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We are interested in the statistical linear inverse problem Y = Af + ǫξ, where A denotes a compact operator and ǫξ a stochastic noise. In this setting, the risk hull point of view provides interesting tools for the construction of adaptive estimators. It sheds light on the processes governing the behaviour of linear estimators. In this paper, we investigate the link between some threshold estimators and this risk hull point of view. The penalized blockwise Stein rule plays a central role in this study. In particular, this estimator may be considered as a risk hull minimization method, provided the penalty is well-chosen. Using this perspective, we study the properties of the threshold and propose an admissible range for the penalty leading to accurate results. We eventually propose a penalty close to the lower bound of this range.

Introduction

This paper deals with the statistical inverse problem

Y = Af + ǫξ, (1) 
where H, K are Hilbert spaces and A : H → K denotes a linear operator. The function f ∈ H is unknown and has to be recovered from a measurement of Af corrupted by some stochastic noise ǫξ. Here, ǫ represents a positive noise level and ξ a Gaussian white noise (see [START_REF] Hida | Brownian motion[END_REF] for more details). In particular, for all g ∈ K, we can observe

Y, g = Af, g + ǫ ξ, g , (2) 
where ξ, g ∼ N (0, g 2 ). Denote by A ⋆ the adjoint operator of A. In the sequel, A is supposed to be a compact operator. Such a restriction is very interesting from a mathematical point of view. The operator (A ⋆ A) -1 is unbounded: the least square solution fLS = (A ⋆ A) -1 A ⋆ Y does not continuously depend on Y . The problem is said to be ill-posed.

In a statistical context, several studies of ill-posed inverse problems were proposed in recent years. It would be however impossible to cite them all. For the interested reader, we may mention [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] and [START_REF] Ermakov | Minimax estimation of the solution of an ill-posed convolution type problem[END_REF] for convolution operators, [START_REF] Johnstone | Speed of estimation in positron emission tomography and related inverse problems[END_REF] for the positron emission tomography problem, [START_REF] Donoho | Nonlinear solutions of linear inverse problems by wavelet-vaguelette decomposition[END_REF] in a wavelet setting, or [START_REF] Bissantz | Convergence rates of general regularization methods for statistical inverse problems and applications[END_REF] for a general statistical approach and some rates of convergence. We refer also to [START_REF] Engl | Regularization of Inverse Problems[END_REF] for a survey in a numerical setting. Using a specific representation (i.e. particular choices for g in ( 2)) may help the understanding of the model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. In this sense, the classical singular value decomposition (SVD) is a very useful tool. Since A ⋆ A is compact and self-adjoint, the associated sequence of eigenvalues (b 2 k ) k∈N is strictly positive and converges to 0 as k → +∞. The sequence of eigenvectors (φ k ) k∈N is supposed in the sequel to be an orthonormal basis of H. For all k ∈ N, set

ψ k = b -1 k Aφ k . The triple (b k , φ k , ψ k ) k∈N verifies Aφ k = b k ψ k , A ⋆ ψ k = b k φ k , (3) 
for all k ∈ N. This representation leads to a simpler understanding of the model [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]. Indeed, for all k ∈ N, using (3) and the properties of the Gaussian white noise,

y k = Y, ψ k = Af, ψ k + ǫ ξ, ψ k = b k f, φ k + ǫξ k , (4) 
where the ξ k are i.i.d. standard Gaussian variables. Hence, for all k ∈ N, we can obtain from [START_REF] Barron | Risk bounds for model selection via penalization[END_REF] an observation on θ k = f, φ k . In the ℓ 2 -sense, θ = (θ k ) k∈N and f represent the same mathematical object. The sequence space model (4) clarifies the effect of A on the signal f . Since A is compact, b k → 0 as k → +∞. For large values of k, the coefficients b k θ k are negligible compared to ǫξ k . In a certain sense, the signal is smoothed by the operator. The recovery becomes difficult in the presence of noise for large 'frequencies', i.e. when k is large.

Our aim is to estimate the sequence (θ k ) k∈N = ( f, φ k ) k∈N . The linear estimation plays an important role in the inverse problem framework and is a starting point for several recovering methods. Let (λ k ) k∈N be a real sequence with values in [0, 1]. In the following, this sequence will be called a filter. The associated linear estimator is defined by

fλ = +∞ k=1 λ k b -1 k y k φ k .
In the sequel, fλ may be sometimes identified with θλ = (λ k b -1 k y k ) k∈N . The meaning will be clear from the context. The error related to fλ is measured through the quadratic risk E θ fλf 2 . Given a family of estimators T , we would like to construct an estimator θ ⋆ comparable to the best possible one contained in T (called the oracle), via the inequality

E θ θ ⋆ -θ 2 ≤ (1 + ϑ ǫ )E θ θ T -θ 2 + Cǫ 2 , (5) 
with ϑ ǫ , C > 0. The quantity Cǫ 2 is a residual term. The inequality ( 5) is said to be sharp if ϑ ǫ → 0 as ǫ → 0. In this case, θ ⋆ asymptotically mimics the behaviour of θ T . Oracle inequalities play an important, though recent role in statistics. They provide a precise and non-asymptotic measure on the performances of θ ⋆ , which does not require a priori informations on the signal. In several situations, oracle results lead to interesting minimax rates of convergence. This theory has given rise to a considerable amount of literature. We mention in particular [START_REF] Donoho | Nonlinear solutions of linear inverse problems by wavelet-vaguelette decomposition[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF] or [START_REF] Candès | Modern statistical estimation via oracle inequalities[END_REF] for a survey.

The risk hull minimization (RHM) principle, initiated in [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] for spectral cut-off (or projection) schemes, is an interesting approach for the construction of data-driven parameter choice rules. The principle is to identify the stochastic processes that control the behaviour of a projection estimator. Then, a deterministic criterion, called a hull, is constructed in order to contain these processes. We also mention [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF] for a generalization of this method to some other regularization approaches (Tikhonov, Landweber,...).

In this paper, our aim is to establish a link between the RHM approach and some specific threshold estimators. We are interested in the family of blockwise constant filters. In this specific case, this approach leads to the penalized blockwise Stein rule studied for instance in [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. This is a new perspective for this well-known threshold estimator. In particular, the risk hull point of view make precise the role of the penalty through a simple and general assumption. This paper is organized as follows. In Section 2, we construct a hull for the family of blockwise constant filters. Section 3 establishes a link between the penalized blockwise Stein rule and the risk hull method, and investigates the performances of the related estimator. Section 4 proposes some examples and a discussion on the choice of the penalty. Some results on the theory of ordered processes and the proofs of the main results are gathered in Section 5.

A risk hull for blockwise constant filters

In this section, we recall the risk hull minimization approach for projection schemes. Then, we explain why an extension of the RHM method may be pertinent. A specific family of estimators is introduced and the related hull is constructed.

The risk hull principle

For all N ∈ N, denote by θN the projection estimator associated to the filter (1 {k≤N } ) k∈N . For each value of N ∈ N, the related quadratic risk is

E θ θN -θ 2 = k>N θ 2 k + E θ N k=1 (b -1 k y k -θ k ) 2 = k>N θ 2 k + ǫ 2 N k=1 b -2 k . (6) 
The optimal choice for N is the oracle N 0 that minimizes E θ θNθ 2 . It is a trade-off between the two sums (bias and variance) in the r.h.s. of ( 6). This trade-off cannot be found without a priori knowledge on the unknown sequence θ. Data-driven choices for N are necessary.

The classical unbiased risk estimation (URE) approach consists in estimating the quadratic risk. One may use the functional

U (y, N ) = - N k=1 b -2 k y 2 k + 2ǫ 2 N k=1 b -2 k , ∀N ∈ N.
The related adaptive bandwidth is defined as

Ñ = arg min N ∈N U (y, N ).
Some oracle inequalities related to this approach have been obtained in different papers (see for instance [START_REF] Cavalier | Oracle inequalities for inverse problems[END_REF]). Nevertheless, this approach suffers from some drawbacks, especially in the inverse problem framework. Indeed, this method is based on the average behaviour of the projection estimators: U (y, N ) is an estimator of the quadratic risk. This is quite problematic in the inverse problem framework where the main quantities of interest often possesses a great variability. This can be illustrated by a very simple example: f = 0. In this particular case, for all N ∈ N, the loss of the related projection estimator θN is

θN -θ 2 = ǫ 2 N k=1 b -2 k + η N , with η N = ǫ 2 N k=1 b -2 k (ξ 2 k -1) ∀N ∈ N.
Since b k → 0 as k → +∞, the process N → η N possesses a great variability, which explodes with N . In this case the behaviour of E θ θNθ 2 and θNθ 2 are rather different. The variability is neglected when only considering the average behaviour of the loss. This leads in practice to wrong decisions for the choice of N . More generally, as soon as the signal to noise ratio is small, one may expect poor performances for the URE method. We refer to [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] for a complete discussion illustrated by some numerical simulations.

From now on, the problem is to construct a data-driven bandwidth that takes into account this phenomenon. Instead of the quadratic risk, in [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] it is proposed to consider a deterministic term V (θ, N ), called a hull, satisfying

E θ sup N ∈N θN -θ 2 -V (θ, N ) ≤ 0. ( 7 
)
This hull bounds uniformly the loss in the sense of inequality [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptative estimation[END_REF]. Ideally, it is constructed in order to contain the variability of the projection estimators. The related estimator is then defined as the minimizer of V (y, N ), an estimator of V (θ, N ), on N.

The theoretical and numerical properties of this estimator are presented and discussed in detail in [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] in the particular case of spectral cut-off regularization. In the same spirit, we mention [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF] for an extension of this method to wider regularization schemes (Landweber, Tikhonov, ...).

The choice of Λ

In order to construct an estimator leading to an accurate oracle inequality, one must consider both a family of filters Λ and a procedure in order to mimic the behaviour of the best element in Λ.

We are interested in this paper in the risk hull principle. This point of view possesses indeed interesting theoretical properties. It makes the role of the stochastic processes involved in linear estimation more precise and leads to an accurate understanding of the problem. Now, we address the problem of the choice of Λ. In the oracle sense, an ideal goal of adaptation is to obtain a sharp oracle inequality over all possible estimators. This is in most cases an unreachable task since this set is too large. The difficulty of the oracle adaptation increases with the size of the considered family. At a smaller scale, one may consider Λ mon , the family of linear and monotone filters defined as

Λ mon = λ = (λ k ) k∈N ∈ ℓ 2 : 1 ≥ λ 1 ≥ • • • ≥ λ k ≥ • • • ≥ 0 ,
The set Λ mon contains the linear and monotone filters and covers most of the existing linear procedures as the spectral cut-off, Tikhonov, Pinsker or Landweber filters (see for instance [START_REF] Engl | Regularization of Inverse Problems[END_REF] or [START_REF] Bissantz | Convergence rates of general regularization methods for statistical inverse problems and applications[END_REF]). Some oracle inequalities have been already obtained on specific subsets of Λ mon in [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] and [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF], but we would like to consider in the same time the whole family.

The set Λ mon is always rather large and obtaining an explicit estimator in this setting seems difficult. A possible alternative is to consider a set that contains elements presenting a behaviour similar to the best one in Λ mon , but where an estimator could be explicitly constructed. In this sense, the collection of blockwise constant estimators is a good candidate. In the sequel, this family will be identified to the set

Λ ⋆ = λ ∈ l 2 : 0 ≤ λ k ≤ 1, λ k = λ K j , ∀k ∈ [K j , K j+1 -1], j = 0, . . . , J, λ k = 0, k > N } ,
where J, N and (K j ) j=0...J are such that K 0 = 1, K J = N + 1 and K j > K j-1 . In the following, we will also use the notations

I j = {k ∈ [K j-1 , K j -1]} and T j = K j -K j-1 ,
for all j ∈ {1, . . . , J}.

In the following, most of the results are established for a general construction of Λ ⋆ . There exists several choices that may lead to interesting results. Typically, N → +∞ as ǫ → 0. It is chosen in order to capture most of the nonparametric functions with a controlled bias (see [START_REF] Kneip | Ordered linear smoothers[END_REF] below for an example). Concerning the size (T j ) j=1...J of the blocks, we refer to [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptative estimation[END_REF] for several examples.

The family Λ ⋆ can easily be handled. In particular, each block I j can be considered independently of the other ones. This simplifies considerably the study of the considered estimators. Moreover, for all θ ∈ ℓ 2 ,

R(θ, λ mon ) = inf λ∈Λmon R(θ, λ) and R(θ, λ 0 ) = inf λ∈Λ ⋆ R(θ, λ), (8) 
are in fact rather close, subject to some reasonable constraints on the sequences (b k ) k∈N and (T j ) j=1...J (see Section 4 or [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF] for more details).

The extension of the RHM principle to the family Λ ⋆ presents other advantages. The related estimator corresponds indeed to a threshold scheme. Hence, we will be able to address the question of the choice of the threshold through the risk hull approach. This may be a new perspective for the blockwise constant adaptive approach, and more generally to this class of regularization procedures.

A risk hull for Λ ⋆

First, we introduce some notations. For all j ∈ {1, . . . , J}, let η j defined by

η j = ǫ 2 k∈I j b -2 k (ξ 2 k -1). ( 9 
)
The random variable η j plays a central role in blockwise constant estimation. It corresponds to the main stochastic part of the loss in each block I j . The hull proposed in Theorem 2.1 below is constructed in order to contain these terms. Introduce also

ρ ǫ = max j=1...J ∆ j and θ 2 (j) = k∈I j θ 2 k , ∀j ∈ {1, . . . , J}, (10) 
with

∆ j = max k∈I j ǫ 2 b -2 k σ 2 j , and 
σ 2 j = ǫ 2 k∈I j b -2 k .
We will see that ρ ǫ → 0 as ǫ → 0 with appropriate choices of blocks and minor assumptions on the sequence (b k ) k∈N (see Section 4 for more details).

From now on, we are able to present a hull for the family Λ ⋆ , i.e. a deterministic sequence (V (θ, λ)) λ∈Λ ⋆ verifying

E θ sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) ≤ 0.
The proof of the following result is postponed to the Section 6.

Theorem 2.1 Let (pen j ) j=1...J a positive sequence verifying

J j=1 E η j -pen j + ≤ C 1 ǫ 2 , ( 11 
)
for some positive constant C 1 . Then, there exists B > 0 such that

V (θ, λ) = (1 + Bρ ǫ ) J j=1 (1 -λ K j ) 2 θ 2 (j) + λ 2 K j σ 2 j + 2λ K j pen j + k>N θ 2 k +C 1 ǫ 2 + Bρ ǫ R(θ, λ 0 ), ( 12 
)
is a risk hull on Λ ⋆ .

Theorem 2.1 states in fact that the penalized quadratic risk

R pen (θ, λ) = J j=1 (1 -λ K j ) 2 θ 2 (j) + λ 2 K j σ 2 j + k>N θ 2 k + 2 J j=1 λ K j pen j , (13) 
is, up to some constants and residual terms, a risk hull on the family Λ ⋆ . Hence, we will use R pen (θ, λ) as a criterion for the construction of a data-driven filter on Λ ⋆ , provided that inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] is satisfied (see Section 3). The construction of a hull can be reduced to the choice of a penalty (pen j ) j=1...J , provided [START_REF] Engl | Regularization of Inverse Problems[END_REF] is verified. A brief discussion concerning this assumption is presented in Section 3. Some examples of penalties are presented in Section 4.

Oracle inequalities

In Section 2, we have proposed a family of hulls indexed by the penalty (pen j ) j=1...J . In this section, we are interested in the performances of the estimators constructed from these hulls.

In the sequel, we set λ j = λ K j for all j ∈ {1 . . . J}. This is a slight abuse of notation but the meaning will be clear from the context. Then define

U pen (y, λ) = J j=1 (λ 2 j -2λ j )( ỹ 2 (j) -σ 2 j ) + λ 2 j σ 2 j + 2λ j pen j , where ỹ 2 (j) = ǫ 2 k∈I j b -2 k y 2 k , ∀j ∈ {1, . . . , J}.
The term U pen (y, λ) is an estimator of the penalized quadratic risk R pen (θ, λ) defined in [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. Recall that from Theorem 2.1, R pen (θ, λ) is, up to some constant and residual terms, a risk hull. Let θ ⋆ denote the estimator associated to the filter

λ ⋆ = arg min λ∈Λ ⋆ U pen (y, λ). (14) 
Using simple algebra, we can prove that the solution of ( 14) is

λ ⋆ k =    1 - σ 2 j +pen j ỹ 2 (j) + , k ∈ I j , j = 1 . . . J, 0 , k > N. (15) 
This filter behaves as follows. For all j ∈ {1, . . . , J}, λ ⋆ j compares the term ỹ 2 (j) to σ 2 j + pen j . When θ 2 (j) is 'small' (or even equal to 0), this comparison may lead to wrong decision. Indeed, ỹ 2 (j) is in this case close to σ 2 j + η j . The variance of the variables η j is very large since b k → 0 as k → +∞. Fortunately, these variables are uniformly bounded by the penalty in the sense of [START_REF] Engl | Regularization of Inverse Problems[END_REF]. Hence, λ ⋆ j should be close to 0 for 'small' θ 2 (j) . Theorem 3.1 below emphasizes this heuristic discussion through a simple oracle inequality.

Remark that the particular case pen j = 0 for all j ∈ {1, . . . , J} leads to the unbiased risk estimation approach. Inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] does not hold in this setting. Theorem 3.1 Let θ ⋆ be the estimator associated to the filter λ ⋆ . Assume that inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] holds. Then, there exists C ⋆ > 0 independent of ǫ such that, for all θ ∈ ℓ 2 and any

0 < ǫ < 1 E θ θ ⋆ -θ 2 ≤ (1 + τ ǫ ) inf λ∈Λ ⋆ R(θ, λ) + C ⋆ ǫ 2
, where τ ǫ → 0 as ǫ → 0 provided max j pen j /σ 2 j → 0 and ρ ǫ → 0 as ǫ → 0.

Although this result is rather general, the constraints on the blocks and the penalty are only expressed through one inequality (here [START_REF] Engl | Regularization of Inverse Problems[END_REF]). This is one of the advantages of the RHM approach.

For the particular choice pen j = ϕ j σ 2 j leading to the penalized blockwise Stein rule, we obtain a simpler assumption than in [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. This is an interesting outcome.

We conclude this section with an oracle inequality on Λ mon , the family of monotone filters. We take advantage of the closeness between Λ ⋆ and Λ mon under specific conditions. For the sake of convenience, we restrict to one specific type of blocks.

Let ν ǫ = ⌈log ǫ -1 ⌉ and κ ǫ = log -1 ν ǫ , where for all x ∈ R, ⌈x⌉ denotes the minimal integer strictly greater than x. Define the sequence (T j ) j=1...J by

T 1 = ⌈ν ǫ ⌉, T j = ⌈ν ǫ (1 + κ ǫ ) j-1 ⌉, j > 1, (16) 
and the bandwidth J as

J = min{j : K j > N }, with N = max m : m k=1 b -2 k ≤ ǫ -2 κ -3 ǫ . ( 17 
)
Corollary 3.2 Assume that (b k ) ∼ (k -β
) k∈N for some β > 0 and that the sequence (pen j ) j=1...J satisfies inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF]. Then , for any θ ∈ ℓ 2 and 0 < ǫ < ǫ 1 , we have:

E θ θ ⋆ -θ 2 ≤ (1 + Γ ǫ ) inf λ∈Λmon R(θ, λ) + C 2 ǫ 2 ,
where C 2 , ǫ 1 denote positive constants independent of ǫ, and Γ ǫ → 0 as ǫ → 0.

The proof is a direct consequence of Lemma 1 of [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. It can be in fact extended to other constructions for blocks. One has only to verify that max j=1...J-1

σ 2 j+1 σ 2 j ≤ 1 + η ǫ , for 0 < η ǫ < 1/2.
The inequality is sharp if η ǫ → 0 as ǫ → 0. The interested reader can refer to [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptative estimation[END_REF] for some examples of blocks.

The results obtained in this section hold for a wide range of penalties. This range is characterized and studied in the next section.

Some choices of penalty

In this section, we present two possible choices of penalty satisfying inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF]. Then, we present a brief discussion on the range in which this sequence can be chosen.

The goal of this section is not to say what could be a good penalty. This question is rather ambitious and may require more than a single paper. Our aim here is rather to present some hint on the way it could be chosen and on the related problem.

For the sake of convenience, we use in this section the same framework of Corollary 3.2. We assume that the sequence of eigenvalues possesses a polynomial behaviour, i.e. (b k ) ∼ (k -β ) k∈N for some β > 0. Concerning the set Λ ⋆ , we consider the weakly geometrically increasing blocks defined in ( 16) and [START_REF] Kneip | Ordered linear smoothers[END_REF]. All the results presented in the sequel hold for other constructions (see for instance [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptative estimation[END_REF]). We leave the proof to the interested reader. Concerning the sequence (b k ) k∈N , the relaxation of the assumption on polynomial behaviour is not straightforward. In particular, considering exponentially decreasing eigenvalues requires a specific treatment in this setting.

Let u and v two real sequences. Here and in the sequel, for all k ∈ N, we write u k v k if we can find a positive constant C independent of k such that u k ≤ Cv k , and u k ≃ v k if both u k v k and u k v k . Since the sequence (b k ) k∈N possesses a polynomial behaviour, we can write that for all j ∈ {1 . . . J}

σ 2 j = ǫ 2 k∈I j b -2 k ≃ ǫ 2 K 2β j (K j+1 -K j ),
and

∆ j = K 2β j+1 K 2β j (K j+1 -K j ) ≃ (K j+1 -K j ) -1 ,
since K j+1 /K j → 1 as j → +∞.

Examples

The following lemma provides upper bounds on the term E θ [η jpen j ] + and makes more explicit the behaviour of the penalty. It can be used to prove inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] in several situations. Lemma 4.1 For all j ∈ {1, . . . , J} and δ such that

0 < δ < ǫ -2 b 2 K j -1 /2, E[η j -pen j ] + ≤ δ -1 exp    -δpen j + δ 2 Σ 2 j + 4δ 3 k∈I j ǫ 6 b -6 k (1 -2δǫ 2 b -2 K j -1 )    , with Σ 2 j = ǫ 4 k∈I j b -4 k , ∀j ∈ {1, . . . , J}. (18) 
PROOF. Let j ∈ {1, . . . , J} be fixed. First remark that for all δ > 0

E θ [η j -pen j ] + = +∞ pen j P (η j ≥ t)dt, = +∞ pen j P (exp(δη j ) ≥ e δt )dt, ≤ δ -1 e -δpen j E θ exp(δη j ).
Then, provided 0

< δ < ǫ -2 b 2 K j-1 /2, E θ exp(δη j ) ≤ exp    δ 2 Σ 2 j + 4δ 3 k∈I j ǫ 6 b -6 k (1 -2ǫ 2 δb -2 k ) +    .
This concludes the proof.

The principle of risk hull minimization leads to an interesting choice. The only restriction on (pen j ) j=1...J from the risk hull point of view is expressed through inequality (11)

J j=1 E θ η j -pen j + ≤ C 1 ǫ 2 ,
for some positive constant C 1 . Since E θ [η ju] + ≤ E θ η j 1 {η j ≥u} for all positive u, we may be interested in the penalty

pen j = (1 + α)U j , with U j = inf u : E θ η j 1 {η j ≥u} ≤ ǫ 2 , ∀j ∈ {1, . . . , J}, (19) 
for some α > 0. This penalty is an extension of the sequence proposed by [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] for spectral cut-off schemes.

The next corollary establishes that the sequence pen j j=1...J is a relevant choice for the penalty. We obtain a sharp oracle inequality for the related estimator. In particular, inequality (11) holds, i.e. the penalty contains the variability of the problem. Corollary 4.2 Let θ ⋆ the estimator introduced in ( 15) with the penalty (pen j ) j=1...J . Then

E θ θ ⋆ -θ 2 ≤ (1 + γ ǫ ) inf λ∈Λ ⋆ R(θ, λ) + C 4 α ǫ 2 , ( 20 
)
where C 4 denotes a positive constant independent of ǫ and γ ǫ = o(1) as ǫ → 0.

PROOF. We use the following lower bound on U j :

U j = inf u : E θ η j 1 {η j ≥u} ≤ ǫ 2 ≥ 2Σ 2 j log Cǫ -4 Σ 2 j , (21) 
where for all j ∈ {1 . . . J}, Σ 2 j is defined in [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF]. The proof can be directly derived from the Lemma 1 of [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF]. Then, thanks to Theorems 2.1 and 3.1, we only have to prove that inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] holds since max j pen j /σ 2 j converges to 0 as ǫ → 0. For all j ∈ {1, . . . , J}, using Lemma 4.1,

E η j -pen j + ≤ 1 δ exp    -δpen j + δ 2 Σ 2 j + 4δ 3 k∈I j ǫ 6 b -6 k (1 -2δǫ 2 b -2 K j-1 )    , ( 22 
)
for all 0 < δ < ǫ -2 b 2 K j -1 /2. Setting δ = log(Cǫ -4 Σ 2 j ) 2Σ 2 j ,
and using (21), we obtain

E[η j -pen j ] + ≤ 2Σ 2 j log(Cǫ -4 Σ 2 j ) exp 1 2 log(Cǫ -4 Σ 2 j ) × exp -(1 + α) log(Cǫ -4 Σ 2 j ) , ≤ Cǫ 2 1 log(Cǫ -4 Σ 2 j ) exp -α log(Cǫ -4 Σ 2 j ) .
Indeed, provided ( 16) and ( 17) hold, δb -2 K j -1 and the last term in the right hand side of the exponential in (22) converge to 0 as j → +∞. Hence, we eventually obtain

J j=1 E[η j -pen j ] + ≤ Cǫ 2 J j=1 1 log 1/2 (CT j ) exp{-α log(CT j )}, ≤ Cǫ 2 J j=1 j -1/2 exp -α log(Cν ǫ (1 + κ ǫ ) j ) , ≤ Cǫ 2 +∞ j=1 j -1/2 exp{-αDj} < Cǫ 2 α ,
where D and C denote two positive constants independent of ǫ. This concludes the proof of Corollary 4.3..

The penalty ( 19) is not explicit. Nevertheless, it can be computed using Monte-Carlo approximation: there are only J terms to compute. Remark that it is also possible to deal with the lower bound (21) which is explicit. The theoretical results are essentially the same since we use this bound in the proof of Corollary 4.3. Now, we consider the penalty introduced in [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. For all j ∈ {1, . . . , J}, it is defined as

pen CT j = ∆ γ j σ 2 j , with 0 < γ < 1/2.
Remark that with our assumptions on Λ ⋆ and (b k ) k∈N

pen CT j ≃ ǫ 2 K 2β j (K j+1 -K j ) 1-γ pen j .
This inequality entails that ( 11) is satisfied. Hence, an oracle inequality similar to (20) can be obtained for this sequence. This is the same result as in [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. However, we construct a different proof thanks to the RHM approach.

The range

Theorem 3.1 provides in fact an admissible range for the penalty. If we want a sharp oracle inequality, necessarily max j pen j /σ 2 j → 0 as ǫ → 0. Hence, the penalty should not be too large. At the same time, we require from inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] that the penalty contains in a certain sense the variables (η j ) j=1...J . Hence, small penalties will not be convenient.

From inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] and Lemma 4.1, the sequence (pen j ) j=1...J should at least fulfil pen j Σ j for all j ∈ {1, . . . , J}. Since we require in the same time max j σ 2 j /pen j → 0 as j → +∞, an admissible penalty in the sense of Theorem 3.1 should satisfy Σ j pen j σ 2 j , ∀ j ∈ {1, . . . , J}.

With our assumptions, this range is equivalent to

ǫ 2 K 2β j (K j+1 -K j ) 1/2 pen j ǫ 2 K 2β j+1 (K j+1 -K j ), ∀j ∈ {1, . . . , J}.
It is possible to prove that a similar to (20) oracle inequality holds for all penalty (pen j ) j=1...J satisfying (23). This is in particular the case for (pen j ) j=1...J and (pen CT j ) j=1...J . Using the same bounds as in the proof of Corollary 4.3, it seems difficult to obtain a sharp oracle inequality with the penalty (Σ j ) j=1...J . Nevertheless, the range (23) is derived from upper bounds on the estimator θ ⋆ and may certainly be refined. A lower bound approach may perhaps produce interesting results (see for instance [START_REF] Efromovich | A lower bound oracle inequality for a blockwise-shrinkage estimate[END_REF]).

In order to conclude this discussion, it would be interesting to compare the two penalties presented in this section. Remark that (pen j ) j=1...J is closer to the lower bound of the range than (pen j ) j=1...J . However, we do not claim than a penalty is better than another. This is an interesting but very difficult question that should be addressed in a separate paper.

Conclusion

The main contribution of this paper is an extension of the RHM method to the family Λ ⋆ and a link between the penalized blockwise Stein rule and the risk hull approach. It is rather surprising that a threshold estimator may be studied via some tools usually related to a parameter selection setting. In any case, this approach allows us to develop a general study on this threshold estimator. In particular, we impose a simple assumption on the threshold which is related to the variance of the η j in each block. This treatment may certainly be applied to other existing adaptive approaches. For instance, one may be interested in wavelett threshold estimators in a wavelet-vaguelette decomposition framework (see [START_REF] Donoho | Nonlinear solutions of linear inverse problems by wavelet-vaguelette decomposition[END_REF]). The generalization of our work in this setting is not straightforward since the 'blocks' are of size 1. Nevertheless, this approach may provide some new interesting perspectives.

In order to conclude this paper, it seems necessary to discuss the role played by the constant α in the penalty (pen j ) j=1...J . Inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] does not hold for α = 0. On the other hand, the proof of Corollary 4.3 indicates that large values for α will not lead to an accurate recovering. The choice of α has already been discussed and illustrated via some numerical simulations in a slightly different setting: see [START_REF] Cavalier | Risk hull method and regularization by projections of ill-posed inverse problems[END_REF] or [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF] for more details. Remark that we do not require α to be greater than 1 in this paper. This is a small difference compared to the constraints expressed in a regularization parameter choice scheme. This can be explained by the blockwise structure of the variables (η j ) j=1...J .

Proofs and technical lemmas 5.1 Ordered processes

Ordered processes were introduced in [START_REF] Kneip | Ordered linear smoothers[END_REF]. In [START_REF] Cao | On adaptive regression by splines[END_REF], these processes are studied in details and very interesting tools are provided. These stochastic objects may play an important role in adaptive estimation: see in particular [START_REF] Golubev | On oracle inequalities related to high dimensional linear models[END_REF] or [START_REF] Marteau | Risk hull method for spectral regularization in linear statistical inverse problems[END_REF] for more details.

The aim of this section is not to provide an exhaustive presentation of this theory but rather to introduce some definitions and useful properties.

Definition 5.1 Let ζ(t), t ≥ 0 a separable random process with Eζ(t) = 0 and finite variance Σ 2 (t). It is called ordered if for all t 2 ≥ t 1 ≥ 0 Σ 2 (t 2 ) ≥ Σ 2 (t 1 ) and E[ζ(t 2 ) -ζ(t 1 )] 2 ≤ Σ 2 (t 2 ) -Σ 2 (t 1 ).
Let ζ be a standard Gaussian random variable. The process t → ζt is the most simple example of ordered process. Wiener processes are also covered by Definition 5.1. The family of ordered processes is in fact quite large.

Assumption C1. There exists κ > 0 such that

ϕ(κ) = sup t 1 ,t 2 E exp κ ζ(t 1 ) -ζ(t 2 ) E[ζ(t 1 ) -ζ(t 2 )] 2 < +∞.
This assumption is not very restrictive. Several processes encountered in linear estimation satisfy it.

The proof of the following result can be found in [START_REF] Cao | On adaptive regression by splines[END_REF]. This lemma is rather important in the theory of ordered processes and leads to several interesting results. In particular, the following corollary will be often used in the proofs. PROOF.Let γ > 0 be fixed. Using Lemma 5.2

Eζ( t) = Eζ( t) -γEΣ 2 ( t) + γEΣ 2 ( t), ≤ E sup t≥0 ζ(t) -γΣ 2 (t) + + γEΣ 2 ( t), ≤ C γ + γEΣ 2 ( t)
Choose γ = EΣ 2 ( t) -1/2 in order to conclude the proof.

Proofs

Proof of Theorem 2.1. First, remark that

E θ sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) = E θ sup λ∈Λ ⋆ +∞ k=1 (1 -λ k ) 2 θ 2 k + ǫ 2 +∞ k=1 λ 2 k b -2 k ξ 2 k -2ǫ +∞ k=1 λ k (1 -λ k )θ k b -1 k ξ k -V (θ, λ)} , = E θ sup λ∈Λ ⋆    J j=1   (1 -λ j ) 2 θ 2 (j) + λ 2 j k∈I j ǫ 2 b -2 k ξ 2 k -2λ j (1 -λ j )X j   + k>N θ 2 k -V (θ, λ) , = E θ J j=1   (1 -λj ) 2 θ 2 (j) + λ2 j k∈I j ǫ 2 b -2 k ξ 2 k + 2 λj ( λj -1)X j   + k>N θ 2 k -E θ V (θ, λ), with λ = arg sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) ,
and

X j = ǫ k∈I j θ k b -1 k ξ k , ∀j ∈ {1, . . . , J}. (24) 
Let j ∈ {1, . . . , J} be fixed. Use the decomposition

E θ 2 λj ( λj -1)X j = E θ λ2 j X j + E θ ( λ2 j -2 λj )X j , = E θ λ2 j X j + E θ (1 -λj ) 2 X j = A 1 j + A 2 j , (25) 
since E θ X j = 0. First consider A 1 j . Let λ 0 j denotes the blockwise constant oracle on the block j. Using Corollary 5.3 in Section 5.1

A 1 j = E θ λ2 j X j = E θ λ2 j -(λ 0 j ) 2 X j ≤ C E θ λ2 j -(λ 0 j ) 2 2 k∈I j ǫ 2 b -2 k θ 2 k ,
where C > 0 denotes a positive constant. Indeed, both processes

ζ : t → (t 2 -(λ 0 j ) 2 )X j , t ∈ [(λ 0 j ) 2 , 1] and ζ : t → (t -2 -(λ 0 j ) 2 )X j , t ∈ [(λ 0 j ) -1
; +∞[ are ordered and satisfy Assumption C1. For all γ > 0, use

λ2 j -(λ 0 j ) 2 2 ≤ 4 (1 -λj ) 2 + (1 -λ 0 j ) 2 ( λ2 j + (λ 0 j ) 2 ),
and the Cauchy-Schwartz and Young inequalities

A 1 j ≤ C E θ (1 -λj ) 2 + (1 -λ 0 j ) 2 ( λ2 j + (λ 0 j ) 2 ) max k∈I j ǫ 2 b -2 k θ 2 (j) , ≤ CE θ γ(1 -λj ) 2 θ 2 (j) + γ -1 ∆ j λ2 j σ 2 j + Cγ(1 -λ 0 j ) 2 θ 2 (j) +Cγ -1 ∆ j (λ 0 j ) 2 σ 2 j + C E θ (1 -λj ) 2 λ2 j max k∈I j ǫ 2 b -2 k θ 2 (j) , (26) 
for some positive constant C. The bound of the last term in the r.h.s. of (26) requires some work. First, suppose that

θ 2 (j) ≤ σ 2 j . (27) 
In such a situation, for all γ > 0

E θ (1 -λj ) 2 λ2 j max k∈I j ǫ 2 b -2 k θ 2 (j) ≤ θ 2 (j) E θ λ2 j max k∈I j ǫ 2 b -2 k , ≤ γ θ 2 (j) + γ -1 ∆ j E θ λ2 j σ 2 j .
If (27) holds, then

θ 2 (j) = σ 2 j θ 2 (j) σ 2 j + θ 2 (j) 1 + θ 2 (j) σ 2 j ≤ 2 (1 -λ 0 j ) 2 θ 2 (j) + (λ 0 j ) 2 σ 2 j ,
where λ 0 is the oracle defined in [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]. Indeed

λ 0 j = θ 2 (j) σ 2 j + θ 2 (j)
, ∀j ∈ {1, . . . , J}.

Now, suppose θ 2 (j) > σ 2 j . (28) 
Then, for all γ > 0

E θ (1 -λj ) 2 λ2 j max k∈I j ǫ 2 b -2 k θ 2 (j) ≤ max k∈I j ǫ 2 b -2 k E θ (1 -λj ) 2 θ 2 (j) , ≤ γE θ (1 -λj ) 2 θ 2 (j) + γ -1 ∆ j σ 2 j .
Using (28):

σ 2 j = σ 2 j θ 2 (j) σ 2 j + θ 2 (j) 1 + σ 2 j θ 2 (j) ≤ 2 (1 -λ 0 j ) 2 θ 2 (j) + (λ 0 j ) 2 σ 2 j .
Setting γ = ∆ j , we eventually obtain

A 1 j ≤ C ∆ j E θ (1 -λj ) 2 θ 2 (j) + λ2 j σ 2 j + C ∆ j (1 -λ 0 j ) 2 θ 2 (j) + (λ 0 j ) 2 σ 2 j , (29) 
for some constant C > 0 independent of ǫ. The same bound occurs for the term A 2 j in (25). Hence, there exists B > 0 independent of ǫ such that

E θ sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) ≤ E θ J j=1   (1 + Bρ ǫ )(1 -λj ) 2 θ 2 (j) + λ2 j k∈I j ǫ 2 b -2 k ξ 2 k + Bρ ǫ λ2 j σ 2 j   + k>N θ 2 k + Bρ ǫ R(θ, λ 0 ) -E θ V (θ, λ), ≤ E θ sup λ∈Λ ⋆    J j=1   (1 + Bρ ǫ )(1 -λ j ) 2 θ 2 (j) + λ 2 j k∈I j ǫ 2 b -2 k ξ 2 k + Bρ ǫ λ 2 j σ 2 j   + k>N θ 2 k + Bρ ǫ R(θ, λ 0 ) -V (θ, λ) ,
where ρ ǫ is defined in [START_REF] Efromovich | A lower bound oracle inequality for a blockwise-shrinkage estimate[END_REF]. Now, using ( 9) and ( 12),

E θ sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) ≤ E θ sup λ∈Λ ⋆ J j=1 λ 2 j η j -2λ j pen j -C 1 ǫ 2 , = J j=1 E θ sup λ j ∈[0,1] λ 2 j η j -2λ j pen j -C 1 ǫ 2 .
Let j ∈ {1 . . . J} be fixed. We are looking for λ j ∈ [0, 1] that maximizes the quantity λ 2 j η j -2λ j pen j . If η j < 0, the function λ → λ 2 η j -2λpen j is concave and the maximum on [0, 1] is attained for λ = 0. Now, if η j > 0, the function λ → λ 2 η j -2λpen j is convex and the maximum on [0, 1] is attained in 0 or in 1. Therefore sup

λ j ∈[0,1] λ 2 j η j -2λ j pen j = η j -2pen j + , (30) 
Using inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF], we eventually obtain

E θ sup λ∈Λ ⋆ θλ -θ 2 -V (θ, λ) ≤ J j=1 E θ η j -2pen j + -C 1 ǫ 2 , ≤ J j=1 E θ η j -pen j + -C 1 ǫ 2 ≤ 0.
This concludes the proof of Theorem 2.1.

Remark: Using the same algebra in the proof of Theorem 2.1, it is possible to prove that

E θ sup λ∈Λ ⋆ θλ -θ 2 -W (θ, λ) ≤ 0, (31) 
where

W (θ, λ) = (1 + Bρ ǫ ) J j=1 (1 -λ K j ) 2 θ 2 (j) + λ 2 K j σ 2 j + λ 2 K j pen j + k>N θ 2 k +C 1 ǫ 2 + Bρ ǫ R(θ, λ 0 ),
Hence, W (θ, λ) is also a risk hull. For all j ∈ {1 . . . J}, the only difference with V (θ, λ) is contained in the bound of sup

λ j ∈[0,1] λ 2 j η j -λ 2 j pen j ≤ [η j -pen j ] + .
Then, we use inequality [START_REF] Engl | Regularization of Inverse Problems[END_REF] in order to obtain (31).

Proof of Theorem 3.1. In the situation where inequality (11) holds, (31) yields

E θ θ ⋆ -θ 2 ≤ W (θ, λ ⋆ ) = (1 + Bρ ǫ ) Rpen (θ, λ ⋆ ) + Bρ ǫ R(θ, λ 0 ) + C 1 ǫ 2 , (32) 
where

Rpen (θ, λ ⋆ ) = J j=1 (1 -λ ⋆ j ) 2 θ 2 (j) + (λ ⋆ j ) 2 σ 2 j + (λ ⋆ j ) 2 pen j + k>N θ 2 k ,
and B denotes a positive constant independent of ǫ. Moreover, from [START_REF] Golubev | On oracle inequalities related to high dimensional linear models[END_REF],

U pen (y, λ ⋆ ) ≤ U pen (y, λ), ∀λ ∈ Λ ⋆ .
The proof of Theorem 3.1 is mainly based on these two equalities. First remark that

U pen (y, λ ⋆ ) -Rpen (θ, λ ⋆ ) = J j=1 {(λ ⋆ j ) 2 -2λ ⋆ j }( ỹ 2 (j) -σ 2 j ) + (λ ⋆ j ) 2 σ 2 j + 2λ ⋆ j pen j -(1 -λ ⋆ j ) 2 θ 2 (j) -(λ ⋆ j ) 2 σ 2 j -(λ ⋆ j ) 2 pen j - k>N θ 2 k , = J j=1 {(λ ⋆ j ) 2 -2λ ⋆ j }( ỹ 2 (j) -σ 2 j ) -(1 -λ ⋆ j ) 2 θ 2 (j) +{2λ ⋆ j -(λ ⋆ j ) 2 }pen j - k>N θ 2 k .
Hence U pen (y, λ ⋆ ) -Rpen (θ, λ ⋆ )

= J j=1   {(λ ⋆ j ) 2 -2λ ⋆ j } k∈I j (θ 2 k + ǫ 2 b -2 k (ξ 2 k -1) + 2ǫb -1 k ξ k θ k ) -(1 -λ ⋆ j ) 2 θ 2 (j) +{2λ ⋆ j -(λ ⋆ j ) 2 }pen j - k>N θ 2 k , = J j=1 {(λ ⋆ j ) 2 -2λ ⋆ j }(η j + 2X j -pen j ) -θ 2 ,
where η j and X j are respectively defined in ( 9) and (24). Hence, from ( 14)

Rpen (θ, λ ⋆ ) = U pen (y, λ ⋆ ) + θ 2 + J j=1 {2λ ⋆ j -(λ ⋆ j ) 2 }(η j + 2X jpen j ), ≤ U pen (y, λ p ) + θ 2 + J j=1 {2λ ⋆ j -(λ ⋆ j ) 2 }(η j + 2X jpen j ), where λ p = arg inf λ∈Λ ⋆ R pen (θ, λ). and R pen (θ, λ) is defined in [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]. Then, with simple algebra E θ U pen (y, λ p ) = E θ J j=1 {(λ p j ) 2 -2λ p j }( ỹ 2 (j)σ 2 j ) + (λ p j ) 2 σ 2 j + 2λ p j pen j , = R pen (θ, λ p )θ 2 .

This leads to

E θ Rpen (θ, λ ⋆ ) ≤ R pen (θ, λ p ) + E θ J j=1 {2λ j -(λ ⋆ j ) 2 }(η j + 2X j -pen j ). ( 33 
)
We are now interested in the behaviour of the right hand side of (33). First, using (25)-(29) in the proof of Theorem 2.1

E θ {2λ j -(λ ⋆ j ) 2 }X j ≤ Cρ ǫ (1 -λ p j ) 2 θ 2 (j) + (λ p j ) 2 σ 2 j + Cρ ǫ E θ (1 -λ ⋆ j ) 2 θ 2 (j) + (λ ⋆ j ) 2 σ 2 j ,
for all j ∈ {1, . . . , J}. Here, C and C denote positive constants independent of ǫ. In particular, it is always possible to obtain C verifying Cρ ǫ < 1 (see the proof of Theorem 2.1 for more details). Hence E θ Rpen (θ, λ ⋆ )

≤ (1 + Cρ ǫ )R pen (θ, λ p ) + Cρ ǫ E θ Rpen (θ, λ ⋆ ) + E θ J j=1 {2λ ⋆ j -(λ ⋆ j ) 2 }(η jpen j ).

Then, from inequality ( 11) and ( 30)

E θ J j=1 {2λ ⋆ j -(λ ⋆ j ) 2 }(η j -pen j ) = E θ J j=1 [η j -pen j ] + ≤ C 1 ǫ 2 .
This leads to

E θ Rpen (θ, λ ⋆ ) ≤ (1 + Cρ ǫ )R pen (θ, λ p ) + Cρ ǫ E θ Rpen (θ, λ ⋆ ) + C 1 ǫ 2 , ⇒ (1 -Cρ ǫ )E θ Rpen (θ, λ ⋆ ) ≤ (1 + Cρ ǫ )R pen (θ, λ p ) + C 1 ǫ 2 , ⇒ E θ Rpen (θ, λ ⋆ ) ≤ (1 + Cρ ǫ ) (1 -Cρ ǫ ) R pen (θ, λ p ) + Cǫ 2 . (34) 
Using (32) and (34) E θ θ ⋆θ 2 ≤ (1 + Bρ ǫ )E θ Rpen (θ, λ ⋆ ) + C 1 ǫ 2 + Bρ ǫ R(θ, λ 0 ), ≤ (1 + µ ǫ )R pen (θ, λ p ) + Cǫ 2 + Bρ ǫ R(θ, λ 0 ), where µ ǫ = µ ǫ (ρ ǫ ) is such that µ ǫ → 0 as ρ ǫ → 0 and C is a positive constant independent of ǫ. In order to conclude the proof, we just have to compare R(θ, λ 0 ) to R pen (θ, λ p ). For all j ∈ {1, . . . , J}, introduce R j pen (θ, λ) = (1λ j ) 2 θ 2 (j) + λ 2 j σ 2 j + 2λ j pen j , and R j (θ, λ) = (1λ j ) 2 θ 2 (j) + λ 2 j σ 2 j .

Then R j pen (θ, λ p ) ≤

σ 4 j θ 2 (j) (σ 2 j + θ 2 (j) ) 2 + σ 2 j θ 4 (j) (σ 2 j + θ 2 (j) ) 2 + 2 pen j σ 2 j σ 2 j θ 2 (j) σ 2 j + θ 2 (j) 
, = 1 + 2 pen j σ 2 j R j (θ, λ 0 ), since R j pen (θ, λ p ) ≤ R j pen (θ, λ 0 ) from the definition of λ p . This concludes the proof of Theorem 3.1.

Lemma 5 . 2

 52 Let ζ(t), t ≥ 0 an ordered process satisfying ζ(0) = 0 and Assumption C1. There exists a constant C = C(κ) such that for all γ > 0 E sup t≥0 ζ(t) -γΣ 2 (t) + ≤ C γ .

Corollary 5 . 3

 53 Let ζ(t), t ≥ 0 an ordered process satisfying ζ(0) = 0 and Assumption C1. Consider t measurable with respect to ζ. Then, there exists C = C(κ) > 0 such that Eζ( t) ≤ C EΣ 2 ( t).
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