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Signal detection for inverse problems in a multidimensional framework *

This paper is devoted to multi-dimensional inverse problems. In this setting, we address a goodness-of-fit testing problem. We investigate the separation rates associated to different kinds of smoothness assumptions and different degrees of ill-posedness.

Introduction

This paper is concerned with an inverse problem model. More formally, given H, K two Hilbert spaces, our aim is to provide some inference on a function f ∈ H of interest from an observation Y satisfying

Y = Kf + ǫξ, (1.1) 
where K : H → K denotes a compact operator, ǫ a positive noise level and ξ a Gaussian white noise. The model (1.1) means in fact that we can observe Y, g = Kf, g + ǫ ξ, g , ∀g ∈ K,

where for all g, g 1 , g 2 ∈ K, ξ, g ∼ N (0, g 2 ) and E [ ξ, g 1 ξ, g 2 ] = g 1 , g 2 . Such a model has been widely studied in the literature. In particular, the estimation issue has retained a large amount of attention. We mention for instance [START_REF] Engl | Regularization of inverse problems[END_REF] for an extended review of existing methods and problematics in a numerical setting (i.e. when ξ is deterministic and ξ ≤ 1). In a statistical setting, we mention [START_REF] Mathé | Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projection methods[END_REF], [START_REF] Bissantz | Convergence rates of general regularization methods for statistical inverse problems and applications[END_REF] or [START_REF] Cavalier | Inverse problems in statistics[END_REF] for a recent survey on this topic.

In this paper, our aim is not to provide an estimator of f and to study the related performances, but rather to assess the goodness-of-fit of f with respect to a benchmark signal f 0 . More formally, our aim is to test

H 0 : f = f 0 , against H 1 : f ∈ F , (1.3) 
where F ⊂ H is such that f 0 ∈ F . The description of the subset F is of first interest since it characterizes the detectable functions. This set is not allowed to be too rich since in this case it will be impossible to separate both hypotheses with prescribed errors. In the same time, it should not contain signals that are too close of f 0 . Hence, most of the alternatives in the literature are of the form

F := Θ[r] = {f ∈ Θ, s.t. f -f 0 ≥ r} ,
where Θ denotes a functional space while r describes the amount of signal available in the observations. Typically, Θ will be a set of functions satisfying some smoothness constraint. Given Θ and a prescribed level α for the first kind error, the main challenge in this setting is to describe possible values of r for which the second kind error can be (asymptotically) controlled. Without loss of generality, we assume in the following that f 0 = 0.

In the direct setting (i.e. when K denotes the identity operator), we mention the seminal series of paper [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF], [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF], [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF] where various situations are considered. We also refer to [START_REF] Barraud | Non-asymptotic minimax rates of testing in signal detection[END_REF] for a non-asymptotic study and [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF] where adaptation with respect to the smoothness of the alternative is discussed. In the inverse problem framework, few papers were interested by the testing issue. We mention [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] in a slightly different framework (error in variable model), or more recently [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF], [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF], [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] and [START_REF] Marteau | General regularization schemes for signal detection in inverse problems[END_REF] in our context.

All these studies were concerned with uni-dimensional problem, where typically H = L 2 (R). Up to our knowledge, the only study in the multi-dimensional case for inverse problem is provided in [START_REF] Yu | Minimax nonparametric testing in a problem related to the radon transform[END_REF]. Nevertheless, the framework is restricted to the Radon transform operator in dimension 2. In this paper, our aim is to investigate the behavior of separation rates in a d-dimensional setting, under general assumptions on the operator.

Our paper is organized as follows. In Section 2, we provide a precise description of the considered inverse problem model. We establish our main theorem, which will allow to determine the rates in the different considered cases. Section 3 is devoted to a presentation of the minimax separation rates corresponding to various situations (mildly and severely ill-posed problems), regular and super-smooth alternatives. All the proofs are gathered in Section 4.

A general methodology for testing in an inverse problem framework

In this section, we will describe more precisely our model and the different related assumptions. Then we establish our main result which is at the core of our analysis.

Multi-dimensional inverse problems

The inverse model (1.1) has been widely investigated in the literature, in particular for an estimation purpose. Such a model arises in various practical situations and precise analysis are of first interest. Below, we describe two particular examples of operator and related applications.

The Radon transform. The Radon transform is one of most popular operator. It is often involved in medical imaging. Given H the unit disk on R 2 , the aim is to provide inference on the spatially varying density f of a cross section D ⊂ H of an human body. This inference is provided via observation obtained by non-destructive imagery, namely X-ray tomography. In such a case, given a function f ∈ L 2 (H), one measure Rf (u, ϕ) which corresponds to the decay of the intensity of the X-ray in the direction ϕ when the receiver is at a distance u. Typically, we have

Rf (u, ϕ) = π 2 √ 1 -u 2 √ 1-u 2 - √ 1-u 2
f (u cos(ϕ)t sin(ϕ), u sin(ϕ) + t cos(ϕ))dt, for all (u, ϕ) ∈ [0, 1] × [0, 2π). For more details on such an operator, we mention for instance [START_REF] Engl | Regularization of inverse problems[END_REF]. Testing issues are discussed in [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF].

Convolution operators. The convolution operator K is defined as follows

K : L 2 (R d ) → L 2 (R d ) f → Kf = R d g(y)f (. -y)dy,
where g ∈ L 1 (R d ) denotes a convolution kernel. The behavior of this kernel (in particular the spectral behavior) characterizes the difficulty of the related deconvolution problem. Up to some conditions on this kernel g, the related convolution operator appears to a be a compact operator. For more details on the associated problem, we mention [START_REF] Engl | Regularization of inverse problems[END_REF], [START_REF] Cavalier | Inverse problems in statistics[END_REF] or [START_REF] Butucea | Goodness-of-fit testing and quadratic functional estimation from indirect observations[END_REF] for the testing issue in a slightly different setting.

The aim of this paper is not to concentrate on particular operators, but rather to describe a general scheme leading to satisfying testing procedures and related separation rates. Hence, in the following, we will only assume that we deal with the model (1.1) where K denotes a compact operator.

In order to determine whether f = 0 or not (see 1.3), the main underlying idea is to construct an estimator of f 2 (or equivalently Kf 2 , see discussion below) from Y and then to take a decision based on this estimator. Indeed, if the corresponding norm is large enough with respect to some prescribed threshold, it seems reasonable to reject H 0 .

In order to provide an estimator of this norm, we will express our problem in terms of the singular value decomposition (S.V.D.) of the operator K. This decomposition is expressed through a sequence (b 2 l , φ l , ϕ l ) l∈N d * where the b 2 l correspond to the eigenvalues of K * K while the φ l correspond to the eigenfunctions (which are assumed to denote a basis of H). In particular, for all l ∈ N d * , we get

Kφ l = b l ϕ l , K * ϕ l = b l φ l ,
where K * denotes the adjoint operator of K. Using the previous relationships and (1.2), we obtain observations as a sequence (y l )

l∈N d * with y l = b l θ l + ǫξ l , l ∈ N d * , (2.4) 
where for all l ∈ N d * , θ l = f, φ l and the ξ l are i.i.d. standard Gaussian random variables. The model (2.4) is usually called the sequence space model. The main advantage of such a representation is that it provides a simple way to investigate the different interactions between properties of the function of interest and the related behavior of the operator. Following [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] or [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF], we will only deal in the following with the model (2.4).

Please note that it is also possible to adopt another point of view where one may use general regularization approaches instead of projecting observations onto particular bases (here the S.V.D. basis). In the testing issue, this methodology has been investigated in a uni-dimensional inverse problem framework in [START_REF] Marteau | General regularization schemes for signal detection in inverse problems[END_REF]. Nevertheless, such an approach appears to be more complicated in the multidimensional case and hence will not be considered in this paper.

Minimax separation rates

Let Θ(r ǫ ) = {f ∈ Θ, s.t. f ≥ r ǫ } ,
where r ǫ denotes some radius, which is allowed to depend on ǫ. The set Θ is a given functional space (which will be made precise later on). Our aim in this paper is to test

H 0 : f = 0, against H 1,rǫ : f ∈ Θ(r ǫ ). (2.5)
For this purpose, we have to propose a test function ψ which is a measurable function of the data with values in {0, 1}. By convention, we reject H 0 if ψ = 1, and do not reject otherwise. Given a prescribed level α ∈]0, 1[ for the first kind error, we will deal all along the paper with level-α tests, namely test functions ψ α satisfying

P H 0 (ψ α = 1) ≤ α + o(1), as ǫ → 0.
Then, we associate to each level-α test function ψ α its maximal type II error probability over the set Θ(r ǫ ) defined as

β ǫ (Θ(r ǫ ), ψ α ) = sup f ∈Θ(rǫ) P f (ψ α = 0).
The minimax type II error probability over the set Θ(r ǫ ) is defined as

β ǫ (Θ(r ǫ ), α) = inf ψα β ǫ (Θ(r ǫ ), ψ α ),
where the infimum is taken over all possible level-α test functions.

Given a test function ψ α and a radius r ǫ , β ǫ (Θ(r ǫ ), ψ α ) hence provides a measure of the performances of the test. Typically, if this term tends to 1α as ǫ → 0, the test ψ α does not separate both hypotheses. On the other hand, given any β ∈]0, 1[, if one can find a test function ψ α such that β ǫ (Θ(r ǫ ), ψ α ) ≤ β + o(1) as ǫ → 0, then the hypotheses H 0 and H 1,rǫ can be separated with prescribed levels.

For a given radius r ǫ , the term β ǫ (Θ(r ǫ ), α) represents the lowest achievable level for the type II error probability. Clearly, this quantity is non-increasing with respect to r ǫ . We are therefore interested in the minimal r ǫ for which β ǫ (Θ(r ǫ ), α) → 0 as ǫ → 0. In particular, a sequence r ⋆ ǫ is called a minimax separation rate over the set Θ if

β ǫ (Θ(r ǫ ), α) → 1 -α if r ǫ /r ⋆ ǫ → 0 (2.6) β ǫ (Θ(r ǫ ), α) → 0 if r ǫ /r ⋆ ǫ → ∞ (2.7)
Hence, from an asymptotic point of view, the term r ⋆ ǫ denotes the order of the delimiting separation radius under which testing is impossible (i.e. for which the type II error probability will be close to 1α).

One of the main issue in the testing theory is then to describe as precisely as possible the (asymptotic) value for the separation rate r ⋆ ǫ following the smoothness constraints expressed on the signal. In an inverse problem framework, one want also to take into account the behavior of the operator when describing r ⋆ ǫ . In the following, we introduce our different constraints on both the signal and the operator. Then, we will establish a general result that will allow us to investigate the asymptotic of r ⋆ ǫ in different settings.

Following classical results in an inverse problem framework (see for instance [START_REF] Engl | Regularization of inverse problems[END_REF] or [START_REF] Cavalier | Inverse problems in statistics[END_REF]), the difficulty of the problem will be characterized by the behavior of the sequence (b l ) l∈N d * . Indeed, starting from the model (2.4), it appears that it will be difficult to retrieve informations on θ l if the corresponding coefficient b l is close to 0. Basically, two different regimes are considered in the literature.

Mildly ill-posed problems

There exists 0 < c 0 ≤ c 1 such that the sequence (b l ) l∈N d * satisfies c 0 d j=1 |l j | -t j ≤ |b l | ≤ c 1 d j=1 |l j | -t j , ∀l = (l 1 , . . . , l d ) ∈ N d * ,
for some sequence t = (t 1 , . . . , t d ) ∈ R d + .

Mildly ill-posed inverse problems correspond to the most favorable cases in the sense that the sequence (b l ) l∈N d * does not decrease too fast. On the other hand, severely ill-posed problems are more difficult to handle.

Severely ill-posed problems

There exists 0 < c 0 ≤ c 1 such that the sequence (b l ) l∈N d * satisfies c 0 d j=1 e -t j l j ≤ |b l | ≤ c 1 d j=1 e -t j l j , ∀l = (l 1 , . . . , l d ) ∈ N d * ,
for some sequence (t 1 , . . . , t d ) ∈ R d + .

The previous conditions characterize most of the inverse problems encountered in the literature. Now, we have to introduce smoothness assumptions on our target f . In the following, given a sequence a = (a l ) l∈N d * and a positive radius R, we will use the corresponding ellipsoids Θ defined as

Θ := Θ a,R =    ν ∈ l 2 (N d * ), l∈N d * a 2 l ν 2 l ≤ R 2    .
In particular, two different kinds of behavior for the sequence a = (a l ) l will be considered.

Given positive numbers (s 1 , . . . , s d ), we will alternatively deal with sequences a satisfying

a 2 l = d j=1 l 2s j j , or a 2 l = d j=1 e 2s j l j ∀l ∈ N d * , (2.8) 
and sequences a satisfying

a 2 l = d j=1 l 2s j j , or a 2 l = d j=1 e 2s j l j ∀l ∈ N d * .
(2.9)

In the first case (2.8), the ellipsoid Θ a,R corresponds to a Sobolev space, while in the second case (2.9), we deal with a so-called tensor product space.

Main result

In this section, we provide a general result that will allow to determine minimax separation rates in various situations. As formalized in (2.5), our aim is to decide whether there is signal in our observations or not. A natural way to investigate this problem is to construct a criterion that will measure the amount of signal available in the observations. In this paper, our test will be based on a estimation of the norm of Kf . Indeed, assertions " f = 0", "f = 0" and "Kf = 0" are equivalent since our operator is injective (we mention [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF] for an extended discussion).

First, we can estimate Kf 2 using the statistics

T = k∈N d * ω k (y 2 k -ǫ 2 ), (2.10) 
where ω = (ω k ) k∈N d * denotes a filter, i.e. a real sequence with values in [0, 1]. Several kinds of filters are available in the literature for a testing purpose. We can mention for instance [START_REF] Barraud | Non-asymptotic minimax rates of testing in signal detection[END_REF], [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF] or [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] where projection filters designed as ω k = 1 {k 1 ≤N 1 ,..,k d ≤N d } are proposed or [START_REF] Marteau | General regularization schemes for signal detection in inverse problems[END_REF] where properties of Tikhonov filters (and more general regularization schemes) are investigated. From now on, following seminal investigations proposed in [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF]- [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF], and more recent results in an inverse problem setting, we will consider filters designed as

ω k = b 2 k θ2 k 2 k∈N d * b 4 k θ4 k ∀k ∈ N d * , (2.11) 
where for a given r ǫ the sequence ( θk ) k is the solution of the extremal problem

u 2 ǫ (r ǫ ) = 1 2ǫ 4 k∈N d * b 4 k θ4 k = 1 2ǫ 4 inf θ∈Θ a,R (rǫ) k∈N d * b 4 k θ 4 k . (2.12) 
In general, a decision rule is based on the following principle. If the norm of the estimator of Kf is larger than a given threshold, this means that there is probably signal in the observations and we will reject H 0 . On the other hand, if the norm of this estimator is not large enough, we are observing only noise with a high probability and we do not reject H 0 . Using this principle and (2.10)-(2.11), we obtain the testing procedure Ψ ǫ,t defined as Ψ ǫ,t = 1 {T >t} , where T =

k∈N d * ω k (y 2 k -ǫ 2 ), (2.13) 
for some threshold t. In the following, for a given α ∈]0, 1[, we set t = H (α) , where H (α) denotes the 1α quantile of the standard Gaussian distribution. We will prove that the corresponding test is asymptotically of level α, which means that

P H 0 (Ψ ǫ,H (α) = 1) ≤ α + o(1) as ǫ → 0.
The following theorem emphasizes the performances of the test Ψ ǫ,t . We also provide lower bounds that asses the optimality of this testing procedure.

Theorem 1 Consider the testing problem introduced in (2.5) and the testing procedure Ψ ǫ,t defined in (2.13). Then, given α ∈]0, 1[,

1. (a) If u ǫ (r ǫ ) → 0, then β ǫ (Θ a,R (r ǫ ), α) → 1 -α as ǫ → 0. In this case, minimax testing is impossible. (b) If u ǫ (r ǫ ) = O(1)
and ω 0 = o(1) as ǫ → 0, then the test Ψ ǫ,H (α) is a level-α test and is asymptotically minimax, i.e.

β ǫ (Θ a,R (r ǫ ), Ψ ǫ,H (α) ) = β ǫ (Θ a,R (r ǫ ), α) + o(1), as ǫ → 0.
Moreover, we obtain the sharp asymptotics

β(Θ a,R (r ǫ ), α) = Φ(H (α) -u ǫ (r ǫ )) + o(1), as ǫ → 0. 2. If u ǫ (r ǫ ) → +∞, then the family of tests (2.13) with t = cu ǫ (r ǫ ) for some c ∈]0, 1[ are asymptotically consistent, i.e. β(Θ a,R (r ǫ ), Ψ ǫ,t ) → 0 as ǫ → 0.
For the sake of brevity, we will not provide a complete proof since it follows the same lines than previous one established in the direct case (see [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF]- [START_REF] Yu | Asymptotically minimax hypothesis testing for nonparametric alternatives[END_REF]) or in a uni-dimensional inverse setting by [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF]. Nevertheless, we will provide the main underlying ideas in Section 4.1 below.

The main consequence of Theorem 1 is that the investigation of the minimax separation rate associated to the testing problem (2.5) reduces to the study of the extremal problem (2.12). In particular, the behavior of the term u ǫ will provide meaningful informations on the difficulty of the testing problem.

In Section 3 below, we investigate the behavior of this extremal problem and related separation rates for different kinds of smoothness assumptions and different degrees of ill-posedness.

Separations rates

Following Theorem 1, it appears that the extremal problem (2.12) is of first importance for a precise understanding of minimax separation rates in this setting. In particular, we have to make explicit the terms r ǫ for which u ǫ = O(1) as ǫ → 0.

To this end, we can remark in a first time that the solution θ ⋆ of (2.12) is of the form

(θ ⋆ k ) 2 = z 2 0 b -4 k (1 -Aa 2 k ) + , ∀k ∈ N d
, where the terms z 0 = z 0,ǫ and A = A ǫ are determined by the equations

r 2 ǫ = z 2 0 J 1 , 1 = z 2 0 A -1 J 2 , with J 1 = k∈N d * b -4 k (1 -Aa 2 k ) + ,
and

J 2 = A k∈N d * a 2 k b -4 k (1 -Aa 2 k ) + .

Mildly ill-posed

Severely ill-posed

|b l | = d j=1 |l j | -t j |b l | = d j=1 e -t j l j a 2 l = d j=1 |l j | 2s j ǫ 4 4+c 1 (i) 1 4t 1 ln 1 ǫ 4 -2s (iii) a 2 l = d j=1 e 2s j l j ǫ 2 (ln(ǫ -1 )) d j=1 (2t j +1/2) (ii) ǫ 2 1+t 1 /s 1 (iv)
Table 1: Minimax separation rates for Tensor product spaces. In the case (i), c 1 = max j=1...d (1 + 4t j )/s j ; in the case (ii), s j = s for all j ∈ {1, . . . , d}; in the case (iii), s j = s and t 1 > t j and (t 1 , s 1 ) for all j ∈ {1, . . . , d}; in the case (iv), t 1 /s 1 > t j /s j for all j > 1.

Mildly ill-posed Severely ill-posed

|b l | = d j=1 |l j | -t j |b l | = d j=1 e -t j l j a 2 l = d j=1 |l j | 2s j ǫ 4/ 4+ d j=1 (1+4t j ) s j log 1 ǫ -s
Table 2: Minimax separation rates for Sobolev spaces. In the severely ill-posed case, we assume that

s 1 = • • • = s d = s.
In particular,

u 2 ǫ (r ǫ ) = ǫ -4 z 4 0 J 0 /2, where J 0 = J 1 -J 2 = k∈N d * b -4 k (1 -Aa 2 k ) 2 + .
Using this methodology, we get separation rates over both Tensor product and Sobolev spaces, when considering alternatively mildly and severely ill-posed problems. These rates are summarized in Tables 1 and2. The formal results, and related proofs are made explicit in the sections below.

In the following, we use the notation v ǫ ∼ w ǫ as ǫ → 0 if there exist two constants c 0 and c 1 such that ∀ǫ > 0, c 0 w ǫ ≤ v ǫ ≤ c 1 w ǫ . In the following, we will deal with the sequence (c j ) j=1...d defined as

Tensor product spaces

c j = 1 + t j s j , ∀j ∈ {1, . . . , d}.
The following proposition describes the minimax separation rate in this setting.

Proposition 1 Assume that both sequences a and b satisfy equation (3.14) and that c 1 , . . . , c d are strictly ordered :

c 1 > • • • > c d .
Then, we get that The proof of this result is postponed to Section 4.2.

• The minimax separation rate r ⋆ ǫ satisfies r ⋆ ǫ ∼ ǫ 4 4+c 1 as ǫ → 0. • If r ǫ = Cǫ
Remark that in the particular case where d = 1, we get the minimax rate

r ⋆ ǫ = ǫ 4s 4s+4t+1 ,
which has been established for instance in [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] or [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF]. Hence, Proposition 1 appears to be an extension of this classical 1-dimensional case. Nevertheless, remark that the obtained rate appears to be quite unusual in such a setting: it is governed by the couple of parameters (t j , s j ) for which the associated term c j is maximal.

In some sense, the rate corresponds to the worst 1-dimensional rate in each direction. In particular, a large value for c j is more or less associated to high degree of ill-posedness with a small smoothness index.

Mildly ill-posed problems with supersmooth functions

In this section, we assume that

b 2 l = d j=1 l -2t j j and a 2 l = d j=1 e 2sl j ∀l ∈ N d * . (3.15)
In such a setting, we get the following result, whose proof is postponed to Section 4.3.

Proposition 2 Assume that both sequences a and b satisfy equation (3.15). Then, we get that

• The minimax separation rate r ⋆ ǫ satisfies r ⋆ ǫ ∼ ǫ ln(ǫ -1 ) d j=1 (t j +1/4) as ǫ → 0. • If r ǫ = Cǫ (ln(ǫ -1 )) d j=1 (t j +1/4
) for some positive constant C, then u ǫ (r ǫ ) = O(1) as ǫ → 0 and the sharp asymptotics described in Theorem 1 hold true.

In this setting, the minimax separation rate is close to the parametric separation rate, up to a logarithmic term. The power of this log term explicitly depends on the dimension, and of the degrees of ill-posedness in each direction. Once again, we recover the results obtained in [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] or [START_REF] Laurent | Testing inverse problems: a direct or an indirect problem?[END_REF] in the particular case where d = 1.

Severely ill-posed problems with super-smooth functions

In this section, we deal with severely ill-posed problems and super-smooth functions. In particular

b l = d j=1 e -t j l j and a l = d j=1 e s j l j ∀l ∈ N d * . (3.16)
The proof of the following proposition is provided in Section 4.4.

Proposition 3 Assume that both sequences a and b satisfy equation (3.16) where

t 1 s 1 > t j s j ∀j ∈ {2, . . . , d}. (3.17)
Then, the minimax separation rate r ⋆ ǫ satisfies

r ⋆ ǫ ∼ ǫ s 1 s 1 +t 1 as ǫ → 0.
The assumption (3.17) appears to be necessary since it allows a sharp control of the terms J 0 , J 1 and J 2 introduced above. It could be certainly removed, up to very technical algebra. In particular, we mention that the detection of super-smooth functions with severly ill-posed problems is already a very difficult problem in 1-dimensional case. We also mention that in this particular setting, we do not obtain sharp asymptotics.

Severely ill-posed problems with ordinary smooth functions

In this section, we deal with severely ill-posed problems with ordinary isotropic smooth functions. In particular

b l = d j=1 e -t j l j and a 2 l = d j=1 l 2s j ∀l ∈ N d * . (3.18)
The terms (t 1 , . . . , t d ) and s denote positive known parameters, that characterize the problem. The proof of the following proposition is provided in Section 4.5.

Proposition 4 Assume that both sequences a and b satisfy equation (3.18) where

t 1 > t j ∀j ∈ {2, . . . , d}. (3.19)
Then, the minimax separation rate r ⋆ ǫ satisfies

r ⋆ ǫ ∼ 1 4t 1 ln 1 ǫ 4 -2s
as ǫ → 0.

We work in an isotropic context, in the sense that the regularity is the same in all directions. Provided that property (3.19) holds, we obtain the same rate that in an uni-dimensional framework. Then, the minimax separation rates is characterized by the direction for which the problem is the more difficult, i.e. the direction associated to the largest indice t j . Once again, we do not get sharp rates in this setting.

Sobolev Spaces

In this part, we will consider Sobolev smoothness constraints. We will provide some illustrations of Theorem 1 in this context. In both considered cases, we precise the behavior of the sequence a.

Mildly ill-posed problems

We start our study in this framework with mildly ill-posed inverse problems. In particular, we assume that as ǫ → 0.

• If r ǫ = Cǫ 4/ 4+ d j=1 (1+4t j ) s j
for some positive constant C, then u ǫ (r ǫ ) = O(1) as ǫ → 0 and the sharp asymptotics described in Theorem 1 hold true.

The proof of Proposition 5 is postponed to the Section 4.6.

In this context, some cases are or first interest. In a first time, we can remark that in dimension 1, we recover the classical rate

r * ǫ = ǫ 4s 4s+4t+1 .
We refer for more details to [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] or [START_REF] Laurent | Non asymptotic minimax rates of testing in signal detection with heterogeneous variances[END_REF] (and to the previous section for a related discussion). The other interesting case corresponds to the homoscedastic framework in dimension d where s j = s and t j = t for all j ∈ {1, . . . , d}. In such a case, we get that

r * ǫ = ǫ 4s 4s+4dt+d .
In this situation, we are faced to the well-known curse of the dimension: minimax detection rates deteriorate as d increases, even for direct problems (where t = 0).

Severly ill-posed problems

We now turn to the investigation of severly ill-posed inverse problems. We will consider the case where

b l = d j=1
e -t j l j , and

a l = d j=1 l j s , ∀l ∈ N d * . (3.21)
In particular, we only deal with homoscedastic problems: the regularity is supposed to be the same in all considered directions. In this context, we get the following result, whose proof can be found in Section 4.7.

Proposition 6 Assume that both sequences a and b satisfy (3.21), where t 1 > t j for all j ∈ {2, . . . , d}. Then, we obtain the following results :

• If r ǫ = (C log(1/ǫ)) -s with C > 1/t 1 , then u 2 ǫ (r ǫ ) → +∞ as ǫ → 0 and the detection is possible (see Theorem 1 for more details).

• If r ǫ = (C log(1/ǫ)) -s with C ≤ 1/t 1 , then u 2
ǫ (r ǫ ) → 0 as ǫ → 0 and the detection is impossible.

Due to the difficulty of the problem, the minimax separation rate decreases very slowly and we do not obtain sharp asymptotics in this case. In order to get this result, we have assumed that the problem is in some sense dominated by one direction: t 1 > t j for all j ≥ 2. This assumption can be removed, up to a more technical algebra.

Proofs

Proof of Theorem 1

The proof is decomposed in two different parts. In a first time, we establish a lower bound for the term β ǫ (Θ(r ǫ ), α) and we discuss the possible values of this quantity following the behavior of the extremal problem (2.12). Then, we prove that the test Ψ ǫ,H (α) achieves this lower bound when u ǫ (r ǫ ) = O(1) as ǫ → 0.

We first focus on the lower bound on β ǫ (Θ(r ǫ ), α). Let π the prior on the set Θ(r ǫ ) defined as π =

k∈N d * π k , where π k = 1 2 (δ -b k θ k + δ b k θ k ) ∀k ∈ N d * , (4.22) 
for some sequence θ ∈ Θ(r ǫ ) which will be made precise later on. Denote by P 0 (resp. P π ) the measure associated to the observation vector Y when the sequence θ is equal to 0 (resp. follows the measure π). Then, following [START_REF] Barraud | Non-asymptotic minimax rates of testing in signal detection[END_REF], we get that

β ǫ (Θ(r ǫ ), α) ≥ 1 -α - 1 2 E 0 [L 2 π (Y )] -1 1/2 ,
where L π (Y ) denotes the likelihood ratio between the two measures P 0 and P π . Thanks to (4.22), we get that

E 0 [L 2 π (Y )] = k∈N d * cosh(b 2 k θ 2 k /ǫ 2 ) ≤ exp   1 2ǫ 4 k∈N d * b 4 k θ 4 k   := exp(u 2 ǫ (r ǫ )),
provided θ is defined as the solution of the extremal problem (2.12). In this context, we get clearly that

u 2 ǫ (r ǫ ) → 0 ⇒ β ǫ (Θ(r ǫ ), α) → 1 -α as ǫ → 0,
which prove item 1.(a) of the Theorem. Now, we turn to the case where u ǫ (r ǫ ) = O(1) as ǫ → 0. In that case, our aim is to prove that β ǫ (Θ(r ǫ ), α) = Φ(H (α)u ǫ ) + o(1) as ǫ → 0.

To this end, assume that

ln(L π (Y )) = - u 2 ǫ (r ǫ ) 2 + u ǫ (r ǫ )Z ǫ + δ ǫ , (4.23) 
where Z ǫ → Z ∼ N (0, 1) and δ ǫ → 0 in P 0 -probability as ǫ → 0. It is well known that

β ǫ (Θ(r ǫ ), α) ≥ E π (1 -ψ ⋆ ǫ ) = E 0 e ln(Lπ (Y )) (1 -ψ ⋆ ǫ ),
where ψ ⋆ ǫ is the likelihood ratio test. In particular, ψ ⋆ ǫ = 1 if ln(L π (Y )) > t α where t α is the 1α quantile of ln(L π (Y )) under H 0 . Thanks to (4.23), we get

t α = - u 2 ǫ (r ǫ ) 2 + u ǫ (r ǫ )H (α) + o(1) as ǫ → 0,
which leads to the desired result, up to some simple algebra. Concerning the proof of (4.23), we refer to [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] for more details.

Concerning the last part of the proof, we first have to compute the expectation and variance of the test statistics. Using a Markov inequality, it is then possible to prove that β ǫ (Θ(r ǫ ), Φ ǫ,H (α) ) → 0, as soon as u ǫ (r ǫ ) → +∞ as ǫ → 0. In the case where u ǫ (r ǫ ) = O(1) as ǫ → 0, the Central Limit Theorem (with Lyapunov's condition) indicates that the test statistics T is asymptotically Gaussian. A precise study of its associated variance and expectation leads to the desired result (see [START_REF] Yu | Minimax signal detection in ill-posed inverse problems[END_REF] for a similar study in the 1-dimensional case).

Proof of Proposition 1

Let b 2 l = d j=1 l -2t j j and a 2 l = d j=1 |l j | 2s j , ∀l ∈ N d * , Recall that J 1 = 2 d l∈N d * l 4t 1 1 . . . l 4t d d (1 -Al 2s 1 1 . . . l 2s d d ) + .
We set A = R -2s where s = s 1 + . . . + s d . We define for u = (u 1 , . . . , u d )

∈ (R + * ) d and s = (s 1 , . . . , s d ) ∈ (R + * ) d , S(u, s, R) = l∈N d * ,( l 1 R ) s 1 ... l d R s d ≤1 l u 1 1 . . . l u d d .
Lemma 1 Let for j = 1, . . . d, c j = (1 + u j )/s j . Assume that c 1 > c 2 > . . . > c d . Then we have

S(u, s, R) ∼ R→∞ R sc 1 1 + u 1 d j=2 ζ (c 1 s j -u j ) ,
where ζ(s) = l≥1 l -s for all s > 1.

Proof of Lemma 1. We will use the following inequalities

∀u ≥ 0, 0 ≤ R l=1 l u - R 0 x u dx ≤ 2 u R u . (4.24) ∀ -1 < u < 0, 0 ≤ R l=1 l u ≤ R 0 x u dx. (4.25) Indeed, for u ≥ 0, R 0 x u dx ≤ R l=1 l u ≤ R+1 1
x u dx, and,

0 ≤ R l=1 l u - R 0 x u dx ≤ R+1 R x u dx ≤ 1 u + 1 (R + 1) u+1 -R u+1 ≤ 2 u R u .
To simplify the notations, we omit in the sums that l 1 , . . . , l d ∈ N * * . Now,

S(u, s, R) = l s 2 2 ...l s d d ≤R s l u 2 2 . . . l u d d R s s 1 l - s 2 s 1 2 ...l - s d s 1 d l 1 =1 l u 1 1 .
From Equation (4.24), we have

0 ≤ S(u, s, R) - l s 2 2 ...l s d d ≤R s l u 2 2 . . . l u d d 1 u 1 + 1 R s s 1 l - s 2 s 1 2 . . . l - s d s 1 d u 1 +1 ≤ 2 u 1 l s 2 2 ...l s d d ≤R s l u 2 2 . . . l u d d R s s 1 l - s 2 s 1 2 . . . l - s d s 1 d u 1
.

This leads to 0 ≤ S(u, s, R) - R c 1 s u 1 + 1 l s 2 2 ...l s d d ≤R s l u 2 -s 2 c 1 2 . . . l u d -s d c 1 d ≤ 2 u 1 R s s 1 u 1 l s 2 2 ...l s d d ≤R s l u 2 - s 2 s 1 u 1 2 . . . l u d - s d s 1 u 1 d .
Note that for all j ≥ 2, we have u js j c 1 < -1 since c j < c 1 . Hence the series

l s 2 2 ...l s d d ≤R s l u 2 -s 2 c 1 2 . . . l u d -s d c 1 d converge. This leads to, R c 1 s u 1 + 1 l s 2 2 ...l s d d ≤R s l u 2 -s 2 c 1 2 . . . l u d -s d c 1 d ∼ R→∞ R sc 1 1 + u 1 d j=2 ζ (c 1 s j -u j ) .
It remains to prove that

R s s 1 u 1 l s 2 2 ...l s d d ≤R s l u 2 - s 2 s 1 u 1 2 . . . l u d - s d s 1 u 1 d = o (R sc 1 ) , as R → +∞, which is equivalent to l s 2 2 ...l s d d ≤R s l u 2 - s 2 s 1 u 1 2 . . . l u d - s d s 1 u 1 d = o R s c 1 - u 1 s 1 , as R → +∞. (4.26)
Since this quantity is positive, we will only give an upper bound. More generally, let us consider the Property that we denote by P j :

Σ j = l s j j ...l s d d ≤R s l u j - s j s j-1 u j-1 j . . . l u d - s d s j-1 u j-1 d = o R s c 1 - u j-1 s j-1 .
Note that since c 1 > c j , we have that c 1 -

u j-1 s j-1 > 0 .
We want to prove (4.26), namely that P 2 holds. Let us first prove that P d holds, namely that

l s d d ≤R s l u d - s d s d-1 u d-1 d = o R s c 1 - u d-1 s d-1
. 

This result clearly holds if

v d = u d -s d s d-1 u d-1 ≤ -1. If v d > -1,
≤ l s d d ≤R s l v d d ≤ R s/s d 0 x v d dx + 2 v d R s s d v d ≤ R s s d (1+v d ) (C + o(1)) ≤ R s(c d - u d-1 s d-1 ) (C + o(1)) = o R s c 1 - u d-1 s d-1
.

We now assume that P j+1 holds and we want to prove that P j holds. We have

Σ j = l s j j ...l s d d ≤R s l u j - s j s j-1 u j-1 j . . . l u d - s d s j-1 u j-1 d , = l s j+1 j+1 ...l s d d ≤R s l u j+1 - s j+1 s j-1 u j-1 j+1 . . . l u d - s d s j-1 u j-1 d R s s j l - s j+1 s j j+1 ...l - s d s j d l j =1 l u j - s j s j-1 u j-1 j .
The property P j clearly holds if u j -s j s j-1 u j-1 ≤ -1 (in this case, for all l ≥ j, u l -s l s j-1 u j-1 ≤ -1). If u j -s j s j-1 u j-1 > -1, we use (4.24) to obtain

Σ j ≤ l s j+1 j+1 ...l s d d ≤R s l u j+1 - s j+1 s j-1 u j-1 j+1 . . . l u d - s d s j-1 u j-1 d R s s j l - s j+1 s j j+1 ...l - s d s j d 0 x u j - s j s j-1 u j-1 dx +C l s j+1 j+1 ...l s d d ≤R s l u j+1 - s j+1 s j-1 u j-1 j+1 . . . l u d - s d s j-1 u j-1 d R s s j l - s j+1 s j j+1 . . . l - s d s j d u j - s j s j-1 u j-1 , ≤ 1 1 + u j - s j s j-1 u j-1 R s(c j - u j-1 s j-1 ) l s j+1 j+1 ...l s d d ≤R s l u j+1 -c j s j+1 j+1 . . . l u d -c j s d d +CR s s j (u j - s j s j-1 u j-1 ) l s j+1 j+1 ...l s d d ≤R s l u j+1 -u j s j+1 s j j+1 . . . l u d -u j s d s j d .
Since u j+1c j s j+1 < -1, the first series converges as R → +∞ and the first term is

O(R s(c j - u j-1 s j-1
) ) which is o(R

s(c 1 - u j-1 s j-1
) ) since c j < c 1 . The second sum is Σ j+1 which is

o(R s(c 1 - u j s j
) ) as R → +∞ since we have assumed that P j+1 holds. We then obtain that the second term is o(R

s(c 1 - u j-1 s j-1
) ) as R → +∞, which leads to the property P j .

Lemma 2 Let J 1 (R) = 2 d l 1 ,...,l d ∈N * * l 4t 1 1 . . . l 4t d d (1 -R -2s l 2s 1 1 . . . l 2s d d ) + .
where s = s 1 + . . . + s d . Let for j = 1, . . . d, c j = (1 + 4t j )/s j . Assume that c 1 > c 2 > . . . > c d . Then we have

J 1 (R) ∼ R→∞ 2 d R sc 1 2s 1 (1 + 4t 1 )(1 + 4t 1 + 2s 1 ) d j=2 ζ (c 1 s j -4t j ) .
Proof of Lemma 2. The proof follows directly from Lemma 1 and easy computations by noticing that

J 1 (R) = 2 d S(4t, s, R) -R -2s S(4t + 2s, s, R) . Lemma 3 Let J 2 (R) = 2 d R -2s l 1 ,...,l d ∈N * * l 4t 1 +2s 1 1 . . . l 4t d +2s d d (1 -R -2s l 2s 1 1 . . . l 2s d d ) + .
where s = s 1 + . . . + s d . Let for j = 1, . . . d, c j = (1 + 4t j )/s j . Assume that c 1 > c 2 > . . . > c d . Then we have

J 2 (R) ∼ R→∞ 2 d R sc 1 2s 1 (1 + 4t 1 + 2s 1 )(1 + 4t 1 + 4s 1 ) d j=2 ζ (c 1 s j -4t j ) .
Proof of Lemma 3. The proof follows directly from Lemma 1 and easy computations by noticing that

J 2 (R) = 2 d R -2s S(4t + 2s, s, R) -R -2s S(4t + 4s, s, R) . Lemma 4 Let J 0 (R) = 2 d l 1 ,...,l d ∈N * * l 4t 1 1 . . . l 4t d d (1 -R -2s l 2s 1 1 . . . l 2s d d ) 2 + = J 1 (R) -J 2 (R).
where s = s 1 + . . . + s d . Let for j = 1, . . . d, c j = (1 + 4t j )/s j . Assume that c 1 > c 2 > . . . > c d . Then we have

J 0 (R) ∼ R→∞ 2 d R sc 1 8s 2 1 (1 + 4t 1 )(1 + 4t 1 + 2s 1 )(1 + 4t 1 + 4s 1 ) d j=2 ζ (c 1 s j -4t j ) .
From the above lemmas, we can derive a separation rate for signal detection in this framework. Indeed,

r 2 ǫ = R -2s J 1 (R) J 2 (R) = R -2s D 1 D 2 ,
where

J i (R) ∼ R→∞ D i R sc 1 for i = 0, 1, 2. Then u 2 ǫ (r ǫ ) = r 4 ǫ ǫ 4 J 0 (R) 2J 2 1 (R) = C r 4+c 1 ǫ ǫ 4
where

C = D 0 2D 2 1 D 2 D 1 c 1 /2
. In particular u 2 ǫ (r ǫ ) = O(1) for r ǫ = r * ǫ ∼ ǫ

Proof of Proposition 2

We consider the case where

b l = d j=1 l -t j j and a l = d j=1 e sl j , ∀l ∈ N d * .
Remark that we are in an isotropic framework, i.e. s j = s for all j ∈ {1, . . . , d}. As in the other cases, we start with the computation of J 1 . Using our assumption and setting A = e -2su we obtain

J 1 = l∈N d * b -4 l (1 -Aa 2 l ), = l∈N d * d j=1 l 4t j j 1 -e 2 d j=1 sl j -2su + , = d j=1 l j ≤u d j=1 l 4t j j 1 -e 2 d j=1 sl j -2su + , = J ′ 1 -J 1 ".
Simple algebra leads to

J ′ 1 := d j=1 l j ≤u d j=1 l 4t j j , = u d j=1 (4t j +1) d j=1 (l j /u)≤1 d j=1 l j u 4t j d j=1 1 u , = C 1 u d j=1 (4t j +1) R d d j=1 x 4t j j 1 { d j=1 x j ≤1} dx(1 + o(1)) as u → +∞.
Now, we prove that J 1 " = J 1 × o(1) as u → +∞. Let δ ∈ (0, 1) a term whose value will be made precise later on. We can write that

J 1 " := d j=1 l j ≤u d j=1 l 4t j j e 2 d j=1 sl j -2su , = d j=1 l j ≤δu d j=1 l 4t j j e 2 d j=1 sl j -2su + δu≤ d j=1 l j ≤u d j=1 l 4t j j e 2 d j=1 sl j -2su , ≤ e s(2δu-2u) d j=1 l j ≤δu d j=1 l 4t j j + δu≤ d j=1 l j ≤u d j=1 l 4t j j , ∼ e -2su(1-δ) d j=1 l j ≤δu d j=1 l 4t j j + d j=1 u 4t j +1 R d d j=1 x 4t j j 1 {δ≤ d j=1 x j ≤1} dx, = J ′ 1 × o(1) as u → +∞, setting for instance δ = δ u = 1 -u -1/2 .
The computation of J 2 follows essentially the same lines. First remark that

J 2 = l∈N d * b -4 l Aa 2 l (1 -Aa 2 l ) + , = l∈N d * b -4 l Aa 2 l - l∈N d * b -4 l A 2 a 4 l , := J ′ 2 + J 2 ".
In a first time, we study J ′ 2 :

J ′ 2 := d j=1 l j ≤u d j=1 l 4t j j e 2s( d j=1 l j -u) , = u m=0 d j=2 l j ≤m m - d j=2 l j 4t 1 d j=2 l 4t j j e 2s(m-u) , = u m=0 e -2s(u-m) m d j=1 (4t j +1)-1 d j=2 l j /m≤1 1 - d j=2 l j m 4t 1 d j=2 l j m 4t j 1 m d-1 , = u m=0 e -2s(u-m) m d j=1 (4t j +1)-1 c 0 (m),
where

c 0 (m) = d j=2 l j /m≤1 1 - d j=2 l j m 4t 1 d j=2 l j m 4t j 1 m d-1 , ∼ R + d d j=2 (x j ) 4t j 1 - 2 j=1 x j 4t 1 1 { d j=2 x j ≤1} dx, as m → +∞.
Then, setting l = um, we obtain

J ′ 2 = u l=0 e -2sl (u -l) d j=1 (4t j +1)-1 c 0 (u -l), = u d j=1 (4t j +1)-1 u l=0 e -2sl 1 - l u d j=1 (4t j +1)-1 c 0 (u -l).
It is possible to prove that the sum in the above formula converges as u → +∞. Using the same kind of algebra, we can also prove that J 2 " = J ′ 2 × o(1) as u → +∞. Therefore, we obtain the following asymptotic

J 2 = C 2 u d j=1 (4t j +1)-1 (1 + o(1)) as u → +∞.
By the way, since

J 0 = J 1 -J 2 , J 0 = C 0 u d j=1 (4t j +1) (1 + o(1)) as u → +∞.
Now, we have got all the required material in order to compute the separation rate associated to this problem. First remark that there exists a constant C such that as ǫ → 0,

r 2 ǫ = A J 1 J 2 ⇔ r 2 ǫ = C 1 C 2 e -2su u d j=1 (4t j +1) u d j=1 (4t j +1)-1 (1 + o(1)), ⇔ r 2 ǫ = C 1 C 2 e -2su u(1 + o(1)), ⇔ ln(r ǫ ) = 1 2 ln(u C 1 C 2 (1 + o(1))) -su,
The solution of the above equation satisfies u = ln(r

-1/s ǫ )(1 + o(1)
). Then, as ǫ tends to 0,

u 2 ǫ (r ǫ ) = r ǫ ǫ 4 J 0 2J 2 1 = O(1) ⇔ r ǫ ǫ 4 u -d j=1 (4t j +1) = O(1), ⇔ r ǫ ǫ 4 ln(r -1 ǫ ) -d j=1 (4t j +1) = O(1), , ⇔ r ǫ ∼ ǫ ln(ǫ -1 ) d j=1 (t j +1/4) .

Proof of Proposition 3

In this case, we will assume that

b l = d j=1
e -t j l j and a l = d j=1 e s j l j ∀l ∈ N d * .

Moreover, we suppose that t 1 s 1 > t j s j , ∀j ∈ {2, . . . , d}.

We start with the computation of the term J 1 defined as

J 1 = l∈N d * b -4 l (1 -Aa 2 l ) + , = l∈N d * e 4 d j=1 t j l j 1 -Ae 2 d j=1 s j l j + , = d j=1 s j l j ≤u e 4 d j=1 t j l j 1 -Ae 2 d j=1 s j l j , setting A = e -2u .
Then

J 1 = d j=1 s j l j ≤u e 4 d j=1 t j l j -A d j=1 s j l j ≤u e d j=1 l j (4t j +2s j ) := J ′ 1 + J 1 ".
In a first time, we study

J ′ 1 . Remark that d j=1 s j l j ≤ u ⇔ l 1 ≤ 1 s 1 u - d j=2 s j l j .
Hence

J ′ 1 := d j=1 s j l j ≤u e 4 d j=1 t j l j , = d j=2 s j l j ≤u e 4 d j=2 t j l j s -1 1 (u-d j=2 s j l j ) l 1 =0 e 4t 1 l 1 , = d j=2 s j l j ≤u e 4 d j=2 t j l j e 4 t 1 s 1 (u-d j=2 s j l j ) s -1 1 (u-d j=2 s j l j ) l 1 =0 e 4t 1 (l 1 -s -1 1 (u-d j=2 s j l j )) , = d j=2 s j l j ≤u e 4 d j=2 t j l j e 4 t 1 s 1 (u-d j=2 s j l j ) H (u - d j=2 s j l j ), s 1 , t 1 ,
where

H (x, s 1 , t 1 ) := s -1 1 x l 1 =0 e 4t 1 (l 1 -s -1 1 x) = O(1) as x → +∞.
We obtain

J ′ 1 = e 4 t 1 s 1 u d j=2 s j l j ≤u e 4 d j=2 t j l j e -4 t 1 s 1 d j=2 s j l j ) H (u - d j=2 s j l j ), s 1 , t 1 , = e 4 t 1 s 1 u d j=2 s j l j ≤u e -4 d j=2 s j l j t 1 s 1 - t j s j H (u - d j=2 s j l j ), s 1 , t 1 , = e 4 t 1 s 1 u c 1 (u),
where c 1 (u) = O(1) as u → +∞. We are now interested in the computation of the term J 1 " defined as 

J 1 " = A
s -1 1 (u-d j=2 s j l j ) l 1 =0
e (4t 1 +2s 1 )l 1 , = A d j=2 s j l j ≤u e d j=2 l j (4t j +2s j ) e (4t 1 +2s 1 )s -1

1 (u-d j=2 s j l j ) × s -1 1 (u-d j=2 s j l j ) l 1 =0
e (4t 1 +2s 1 )(l 1 -s -1

1 (u-d j=2 s j l j )) , = Ae 4 t 1 s 1 u e 2u d j=2 s j l j ≤u e d j=2 l j (4t j +2s j ) e -(4t 1 +2s 1 )s -1 1 d j=2 s j l j ×H 1 (u - d j=2 s j l j ), s 1 , t 1 ,
where

H 1 (x, s 1 , t 1 ) = x l 1 =0
e (4t 1 +2s 1 )(l 1 -x) = O(1), as x → +∞.

Therefore, since A = e -2u J 1 " = e 

1 s j } H 1 (u - d j=2 s j l j ), s 1 , t 1 , = e 4 t 1 s 1 u d j=2 s j l j ≤u e -4 d j=2 s j l j t 1 s 1 - t j s j H 1 (u - d j=2 s j l j ), s 1 , t 1 , = e 4 t 1 s 1 u c 1 (u),
where c 1 (u) = O(u) as u → +∞. We finally obtain the asymptotic

J 1 ∼ e 4 t 1 s 1 u , as u → +∞.
Using the same algebra, we obtain

J 2 ∼ J 0 ∼ e 4 t 1 s 1 u , as u → +∞.
We can now study the separation rate associated to this framework. Since J 1 and J 2 are of the same order, we get that A = r 2 ǫ . Then, as ǫ → 0,

u 2 ǫ (r ǫ ) = O(1) ⇔ r ǫ ǫ 4 e -2 t 1 s 1 u = O(1), ⇔ r ǫ ǫ 4 A 2 t 1 s 1 u = O(1), ⇔ r 4(1+ t 1 s 1 ) ǫ ∼ ǫ 4 , ⇔ r ǫ ∼ ǫ s 1 s 1 +t 1 .

Proof of Proposition 4

In order to establish the separation rates related to this setting, we first need the following lemma.

Lemma 5 Let d ∈ N be fixed and assume that t 1 > t j ∀j ∈ {2, . . . , d}.

Then, there exists a constant C d such that d j=1 l j ≤S e 4 d j=1 t j l j = C d e 4t 

= d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j × S d-1 j=1 l -1 j l d =1 e 4t d l d , = d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × S d-1 j=1 l -1 j l d =1 e 4t d (l d -S d-1 j=1 l -1 j ) , = d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j ,
where

c 1 (U) := U l d =1 e 4t d (l d -U ) = O(1) as U → +∞.
Then, given a constant γ ∈]0, 1[, the sum of interest can be decomposed as follows

d j=1 l j ≤S e 4 d j=1 t j l j = 1≤ d-1 j=1 l j ≤(1-γ)S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j + (1-γ)S≤ d-1 j=1 l j ≤S- √ S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j + S- √ S≤ d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j , := T 1 + T 2 + T 3 .
We start we the control of the term T 1 . Using simple algebra, we get that

T 1 := 1≤ d-1 j=1 l j ≤(1-γ)S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j , ≤ Ce 4t d S 1≤ d-1 j=1 l j ≤(1-γ)S e 4 d-1 j=1 t j l j ≤ Ce 4t d S+4(1-γ)t 1 S ,
where for the last inequality, we have used the hypothesis that equation (4.27) holds for d -1. Then, we can remark that

T 1 = O(e 4t d S+4(1-γ)t 1 S ) = o(e 4t 1 S
) as S → +∞, as soon as

4t 1 (1 -γ)S + 4t d S < 4t 1 S ⇔ 1 > γ > t d t 1 .
Now, we turn our attention to the term T 2 . Assuming that equation (4.27) holds for d -1, we get that

T 2 := (1-γ)S≤ d-1 j=1 l j ≤S- √ S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1 l -1 j , ≤ C 1≤ d-1 j=1 l j ≤S- √ S e 4 d-1 j=1 t j l j +4t d (1-γ) -1 , = O(e 4t 1 (S- √ S) ) = o(e 4t 1 S
), as S → +∞.

Once again, if one assume that equation (4.27) holds for d -1, we obtain that the term T 3 defined as

T 3 := S- √ S≤ d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j +4t d S d-1 j=1 l -1 j × c 1 S d-1 j=1
l -1 j can be surrunded as follows

e 4t d S- √ S≤ d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j × c 1 S d-1 j=1 l -1 j ≤ T 3 ≤ e 4t d S/(S- √ S) S- √ S≤ d-1 j=1 l j ≤S e 4 d-1 j=1 t j l j × c 1 S d-1 j=1 l -1 j , ⇔ T 3 = C d e 4t 1 S (1 + o(1)) as S → +∞.
The proofs is a direct consequence on successive asymptotics of T 1 , T 2 and T 3 . Now, we can start the proof of Proposition 4 with the control of the term J 1 . In a first time, set S = A -1/2s and remark that

J 1 = l∈N d e 4 d j=1 t j l j 1 -A d j=1 l 2s j + , = d j=2 l j ≤S S d j=2 l -1 j l 1 =1 e 4 d j=1 t j l j 1 -A d j=1 l 2s j + , = d j=2 l j ≤S e 4 d j=2 t j l j S d j=2 l -1 j l 1 =1 e 4t 1 l 1 1 -A d j=1 l 2s j + , = d j=2 l j ≤S e 4 d j=2 t j l j +4t 1 S d j=2 l -1 j × c 0 S d j=2 l -1 j , t 1 , where c 0 (R, t 1 ) = R l=1 e 4t 1 (l-R) 1 - l R 2s .
In particular, we have

c 0 (R, t 1 ) = R m=1 e -4t 1 m 1 -1 - m R 2s , = √ R m=1 e -4t 1 m 1 -1 - m R 2s + R m= √ R e -4t d m 1 -1 - m R 2s , = √ R m=1 e -4t 1 m 2 m R + O m 2 R 2 + O e -4t 1 √ R , as R → +∞, = O R -1 , as R → +∞.
Now, we can concentrate our attention on the control of the term J 1 . The sum in J 1 will be decomposed in two terms, namely

J 1 =    1≤ d j=2 l j ≤ √ S + √ S≤ d j=2 l j ≤S    e 4 d j=2 t j l j +4t 1 S d j=2 l -1 j × c 0 S d j=2 l -1 j , t 1 , := J 1,1 + J 1,2 .
Then, using Lemma 5, and the fact that the function c 0 is upper bounded,

J 1,2 := √ S≤ d j=2 l j ≤S e 4 d j=2 t j l j +4t 1 S d j=1 l -1 j × c 0 S d j=2 l -1 j , t 1 , ≤ Ce 4t 1 √ S 1≤ d j=2 l j ≤S e 4 d j=2 t j l j , = Ce 4t 1 √ S × o(e 4t 1 S ) = o(e 4t 1 S ) as S → +∞, Then, J 1,1 := d j=2 l j ≤ √ S e 4 d j=2 t j l j +4t 1 S d j=2 l -1 j × c 0 S d j=2 l -1 j , t 1 , = e 4 d j=2 t j +4t 1 S × c 0 S d j=2 l -1 j , t 1 , + 2≤ d j=2 l j ≤ √ S e 4 d j=2 t j l j +4t 1 S d j=2 l -1 j × c 0 S d j=2 l -1 j , t 1 , = J ′ 1,1 + J 1,1 ". Then, we can remark that J ′ 1,1 = C 1,d e 4t 1 S S (1 + o(1)), as S → +∞, while J 1,1 " = 2≤ d j=2 l j ≤ √ S e 4 d j=2 t j l j +4t 1 S d j=2 l -1 j ×c 0 S d j=2 l -1 j , t 1 ≤ Ce 2t 1 S ×o(e 4t 1 √ S ) = o(e 4t 1 S ),
as S → +∞. Finally,

J 1 = C 1,d e 4t 1 S S (1 + o(1)) as S → +∞.
Using the same kind of algebra, we can then prove that

J 2 := A k∈N d * a 2 k b -4 k (1 -Aa 2 k ) + := C 1,d e 4t 1 S S (1 + o(1)) as S → +∞, and 
J 0 := k∈N d * b -4 k (1 -Aa 2 k ) 2 + := C 0,d e 4t 1 S S 2 (1 + o(1)) as S → +∞,
for some explicit constant C 0,d .

In order to conclude the proof, we have to determine the minimax separation rate r ⋆ ǫ . Thanks to the asymptotics of J 0 , J 1 and J 2 established above, we get

r 2 ǫ = A J 1 J 2 = A(1 + o(1)) as A → 0.
Hence, as ǫ → 0,

u 2 ǫ (r ǫ ) ∼ 1 ⇔ ǫ -4 A 2 J 2 2 J 0 ∼ 1 ⇔ r 4 ǫ e -4t 1 r -1/2s ǫ ∼ 1.
In particular,

r ⋆ ǫ ∼ 1 4t 1 ln 1 ǫ 4 -2s
as ǫ → 0, but we do not get sharp separation rates.

Proof of Proposition 5

We here consider the case where

b 2 l = d j=1 l -2t j j and a 2 l = d j=1 l 2s j j , ∀l ∈ N d * .
We begin the proof with the study of J 1 defined as

J 1 = 2 d l 1 ,...,l d ∈N * d j=1 l 4t j j 1 -A d j=1 l 2s j j + . Setting A = R -2s j j
for all j ∈ {1, . . . , d} and D = d j=1 R 1+4t j j

, we get

J 1 = 2 d D l 1 ,...,l d ∈N * * d j=1 l j R j 4t j 1 - d j=1 l j R j 2s j + d j=1 1 R j .
Hence we have

J 1 ∼ R 1 ,...,R d →∞ D2 d (R + ) d d j=1 x 4t j j 1 - d j=1 x 2s j j + dx 1 . . . dx d . We set C 1 = 2 d (R + ) d d j=1 x 4t j j (1 -d j=1 x 2s j j ) + dx 1 . . . dx d . C 1 = 1 s 1 . . . s d (R + ) d d j=1 v 4t j 2s j j 1 - d j=1 v j + d j=1 v 1 2s j -1 j dv 1 . . . dv d = 1 s 1 . . . s d T d d j=1 v 4t j +1 2s j -1 j 1 - d j=1 v j dv 1 . . . dv d where T d = (v 1 , . . . , v d ), v j ≥ 0, d j=1 v j ≤ 1 .
Let us recall Liouville's formula : Let us now determine a separation rate in this framework. Remark that we consider an isotropic framework: the regularity is the same for all the d directions.

T d φ(v 1 + . . . + v d )v p 1 -1 1 . . . v p d -1 d = Γ(p 1 ) . . . Γ(p d ) Γ(p 1 + . . . + p d ) 1 
r 2 ǫ = A J 1 J 2 = R -2s j C 1 C 2 , hence R j = C 1
We start with the computation of J 1 defined as Since we have assumed that t 1 > t j for all j ≥ 2, c 0 (m) = O(1) as m → +∞. Let δ ∈ [0, 1] be a constant which will be made precise later on. We can write that Concerning the term T 2 , using simple algebra, we get that

J 1 =
T 2 := e 4t 1 R R l=δR e -4t 1 l 1 -1 - l R 2s c0 (l),
≤ e 4t 1 R Ce -4t 1 δR ≤ Ce 4t 1 (1-δ)R .

In order to compute T 1 , we will use the Taylor expansion

1 - l R 2s = 1 -2s l R + O l 2 R 2 .
We obtain Remark that we obtain exactly the same asymptotics for J 1 and J 2 which indicates the presence of sharp separation rates. Concerning the term J 0 , we can prove that 

T 1 := e

3. 1 . 1

 11 Mildly ill-posed problems with ordinary smooth functions In this section, we assume that b 2 l = d j=1 |l j | -2t j and a 2 l = d j=1 |l 1 | 2s j , ∀l ∈ N d * . (3.14)
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 41 for some positive constant C, then u ǫ (r ǫ ) = O(1) as ǫ → 0 and the sharp asymptotics described in Theorem 1 hold true.

Proposition 5

 5 Assume that both sequences a and b satisfy(3.20). Then, we have that • The minimax separation rate satisfies

d j=1 s j l j ≤u e d j=1 l j (4t j +2s j ) , = A d j=2 s j l j ≤u e d j=2 l j (4t j +2s j )

  

  j {(4t j +2s j )-(4t 1 +2s 1 )s -1

0φs 1 .J 2 ∼j

 12 (u)u p 1 +...+p d -1 du, where p i > 0 for i = 1, . . . , d and the integral in the right hand side is absolutely convergent. Using this formula, and setting s = d j=1 (1 + 4t j )/s j , . . . s d Γ(s)1 s(s + 1).Now, consider the term J 2 defined asJ 2 = 2 d l 1 ,...,l d ∈N * * We set A = R -2s j j for all j = 1, . . . , d. Setting D = d j=1 R 1+4t j j, we haveJ 2 = D2 d l 1 ,...,l d ∈N * * R 1 ,...,R d →∞ D2 d (R + ) d ) + dx 1 . . . dx d .we get, using similar computations as aboveIn the same manner, we haveJ 2 ∼ R 1 ,...,R d →∞ DC 0 with C 0 = d j=1 Γ 4t j +1 2s j s 1 . . . s d Γ(s) 2 s(s + 1)(s + 2) .

1 s.e

 1 In particular u 2 ǫ (r ǫ ) = O(1) for r ǫ = r * ǫ -t j l j , and a l =

1 = R m=0 d j=2 l j ≤m e 4t 1 m+4 d j=2 l j (t j -t 1 ) ( 1 -e 4t 1 m ( 1 -e 4t 1 m ( 1 -

 11111 R := A -1/2s . Setting m = d j=1 l j , we get J Am 2s ), Am 2s ) Am 2s )c 0 (m), where c 0 (m) = d j=2 l j ≤m e 4 d j=2 l j (t j -t 1 ) , ∀m ∈ N.

T 1 +

 1 T 2 .

4t 1 R 2 =

 12 ∆(R, t 1 )(1 + o(1)).HenceJ 1 = 2s∆(R, t 1 ) e 4t 1 R R (1 + o(1)), as R → +∞, since ∆(R, t 1 ) = O(1) as R → +∞.Using the same algebra, we obtainJ R, t 1 ) e 4t 1 R R (1 + o(1)) -2s∆(R, t 1 ) e 4t 1 R R (1 + o(1)), = 2s∆(R, t 1 ) e 4t 1 R R (1 + o(1)).

e 4t 1 m 1 - m R 2 c 0

 20 (m), = 4s 2 ∆(R, t 1 ) e 4t 1 R R 2 (1 + o(1)), as R → +∞.

  Proof. Clearly, (4.27) holds when d is equal to 1. Now, assume that equation (4.27) holds for d -1. In such case, we prove that the same property holds for d, which will complete the proof of the lemma. In a first time, remark that

	e 4 d j=1 t j l j
	d j=1 l j ≤S

1 S (1 + o(1)) as S → +∞. (4.27)

4+c 1 as ǫ → 0.

In order to find the corresponding separation rates, we have to solve

First remark that