wn+1
ι )− ϕ(û, un + un

ι )]

≤ r

m
k1k2

m
∑

ι=1

‖un + wn+1
ι − û‖‖wn+1

ι − un
ι ‖

≤ r

m
k1k2

[

‖ũn+1 − û‖+
m
∑

ι=1

‖wn+1
ι ‖

]

m
∑

ι=1

(

‖wn+1
ι ‖+ ‖un

ι ‖
)

≤ r

m
k1k2

[

‖ũn+1 − û‖+
m
∑

ι=1

‖wn+1
ι ‖

]

·
[

C0‖ũn+1 − û‖+ (1 + C0)
m
∑

ι=1

‖wn+1
ι ‖

]

.

Therefore,

r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un + un

ι )− ϕ(un + wn+1
ι , un + wn+1

ι )]

+
r

m
[ϕ(û, un)− ϕ(û, û)] + ϕ(û, un+1)− ϕ(û, un)

≤ r

m
k1k2[C0 + (1 + 2C0)

ε2
2
]‖ũn+1 − û‖2

+rk1k2[1 + C0 +
1 + 2C0

2ε2
]

m
∑

ι=1

‖wn+1
ι ‖2 (67)
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for each ε2 > 0. Consequently, from (65)–(67), we have

F (un+1)− F (û) + ϕ(û, un+1)− ϕ(û, û)

+
{α

2
− βC0

ε1
2
− k1k2[C0 + (1 + 2C0)

ε2
2
]
}

‖û− ũn+1‖2

≤ m− r

r
[F (un)− F (un+1) + ϕ(û, un)− ϕ(û, un+1)]

+

{

βm

[

1 + C0(1 +
1

2ε1
)

]

+ k1k2m

[

1 + C0 +
1 + 2C0

2ε2

]}

·
m
∑

ι=1

‖wn+1
ι ‖2 (68)

for every ε1, ε2 > 0.
From (59) and (4), we get that, for each n ≥ 0 and ι = 1, . . . ,m,

F (un)− F (un + wn+1
ι ) + ϕ(un + wn+1

ι , un)

−ϕ(un + wn+1
ι , un + wn+1

ι ) ≥ α

2
‖wn+1

ι ‖2.

Using the convexity of F and the above relation, we have

F (un+1) ≤ (1− r)F (un) +
r

m

m
∑

ι=1

F (un + wn+1
ι ) ≤ F (un)

− r

m

α

2

m
∑

ι=1

‖wn+1
ι ‖2 + r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un)− ϕ(un + wn+1

ι , un + wn+1
ι ).

Thus, it results

r

m

α

2

m
∑

ι=1

‖wn+1
ι ‖2 ≤ F (un)− F (un+1)

+ϕ(û, un)− ϕ(û, un+1) +
r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un)

−ϕ(un + wn+1
ι , un + wn+1

ι )]− ϕ(û, un) + ϕ(û, un+1). (69)
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Similarly with (67), we obtain

r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un)− ϕ(un + wn+1

ι , un + wn+1
ι )]

−ϕ(û, un) + ϕ(û, un+1)

≤ r

m

m
∑

ι=1

[ϕ(un + wn+1
ι , un)− ϕ(un + wn+1

ι , un + wn+1
ι )]

+
r

m

m
∑

ι=1

[ϕ(û, un + wn+1
ι )− ϕ(û, un)]

≤ r

m
k1k2

m
∑

ι=1

‖un + wn+1
ι − û‖‖wn+1

ι ‖

≤ r

m
k1k2

(

m
∑

ι=1

‖wn+1
ι ‖+ ‖ũn+1 − û‖

)

m
∑

ι=1

‖wn+1
ι ‖

≤ r

m
k1k2(1 +

1

2ε3
)m

m
∑

ι=1

‖wn+1
ι ‖2 + r

m
k1k2

ε3
2
‖ũn+1 − û‖2 (70)

for each ε3 > 0. In view of (69) and (70), we get
[

α

2
− k1k2(1 +

1

2ε3
)m

] m
∑

ι=1

‖wn+1
ι ‖2

≤ m

r

[

F (un)− F (un+1) + ϕ(û, un)− ϕ(û, un+1)
]

+k1k2
ε3
2
‖ũn+1 − û‖2 (71)

for each ε3 > 0. If we write

C1ε =
m− r

r
+ C4ε

m

r
,

C2ε =
α

2
− k1k2(1 +

1

2ε3
)m,

C3ε =
α

2
− βC0

ε1
2
− k1k2

(

C0 +
1 + 2C0

2
ε2

)

− k1k2
ε3
2
C4ε,

C4ε =
m

C2ε

[

β

(

1 + C0(1 +
1

2ε1
)

)

+ k1k2

(

1 + C0 +
1 + 2C0

2ε2

)]

, (72)
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then, from (68) and (71), on the condition C2ε > 0, we get

F (un+1)− F (û) + ϕ(û, un+1)− ϕ(û, û) + C3ε‖û− ũn+1‖2

≤ C1ε

[

F (un)− F (un+1) + ϕ(û, un)− ϕ(û, un+1)
]

. (73)

We can easily see that C3ε, as a function of ε1, ε2, and ε3, reaches its maximum
value for

ε1 = ε2 = ε3 =
k1k2m

α

2
− k1k2m

, (74)

and this is

C3max =
α

2
− k1k2C0 − [βC0 + k1k2(1 + 2C0)]

k1k2m
α

2
− k1k2m

−(1 + C0)(β + k1k2)
k1k

2
2m

2

(
α

2
− k1k2m)2

.

Condition C3max ≥ 0 is satisfied if

(
1

2
− C0

k1k2
α

)
α

β
≥ (1 + 3C0)

k1k2
α

m

1

2
− k1k2

α
m

+ 2(1 + C0)
(
k1k2
α

)2m2

(
1

2
− k1k2

α
m)2

.

Writing χ =
k1k2
α

, we see that equation

(
1

2
− C0χ)

α

β
= (1 + 3C0)

χm
1

2
− χm

+ 2(1 + C0)
χ2m2

(
1

2
− χm)2

, (75)

which corresponds to the above inequality, has at least solution in (0,
1

2C0

),

and if χ0 is the smallest one, then by taking
k1k2
α

≤ χ0, we have C3max ≥ 0.

The value of C2ε for ε3 in (74) is

C2max =
1

2

(α

2
− k1k2m

)

.

Since we can always take C0 ≥ m and the above solution χ0 of equation (75)

satisfies χ0 <
1

2m
, then C2max > 0 if

k1k2
α

≤ χ0.
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Now, (62) is obtained from (73), where

C1 =
2m

α

2
− k1k2m

{β[1 + C0

2k1k2m
(
α

2
+ k1k2m)] +

1

2
[
α

2
(2C0 + 1) + k1k2m]}

is the value of C1ε for ε1, ε2 and ε3 given in (74).
Constant C1 has a similar expression in the case of Algorithm 4.2.

The above general result will be used in a subsequent paper to prove the
convergence of the one- and two-level methods for contact problems with
nonlocal friction. In this case, the constant C0 will be explicitly written in
terms of the mesh parameters.
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