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For the whole class of linear term rewriting systems and for each integer k, we define k-bounded rewriting as a restriction of the usual notion of rewriting. We show that the problem of the existence of an infinite k-bounded derivation, called the k-bounded termination problem, is decidable. The k-bounded class (BO(k)) is, by definition, the set of linear systems for which every derivation can be replaced by a k-bounded derivation. In general, the k-bounded termination problem for BO(k) systems is not equivalent to the termination problem. This leads us to define more restricted classes for which those problems are equivalent: the classes BOLP(k) of k-bounded systems that have the length preservation property. By definition, a system is BOLP(k) if every derivation of length n can be replaced by a k-bounded derivation of length n. We define the class BOLP of bounded systems that have the length preservation property as the union of all the BOLP(k) classes. The class BOLP contains (strictly) several already known classes of systems: the inverse left-basic semi-Thue systems, the linear growing term rewriting systems, the inverse Linear-Finite-Path-Ordering systems, the strongly bottom-up systems.

Introduction

General context. A Term-Rewriting System (TRS in short) is said terminating when it does not admit any infinite derivation. Such a property is part of the definition of a complete TRS, which is a useful algebraic notion. This property is also pertinent for TRSs which are models of functional programs or any kind of computational process. The termination-problem is the problem to know whether a given TRS R is terminating or not. It is well-known that this problem is undecidable for general finite TRS ( [START_REF] Huet | On the uniform halting problem for term rewriting systems[END_REF]) and even for quite restricted subclasses of TRS (see [START_REF] Dauchet | Simulation of Turing machines by a regular rewrite rule[END_REF], [START_REF] Matiyasevich | Decision problems for semi-Thue systems with a few rules[END_REF] for example). Nevertheless, because of its importance, many techniques have been developed in order to prove termination of TRSs (see in particular [START_REF] Dershowitz | Rewrite Systems[END_REF],[9, section 1.3], [14, chap. 6]) or even to decide automatically termination, but for specific classes of TRS.

Contents. The present paper follows the last trend of research quoted above: 1-we show that termination is decidable for a particular strategy that we call bounded rewriting, 2-we deduce from this decision procedure that the usual termination problem is decidable for some classes of TRS.

We define a new rewriting strategy for linear systems called bounded rewriting. Let k ∈ N. Intuitively, a derivation is said to be k-bounded (bo(k)) if when a rewriting rule is applied, the parts of the substitution located at a depth greater than k are not used further in the derivation, i.e. do not match a left-handside of a rule applied further. A rewriting system R will be said to be k-bounded (bo(k)) if for any derivation s → * R t, there exists a k-bounded derivation s bo(k) → * R t. The class of k-bounded systems is denoted by BO(k), and the class of bounded systems BO is k∈N BO(k). A rewriting system will be said to bo(k)-terminates if there is no infinite bo(k)derivation. The main result of this paper is the decidability of the bo(k)-termination problem. This rewriting strategy is closely related to the bottom-up strategy introduced in [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF]: every bottom-up system is bounded, and for every bounded system, there is an equivalent system which is bottomup. Both strategies are defined using marking tools, but the definition of the bounded strategy is simpler and more intuitive. For every linear system (R, F) and every integer k, there is a system (R ′ , F) such that ∀n ∈ N,

→ n R =→ n R ′ and bo(k) •→ n R = bo(0) •→ n R ′ .
Thus, it is sufficient to prove that the bo(0)-termination problem is decidable to obtain the decidability of the bo(k)-termination problem, for k ∈ N. Following the idea developed for the bottom-up strategy, we use a ground rewriting system S ∪ A to simulate bo(0)-derivations. This construction is made in such a way that the existence of an infinite bo(0)-derivation in R is equivalent to the existence of an infinite derivation in S ∪ A. It follows from the decidability of the termination problem for ground systems that the bo(0)-termination problem is decidable. The system A has rules which allow to replace any subterm of a term t located at an internal node by a leaf labeled by the constant symbol #, and the system S consists of a set of rules of the form lσ → rσ where l → r ∈ R and σ is a substitution that maps variables to an element of

F 0 ∪ {#}. A bo(0)-step C[lσ] → C[rσ] in R is simulated in two steps : first, using A, we reduce C[lσ] to C[lσ ′ ]
where lσ ′ ∈ LHS(S), and then we apply the rule lσ ′ → rσ ′ ∈ S. We define a subclass of BO(k), the length preservation bottom-up class BOLP(k), for which the termination problem and the k-bounded termination problem are equivalent. A BO(k) system is BOLP(k) iff for every derivation s → * R t there is a bo(k) derivation of same length. The class of length preservation bounded system BOLP is k∈N BOLP(k). This class contains several already known systems: the inverse left-basic semi-Thue systems [START_REF] Sakarovitch | Syntaxe des langages de Chomsky, essai sur le determinisme[END_REF], the linear growing term rewriting systems [START_REF] Jacquemard | Decidable approximations of term rewriting systems[END_REF], the inverse Linear-Finite-Path-Overlapping systems [START_REF] Takai | Right-linear finite path overlapping term rewriting systems effectively preserve recognizability[END_REF], and the strongly bottom-up systems [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF].

Preliminaries

Words and Terms

The set N is the set of positive integers. A finite word over an alphabet A is a map u : [0, ℓ -1] → A, for some ℓ ∈ N. The integer ℓ is the length of the word u and is denoted by |u|. The set of words over A is denoted by A * and endowed with the usual concatenation operation u, v ∈ A * → u • v ∈ A * . The empty word is denoted by ε. A word u is a prefix of a word v iff there exists some w ∈ A * such that v = u • w. We denote by u v the fact that u is a prefix of v. Assuming a total order on A, we denote by Lex the lexicographic order on words.

We assume the reader familiar with terms. We call signature a set F of symbols with fixed arity ar : F → N. The subset of symbols of arity m is denoted by F m . As usual, a set P ⊆ N * is called a tree-domain (or, domain, for short) iff for every u ∈ N * , i ∈ N:

(u • i ∈ P ⇒ u ∈ P ) & (u • (i + 1) ∈ P ⇒ u • i ∈ P ).
We call P ′ ⊆ P a subdomain of P iff, P ′ is a domain and, for every u ∈ P, i ∈ N:

(u • i ∈ P ′ & u • (i + 1) ∈ P ) ⇒ u • (i + 1) ∈ P ′ .
A (first-order) term on a signature F is a partial map t : N * → F whose domain is a non-empty tree-domain and which respects the arities. We denote by T (F, V) the set of first-order terms built upon the signature F ∪ V, where F is a finite signature and V is a denumerable set of variables of arity 0.

The domain of t is also called its set of positions and denoted by Pos(t). The set of variables of t is denoted by Var(t). The root symbol of t, t( ) is also denoted by root(t). The set of variable positions (resp. non variable positions) of a term t is denoted by Pos V (t) (resp. Pos V (t)). The set of leaves of t is the set of positions u ∈ Pos(t) such that u • N ∩ Pos(t) = ∅. It is denoted by Lv(t). We write Pos + (t) for Pos(t)\{ }. Given v ∈ Pos + (t), its father fth(v) is the position u such that v = u • w and |w| = 1. Given a term t and u ∈ Pos(t) the subterm of t at u is denoted by t/u and defined by Pos(t/u) = {w | u • w ∈ Pos(t)} and ∀w ∈ Pos(t/u), t/u(w) = t(u • w). A term which does not contain twice the same variable is called linear. Given a linear term t ∈ T (F, V), x ∈ Var(t), we shall denote by pos(t, x) the position of x in t. The depth of a term t is inductively defined by:

• dpt(t) := 0 if t ∈ V, • dpt(t) := 1 if t ∈ F 0 , • dpt(t) := 1 + max({dpt(t/i )), i ∈ {0 , ..., n}}) if root(t) ∈ F n .
A term containing no variable is called ground. The set of ground terms is T (F). Among all the variables, there is a special one . A term containing exactly one occurrence of is called a context. A context is usually denoted as

C[]. If v is the position of in C[], C[t]
denotes the term C[] where t has been substituted at position v. We also denote by C[] v such a context and by C[t] v the result of the substitution. We denote by |t| := Card(Pos(t)) the size of a term t. A substitution σ is a mapping from V to T (F, V). The substitution σ extends uniquely to a morphism σ : T (F, V) → T (F, V), where σ(f (t 1 , ..., t n )) = f (σ(t 1 ), ..., σ(t n )), for each f ∈ F, t i ∈ T (F, V). Let t be a linear term and Pos V (t) = {u 1 , ..., u n }, where the u i are given in lexicographic order. The term t is said to be standardized if for all i, 1 ≤ i ≤ n, t/u i = x i .

Term rewriting systems

A rewrite rule built upon the signature F is a pair l → r of terms in T (F, V) which satisfies Var(r) ⊆ Var(l). We call l (resp. r) the left-handside (resp. right-handside) of the rule (lhs and rhs for short). A rule is linear if both its left and right-handsides are linear. A rule is left-linear if its left-handside is linear. Given a set of rules R, we denote by LHS(R) the set {l |l → r ∈ R}. A term rewriting system (system for short) is a pair (R, F) where F is a signature and R a set of rewrite rules built upon the signature F such that LHS(R) ∩ V = ∅. When F is clear from the context or contains exactly the symbols of R, we may omit F and write simply R. Given a rewriting system (R, F), and two terms t 1 , t 2 , we say that there exists a R-rewriting step between t 1 and t 2 in R and write t 1 → R t 2 if there exists a context C[], a rule l → r ∈ R, and a substitution σ such that t 1 = C[lσ] and t 2 = C[rσ]. The term lσ is called a redex of t 1 , and rσ is called a contractum of t 1 . Given some n ≥ 0, a derivation in R of length n from s to t is a sequence of the form

s = s 0 → R s 1 → R ... → R s n . The relation → n
R is defined as follows: s → n t if there exists a derivation of length n from s to t. The relation → * R (→ + R ) is defined by: s → * t (s → + t) if there is some n ≥ 0 (n > 0) such that s → n R t. More generally, the notation defined in [START_REF] Klop | Term rewriting systems[END_REF] will be used in proofs.

A system is linear (resp. left-linear) if each of its rules is linear (resp. left-linear). A system R is growing [START_REF] Jacquemard | Decidable approximations of term rewriting systems[END_REF] if for every rule l → r ∈ R, all variables in Var(l) ∩ Var(r) occur at depth 0 or 1 in l. Two rewriting systems (R, F) and (R ′ , F) are said to be equivalent if for all n ≥ 0, → n R =→ n R ′ . A system R is said to terminate if there is no infinite derivation in R.

Bounded rewriting

In order to define bounded rewriting, we need some marking tools. In the following we assume that F is a signature. We shall illustrate many of our definitions with the following system

Example 3.1. F = {a, b, f, g, h, i}, R 1 = {f(x) → g(x), g(h(x)) → i(x), i(x) → a, a → b}.

Marking

We mark the symbols of a term using natural integers.

Marked symbols.

Definition 3.2. We define the (infinite) signature of marked symbols:

F N := {f i | f ∈ F, i ∈ N}.
For j ∈ N, we denote by F ≤j the signature:

F ≤j := {f i | f ∈ F, i ≤ j}.
The mapping m : F N → N maps every marked symbol to its mark: m(f i ) = i.

Marked terms.

Definition 3.3. The terms in T (F N , V) are called marked terms.

The mapping m is extended to marked terms by: if t ∈ V, m(t) := 0, otherwise, m(t) := m(root(t)). For every f ∈ F, we identify f 0 and f ; it follows that

F ⊂ F N , T (F) ⊂ T (F N ) and T (F, V) ⊂ T (F N , V).
We use mmax(t) to denote the maximal mark of a marked term t:

mmax(t) := max{m(t/u) | u ∈ Pos(t)}. Example 3.4. m(a 1 ) = 1, m(i 0 (a 2 )) = 0, m(h 3 (a 0 )) = 3, m(h 1 (x)) = 1, m(x) = 0, mmax(i 0 (a 1 )) = 1, mmax(x) = 0.
Definition 3.5. Given t ∈ T (F N , V) and i ∈ N, we define the marked term t i whose marks are all equal to i:

if t is a variable x t i := x if t is a constant c t i := c i otherwise t = f (t 1 , . . . , t n ), where n ≥ 1 t i := f i (t 1 i , . . . , t n i )
This marking extends to sets of terms S (S i := {t i | t ∈ S}) and substitutions σ (σ i : x → (xσ) i ).

Notation: in the sequel, given a term t ∈ T (F, V), t will always refer to a term of T (F N , V) such that t 0 = t. Definition 3.6. For every marked term t, we denote by t the unique marked term such that:

Pos( t) := Pos(t), ∀u ∈ Pos V (t), m( t/u) := max(m(t/u), |u| + 1).
We extend this definition to marked substitutions ( σ : x → xσ) and sets of terms

( S := { s | s ∈ S}). Example 3.7. Let t 1 = f 0 (f 1 (x)), and t 2 = f 2 (f 2 (h 2 (a 2 ))). We have: t 1 = f 1 (f 2 (x)), t 2 = f 2 (f 2 (h 3 (a 4 ))).

Marked rewriting

Let R be a left-linear system, s ∈ T (F N ). Let us suppose that s decomposes as

s = C[lσ] v , with (l, r) ∈ R, (3.1) 
for some marked context C[] v and substitution σ. We then write s •→ t when

s = C[lσ], t = C[r σ]. (3.2) 
More precisely, an ordered pair of marked terms (s, t) is linked by the relation •→ iff, there exists C[] v , (l, r), l, σ fulfilling equations (3.1-3.2). (This is illustrated by Figure 1, where the marks are noted between brackets

[. . .]). C C l r s t v [m(s/w)] [0] [k] [max(k, |w| + 1)]
x σ w xσ The map s → s 0 (from marked terms to unmarked terms) extends into a map from marked derivations to unmarked derivations: every

s 0 = C 0 [l 0 σ 0 ] v 0 •→ C 0 [r 0 σ 0 ] v 0 = s 1 •→ . . . •→ C n-1 [r n-1 σ n-1 ] v n-1 = s n (3.3)
is mapped to the derivation

s 0 = C 0 [l 0 σ 0 ] v 0 → C 0 [r 0 σ 0 ] v 0 = s 1 → . . . → C n-1 [r n-1 σ n-1 ] v n-1 = s n . (3.4)
The context C i [] v i , the rule (l i , r i ), the marked version li of l i and the substitution σ i completely determine s i+1 . Thus, for every fixed pair (s 0 , s 0 ), this map is a bijection from the set of derivations (3.3), to the set of derivations (3.4).

From now on, each time we deal with a derivation s → * t between two terms s, t ∈ T (F, V), we may implicitly decompose it as (3.4) where n is the length of the derivation, s = s 0 and t = s n .

Bounded derivations

Definition 3.8. The marked derivation (3.3) is k-bounded (bo(k)) if for every 0 ≤ i < n, mmax(l i ) ≤ k. The derivation (3.4) is bo(k) if the corresponding k-marked derivation (3.3) is bo(k).
In particular, the marked derivation (3.3) is bo(0) iff for every 0 ≤ i < n, l i = l i .

Example 3.9. Let us consider the following derivations in R 1 :

(

1) f(h(a)) → g(h(a)) → i(a) → a (2) f(h(a)) → g(h(a)) → g(h(b)) → i(b) → a The first derivation is bo(1) since the associated marked derivation is bo(1): f(h(a)) •→ g(h 1 (a 2 )) •→ i(a 2 ) •→ a. The second one is bo(2): f(h(a)) •→ g(h 1 (a 2 )) •→ g(h 1 (b)) •→ i(b 1 ) •→ a.
Let k ∈ N. It is clear that the composition of two bo(k) marked derivations is bo(k) too, but the composition of two unmarked bo(k) derivations might not be bo(k), as shown in the following example:

Example 3.10. The two derivations in R 1 : f(h(a)) → g(h(a)) and g(h(a)) → i(a) → a are bo(0) while the derivation: f(h(a)) → g(h(a)) → i(a) → a is not bo(0) (but is bu(1)).
In the following we thus (mainly) manipulate marked bo(k)-derivations. Let us introduce some convenient notations. 

bo(k) •→ * R is defined by: s bo(k) •→ * R t iff there exists m ∈ N such that s bo(k) •→ m R t. The binary relation bo(k) → n R over T (F) is defined by: s bo(k) → n R t iff there exists a bo(k)-derivation from s to t of length n. The binary relation bo(k) → * R is defined by: s bo(k) → * R t iff there exists m ∈ N such that s bo(k) → m R t.
Next lemma shows that the study of bo(k)-derivations can be reduced to the study of bo(0)derivations.

Lemma 3.12. Let R be a linear rewriting system and let k > 0. There exists an equivalent linear system R ′ such that: for all n ∈ N, bo(k

) → n R = bo(0) → n R ′ . Sketch of proof. Let R ′ be the rewriting system consisting of the rules: {lσ → rσ | l → r ∈ R, σ : V → T (F, V), lσ is standardized, dpt(σ) ≤ k }.
One can easily check that R ′ is finite, equivalent to R and that, for all n ∈ N, bo(k

) → n R = bo(0) → n R ′ .
Example 3.13. Let us consider the bo(1)-derivation in example 3.9 f(h(a)) → g(h(a)) → i(a) → a and the system R ′ built for R 1 and k = 1. We have:

R ′ ={f(x 1 ) → g(x 1 ), f(f(x 1 )) → g(f(x 1 )), f(g(x 1 )) → g(g(x 1 )), f(h(x 1 )) → g(h(x 1 )), f(i(x 1 )) → g(i(x 1 )), f(a) → g(a), f(b) → g(b), g(h(x 1 )) → i(x 1 ), g(h(f(x 1 ))) → i(f(x 1 )), g(h(g(x 1 ))) → i(g(x 1 )), g(h(h(x 1 ))) → i(h(x 1 )), g(h(i(x 1 ))) → i(i(x 1 )), g(h(a)) → i(a), g(h(b)) → i(b), i(x 1 ) → a, i(f(x 1 )) → a, i(g(x 1 )) → a, i(h(x 1 )) → a, i(i(x 1 )) → a, i(a) → a, i(b) → a, a → b}
and the following bo(0)-derivation in R ′ :

f(h(a)) •→ f(h(x 1 ))→g(h(x 1 )) g(h(a 1 )) •→ h(x 1 )→i(x 1 ) i(a 1 ) •→ i(x 1 )→a a.

Bounded systems

We introduce here a hierarchy of classes of rewriting systems, based on their ability to meet the bounded restriction over derivations. Definition 3.14. Let p be some property of derivations. A system (R, F) is called P if ∀s, t ∈ T (F) such that s → * R t there exists a p-derivation from s to t. We denote by BO(k) the class of BO(k) systems. One can check that, for every k > 0, BO(k -1) BO(k). Finally, the class of bounded systems BO is defined by: BO = k∈N BO(k). The membership problem for BO(k) is shown to be undecidable in the appendix, using a result of [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF]. Definition 3.15. We say that the system R bo(k)-terminates iff there is no infinite bo(k)-derivation in R. The bo(k)-termination problem for a linear system R is the following problem: INSTANCE: A linear system R, and an integer k. QUESTION: Does R bo(k)-terminate ?

The main result of this paper is the decidability of the bo(k)-termination problem.

Simulation of bounded derivations by a ground rewriting system

In this section, we prove that a bo(0)-derivation can be simulated using a ground term rewriting system. Definition 4.1. Let # be a constant such that # / ∈ F 0 . Let A be the (infinite) rewriting system on T (F ∪ {#} N ) consisting of the rules:

{f i (a 1 , . . . , a n ) → # i | i ∈ N, f ∈ F n , n > 0, a 1 , . . . , a n ∈ (F 0 ∪ {#}) N }.
For j ∈ N, we denote by A ≤j the restriction of A on T ((F ∪ {#}) ≤j ) consisting of the rules:

{f i (a 1 , . . . , a n ) → # i | i ≤ j, f ∈ F n , n > 0, a 1 , . . . , a n ∈ (F 0 ∪ {#}) ≤j }. Lemma 4.2. Let s, t ∈ T ((F ∪ {#}) N ). If s → * A t, then s → * A t. Definition 4.3. A marked term t ∈ T ((F ∪ {#}) N , V
) is said to be smoothly-increasing (s-increasing in short) iff for every branch b, the sequence of marks on b has the form: 0, 0, . . . , 0, 1, 2, . . . , ℓ

i.e. more formally: for every w ∈ Lv(t), there exists some u w such that,

• ∀v u, m( t/v) = 0, • ∀v u, ∀i ∈ N, if v • i w then m( t/v • i) = m( t/v) + 1.
A substitution σ is said to be s-increasing if for every x ∈ V, the term xσ is s-increasing.

Note that by definition of a s-increasing term t, and since the variables are all marked by 0, for all positions u ∈ Pos V (t), for all v u, m(t/v) = 0.

Example 4.4. The terms f 0 (h 1 (x)) and f 2 (h 1 (a 2 )) are not s-increasing. The terms f 0 (f 0 (h 1 (a 2 ))) and f 1 (a 2 ) are s-increasing. Proof. Since ∈ V, it is an immediate consequence of the definition of s-increasing.

Lemma 4.6. Let s be a s-increasing term and s bo(0) •→ * R t. The marked term t is s-increasing. Proof. Let us prove that the result holds by induction on n the length of the derivation

s bo(0) •→ * R t. If n = 0, the result holds. Let n > 0. There is a term s n-1 such that s bo(0) •→ n-1 R s n-1 bo(0) •→ R s n .
By induction hypothesis, s n-1 is s-increasing. By definition of a bo(0) marked rewriting step, there exists C[] v , l → r ∈ R and σ such that: s n-1 = C[lσ] v , and t = C[r σ] v . As s n-1 is s-increasing, since m(s n-1 /v) = 0, the context C[] v is s-increasing. By definition of , for every x ∈ Var(r), x σ is s-increasing. Since the term r is s-increasing, several applications of lemma 4.5 at each position u ∈ Pos V (r) show that r σ is s-increasing. We can conclude using the same lemma that C[r σ] v is s-increasing. Definition 4.7. Let t ∈ T ((F ∪ {#}) N , V) be a marked term and P be a subdomain of Pos(t) such that Pos V (t) ⊆ P . We define Red(t, P ) as the unique term such that Pos(t ′ ) = P and such that t → * A Red(t, P ).

The term Red(t, P ) is obtained from t by substituting the subtree t/u by the symbol # m(t/u) , for every position u ∈ P \Lv(t) such that ∀i ∈ N, u • i / ∈ P .

Lemma 4.8. Let t ∈ T ((F ∪ {#}) N , V) and P be a subdomain of Pos(t) such that Pos V (t) ⊆ P .

We have Red( t, P ) = Red(t, P ).

Proof. Since acts only on marks, we have Red( t, P ) 0 = ( Red(t, P )) Note that by definition of a s-increasing term, Topd(t) is a subdomain of t and since for every u ∈ Pos V (t), m(t/u) = 0, we have Pos V (t) ⊆ Topd(t). Definition 4.10 (Top of a term). Let t be a s-increasing term. We denote by Top(t) the term Red(t, Topd(t)).

Example 4.11. Let t 1 = f 0 (h 1 (a 2 )), t 2 = f 0 (h 0 (a 1 )). We have:

Topd(t 1 ) = { , 0}, Topd(t 2 ) = Pos(t 2 ), Top(t 1 ) = f(# 1 ), Top(t 2 ) = t 2 .
Intuitively, the top of a term t will be the only part of t which could be used in a bo(0)-derivation starting on t. We extend this definition to sets of s-increasing terms (Top(S) := {Top(t) | t ∈ S}) and to s-increasing marked substitutions (Top(σ) : x → Top(xσ)). Lemma 4.12. Let C[] v , t 1 be s-increasing and let t = C[t 1 ]. We have:

Top(t) = Top(C[] v )[Top(t 1 )] v .
Proof. By lemma 4.5, t is s-increasing. Since is a variable and since C[] v is s-increasing, for every u v, m(t/u) = 0. So, v ∈ Topd(t), and by definition of Top, the result holds. Lemma 4.13. Let t and σ be s-increasing. We have: Top(tσ) = Top(t)Top(σ).

Proof. This lemma is obtained by applying lemma 4.12 several times at each position v ∈ Pos V (t). 4.0.2. The ground system S. Definition 4.14. We consider the following ground rewriting system S over T ((F ∪ {#}) ≤1 ) consisting of all the rules of the form: lσ → S r σ, where l → r is a rule of R, and

σ : V → (F 0 ∪ {#}) ≤1 .
Note that since σ : V → (F 0 ∪ {#}) ≤1 , by definition of , σ : V → (F 0 ∪ {#}) ≤1 . The system S ∪ A ≤1 will be used to simulate the bo(0)-derivations in R.

4.0.3. Lifting lemma. Lemma 4.15. Let s ′ ∈ T ((F ∪ {#}) N ) , s, t ∈ T ((F ∪ {#}) ≤1 ). Assume that s ′ → * A s → S t. There exists a term t ′ ∈ T ((F ∪ {#}) N ) such that s ′ bo(0) •→ R t ′ → * A t. * bo(0) A * s s ′ t S A t ′ R Figure 2: Lemma 4.15
Proof. We have s → S t. This means that s = C[lσ] v , t = C[r σ] v , for some rule l → r ∈ R, marked context C[] v , and marked substitution σ : V → (F 0 ∪ {#}) ≤1 . Since s ′ → * A s, and since A goes from bottom to top, there exists a context C

′ [] v , a substitution σ ′ such that s ′ is of the form s ′ = C ′ [lσ ′ ] v . with C ′ [] v such that C ′ [] → * A C[],
and σ ′ such that for every x ∈ Var(l),

xσ ′ → * A xσ. By definition of bo(0) •→, s ′ = C ′ [lσ ′ ] v bo(0) •→ R t ′ := C ′ [r σ] v . By Lemma 4.2, for every x ∈ Var(r), x σ ′ → * A x σ. Hence, t ′ = C ′ [r σ ′ ] → * A C[r σ ′ ] → * A C[r σ] = t.
We have built a derivation:

s ′ bo(0) •→ t ′ → * A t.
The result holds. Example 4.16. Let us consider the system S built from the system R 1 .

S = {f(#) → g(# 1 ), f(# 1 ) → g(# 1 ), f(a) → g(a 1 ), f(a 1 ) → g(a 1 ), f(b) → g(b 1 ), f(b 1 ) → g(b 1 ), g(h(#)) → i(# 1 ), g(h(# 1 )) → i(# 1 ), g(h(a)) → i(a 1 ), g(h(a 1 )) → i(a 1 ), g(h(b)) → i(b 1 ), g(h(b 1 )) → i(b 1 ), i(#) → a, i(# 1 ) → a, i(a) → a, i(a 1 ) → a, i(b) → a, i(b 1 ) → a, a → b}.
We have the following derivation:

g(h(a)) → A,a→# g(h(#)) → S,f(h(#))→i(# 1 )) i(# 1 )).
In the proof of lemma 4.15, we build the derivation:

g(h(a)) bo(0) •→ R 1 ,g(h(x))→i(x) i(a 1 )) → A,a 1 →# 1 i(# 1 ).

Projecting lemma.

Lemma 4.17 (projecting lemma). Let s ∈ T (F N ) be s-increasing, and s bo(0) •→ R t. There is a derivation: Top(s) → * A ≤1 → S Top(t). So, τ = Top( σ), and

Top(t) = Top(C[] v )[rTop( σ)] v = Top(C[] v )[r τ ] v .
We have built a derivation: Top(s) → * A ≤1 → S Top(t). The result holds. Example 4.18. Let us consider the system R 1 , S built for this system, and the following bo(0)

rewriting step: s = f(f(g 1 ((a 2 )))) •→ R 1 ,f(x)→h(x) t = h(f 1 (g 2 (a 3 ))).
We have Top(s) = f(f(# 1 )), Top(t) = h(# 1 ), and the following derivation:

f(f(# 1 )) → A ≤1 f(#) → S,f(#)→h(# 1 ) h(# 1 ).

Decidability of the termination

In this section, we prove that the bo(k)-termination problem is decidable. Proof. Assume that S ∪ A ≤1 does not terminate. Then there exists an infinite rewriting sequence of terms in T ((F ∪ {#}) ≤1 ). The system A ≤1 is obviously terminating. Thus, such an infinite derivation contains an infinite number of steps in S and is of the form:

s 0 → * A ≤1 s 1 → S s 2 → * A ≤1 s 3 → S s 4 → * A ≤1 . . . → S s 2n → * A ≤1 .
. . . We now show that repeated applications of lemma 4.15 yields an infinite marked bo(0)-derivation in R: first, consider s 0 → * A ≤1 s 1 → S s 2 . By lemma 4.15 there exists t 1 such that s 0 bo(0

) •→ R t 1 → * A s 2 . Since t 1 → * A s 2 , we can apply lemma 4.15 to t 1 → * A s 3 → S s 4 . We obtain a term t 2 such that s 0 bo(0) •→ R t 1 bo(0) •→ R t 2 → * A s 4 .
Following this process, we obtain an infinite sequence such that s 0 bo(0)

•→ R t 1 bo(0) •→ R t 2 bo(0) •→ R . . . bo(0) •→ R t n . . .. We conclude that R does not terminate.
Proposition 5.2. If R does not bo(0)-terminate, then S ∪ A ≤1 does not terminate.

Proof. If R does not bo(0)-terminate, there is an infinite derivation:

s 0 = s 0 bo(0) •→ R s 1 bo(0) •→ R . . . s n bo(0) •→ R . . . .
The term s 0 is s-increasing since it has no mark. Moreover, the derivation step s 0 bo(0) •→ R s 1 is bo(0). By lemma 4.17, s 0 = Top(s 0 ) → * A ≤1 → S Top(s 1 ). Another application of lemma 4.17 on

s 1 bo(0) •→ R s 2 leads to a derivation: Top(s 0 ) → + S∪A ≤1 Top(s 1 ) → + S∪A ≤1 Top(s 2 )
. Following this process, we obtain an infinite derivation:

Top(s 0 ) → + S∪A ≤1 Top(s 1 ) → + S∪A ≤1 . . . Top(s n ) → + S∪A ≤1 .
. . and S ∪ A ≤1 does not terminate.

Theorem 5.3. The bo(0)-termination problem is decidable. Proof. By propositions 5.1 and 5.2, a linear system R bo(0)-terminates iff the system S ∪ A ≤1 terminates. It is well known that the termination problem for ground systems is decidable (see e.g.[1, page 99-100]) and we can decide whether the system S ∪ A ≤1 terminates. Thus, the bo(0)termination problem is decidable.

Corollary 5.4. The bo(k)-termination problem is decidable.

Proof. It is just a consequence of theorem 5.3 and lemma 3.12.

Note that in general, for a BO(0) system, the bo(0)-termination property and the termination property are not equivalent. Definition 5.5. Let R be a BO(k) system. We say that R has the bo(k) length preservation property if for every n ∈ N:

→ n R = bo(k) → n R .
We denote by BOLP(k) the class of BO(k) systems that have the bo(k) length preservation property. Finally, the class of bounded systems with the length preservation property is denoted by BOLP. One can check that for every k > 0, BOLP(k -1) BO(k).

Example 5.6. Let R 2 = {f(x) → g(x), g(a) → f(a)}. This system is BO(0) but does not have the bo(0) length preservation property. There is a derivation of length 2: f(a) → g(a) → f(a), but there is no bo(0)-derivation of length 2 from f(a) to f(a) (there is one of length 0). Moreover, this system does not terminate but bo(0)-terminates.

Corollary 5.7. The termination problem for systems in BOLP(k) is decidable.

Proof. Let us prove that, for a system R ∈ BOLP(k), the bo(k)-termination and termination are equivalent properties. Clearly, if R does not bo(k) terminate, then the system R does not terminate. Conversly, let us suppose that there is an infinite derivation:

s 0 → R s 1 → R s 2 → R . . . → R s n . . . . Since R has the bo(k) length preservation property, there is for each m ∈ N a marked bo(k)- derivation D m such that D m = s 0 bo(k) •→ m R s m .
The system R has a finite number of rules, so there is only a finite number of possible one step rewriting starting on s 0 . Hence, there exists a term

s ′ 1 such that the set {m ′ | D m ′ = s 0 bo(k) •→ R s ′ 1 bo(k) •→ m ′ -1 R s m ′ } is infinite.
Repeating this process, we obtain an infinite derivation:

s 0 bo(k) •→ R s ′ 1 bo(k) •→ R . . . bo(k) •→ R s ′ n bo(k)
•→ . . . . Hence, the system R does not bo(k)-terminate. We have established that: R bo(k)-terminates ⇔ R terminates. By corollary 5.3, the bo(k)-termination problem is decidable. Hence, the termination problem for systems in BOLP(k) is decidable.

We prove in the appendix that several classes of rewriting systems are (stricly) included in the class of BOLP rewriting systems :

• the inverse left-basic semi-Thue systems (viewed as unary term rewriting systems) [START_REF] Sakarovitch | Syntaxe des langages de Chomsky, essai sur le determinisme[END_REF],

• the linear growing term rewriting systems [START_REF] Jacquemard | Decidable approximations of term rewriting systems[END_REF],

• the inverse Linear-Finite-Path-Overlapping systems [START_REF] Takai | Right-linear finite path overlapping term rewriting systems effectively preserve recognizability[END_REF],

• the strongly bottom-up linear systems [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF]. As a consequence, these systems have a decidable termination problem. Note that, using the same method as the one used to prove the decidability of the termination problem for BOLP(k) systems, one can decide for every R ∈ BOLP(k) and every t ∈ T (F) whether there exists some infinite derivation in R starting from t. It is also shown in the appendix, using a result of [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF], that BO(k) systems inverse preserve rationality.

Related works and perspectives

Related works. We borrowed from [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF] the idea of simulating derivations according to a special strategy by some ground system. Note however, that the class BO(k) itself is new. Its advantages over the class BU(k) is that its definition is simpler, it allows a simpler proof of the projecting lemma and it makes lemma 1 true, while this lemma, mutatis mutandis, does not hold for the class BU(k).

The principle of replacing the original rewriting relation over a signature F by some other binary relation over a marked-alphabet F N was already used in [START_REF] Geser | Termination proofs for string rewriting systems via inverse match-bounds[END_REF] in order to get an algorithm for termination. However, the two marking mechanisms turn out to be different: -in the case of word rewriting systems, the marked derivation used here is not generated by a semi-Thue system while the marked derivation of [START_REF] Geser | Termination proofs for string rewriting systems via inverse match-bounds[END_REF] is generated by an (infinite) semi-Thue system; -the direct image of a rational set R by a system which is match-bounded over R is rational while the direct image of a rational set by a BO(0) system needs not be rational; from this point of view our BO(0)-semi-Thue systems resemble the inverses of match-bounded systems (though, they are not comparable for inclusion); -the marking process used here extends naturally to terms while the notion of [START_REF] Geser | Termination proofs for string rewriting systems via inverse match-bounds[END_REF] seems more difficult to extend to terms (although interesting ways of doing such an extension have been studied in [START_REF] Geser | On tree automata that certify termination of left-linear term rewriting systems[END_REF] and successfully implemented).

Perspectives. Let us mention some natural perspectives of development for this work:

• it is tempting to extend the notion of bounded rewriting (resp. system) to left linear systems. This class would extend the class of growing systems studied in [START_REF] Nagaya | Decidability for left-linear growing term rewriting systems[END_REF]; • we think that the direct image of a context-free language through bounded rewriting is context-free; • the whole class of bounded systems (at least semi-Thue) should have a decidable termination problem; • one should try to devise a class of semi-Thue systems that includes both the class of BO(k) systems and the class of inverses of match-bounded systems, and still possesses the interesting algorithmic properties of these classes. Some work in these directions has been undertaken by the authors. and, m(

s n /u) = max(m( s n-1 /u ′ ), |w 1 | + 1). (A.7) We distinguish two subcases: -case 4.1: m( s n /v) = m( s n-1 /v ′ ).
Then m( s n-1 /v ′ ) > 0, and by induction hyptothesis,

m( s n-1 /u ′ ) -m( s n-1 /v ′ ) ≥ |u ′ | -|v ′ |. By equation (A.7), m( s n /u) ≥ m( s n-1 /u ′ ). Since |u ′ | -|v ′ | = |u| -|v|, m( s n /u) -m( s n /v) = m( s n /u) -m( s n-1 /v ′ ) ≥ m( s n-1 /u) -m( s n-1 /v ′ ) ≥ |u| -|v|. The result holds. -case 4.2: m( s n /v) = |w| + 1. By equation (A.7), m( s n /u) ≥ |w 1 | + 1. Moreover, |w 1 | = |w| + |u| -|v|. Hence, m( s n /u) -m( s n /v) ≥ |w 1 | + 1 -(|w| + 1) = |u| -|v|.

The result holds.

Corollary A.10. If d is wbu, then for all n, 0 ≤ i ≤ n, for every u, v ∈ Pos(s i ),

u v ⇒ m(s i /u) ≤ m(s i /v).
Proof. It is a immediate consequence of the lemma A.9.

Definition A.11. Let t be a marked term. We denote by N u (t) the number of positions v ≺ u such that m(t/v) = m(t/u):

N u (t) := |{v | v ≺ u, m(t/v) = m(t/u)}|.

Note that by lemma

A.8, if d is wbu, for all i, 0 ≤ i ≤ n, N u (s i ) = |u| -|v u |, where v u := inf({v | v u, m(s i /v) = m(s i /u)}). Lemma A.12. If d is wbu, then for all i, 1 ≤ i ≤ n, for all u ∈ Pos(s i ), m( s i /u) ≤ m(s i /u) • e + N u (s i ).
Proof. The proof is made by induction on n the length of the derivation d. If n = 0, s 0 = s 0 = s 0 , and the result holds. Let n > 0. We have to prove that for every u ∈ Pos(s n ),

m( s n /u) ≤ m(s n /u) • e + N u (s n ).
We distinguish three cases.

-case 1:

u ≺ v n-1 or u ⊥ v n-1 . Then, u ∈ Pos V (C[] v n-1 ), and N u (s n ) = N u (s n-1 )
. By induction hypothesis on n -1, the result holds.

-case 2: ∃w ∈ Pos V (r n-1 ) such that u = v n-1 • w. Then, m( s n /u) = m(s n /u) = m(r n-1 /w) = 0, and the result holds.

-case 3: ∃x ∈ Var(r n-1 ), ∃w ∈ Pos(xσ n-1 ) such that u

= v n-1 • pos(r n-1 , x) • w : Let u ′ = v n-1 • pos(l n-1 , x) • w. By definition, m( s n /u) = max(|w| + 1, m( s n-1 /u ′ )), (A.8) By definition of σ n-1 , xσ n-1 = xσ n-1 M (C[l n-1 ] v n-1 , x)
. By lemma A.8, and since l n-1 / ∈ V,

M (C[l n-1 ] v n-1 , x) = M (l n-1 , x) = m(l n-1 /fth(pos(l n-1 , x))) + 1.
Hence, for all w 1 ∈ Pos(xσ n-1 ),

m(xσ n-1 /w 1 ) = m(s n /v n-1 • pos(r n-1 , x) • w 1 ) (A.9) = max(m(s n-1 /v n-1 • pos(l n-1 , x) • w 1 ), m(l n-1 /fth(pos(l n-1 , x))) + 1). Let v := inf{w ′ | w ′ u ′ , m(s n /u) = m(s n /w ′ )}, and let v ′ := inf{w ′ | w ′ u ′ , m(s n-1 /u ′ ) = m(s n-1 /w ′ )}.
We have:

N u (s n ) = |u| -|v| and N u ′ (s n-1 ) = |u ′ | -|v ′ |.
We distinguish three subcases: 

-case 3.1: v ′ v n-1 Since d is wbu, m(s n-1 /v n-1 ) = 0. By lemma A.8, m(s n-1 /v ′ ) = 0,
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Appendix A. Appendix

A.1. Bottom-up derivations

The class of BO linear systems is closely related to the class of bottom-up systems BU introduced in [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF] in the following sense: every BU system is BO, and for every BO system, there is an equivalent system which is BU. The BU systems are also defined using marking tools. The marked derivation used to defined BU system will be denoted by ⊲→. Let us recall some of the definitions given in [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF].

The right-action of the monoid (N, max, 0) over the set F N consists in applying the operation max on every mark: for every t ∈ F N , n ∈ N, Pos( t n) := Pos( t), ∀u ∈ Pos( t), m(( t n)/u) := max(m( t/u), n), ( t n) 0 = t0 For every linear marked term t ∈ T (F N , V) and variable x ∈ Var( t), we define: M ( t, x) := sup{m(t/w) | w < pos(t, x)} + 1.

(A.1)

Let s ∈ T (F N ) and t ∈ T , and let us suppose that s ∈ T (F N ) decomposes as

for some marked context C[] v and substitution σ. We define a new marked substitution σ (such that σ 0 = σ 0 ) by: for every x ∈ Var(r),

We then write s ⊲→ t when

(A.4) The map s → s 0 (from marked terms to unmarked terms) extends into a map from marked derivations to unmarked derivations: every derivation d:

is mapped to the derivation d: [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF]). The marked derivation (A.5) is weakly bottom-up if, for every i, 0 ≤ i < n, m(l i ) = 0,.

Definition A.2 ([4]

). The derivation (A.6) is weakly bottom-up if the corresponding marked derivation (A.5) starting on the same term s = s is weakly bottom-up.

We shall abbreviate "weakly bottom-up" to wbu.

Note that a bu(k) derivation is bu -(k + 1).

Sketch of proof. One can check, by induction on n the length of the derivation (A.6), that the associated marked derivation (A.5) satisfies:

If the derivation (A.6) is bu -(k), then the derivation (A.5) satisfies:

Hence, for all j, 0 ≤ j ≤ n, mmax(s j ) ≤ k and the derivation (A.6) is bu(k).

Let us introduce a convenient notation.

Definition A.5. Let k ≥ 1. The binary relation bu(k) ⊲→ * R over T (F N ) is defined by: s bu(k) ⊲→ * R t if and only if there exists a bu(k) marked derivation from s to t. The binary relation bu(k) → * R over T (F) is defined by: s bu(k) → * R t if and only if there exists a bu(k)-derivation from s to t. Lemma A. 6 ([4]). Let R be a linear system and n ∈ N. If s → n R t then there exists a wbu derivation between s and t of length n.

A.2. Bottom-up systems

We denote by BU(k) the class of bu(k) systems, by BU -(k) the class of bu -(k) systems. We define the class of bottom-up systems, denoted BU, by:

By definitions of bu and bu -, for all k > 0, BU(k -1) ⊆ BU -(k). By lemma A.4, for all k ∈ N, BU -(k) ⊆ BU(k). Hence, we have:

A system is said to be strongly bu(k) iff every wbu derivation is bu(k). The class of strongly BU(k) systems is denoted by SBU(k). We define strongly bottom-up systems, denoted SBU by:

A.3. Bottom-up systems and Bounded systems

Before proving the equivalence between BO and BU, we start by giving some technical lemmas. Let us consider d and d: the derivation (A.6), and its associated marked derivation (A.5) using ⊲→. We denote by d the associated derivation using •→:

Proof. We made this proof by induction on n the length of the derivation d. If n = 0, then s n = s n = s n , and the result holds. Let us suppose that n > 0. By induction hypothesis on n -1, for all i, 0 ≤ i ≤ n -1, for all u ∈ Pos(s n-1 ),

Let us prove that for all u ∈ Pos(s n ),

Let u ∈ Pos(s n ). We distinguish three cases.

• case 1:

), and by induction hypothesis,

The result holds.

Then, m(

Then, by definition of σ, m(s n /u) = m(xσ/w) > 0, and by definition of σ, m( s n /u) = m(x σ/w) > 0. The result holds.

Lemma A.8 ([4]

). If d is wbu, the following assertion holds:

Lemma A.9. If d is wbu, the following assertion holds: for all i,

Proof. We make this proof by induction on n. If n = 0, the result holds. Let us suppose that n > 0, and that the result holds for every i, 0 ≤ i ≤ n -1. Let u ∈ Pos(s n ) and let v u. We have to prove that:

Since d is wbu, m(l n-1 ) = 0, and by lemma

The result holds.

There exists w 1 , w w

By induction hypothesis,

Hence,

The result holds. 

A.4. Equivalence between bounded systems and bottom-up systems

We are now ready to prove the equivalence between BO and BU.

Lemma A.13. A derivation is bu -(1) iff it is bo(0).

Proof. The derivation (A.6) is bu -(1) iff the marked derivation using ⊲→ satisfies: for every i, l i = l i , and this derivation is bo(0) iff the marked derivation using •→ satisfies: for every i, l i = l i . We conclude using lemma A.7.

Corollary A.14. Every BO(k) system is equivalent to a BU -(1) system.

Proof. It is an immediate consequence of lemmas 3.12, and A.13. Note that the equivalent BU -(1) system can be effectively built.

) and e, we have

Proposition A.16. The classes BO and BU are equivalent in the following sense:

(1) BU ⊆ BO.

(2) For every system R ∈ BO, there is an equivalent system R ′ in BU.

Proof. Since BU = k∈N BU -(k), by lemma A.15, BU ⊆ BO. By corollary A.14, for every system R ∈ BO, there is an equivalent system R ′ ∈ BU -(1). The result holds.

A.5. Some other properties of bounded systems Let us give some properties which directly follow from the equivalence between BU and BO and the results presented in [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF].

Definition A.17. A system (R, F) is said to inverse-preserves rationality if for every recognizable set T ⊆ T (F), the set (→ * R )[T ] := {s ∈ T (F) | ∃t ∈ T, s → * R t} is recognizable too. Theorem A.18 ([4]). Every BU system inverse preserves rationality.

Corollary A.19. Every BO system inverse preserves rationality.

Proof. Using corollary A.14, we can effectively build an equivalent BU -(1) system. We conclude using theorem A.18. 

, there is a wbu-derivation of length n. By definition of SBU(k), this derivation is bu(k). Since a bu(k) derivation is bu -(k + 1), by lemma A.15, this derivation is bo((k + 1) • e). This derivation is of length n, and the system R is BOLP((k + 1) • e).

Proposition A.24. The termination problem for systems in SBU is decidable.

Proof. This is an immediate consequence of lemma A.23 and of corollary 5.7.

It is shown in [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF] that classes SBU(k) have a decidable membership problem. Note that SBU ⊂ BOLP, as shown in the following example.

This system is bu(1), and for each k ∈ N we can build a wbu derivation which is not bo(k): f(f(f(f(. . . (a)) . . .) ⊲→ f(f 1 (f 1 . . . (a 1 )) . . .) ⊲→ f(f 2 . . . (a 2 )) . . .) ⊲→ . . . but for every derivation, there is a bo(0)-derivation which has the same length: f(. . . (f(f(f(f(a)) . . .) •→ f(. . . (f(f(f(a 1 )) . . .) •→ f(. . . ((f(f 1 (a 2 )) . . .).

A.6. Some bounded systems

The class of SBU systems, which is included in BOLP, contains several classes of systems [START_REF] Durand | Bottom-up rewriting is inverse recognizability preserving[END_REF]. Among them, there are:

• the inverse left-basic semi-Thue systems (viewed as unary term rewriting systems)

• the linear growing term rewriting systems • the inverse Linear-Finite-Path-Overlapping systems. By corollary 5.7, for all these systems, the termination problem is decidable.
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