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Fokker Planck kinetic modeling of suprathermgparticles in a fusion plasma

B. E. Peigne§*, O. Larroch&, V. Tikhonchul®

3CEADIF, BP 12, 91680 Bruyeéres le Chatel, France
bUniversity Bordeaux — CNRS — CEA, CELIA 33405 Talence Cétlarce

Abstract

We present an ion kinetic model describing the ignition anchbof the deuterium-tritium fuel of inertial fusion
targets. The analysis of the underlying physical model kssalis to developf&cient numerical methods to simulate
the creation, transport and collisional relaxation of dmsieaction products¥particles) at a kinetic level. A two-
energy-scale approach leads to a self-consistent mod&fitige coupling between suprathernaaparticles and the
thermal bulk of the imploding plasma. This method provideaecurate numerical treatment of energy deposition and
transport processes involving suprathermal particles. fiumerical tools presented here are validated againstrknow
analytical results. This enables us to investigate therpiaterole of ion kinetic &ects on the physics of ignition and
thermonuclear burn in inertial confinement fusion schemes.

Keywords: Fokker-Planck equation, fusion reactions, kinetteets, inertial confinement fusion plasma,
suprathermal particles, multi-scale coupling, explichemes

1. Purpose of the study

Inertial confinement fusion (ICF) is a process of energy pobidn obtained from the nuclear fusion reaction
between deuterium (D) and tritium (T) ions. It is a promisargd abundant energy source for future power plants.
The fusion reaction® + T — a + n+ 17.56 MeV take place in a hot and dense plasma compressed aretlheat
by intense laser radiation. The thermonuclear burn of theedieim-tritium (DT) fuel is supported by energetie
particles, which are created by fusion reactions at theggn@i52 MeV. Those suprathermal particles subsequently
transfer their energy to the fresh fuel through Coulombisiolhs.

In the case of Inertial Confinement Fusion [1, 2], a sphefiX&lshell is compressed to densities of the order
of a few hundred gc by the ablation pressure. Fusion reactions start in aalerdne characterized by a density
p ~ 50g.cnt® and a high "ignition* temperatur& ~ 7 — 10keV. The surrounding shell is 10 times colder than the
hot spot T ~ 0.7 keV). The density of the central "hot spot” is such that theamfree pathl,, of fasta-particles is
roughly equal to the hot spot radiB3]. This allows the self-heating of the hot spot fuel whiemses as a spark that
subsequently burns the surrounding colder and denser shell

The design of ICF targets and the interpretation of ICF exrpemts rely on numerical simulations based on
hydrodynamic Lagrangian codes where kinefii@ets are only considered as corrections included in thespiamh
codficients [1, 2]. The fluid description is relevant if the meagefipath of plasma particles, namely electrons and
ions, is smaller than the characteristic length scale.lth this condition is reasonably fulfilled during the imgitm
stage, it does not apply to fast particles, in particulausidn products near the ignition threshold. Thus, an ateura
kinetic modeling is required.

The purpose of the present work is to propose an ion-kinetcuption of suprathermal fusion products, treated
self-consistently with the ion-kinetic modeling of the tival imploding plasma. The flliculty lies in the coupling of
ion populations characterized by twdfdrent energy scales:

e Thermal particle®, T, which form the bulk of the imploding plasma and whose kinetergy is in the keV
range.
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e Suprathermak-particles, created at 3.52 MeV by fusion reactions.

Such a strong disparity in energy scales makediitcdilt to build viable kinetic models of fusion reactions.

Existing ion kinetic codes can describe the implosion of Bfgets in sub-ignition conditions [4, 5, 6], but the
energy release from the fusion reactions is not accounted #oself-consistent manner. Several simplified methods
compatible with hydrodynamic codes have been developeldiytad Ligou [8] apply the moment method to model
ion energy deposition in a hot and dense homogeneous plésranly a stationary case has been considered. A
variety of methods based orflilision models applied to charged-particle transport probleave also been developed.
Those methods are of considerable interest, since resukmergy deposition profiles can be obtained with a low
computational ffort. Nevertheless, ffusion methods rely on the assumption that the fast partileamiree path
is smaller than the characteristic scale length of the gnéegosition zone. This hypothesis does not hold for a
typical ICF target near ignition. Corman et al [9] derive altingroup diffusion model from the Fokker-Planck
equation to describe fast ion transport in a fusion plasnoavever, they introduce heuristically a flux limiter in order
to prevent unphysical behavior when particle flux approadhe free-streaming limit. Pomraning [10] develops a
more sophisticated flux limiter scheme based on the ChapEnakeg expansion. However, the flux limitedfdsion
smoothes artificially energy deposition profiles, espécial situations where ion sources are localized [11]. This
may lead to significant errors in the calculation of ignititmesholds and energy gains. Suclffudiion models
are employed in all major present-day fluid codes becaudeeaf ¢ompatibility with the underlying hydrodynamic
module.

Several exact methods can be employed to solve the Fok&ackkquation in a general way, but they are too
much time consuming. Monte Carlo algorithms are applied taleh charged particle transport in Refs. [12, 13].
In such an approach, distribution functions are represeoyea sum of Dirac measures. Monte Carlo particles are
characterized by their numerical weight, their positiod #reir velocity. Those quantities evolve in time according
the Vlasov-Fokker-Planck equation while the tracking ofri#oCarlo particles is performed through the spatial mesh.
The accuracy of Monte Carlo methods is proportionalitd/?, N being the number of Monte Carlo particles, so that
N > 1 and variance reduction techniques are usually employegiace numerical noise. A significant deficiency
of Monte Carlo methods for the investigation of kinetiteets is that the tails of the distribution functions are not
described accurately. Moreover, the coupling betweenasbiermal particles and the thermal bulk is usually treated
in a rough manner, by removing the suprathermal particlasate slowed down below a given energy threshold and
injecting the removed particles in the thermal bulk. Theref the thermalization process is not described with a
suficient precision.

Sn methods are also used to solve the Fokker-Planck equatiemdiaistically. They are based on the determina-
tion of the angular flux of suprathermal particles at a setisdréte directions, each one associated with a quadrature
weight [14, 15, 16]. Although they are more accurate théiusion methods and can be extended to highly anisotropic
particle distribution functions, the weakly collisionahit is not described accurately and the thermalizatiorcpss
is treated approximately with the same strategy as in MomioGnethods.S,, methods are usually used to sim-
ulate neutron transport and require high computatioffarts. For the application o, methods to suprathermal
a-particles transport, we refer to Ref. [11].

In the present paper we develop a kinetic modeling of suprathl fusion products in the thermal imploding
plasma. We extend the existing codeidaP[4, 5, 6] so as to treat-particles, for whichtwo scales of energgre
considered, namely a suprathermal and a thermal one. Siecgevelopments made to reach this goal have been
substantial, they have actually lead to the creation of dinedyn new kinetic code called dse for FPion Upgrade
with two Scales of EnergyThis code is able to investigate kinetiffects related to fusion reaction products on the
ignition of the hot spot and on the subsequent propagatitmeahermonuclear burn wave through the dense fuel. We
present here the numerical methods specially designetidédtihetic modeling of-particles and their validation in
several representative tests. Simulations are prefororesdtiypical ICF DT target, assuming a spherical symmetry in
configuration space and axial symmetry in velocity spaceradtdehe mean velocity. Distribution functions thus depend
on one space variable (radius) and two velocity componeatia] and azimuthal or perpendicular), depending on
the chosen parametrization.

The paper is organized as follows: firstly, we present in 3d¢he Vlasov-Fokker-Planck modeling of the fast
a-particle transport and collisional relaxation. A specficmalism, based on a two-scale approach with respect to
energy is then introduced in Sec. 3. It provides a self-aast modeling of the coupling between suprathermal and
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thermal plasma species. Section4 presents the algoritemised to solve the two-scale coupling. A finite volume
method is applied to the Fokker-Planck equation goverrtiegsuprathermal-particle distribution function. Fast
algorithms are then specially designed to solve the digetimodel &iciently. Section5 presents some numerical
results regarding the-particle distribution function evolution and its cougdiwith the thermal bulk. We show how
the methods developed here provide a refined descriptidredhermalization process. Simulations are carried out in
conditions relevant for typical ICF targets. Conclusiorssfimally presented in Sec. 6.

2. Physical model for thetransport and collisional relaxation of a-particles

Once created by fusion reactions, suprathewrgérticles are transported through an inhomogeneous plasih
slowed down through Coulomb collisions with electrons dmetinal ions D and T. Besides, pressure gradients give
rise to an electrostatic fiekﬁ(?, t) that may accelerate or deceleratparticles. To give an accurate description of the
particle transport, as well as the non-local energy and nmbume exchange that occur betweeiparticles and the
thermal bulk, a kinetic modeling based on the Vlasov-Fokkenck equation is required.

2.1. Vlasov-Fokker-Planck equation for theparticles

The distribution functiorf, (7, V, t) of a-particles characterized by a chaigge and a mass, is governed by the
Vlasov-Fokker-Planck equation:

0 fa/

n 0 fa/
ai ot
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(1)
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The first two terms at the right hand side of this equation idesche collisional relaxation af-particles:
e 0f,/0t|.e stands for the collisions af-particles with electrons,

o >, 0f, /0t describes the collisions afparticles with thermal ion species. Since thermal spedéesities are
significantly higher than the faatparticle density (at least at the beginning of the ignitioid burn processes),
non-linear term corresponding to fagffast« scattering is neglected. The coupling between the thezethii
particles and the suprathermal ones is naturally included.

We focus now on the collisional part of Eq. (1). The Vlasoupéthe equation modeling the transportin space and
the acceleration due to the electrostatic field is consitlseparately in Sec. 4. In a fully ionized plasma such as the
one considered here, large angle scattering are muchiegsthan the net large-angle deflection due to a cumulative
effect of many small-angle collisions that the projectile eigreces along its path [17]. Each of the collision terms
in right hand side of Eq. (1) can then be expressed as a Fékkack operator in velocity space, which amounts
essentially to an advectiontlision form. More precisely, the slowing down®@fparticles on a thermal ion species
can be written as:

of, d (m,, dS 5 0f,
—| =4, — | —f — — VT . — 2
ol v (m o Vi Gy ) @
whereS; and7; are the so-called Rosenbluth potentials [17] associatétettarget ions. They are defined by a set
of Poisson equations in velocity space:

AS = i, AT =S 3)

The codiicientT,i = (47Z2Z?€*/nE)In A, is proportional to the Coulomb logarithm Aq; (for any species, j
including electrons) related to the Coulomb potential soileg and taking quantumffects into accountA;; =
Ap/ maXdpar 1 }- The Debye length
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depends on the temperatdrg which is expressed in energy units;.is related to the thermal ion distribution function
f; by the relation:

T,= 0 f(v— V))215(@) dv
J 3nj J ] ’

wheren; = [ f;(¥) d®v s the density of ion specigisandV; = n;t [V (V) dvis their mean velocity. The character-
istic lengthsp, andAp,r are the classical and quantum impact parameters:

p¢=zazbez/ml‘ui2j, Abar = R/ myj U

wherem; = mm;/(m+m;) is the reduced mass aog = V3(Ti/m+T;/m;)*?is an average relative velocity between
the particle speciesand j. The Coulomb logarithm is thus a particular function of hyadlynamic quantities. It is
symmetric with the respect of particle specia&g, = Aji, which is related to the energy and momentum conservation
during the collision.

The dfect of electrons on the slowing down efparticles is modeled by another Fokker-Planck term, incihi
the electron distribution function is approximated by a Makian characterized by a density, a mean velocityie
and a temperaturg.:

of, 190 Te 01,
—| = ——=-|(V-0)f, — , 4
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whererg, is a characteristie — a collision time defined by:
3 T2
- M le (5)
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Equation (4) is obtained by a truncated expansion of thadaHelectron Fokker-Planck operator with respect to the
small constant = (me/m)Y? ~ 0.022 [4, 6].
The last term in (1) stands for the creationaeparticles by fusion reactions. The source term is supptsée
isotropic and is given by:
of, 5(V—Vh)
—| =Ror(Ft)———,
(9t fuse DT( ) 47TV2

wherev, = 1.3 x 10° cm.s! is the initial velocity of suprathermal-particles whose initial energy is 3.52 MeRpt
is the fusion reaction rate expressed as a function of thehiifion functions of D and T, respectively:

(6)

Rot(F,t) = npnr{oV)pr = f f fo (7, Vb, t) fr (P, Vir, t) Vb — Vr| oot (Vb — Vrl) dPvpdPvr. (7)

The distribution functiondp and fr are solutions of the Vlasov-Fokker-Planck equation wmitie the deuterium and
tritium species, respectively, and they are not necegddakwellian functions. Integrals in Eq. (7) are taken over t
three-dimensional velocity space.

2.2. Dealing with electrons

Since the characteristic time of the considered problenfoisecto the ion-ion collision time;; >> 1/wpe, wpe
being the electron plasma frequency, and the charactdestith is of the order of the ion collisional mean free path
Ai >> Ape, Ape being the electron Debye length, the quasi-neutralityrapsion is relevant. We then have:

Ne = Z Zn + 2,037, Ve = Z zZnV; + Z,nSTVST, (8)
i i

where the contribution of suprathermaiparticles is naturally includedyS ", VST being the density and mean
velocity of fasta-particles respectively.

Besides, due to a very small ratio of the masses of electrodsians, the electron equilibration time. is
significantly smaller than the mean ion-ion collision timye According, for example to [18], we have the following
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ordering of characteristic timesz. ~ etji. AS a consequence, the electron kinetic equation redueefiLtinl equation.
Only an equation for the temperature (or, equivalentlygthergy density) is actually needed since the electron gensi
and velocity are known from the quasi-neutrality condisi¢8).

In the one-dimensional spherical problem considered hbeeglectron energy densiWy, is governed by the
following conservation equation :

MWe 10, 19,, 10 (, 0Te\ <~ 3nj OWe
W + r—zg(r UeWe)+ r—zg(r Ue)Pe—r—ZE(r KeW = Z (T] —Te)+ W " (9)

whereke is Spitzer's thermal conductivity [19] in the presence ofegal ion species (see also [7] and Appendix in
[20]), the collision timere; has been defined in Eq. (5) wheteis replaced by the considered ion specjesThe
electron energy density, and pressur®, are given by an equation of state taking into account Fergéderacy
[6].

The last term on the right hand side of (9) accounts for thatih losses of electrons.

2.3. Relative importance of electrons and ions on the slgwimwn ofa-particles

3.52 MeV a-particles are created in fusion reactions isotropicatlyhe system of reference associated with the
thermal bulk. Then, they are slowed down through Coulomlisiohs with electrons, according to Eq. (4), and with
thermal ions, according to Eq. (2). The relative importanficelectrons and ions on the slowing downmeparticles
can be estimated by retaining only the dynamical frictiomtefrom the Fokker-Planck equations (4) and (2). The
ratio R, e between the ion slowing down and the electron one can thupfr@smated by:

R | O T3"? TS
e~ ot lui Ot loe Vsmé/zm V3mi3/26.

The ratioR; ¢ is thus defined by a characteristic threshold velocity:
Ve = € 3(Te/m)Y2, (10)

so thatR e ~ (Ve/V)°.

The beginning of the slowing-down af particles is thus governed nearly exclusively by electrofiken, as
vV ~ V, the dfect of ions and electrons on tlherelaxation become comparable. Eventually, the final stdge o
particle thermalization is essentially influenced by sidins with thermal ions. Supposifig ~ Te, we have the
following estimate, ~ 6‘1/3\/}" ~ 3.6\/}“, v}h being the typical thermal velocity of D and T ions. Theeet of thermal
ions on thex relaxation dominates when tlevelocity is belowv, ~ 3.6\/}“. We shall refer to such-particles as
"moderately suprathermal®.

3. Two-component description of the a distribution function

3.1. Physical discussion

From the previous discussion, we know that 3.52 Meparticles are firstly slowed down essentially by electrons
The first stage of the slowing down is thus described by:

0 f(y
ot

190

coll - r.eﬁ_\f

Te 0f,
m, oV

-t + 125w, an
Whenv >> ue, the dynamic friction term (first term on the right hand sidéld )) dominates so that thedistribution
evolves with respect to:

(af“) e 119 13r,m). (12)
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The stationary solution of (12) behavesfas~ 1/v3, wherev is suprathermat-particle velocity. Consequently, as
long as fastr-particles remain far from the thermal velocity region,ititistribution function varies smoothly over
the whole suprathermal velocity region. The associatedcitglscalevS T, defined by:

fST

vy~ fST/ (13)

is in particular greater than the target thermal velodlﬁy
Then, when slowed dowm-particles get closer to the thermal region but still remmiprathermal, thermal ions
tend to dominate the end of the relaxation process, whidieis overned by the equation:

6f(, 0 m, ., 0S;
= dilyi— - [ —= fo—= 14
o Z i (m a W), (14)

coll

where only the dynamical friction term is retained for thegant discussion. We shall deal with thé&usion part
separately. Qualitatively, one can consider that theiligion function of the thermal target speciegppears highly
localized in velocity space, from the suprathermaparticle point of view. One thus can writefi(V) = ns3(V)
(assuming that the mean velocity is zero). Besides, theghvee with respect to velocity that appears on the right
hand side of Eqg. (14) can be expanded as follows:

9 (38 )L 3 O
o \ov Y v v

Using the approximatiof)(V) = n;63(V), which is valid from the suprathermadparticle point of view, the first Rosen-
bluth potential associated to the target idian be calculated explicithys;(v) ~ —n;/(4nv). Then, by calculating its
derivative, the slowing down af particles can be modeled by:

of, afa
Zi: ﬂr(yl (6\7 Wév ) (15)

ot
The two terms on the right hand side of Eq.(15) have a cleasipllysense. The first term df,/dV varies slowly
and smoothly far from the thermal velocity region. It can bamcterized by a suprathermal velocity sogjé,

f(Y AV*SI

coll

which is greater than the typical thermal ion velomﬂ/ (Ti/m)Y2, Actually, the term~ —— —= corresponds to

A5\ 2 N
a conservative convection towards= 0. The associated convective raie\? increases asg tends to 0 so that the
4

solution of: ot ot
n
e 4nT, — [ —_8, (16)
( )coll Z I

ot N A2
tends to a constarig corresponding to the stationary state of (16). The parte&ttistribution driven by (16) is then
stretched and smoothed out as it approaches the thermaltyetegion.

The second terms f, fi appears highly localized in the thermal region of velocippse and behaves qualita-
tively as as-function from the suprathermatparticle point of view. This term actually leads to the fation of a
condensate of widtd" < vST.

This qualitative analysis shows intuitively how ttveo-component featuief the « distribution function builds up.
It is made of a superposition of two components evolving am d¥fferent velocity scales, namely:

e asuprathermal component, fed by fusion reactions and iempbn a large velocity scale, greater than the target
thermal velocity.

e A thermal component, corresponding to the thermalized @fatihe « distribution function, evolving on the
same velocity scale as the thermal bulk of the plasma. Natiethiis component is not fully thermalized since
the source term is proportional § 4T, fi. There remains a final stage of collisional relaxation betwthe
thermal components of D,T andions respectively.

Figure 1 illustrates schematically those processes. Fhisrphenomenological discussion, we can draw a more
formal and more rigorous description of the slowing-downclimaturally leads to the building of a new multi-scale
algorithm solving the initial problem given by Eq. (1).
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Figure 1: Schematic representation of the collisionalxatian of suprathermat-particles on thermal target ioms
The suprathermal component of thelistribution (red) varies on a velocity scaf@’ > v}“. The electron distribution
function (green) has a Maxwellian shape with a charactenetith v > v}h. The thermal ion component (blue)
varies on the thermal ion energy scalev}h. The contrast between the thermal and suprathermal scagebden
reduced artificially for the sake of clarity.

3.2. Splitting of the Fokker-Planck operator
From the previous analysis, it seems natural to writentldéstribution function as follows:

f,(V,t) = £37(V, t) + £] (9, 1), a7)

where: f3T designates the suprathermal component. It is defined o l@locity domain, spreading to the MeV
range. Its typical velocity variation scal€ " is greater than the thermal ion velocilS?; fT is the thermal compo-
nent. It is localized in the region of velocity space cormsing to target thermal ion distribution functions and
vanishes in the suprathermal velocity domain. The compbofjeis designed to describe accurately the final stage of
thermalization of the slowed downparticles. This final relaxation occurrs on a velocity seah!".

Let us emphasize that two components defined in Eq. (17) da exithe whole velocity space, the relevant
physical quantity being the fult distribution functionf, (v, t).

The idea is then to deal with each component separately. figima Fokker-Planck operator given in Eq. (2) is
then transformed into system of two coupled equatiogsverning the two component§ T and T, respectively:

N; o(V
OS], = Tt ST -1,

ity |, = AnTaidy - (. 05Si) + 4nTai £ 15 T(v = 0). (18)

al

The above equations are written in the system of referersme@ted with the thermal ions.

System (18) describes the coupling between the supratheomgonent and the thermal one, the coupling func-
tion being~ fSTf;, which is subtracted from the equation on the supratheroraponent ST and appears as a source
term in the equation governing the thermal comporféntThe coupling function can actually be approximated for
each of the components of thedistribution function in two dierent ways, depending on the considered velocity
scale:

e From the suprathermal component point of view, we h&¥vEf; ~ n; f5T63(V) since thermal target ions appear
highly localized. The first Rosenbluth potentflassociated to thermal ions can then be approximated by its
temperature-vanishing form.



e From the point of view of the thermal component, we can casid "f; ~ £5T(0)f; since the suprathermal
component is almost constant on the thermal velocity sz}%tlél'he term~ f5T(0)f; appears as a source term
for the thermal component. It corresponds to a feeding bgtipeathermal component.

In Eq. (18), we have disregarded the process correspormanfeeding of the suprathermal component by the thermal
one, which could be the case if we modeled large angle amtissisuch as®"+ D — o+ DS, Such collisions would
build up a suprathermal component for spedleandT. This could be naturally included in the formalism that we
describe here, but this is a process of second order singadhability of large angle scatteringis1/In A times
smaller than the pitch-angle collisions modeled by the Eolanck operator.

3.3. Dijffusion part of the Fokker-Planck operator
We study now the féect of the second term on the right hand side of Eq. (2) coomdipg to a difusion in

velocity:
0 of
= - 4771"(,i—-(V2‘7'i-—Q). (19)

1,
ot

ai

75 is the second Rosenbluth potential associated to the theargat ions. The notatiok2( . ) stands for the Hessian
agﬁ( .). Let us define the field,;, representing the slowing-down curreniebuprathermal particles:

Joi == 4o VETi0f, )V, (20)
i

Using the Dirac-function approximation for the thermalgerdistribution functions, we can approximéateby its
temperature-vanishing fornT;(v) ~ —nv/(8r). The approximation is relevant from the suprathermal comemt
point of view. The HessiaR27; can then be calculated explicitly:

2 __ N (q_VeV
V27 87TV(Id > ) 1)

By taking advantage of a polar representation of the velatit vg,, where €, &) is the polar local basis of velocity
space, the Hessian (21) simplifies to:

2 M
VoTi Py & ®E. (22)

The slowing down current defined in Eq. (20) expresses thesgion in velocity associated to the slowing-down
process. It is essentially transverse, that is, perpetatituthe local velocitw. Therefore, one can write:

P Lo i af(t

~—_—

J(yi 2 2 06 é? (23)

The difusive slowing-down current is thus highly anisotropic idogéty space and it intensifies asparticles ap-
proaches the thermal bulk region of velocity space. Qualély, the collisional relaxation ak-particles on thermal
target ions is thus characterized by:

e apure advection in velocity space at a constant rate, motgl&q. (14), which tends to accumulatgarticles
in the thermal ion velocity region.

¢ An anisotropic difusion in velocity space, expressed by Eq. (23), which temdsake the distribution isotropic
when slowed-dowr-particles get closer to the final stage of thermalization.

4. Algorithmsfor the transport and collisional relaxation of fast fusion products

In this section, we present the numerical methods develtipsalve Eq. (1) and Eq. (18). Those equations govern
the time evolution of suprathermatparticles. Firstly, we show how to deal with the two-comeonnature of the
«a distribution function. We then develop a finite volume agmio to discretize the equation on thesuprathermal
component. An iicient explicit algorithm is then applied to model the timeletion of the suprathermal component
with relatively low computational time. We finally preserdvinto simulate accurately the complete thermalization
process ofv-particles.



4.1. Co-existence of two velocity grids

The two-component nature of thedistribution function naturally leads to the co-existen€éno velocity grids,
namely:

e A suprathermal grid, designed to represent the evolutidh@suprathermal component of thelistribution
function f>T. It covers a large domain in velocity, extending to the ramge v, ~ 1.3 10° cnys, which is
the velocity corresponding to the particles created by fusion reactions. Moreover, sincestimathermal
component varies smoothly, we can use a relatively coaidg@discretize it. f>T varies significantly on a
velocity scaleS T > v}“, so that the suprathermal grid resolution is typically & ¢nder of one thermal velocity
v

e A thermal grid, on which the thermal component of theistribution f| is discretized. This grid is designed
to capture the final stage of collisional relaxation of the@dt-thermalized component of thalistribution on
the other thermal ion species D and T. This process entaifdaeity resolution much smaller than the local
thermal velocity scale!. The thermal grid makes use of a cylindrical parametrizafip, v, ) inherited from
the code Pion[7].

>

vt~ \/Ti/m;

Figure 2: Schematic representation of the two velocitygtided to model the suprathermal and thermal compo-
nents respectively. The suprathermal component evolvéiseocoarse polar grid, covering a wide domain extending
to the MeV region. The thick shell of width T; corresponds to the source term due to fusion reactions.hEmmal
componentevolves on the small and refined cylindrical @imth meshes are centered on the mean local bulk velocity
Vo ~ Ve ~ V. Velocity space is characterized by an axial symmetry addha axisv;.

The two grids that are shown in figure 2 are centered on thé oean bulk velocityVo(r), which is close to the
mean electron velocitye(r). By using two grids specially-tailored to capture the a&tions of each component, it is
possible to build anféicient algorithm modeling the two components of thdistribution.

4.2. Dimensionless form of the Vlasov-Fokker-Planck @qnat

For numerical purposes, we write the Vlasov-Fokker Plamglagion governing the evolution of the suprathermal
component of ther distribution functionf3T in a dimensionless form, based on a specified unit systenm give
Table 1. It is chosen to manipulate numbers that are closaitg. uThis prevents computational errors caused by
under or overflow floating numbers. As it was shown in Eq. (88),collision term between suprathermaparticles
and ions takes a simple form expressed in polar coordinalé®& slowing down currents are co-linear with the
local polar basis vecto®&, & of velocity space. In the spherical one-dimensional geoneinsidered here, it thus
seems natural to parametrize the suprathermal distribditioction asf>T(r,v, 6, 1), with two velocity components



V=vcosd& + vsing&,. Then, the dimensionless equation governifig reads:

fST ST fST — fST
9 vcos@a +%cosea¢zzr<ﬂ.[n' (Aa STg, + 101, ég)}
i

ot o A, v "oV A 2 660

14 d A, S(V—Vn)

= V- ) ST+ Te 0 st AT i ==~ £5TET 4+ Rp 0= 24
te—a |V %) AoV ] ; o gl i+ Ror (R (24)

where the normalized constaﬁ;i = (4nZ§Z§/Ai2) In A, and the &ective electrostatic field; applied to ions of

species is defined by the following expression:

= —(Zi/Te) 0P/ dr. (25)
Here A andPe are the dimensionless electron density and pressure ctasgyg and

_ 3VAA,TS?
.

26 V2Z2n,In Age
is the dimensionless electron-ion collision time.

Table 1: Units defined from reference values of the partielesityn, and particle thermal energi.

Quantity Unit

density np (arbitrary reference value)
thermal energy To (arbitrary reference value)
time 70 = T3*my? /4netno

length Ao = (To/mp)l/zro T2 /4netng
velocity Vo = (To/mp)Y/2 = Ao/ro

distribution function fo = no/V3

first Rosenbluth pot. So = ng/Vo

second Rosenbluth pot. 75 = npvp

electric field €) Eo=my %//lo = mp/lo/ro
heat flux Qo = noTy/?/my?

Let us consider the third term on the right hand side of (24dnithe point of view of suprathermatparticles,
it can be approximated by:

Z 471'1"(,, A" 57 ~ 4n Z n,. — £ Tnis>(9), (26)

supposing that > v}h,Vo. The term (26) is thus highly peaked with respect to veloititthe thermal component
region and leads to the formation of a thermalized condenbat cannot be described on the coarse suprathermal
grid. That justifies our approach of subtracting this siagiwérm from (24), so that the variations &f " remain
everywhere smooth and may be described on the supratherichalge term (26) is then re-introduced afeading
termin the equation governing the thermal component, so thabtiggnal Fokker-Planck equation governing the
completex distribution functionf, = 5T + fT is recovered.

To solve the full Vlasov-Fokker-Planck equation (24), we tise same general splitting scheme as in the code
FPon, namely we treat the advection, the acceleration and tHesioolal stages separately. We describe now the
method developed to solve the collisional part of (24).
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4.3. Discretization of the collisional term
The collisional part of (24) can be written as:

6fsl
ot

190 9
coII:$5_V( )+ Senaas 50 Y)- @27)

where the polar components of the slowing down curdearte given by:

1 Teof>T
v _ fST v r A(y n; e 2
J [0 ( + (YIA| 2 +TeaAa 6V ( 8)
and (ST
10 ~ n 1T
I === T < 29
v 96 ( v +Te(,A(,,) (29)
The slowing-down currenf takes the general advectionfidision form in velocity space:
af
Jv) (Uv) (va Kv@) ov
=f + . (30)
o ov 66
(J Uo) KT KT L 101
v 40

where the components of the tensoendK are related to the Rosenbluth potentidland7™ (associated to the target
ion species) as follows:

oS *T d (10T
[UV] E [va Kve] W (9_\/ (\_/ %)
= and =
u’) |18 K& K% 8 (16T\ 10°T 10T
Vv 96 8_\/(\_/%) Va2 Vv

which reduces to:

W\ (V/Tew + iz : faini/vz KW KY _ Te/TeaPAo 0
(UG)_( ODT ) and (Kev K%)_( 0 Zi:D,TFaini/(ZV)). 1)

Note the simplifications implied by using a polar parametiian of velocity space: the dynamical friction ¢beient
dis indeed co-linear with the radial velocity basis vedpand the difusion tensor is diagonal in the basgisé;.

We then integrate (27) with respect to velocity on a giveh &él; of the polar suprathermal velocity grid, sub-
scriptsk and j referring to thed andv directions respectively (see figure 3).

The cell6Vy; is defined by its boundarigg_i, 6,1 andv;_s, vj,1, for 1 < k < kmaxand 1< j < jmax We
call f”J f3T(v = vj,0 = 6t = t,) the value of the suprathermal distribution function in ts#l 6V; at timet,.
Integrating Eq. (27) over the cell ar@¥s;, we obtain the following conservative discretized form:

1 H 6
fr ™ — i B 1 V50 Kj+1/2 VZ—l/ZJI\(Ij—l/Z 3vjov; SiNbi1/23¢, 1 ) = SINGk-1/23_4 5 (32)
At vf 263 263 S
where discrete elementary volumes are defined by:
oV} = vja+% - Vi%, Vi = Vi1 — Vi1, Ouk = COSGy, 3 — COSH_s.
The centered radial velocity; that appears in Eq. (32) is defined\gs= (vj+ J__)/2 In those notations, the
discrete volume of the cedVy; is given by :
. An
Vi = 27v2 sinfdvdd = —6vj35,uk.
Vi 3

11
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Figure 3: The suprathermal velocity grid.

Besides, a straightforward centeredielience and explicit discretization of the slowing-dowrrent leads to:

Uk1+1/2 Kk]+1/2

\klj+1/2 = (ka+1 ) (fk1+1 ) (33)
K% .

9 _ k+1/2j n n

Jr1y2) = —Vj69k+l/2(fk+lj - £ (34)

where the slowing-down cdéiécientu and the difusion codficientsK are explicitly given by (31) as functions of
velocity. The time varying cd&cients in (31) involving thermal ions and electrons are @atdd at the previous time
stept = t,,

4.4, A Locally Split Explicit scheme

4.4.1. Need for an explicit approach

The slowing-down and fliusion codicients given in Eq. (31) are thus very inhomogeneous in Vtylspace, be-
ing highly peaked in magnitude near the thermal componegitne Besides, the ffusion term is strongly anisotropic
(essentially transverse) outside of the thermal compamgndn. In such a situation, the usual implicit schemes may
involve the solution of a very large and ill-conditioneddar system that will only give an approximated solution of
the non-stationary problem. In this section, we demorsstrat it is possible to take advantage of the strong inhomo-
geneity of the slowing down current to build afiieient and simple explicit scheme that describes the ndiestay
a distribution function time evolution naturally. This ajgach stems from ideas that were introduced in [21].

The Von Neumann stability condition for the scheme (32) i tlase of constant homogeneous slowing-down
codficientu and difusion tensoK reads as:

(ust)? < 2Tr(K) t < 6V2, (35)

whereév is the velocity mesh size. When the slowing-downfieentu and difusion tensoK are inhomogeneous
(which is the case for our problem), we can apply (B®glly in each celloVy of the suprathermal polar velocity
grid. Besides, since the scheme (32) is bi-dimensional analnpetrized in polar coordinates, (35) actually leads to
two stability conditions, corresponding to the radial direnv and the angular directiof) respectively.

Treating these directions separately, the stability dimifor (32) can be written for a given celVj, as:

e in the radialv direction:

uist\?  2(K)st
(_) < <1

oV;j (5VJ2 (36)

12



¢ in the angulap direction:
2(K§%)st

2 502
V2662

(37)

Note that the slowing-down cfiecientu as well as the diusion tensoK given in (31) depend only on

The idea is then to use the explicit scheme (32) with the lfiabbnditions (36) and (37) applidadcally in each
cell of the suprathermal grid. Indeed, the discrete sche8 ¢orresponds to the finite volume formulation of a
conservation equation where the time evolution of ¢hdistribution function defined at the mesh centers is driven
by the diterence between the numerical fluxes calculated at the baesd& he fluxes depend on the value of the
distribution function in the neighboring cells. If the flixare applied during a time steyh which is too large with
respect to the absolute values of the fields in the neighbaetis, numerical instabilities occur. The idea is then to
apply fluxes during dimited time stepAt’, possibly smaller than the imposed time step The time intervalAt’ is
chosen such that the variation of the fields in the neighlgarells remain below their initial absolute values. Fluxes
and fields are updated consistently at the frequ%?ti}cymtil the imposed time stefit is reached.

4.4.2. Stability and positivity

These conditions impose the stability of the explicit sch€B2), but not necessarily its positivity. Indeed, we have
noticed that applying the explicit scheme (32) with the #itglconditions (36) and (37) may lead to negative values
of 3T and thus lead to the development of numerical instabilifiéss is especially true in the velocity region where
the slowing-down coicientu is large, which may occur for example in the suprathermabrewherea-particles
are created.

A possible remedy is to introduce an "adaptative de-cemgéiin the discretization of the radial slowing-down
current. We then go back to Eq. (33) and introduce the paemigtsuch as:

w
Kkj+1/2

(fjor = fij)- (38)

The choicey; = 0 leads to the centered scheme (33), whjle= 1 leads to a pure upwind scheme. The decentering
defined in (38) may also be seen as a perturbation of the dizmledifusion term. Indeed, Eq. 38 can be written in
the following form:

1
‘]I\</j+1/2 = §U¥j+1/z [(1 - Ui)fknj+1 +(1+ Ui)fknj] - SViri2

fn _ fn
—w kji+l T Kj
JI\<Ij+l/2 - Eu\l:jJrl/Z( fl?j"’l + fl?J') - KWW. =

The stability condition (36) applied with the modified ¢oeient difusion KW = Kijiay2 + %u}:jﬂ/zmévm/g instead
of the originalK"¥ defined in (31) leads to the stability condition:

1 Y 2 w 1 Y ot w \2
S lUkje12 0t < Kifhajo + SUGea2i0Visrz and — (ZKkj+1/2 + Ukj+1/2771'5Vj+1/2) <l
j+1/2

Besides the positivity condition written in the case of aitiahfield f> T localized in one velocity cell leads to:
KVV 1 \" 0 d 1 2KVV 1 \'A \"
kiet/2 ¥ S5Uey2M0Vis2 2 0 and <o | 2Ky + SUgj oiOVjsy/2) 2 IUja/2l-
OVj+1/2

The minimal value ofi,n ensuring positivity is thus:

Ugjer/olli = max{O, Uk 12l — 2K|\</}I+1/2/5VJ'+1/2}~ (40)

To ensure stability as well as positivity, we calculate theial flux with respect to (39) with; given by (40) in each
velocity cell. Actually, this amounts to using the schem®) (8ith the radial difusion codficientK"¥ replaced by:

KW = maxK", |u¥|ov/2} (412)

and apply the conditions (36). Note that in (36), the conditmposed on the slowing-down d&eient|u,|ot < oV is
automatically fulfilled as soon as the one imposed on the {fieddl diffusion codficientK" is satisfied.

13



4.5. Applying the stability condition locally

We describe now the accurate implementation of the algarittamed_ocally Sub-cycled Expliclt SE algorithm
that solves the problem of collisional relaxationaeBuprathermal particles. The idea is to apply the explidiesne
(32) with the stability conditions (36) and (37) appliedally in each cell of the suprathermal grid.

Knowing the values of the distribution functio‘;‘lk in any cell of the suprathermal velocity at time t,, we apply
the following strategy:

First step — Local time steps calculation
For each celbVj of the suprathermal velocity grid, we calculateeal time stepAtjc such that the stability conditions
in the d andv directions (37) are fulfilled. To findtj, the global time step, namelyt, is halved until (37) and (36)
are satisfied. The local time steyy is then:

Atj = min(At,, Ath), (42)

where: _
At = 2P, (43)

and .
Aty = 27"PliAt, (44)

nsplil‘j*k (resp. nspli}K) is the number of times the global time step has to be halvédfit the stability condition in
thed (resp.v) direction.

Second step — Sorting the cells
Then, the cells of the suprathermal velocity grid are sontitd respect to their local time stejtj calculated above.
This can for instance be done with afigient algorithm (e. g., 'Heapsort’ [22]), which takes on tireler of NIn N
operations for each time step whéiés the number of cells of the suprathermal velocity grid.sTdorting stage then
allows cells to be visited by the algorithm only when theyuatly need to be updated, and is thus an essential step for
an computationallyféicient algorithm, as shown in ref.[21].

Third step — Sub-cycling
Each cell has to be advanced in both directioradé over a timeAt with respect to itdocal time-stepAtj, this
procedure ensuring stability. We thus have to perfosulacyclingor each cell. The #ective computation proceeds
through a loop over the smallest local time-step. Insidddbp, the fields (evaluated at the center of the cell) and the
flux (evaluated at the borders) are updated consistentlytivit local time step of the considered cell. More precisely,
we perform the following iterations:

=18 Bvjov; SiNBkiaadty o) — SiNGk 123y 1 Vi%‘]:i% ~Vi123

At 26v]3 Otk V_]2 26VJ3

; (45)

where the superscrigtrefers to the sub-cycled iterations. The sub-cycling staith fkpj:° = f,fj and ends aftep’j}f*X
iterations wheret = p®At;.. During the process, the quJﬁJrl/2j (resp.Jy;,4,,) defined in (34) (resp.(39) and (40)),
are updated with a frequency corresponding/mitﬁK (resp. ][At‘j’k). For more details on the sub-cycling method, we
refer to [21]. This strategy guarantees stability and positeverywhere on the suprathermal velocity grid.

By applying the local sub-cycling described above, we ate &ibtreat the collisional part of the Vlasov-Fokker-
Planck equation governing the suprathermal componenteat tthistribution function using a tractable explicit ap-
proach that does not lead to prohibitive computational time

To illustrate the #iciency of the LSE algorithm, we present in figure 4 the map pfit‘f§ and nspli]‘k defined in
(43) and (44) on the suprathermal velocity grid. We condiderlocations corresponding to the hot spot and the dense
shell of a typical imploding capsule taken 1 ns before stignaWe note that the sub-cycling is more expensive in
the dense shell region than in the hot spot. Indeed, the heghkity and low temperature of the shell imply smaller
time step.

Furthermore, considering the maps of n§plitapresented at the bottom of figure 4, we note that to advdmece t
fields in 6, we mainly have to sub-cycle the most central cells, wheeeldbal time step imposed by the stability
condition is the smallest since the local cell siz&) is small close to the center. For the outermost velocityscelb
sub-cycling is actually needed.
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Figure 4: Map ohsplit’ (top) andnsplif’ (bottom) represented in the suprathermal velocity grid lacations. On
the left, we consider a point in the hot spot whemg~ 10°* cm2 andT; ~ Te ~ 0.5 keV. On the right, we focus on
a point taken in the dense shell wherg: ~ 10?4 cm2 andT; ~ Te ~ 0.01 keV. Those conditions correspond to a
typical implosion 1 ns before stagnation. Illustrations given for a global time stept = 0.1 ps
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Figure 5: Central mesh of the suprathermal velocity grid

4.6. Coupling with the thermal component

We now discuss the implementation of the coupling strategfyeen the suprathermal and the thermal compo-
nents, as described by system (18) in Sec. 3.2.

4.6.1. From the suprathermal point of view

From the point of view of suprathermaiparticles, the coupling with the thermal component is magthe third
term in Eq. (26) on the right-hand side of (24). It inducesmaetivariation of the suprathermal distribution given by
the following equation:

fST

ot

- Z 4an,. A fS Z 4an,. il fSTn 103(V). (46)

ST-T
The time evolution of the suprathemal distribution funatio central velocity meshes is then governed by:
ofst

ot

Zv_lza%( )+ 9569( ing J°) - Zrmﬂff.‘;(‘z’), (47)

coll

where the slowing-down curreni$ andJ? are given by Eq.(28) and Eq.(29) respectively. As slowedrdevparticles
approach the thermal velocity region, the transverfasion current)? intensifies so that the distribution function is
almost isotropic in the central velocity meshes. Eq.(4mypdifies to:

fst
66_;:[ Z rm _ fST | 6(\/) s (48)

coll V2 5V

where the slowing-down curred} can be approximated by:
Aa N NigsT
(ll A| 2 a

We then integrate Eq.(48) over a central megk (1, 1 < k < kmay) Of the suprathermal velocity. The suprathermal
componentin the central meshes correspondirjgtd are then calculated as follows (see Fig.5):

V=T,

fn+l __fn

\/3
3/2 =
% 3 - Z nirai(fkng/z - f) (49)

In such a way, the distribution function remains stable entiost central part of the suprathermal velocity grid.
16



4.6.2. From the thermal point of view

To recover the full Fokker-Planck equation on the physicdistribution functionf, = fT + f>T, we define anr
thermal component!, which evolves on the thermal velocity grid defined aboveis Thalso the grid on which the
thermal ionD, T distribution functions evolve. This grid is actually inited from the code HBn, so that we use the
same cylindrical parametrization as explained in [7] fa dnthermal componentf (r,v;,v,), v, andv, being the
radial and tangential components of the velocity, respelsti

The term (26) subtracted from the suprathermal componardteEm reappears assaurce termn the Vlasov-
Fokker-Planck equation governing the thermal componerthefr distribution functionf!, so that the relaxed
suprathermal component feeds the thermal one andpwoticle is lost in the process:

ofT At v aff  afT\ & of] 08, of]
at Var T (VL v VT avl) A, v 24”r”' v ( o 5 v
19 A
— 9 (@-a)fT + 4T g 5T,
g (T )+ D (50)

The source term coming from the slowing down of the supratlaéicomponent appears in the last term on the
right-hand side of (50). From the point of view of the therroaiponent, the suprathermal componght appears
relatively constant over the whole thermal velocity gritcs it varies significantly on the coarse suprathermal vigloc
grid whose mesh size is of the order of the thermal velocitatis why we use the following estimate:

Z AnT i /:‘: ST ~ £5T(Vp) Z 47T i % fi, (51)

Vo being the mean ion velocity. This procedures guaranteegact mass conservation: the number of particles
that are removed form the suprathermal component are @tjécto the thermal component. Note that the source term
feeding thex thermal component depends on the thermal distributiontioms of all thermal ion species. To solve
(50), we use algorithms inherited from the codedsPTheir numerical implementation are for example discugsed

[71.

4.7. Transport and acceleration of the suprathermal congodn
We discuss in this section the algorithm developed to sdlgéAasov part of Eq. (24)), namely:

ST <t
b +V-V £5T 4 Ea afST_o

at A(t v a (52)

We deal with the advection and acceleration separately.

4.7.1. Advection
In this stage, we solve the pure advection equation on thexsthgrmal componerff " for a given velocity:

afST o
a“t +V-V, 3T =0, (53)
whose exact solution is given by:
£37(P, V.t + At) = £37(P - VALV, t). (54)

Thus, solving (53) amounts to interpolating (54) on the whathase space. We thus start with a given paint §)

of the phase space, 8 being chosen on the polar suprathermal velocity grid. We tacompute the transformation
of the suprathermal phase space coordingte® during one time stept. Since the suprathermal velocity grid is
centered on the mean bulk velocWy, we firstly project the polar velocity coordinates on thdmgtical basis:

Vi = Vg + VCOSH, vV, = Vvsiné. (55)
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Then, we apply the following transformations g, v, over one time stept:

r(tv (t) — V2At
r(t—At) °

r(v. (t)

vi(t-ay = r(t- AY)’

r(t-AD) = [r(® - 2w AL+ AR] ™, vt - A = (56)
which gives us the advected point in phase space. For thgpaiétion in space, we have to find the two consecutive
nodesr;, andr;,.1 of the spatial mesh such thaf < r(t — At) < ri,x1. Then, for each spatial nagl, (respectively
ri,+1), we have to carry out an interpolation of (56) on the polgrathermal velocity grid centered on the local mean
bulk velocity Vo(ri,) (respectivelyo(ri,+1)). We thus calculate:

1 Vr(t—At)

, Ot-At)=cos —— (57)

1/2
] v(t— At)’

V(t — At) = [(vr(t = At) = Vo(ri))? + VA (t - At)

fori = ip andi = ig + 1. We then interpolate (57) on the nodes of the supratheratatity grid centered oly(r;),
using a simple linear interpolation method. This gives @sativected points:
fi, = T3 T(ri,, V(t — AL), O(t — At), t — At),  fie1 = £5T(ripea, V(t — AL), 6(t — At), t — At). (58)
The final stage is a cubic interpolation with respect to space
£2T(r(t — A, v(t — At), 6(t — At), t — At) = fi, + porf; + p?[35f —or(2f + f/ )] + pP[ox(f, + f. ;) — 26f]

with or = rigs1 — i, P = r(t—At)/or, of = fis1 — fi,. In this equation, the spatial gradierfisand f/ , are
evaluated by finite dierences. The slopes are limited to prevent unphysicaljuweéershoots in the interpolation
process.

4.7.2. Acceleration
The electric field &ect on thex suprathermal component is modeled by:

ST &, 0fST

where the fective electrostatic field, is defined by Eqg. (25). Here again, we use a method of chaistaterto solve
(59) since an acceleration can be seen as an advection tityelthe situation gets simpler here, since we only have
to carry out an interpolation in velocity on the suprathdragdocity grid. The process is repeated independently in
each spatial cell.

4.8. Chain of algorithms to solve the suprathermal Vlasolker-Planck problem

We conclude this section by summarizing the sequence ofitigts that have been developed to solve the whole
problem of creation, transport and collisional relaxatidrax suprathermal particles, consistently with a ion-kinetic
treatment of the plasma thermal bulk. In particular, we show the algorithms related to the suprathermal compo-
nents are linked with those dealing with electrons and tlaéram distribution functions. This constitutes the main
loop of our kinetic code &se. For a global time stept, we apply the following splitting sequence:

Step 1 — Electron conductivity
We solve the conduction part of (9), which takes the form ofieegitusion (or heat) equation during the timég/2.

Step 2 — Acceleration
We accelerate ion thermal distribution functions for sped, T, over the timeAt/2, and at the same time we solve
the convective part of (9), which enables us to improve tlerggnconservation between ions and electrons (see [6]).
Then, we accelerate the suprathermmabmponent.

Step 3 - Advection
We carry out the advection of thermal components for evansjmecies D, T¢ as well as the suprathermaktompo-
nent over the timet/2.

Step 4 — Feeding the suprathermal component
The suprathermat component is fed by the fusion reaction according to (6)iepgpiver the whole time steft.
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Step 5 — Suprathermal collisional relaxation
We next solve the collisional part of (24) applying the Ldg&plit Explicit (LSE) algorithm over the time stef.

Step 6 — Feeding the thermal component
We apply the feeding term (51) of thethermal component by the suprathermal one over the timeAdtep

Step 7 — Thermal collisional relaxation
We perform the collisional relaxation of every ion thermistdbution functions (for ion species D, &) on thermal
ions and on electrons, applying the same algorithms asiimzwFNote that the collisional relaxation of ion distribu-
tion functions on themselves is non-linear and is solvedgi§irank-Nicholson iterations with an ADI scheme (see
Appendix of [20]).

Step 8 — Advection
Step 3 is repeated for anothsty/2.

Step 9 — Acceleration
Step 2 is repeated for anothsty/ 2.

Step 10 — Electron conduction
Step 1 is repeated for anothsty/ 2.

After each modification of the ion distribution functione€¢tmal or suprathermal), the ion moments as well as the
slowing-down and dfusion codficients are updated consistently.

4.9. Validation of the code by test problems

In this section, we apply the algorithms developed to moldeldollisional relaxation and thermalization @f
particles in simplified configurations where analyticalesare known.

4.9.1. Isotropic time-dependent test problem

In this first test problem, we consider the collisional reléan of faste-particles in an homogeneous and steady
plasma made of one mean ion spedles= 1, A, = 2.5 and electrons. The reference densityiis= n, = 107
particlegcm®, and the temperature is 1 keV. We keep those conditions aoingtrring the test problem calculation.
Suprathermat particles are then injected isotropically at the energ2 848V at a steady rat§, (particles.cm?.s™?),
so that the suprathermal component remains isotropic guhie slowing down process. Following our two-scale
approach, the distribution functionf, (v,t) = f>T(v,t) + fT (v, v,,t) is the solution of:

sT _r Migest, 1 ST s70(v) | Sod(V—Vh)
HFT =T 503+ 50 (V1ST) - 4anly £ v
afy = of]| + oty |+ 4nTa fif3T(0). (60)

o fT +i (resp. o, faTL,e) corresponds to the collisional terms of the thermal ioesfr electrons) on thethermal
particles.
In those conditions, we have the characteristic velocityes; expressed in ¢m

VM~ 3.0x 10" << Ve~ 1.1x10° << v~ 1.3x 10° < V' ~ 4.2x 10° (61)

Forv > v (vc given in Eq. (10)), the slowing down af-particles is mainly due to the Coulomb collisions with
electrons. The suprathermal compong&ht(v, t) then tends to the stationary solution of:

1 Sod(V — Vo)
ST _ ST 0 0
at fQ = T(YeVZ (9\, (V3 fQ ) + W (62)
The stationary solution is given by:
() = 2L H (o - ),V Ve 63

wherev, is the velocity corresponding to the injecteeparticles at 3.52 MeV, which correspondswp~ 1.3 x 1¢°
cnys, andH is the Heaviside distribution. We pléf "(v, t) calculated by Esk at different times as well the stationary
analytical solution given by (63) (see Fig (6)). The num&rgolution agrees with (63) as longwas v.. Whenv < v,
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Figure 6: Time evolution of the distribution function corresponding to the isotropic tpsbblem. Distribution
functions are expressed in cgs units, namely intsn'. Thea source term is shut down afteg = 1 ns.

ions tend to dominate the slowing down of tagarticles and the suprathermal component solution of {&@)s to

a stationary state that is almost constant close to theonal iThis is due to the removal of the tesf> Tni63(V) in

the collision term governing the slowing down B ". The suprathermal component actually feeds the thermal one
the feeding process being driven by the source terfif '(v = 0)f. The thermal component subsequently evolves
towards a Maxwellian characterized by the total densityf « particles injected in the system, and the reference
temperatur@o (which is kept constant during the test problem calculation

3/2 2
—n (M _MeV
M (V) =n, ( 271T0) exp Ty (64)

The total density is given by:
n, = f Sodlt, (65)
0

75 being the time when the source is shut down. The convergeribe Gaussian (64) is represented on Fig (6). Note
that this convergence is calculated on the refined thernl §he« thermal component is fed by a source teent;,
of width ~ +/To/my, and relaxes on the thermal grid towards the Gaussian (6)dbhf ~ +/To/m,.

4.9.2. Anisotropic time-dependent test problem
We next consider the following anisotropic test problem. &vasider an initial condition for the suprathermal
component highly localized in velocity space. Namely, wiesta

6(v—Vo)

fST(v,0,t = 0) = n,
(07 ( ) 47TV2

6(cosd — costp), (66)

with vy, = 1.3 x 10%cnys andd, = n/4. We then let the suprathermaldistribution slow dow on electrons and on
thermal ions. As previously, the thermal plasma is homoges@and made of one ion specigs= 1, A; = 2.5 and
electrons. The temperature of the thermal plasma is kegtanhduring the calculation: we takg = 5 keV. In those
conditions, the characteristic velocity scales are (ifsym

Vini ~ 6.9x 10" << Ve ~ 24x 108 << v ~ 1.3x 10° < Vipe ~ 9.4 x 10° (67)

The evolution of thex distribution function is represented in Fig.7. As longasVv., the momentum and energy losses
by the fast ions to the background plasma electrons are thédot process. The distribution function remains highly
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localized in velocity space around a velooify(t) that declines due to the slowing down on electrons. Thecitylof
the bulkvy(t) can be calculated analytically [25]:

V() = [02 +13) exp—f—te VIE (68)

The comparison between the code and the exact solutionrisseqted on Fig.8 and reveals a pretty good agreement,
aslongay > v.. Then, ay < v, the energy dfusion process as well as the perpendiculfitdion due to the thermal
ions become significant. Thedistribution function is scattered in tléedirection, due to the diusion on the thermal
ions, that intensifies as — 0. Consequently, as — 0, thea suprathermal distribution tends to become isotropic
while feeding the thermal component. Finally, the thernmehponent then converges towards the Gaussian, as in the
first test problem. To model properly what happens in thenitigiof the thermalization, fov ~ Vi", we solve the full
Coulomb operator applied to thethermal component! that evolves on the thermal refined grid. This guarantees a
proper modeling of the thermalization of thedistribution function, as it slows down, scatters anfiiugies in energy

in joining up with the background thermal ions.
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Figure 7: a suprathermal distribution solution of the anisotropid {@®blem at diferent times. Final stages of
collisional relaxation. The values of the distribution €tion are expressed in cgs units.

4.9.3. Energy conservation

We finally consider a full collision relaxation process,rstey from an isotropier suprathermal component that
slows down through collisions on the electrons and the taéfams. In this test problem, the electron (res. ion)
temperatures evolve consistently with the slowing downhef suprathermal particles. More preciselyyvas v,
suprathermal particles slow down essentially on electrdhg electron temperature thus increases. Then, due to the
collisional relaxation of thermal ions with electrons, thermal ion temperature increases. When the suprathermal
particles reach the thermal velocity region, théhermal component builds up and a collisional relaxatiotwben
electrons and thermal ions (including thehermal component) brings the system to a stationary sfdte.aim of
this test problem is to illustrate that the way we solve thepting between the suprathermal component and the
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Figure 8: Time evolution of the velocity corresponding te thaximum of thex suprathermal distribution function
solution corresponding to the anisotropic test problem.

thermal background ensures the conservation of mass amgyen#e check that the total mass remains constant
(with a numerical error less than 1% due to the finite size efublocity mesh). We plot the time evolution of the
temperatures (electrons, thermal background ionsaatidermal component) on Fig.(9). We show how the system
evolves naturally to a stationary state calculated by tgerihm described above. The total energy variation of the
system between the initial state and the final stationatg s&dess than 1%.

s-" -- Electrons
7|— Thermal ions -
! |s-o o (thermal) component

©
T

Temperature (keV)

. | . [ | . | . | .
0 5 10 15 20 25 30
Time (ns)

Figure 9: Time evolution of electron and thermal ion temp@es corresponding to a pure collisional relaxation test
problem.

Our original algorithm based on a 2-scale approach to mddekbllisional relaxation between suprathermal
particles and the thermal background is thus validatedrpkiied test problems where exact results are known.
Besides, the mass and energy conservation principles litkedlat a discrete level. We can consider that our code
Fusk is reliable. We then apply it on real target configurations.

5. Application on theignition and thermonuclear burn of typical | CF capsules

We apply the numerical scheme presented in Sec. 4 to modpicatgpherical implosion of a cryogenic DT cap-
sule. Our code allows us to study ion-kinetifieets during the ignition stage and the beginning of the tlhaunlear
burn stage.

5.1. Initial conditions

We consider the same fluid reference simulation as in [6psponding to an ICF target with parameters typical of
ignition capsules designed for the LMJ and NIF laser [23][@4d. Namely, we consider a 0.3 mg cryogenic DT layer
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deposited on the inner surface of a CH shell of a 1 mm (inneliusa The kinetic calculation is startedtat 17 ns
after the beginning of the implosion, when the main convegghock reaches the center of the target. The boundary
condition is taken from the hydrodynamic simulation. Theglges, temperatures and velocities are recorded on the
fuel/pusher interface in the fluid simulation.

The kinetic simulation considers three ion species, narbely andea. Initially, only thermal species D and T
are present. They give birth to suprathermaglarticles in the fusion reactions. The relaxation of theratiermaly
component then leads to the creation ofaathermal component interacting with the other thermal icstriiution
functions (D and T, respectively). Note that the thermakhsildescribed in more details than in [6] where a single
mean ion species with a mass number of 2.5 was considered.

In our kinetic simulation, the position of each spatial messlis updated after each time step with respect to
the imposed boundary condition and to the fixed number ofapaeshesax. This updating is performed before
each advection phase. This means that the position of a gpatml cellr;,, with 1 < iy < imax iS time dependent,
decreasing with the size of the imploding system. To reprtgea satisfactory manner both the dense region where the
fluid simulation grid is the finest and the central zone wheigerather coarse, we employ 78 cells with a geometrically
varying mesh size (with the ratio 0.97) so that the mesh®&iig decreasing from 2@m near the center to less than
one micron near the outer boundary. The thermal velocitgesfa, v, ) is discretized into 129 64 cells, whereas the
suprathermal velocity grid/(6) makes use of 108 60 cells. The reference time-step value is 0.05 ps.

5.2. Comparison witlreron and FCI1

To validate the thermal part of our codesk, we compare the density, velocity and temperature profiléstive
hydrodynamic code FCI1 as well as with the kinetic codekRt two diferent times of the implosion:

e att = 17.1 ns, that is to say 100 ps after the beginning of the implosi¥e find a pretty good agreement
between the & kinetic calculation and the FCI1 fluid simulation (Fig.10yhe kinetic modeling reveals
a significant anisotropy on the ion temperatures (and presguas the one observed withi6#®[6]. The
anisotropy then tends to disappear during the implosion.

e Att = 1765 ns, in the vicinity of the target stagnatiorysk and FCI1 are still in good agreement. However,
we note that the compression zone near the inner interfate alense fuel lies closer to the target center in the
kinetic calculation (see the negative velocity gradiegtar about r= 70 um on the right part of Fig.11). This
result has already been obtained withdaRand discussed in [6]. This is related to a higher ion heat filnich
tends to increase the rate of ablation of the cold fuel by titespot.

As long ast < 17.65 ns, thew-particles number is small, so that the above comparisomesles the codesdse and
Feion (which does not take-particles into account) are relevant and tend to validegeriethods programmed inds
regarding the thermal background (thermal ions and elesjro

5.3. Transport ofr particles

We analyze the transport of suprathermagdarticles throughout the capsule. Figure 12 shows theamhnsity
profiles during the implosion for the suprathermal and tredrromponents of-particles. At early times, suprather-
mal a-particles are produced in the hot central region of the wapand deposit their energy in the surrounding
cold shell. The region corresponding to the supratheen@hergy deposition is indicated by a sharp decreasing of
the suprathermal density profile. This occurs at a distarfdehwcorresponds to the collisional mean free path of
suprathermak particles. Meanwhile, the slowing down of suprathermphrticles feeds the thermal component, that
process corresponding to the bump observed in the thermahsity profiles (Figure 12-right).

During the implosion process, thecollisional mean free path decreases, so thattlseiprathermal particles
are trapped in a smaller radius. In the mean time, the pramuof suprathermadk-particles intensifies due to the
increasing ion temperature. As a result, the suprathezrdahsity increases.
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Figure 11: Profiles of the density, velocity and of the eleeiand total ion temperatures in a DT ignition target at the

timet = 17.65 ns, which corresponds to 650 ps after the beginning of ifetik calculation. This time is also just
before the target stagnation.

5.4. Collisional relaxation of suprathermalparticles
5.4.1. Anisotropy in the suprathermal region

In this section, we focus on the collisional relaxation of suprathermak component. We consider a given
spatial cell with the numbelp that evolves in spacezﬂuring implosion. The distributiondtion of a-particles
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simulation takes into account the creation, the transpuatthe collisional relaxation af particles. The values of the
distribution function are expressed in cgs units. Timesnef beginning of the kinetic calculation.

£5T(ri, (1), v, 6, t) is presented in figure 13.

The suprathermal distribution function is rather anispicolt is highly peaked toward positive velocitigs> 0.
This can be explained by the inhomogeneous fusion reactiorcs term, which strongly depends on the ion local
temperature. Sincg is more peaked towards the center of the capsule, as it cazebdrsthe temperature profiles in
figure 10, an observer located outside of the highly emissivgral region sees the suprathermgdarticles passing
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from the center to the outside. That leads to a local dididbwshape shown in the top panel of figure 13. The spatial
gradient of the fusion reaction source term (6) thus aceofortthe anisotropy of the suprathermaalistribution
function.

Let us consider the ceilh with the radius such that, (t) = 1,(o(t)), wherea, is the collisional mean free path of
a suprathermat particle ang the mean density of the capsule. &gparticles deposit their energy in the considered
spatial cellig, which corresponds to the sequence shown in figure 13, thathigomalky distribution function slows
down significantly towards the thermal velocity region. Dgrthis slowing down process, the distribution function
tends to spread over a wider domain in the polar adgl€his is a consequence of thefdision part of the Fokker-
Planck equation, which leads to a mainly transverse slowimgn current that intensifies close to the thermal velocity
region.

To check that the collisional module of the code behavesctyrin a real target configuration, we artificially do
not calculate theféect of the advection and acceleration ondhguprathermal component, so that the time evolution
is driven by the collisions on electrons and thermal iong.ofilhe corresponding time evolution is represented in
Fig.14. This numerical test is closed the third test probfgasented in Sec.4.9.3, but is carried out in thermody-
namic conditions corresponding to real ICF target confitjoma The suprathermal particles are initially distritaite
anisotropically in velocity space with respect to Fig.lepdeft). Forv > v, ~ 3 - 4\/}“, fast ions mostly slow down
by collisional drag on the background electrons with vettyelipitch-angle scattering. The fast ions stay mostly in
their original pitch-angle direction. Far < v, the suprathermal particles slow-down predominantly enttiermal
background ions and scatter in pitch-angle. The suprathledistribution function tends to be isotropic as it ap-
proaches the thermal velocity region. The suprathermdlmgsolution is fine enough to represent the variations of
the suprathermal component, that tends to be constant essitigser to the thermal velocity region.
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Figure 14: a suprathermal distribution observed in a given mesh of th@adding hot spot at dierent times, when
only the collisional relaxation is considered, startingnfra given anisotropic initial state. Times refer to begigni
of the kinetic calculation.
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5.4.2. Feeding the thermal component

When the slowed down suprathermaparticles reach the thermal velocity region, a fractioregfarticles is
removed from the suprathermal component, to feed the tHexamaponent according to Eq. (50). The sequences
represented in figures 13- 14 illustrates this coupling fleesuprathermal component point of view. The distribution
function remains stable, while the particles are accurmgan the vicinity of the thermal region. Without the rembva
of the term (26) on the right hand side of Eq. (24), the sugratial distribution function would have become unstable
asv — Vp. The evolution of the thermal component of tagarticle distribution function represented in figure 15. |
shows how the thermal component builds up.
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Figure 15: Thermal component of thedistribution function observed in a given cell of the impiogl hot spot at
different times. This componentis fed by the relaxation of thgathermal component. The values of the distribution
function are expressed in the units presented in table leJ@fer to beginning of the kinetic calculation.

5.5. Ignition and burning wave propagation

We finally give the density, velocity and temperature preafit@lculated by &t and compare the results with
the fluid code at the timé = 17.85 ns (Fig.16) . After that time, corresponding to the atrdfathe flame near
the outermost cells, the kinetic simulation may not be @h\since the boundary condition (which comes from
the hydrodynamic calculation) may not be consistent withghessure calculated by the kinetic code. In the kinetic
calculation, the heating of the hot spot appears to be fiserin the fluid code. This is consistent with th&eliences
observed during the implosion phase, where the dense zomsponding to the ablated cold fuel was imploding faster
in the kinetic calculation. Besides, the kinetic ion tengtere profile displays a preheating wave ahead of the main
temperature front. This is specially visible on the ion temgture profiles of (Fig.16). This structure is related ® th
Bragg peak of the D, T ions located in the dense cold fuel cBlaprathermak-particles are created mainly in the
central hot spot and deposit their energy and momentum heanmer interface of the cold fuel, where the thermal
ion heating occurs. This interpretation will be examinedendosely with future kinetic calculations offtirent
target designs (that may be lesE@ent than the one considered here). By applying thieient algorithm (based on
a 2-scale approach) exposed and validated in Sec.4 onmgel t@nfigurations (that could not be solved analytically)
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results.

the code Fsk is able to simulate the fuel of real ICF targets at a kinetiel®ver a time corresponding to 1 ns after
the start of the implosion. One thus models the ignition d&edteginning of the burning wave propagation. Besides,
by making use of a parallelization method of the collisiopeait of the code (which is possible since we can calculate
the dfect of collisions in each spatial cell independently from d¢ithers), it takes less than 1 day of computation time,
which is roughly twice as long as the usual simulations peréa by Fion (corresponding to the implosion phase

without a-particles).
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6. Summary and per spectives

We have developed a numerical strategy to modeldasarticles produced by fusion reactions at a ion kinetic
level. A two-scale approach has been specially-tailoragpoesent the two-component nature of éhdistribution
function and simulate the thermalization process acclyrate

Efficient algorithms have been designed to simulate the timkigeo of the fasta component, driven by the
transport in the inhomogeneous thermal plasma as well aSdabémb collisional relaxation on electrons and ions.
The energy and momentum exchange between fast fusion pgsodnd the thermal plasma are thus calculated at
the kinetic level. The methods have been tested in thernmadigconditions corresponding to typical DT targets
close to ignition. It has been shown that a locally split @ipscheme can be used to describe the dagbpulation
evolution in non-prohibitive computational time. Besidd® algorithms presented here are easily parallelizable t
take advantage of present-day multi-core architectures.

The ion-kinetic code &sk, built as an extension of the former codeidR is thus able to model a full DT target
implosion, including the ignition and burn processes, airakinetic level. Investigating in more details the role of
kinetic dfects of fusion products in the ignition and burn of DT targstthe purpose of ongoing work and will be
published elsewhere [26]. We may have in view to study implusin the vicinity of the ignition threshold, where
kinetic gfects should be enhanced and may modify the energy gain.

Finally, the algorithms developed here may be naturallgeaéd to add thefieect of Boltzmann-type large angle
scattering, that would feed a suprathermal component ®DtfT ions. Neutron momentum and energy deposition
may be modeled in a similar way.

Acknowledgments. The authors are grateful to Professors Xavier Blanc, JosSelrnier, Rémi Sentis and Gerald
Samba for fruitful discussions on the subject.
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