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We present a full quantum evaluation of the water second virial coefficient B(T) based on the
Takahashi-Imada second order approximation. As the associated trace T r[e−βHAB − e−βHo

AB ] is per-
formed in the coordinate representation, it does also include contribution from the whole contin-
uum, i.e., resonances and collision pairs of monomers. This approach is compared to a Path Integral
Monte Carlo evaluation of this coefficient by Schenter [J. Chem. Phys. 117, 6573 (2002)] for the
TIP4P potential and shown to give extremely close results in the low temperature range (250–450 K)
reported. Using a recent ab initio flexible potential for the water dimer, this new formulation leads
to very good agreement with experimental values over the whole range of temperatures available.
The virial coefficient is then used in the well known relation Kp(T) = −(B(T) − bM)/RT where the
excluded volume bM is assimilated to the second virial coefficient of pure water monomer vapor
and approximated from the inner repulsive part of the interaction potential. This definition, which
renders bM temperature dependent, allows us to retrieve the 38 cm3 mol−1 value commonly used,
at room temperature. The resulting values for Kp(T) are in agreement with available experimen-
tal data obtained from infrared absorption spectra of water vapor. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865339]

I. INTRODUCTION

The importance of the water dimer (H2O)2 stems from
its potential role in several atmospheric processes. It has
been specifically invoked in the excess absorption of so-
lar radiation,1–6 the water continuum absorption in the far
infrared,7, 8 homogeneous nucleation of water into droplets
and ice,9, 10 and catalysis of important chemical reactions,11, 12

such as acid rain formation. For a long time however, its actual
influence remained elusive as its concentration and variation
with temperature were not clearly established. The only avail-
able values for the dimerization constant Kp(T) were from the
thermal conductivity of the classic steam experiments of Cur-
tiss et al.,13 which provided results over a very limited tem-
perature range (358–386 K). Another source of experimental
data came from the measurement of the second virial coef-
ficient (SVC) B(T) through the approximate relation,14 to be
discussed later on,

Kp(T ) � − 1

RT
(B(T ) − b0), (1)

where b0 is the so-called excluded volume.
In the last decade, new experiments were specifically de-

voted to assess this problem. These studies have mainly con-
centrated on the infrared absorption in the fundamental, first
overtone, and first combination band of the water monomer
vibrations,15–19 but studies in the visible were also realized.
Recently, Tretyakov et al.20 directly measured the dimer ab-
sorption of millimeter-wave radiation in water vapor at 296 K
and equilibrium conditions. From all these studies, one can es-
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timate a Kp value lying between 0.03 and 0.06 atm−1 at room
temperature.

So far, theoretical calculation of the dimer equilibrium
constant relied on the explicit evaluation of its partition
function21 QD(T)

Kp(T ) = pD

p2
M

= 1

kBT

QD

λ3
D

(
λ3

M

QM

)2

× eD0/kBT , (2)

where λ is the thermal de Broglie wavelength, or, equiva-
lently, from the thermochemical relation22, 23

Kp(T ) = exp{−�Go/RT }/po. (3)

In most cases, the QD partition function or the Gibbs free
energy of formation �Go were evaluated from frequencies
calculated at the equilibrium geometry of the dimer and
corrected for anharmonicity for the water dimer24–26 or the
formic acid dimer.27 More recently, this function has been
computed from an explicit calculation of the energy levels
on an ab initio six-dimensional energy surface, further ad-
justed to reproduce the Vibration-Rotation-Tunnelling (VRT)
THz spectrum.28, 29 This approach culminated in the explicit
consideration of monomers’ flexibility,30 as described by
a 12-dimensional potential fitted to VRT experiments.31 In
the temperature range of interest for atmospheric processes
(∼300 K), such a calculation turned out to be very difficult
due to the following reasons:

(i) convergence of the partition function requires con-
sideration of very high J values of the dimer, up to
J ∼ 70, which were handled by extrapolation, using the
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J-shifting approximation,32, 33 from the results obtained
for (J ≤ 5, K ≤ 5) in the symmetric top approximation;

(ii) for most of these (J, K) values, all vibrational levels
up to dissociation are significantly populated, and were
computed by means of the Lanczos algorithm;

(iii) consequently, resonant or metastable states are ex-
pected to play a role34, 35 which was totally ignored in
the calculation.

It should also be noted that the empirical flexible potential31

used in this study turned out to be too attractive
(D0 � 1230 cm−1) with respect to the recent experimental36

value D0 = 1105 cm−1.
The problem of the contribution of resonances to the

SVC, which is related to Kp(T) (see Eq. (1)), was addressed
initially by Hirschfelder and co-workers14, 37, 38 who wrote its
expression as comprising three different terms,

B(T ) = Bf (T ) + Bb(T ) + Bm(T ), (4)

arising, respectively, from collision, bound, and metastable
pairs of monomers. They were able to compute these different
contributions, using classical collision theory, in the case of
spherically symmetric interaction model potentials. For more
complex potentials, they proposed to use the simple relation
(Eq. (1)) where b0 was identified to the free (unbound) con-
tribution Bf(T). This relation was used by Curtiss et al.13 with
an empirical value b0 = 38.5 cm3 mol−1 to estimate the equi-
librium constant of water.

The contribution of metastable and collision pairs to the
virial coefficient was later formally addressed by Smith39, 40

in a quantum collisional framework. The basic idea is to as-
sume that pairs of molecules involved in any collision act
like a single bound molecule for the duration of the collision
lifetime, and the formulation relies on the collision lifetime
matrix Q = i¯S† dS/dE which provides the complex energy
spectrum. The dimer partition function ZD is then obtained
from the expression

ZD =
∫ ∞

D0

e−βE T r[Q(E)]dE. (5)

The calculation of the collision lifetime matrix Q for the much
simpler case of the HO2 system41 already represented a tour
de force. Such a procedure cannot be envisioned for the water
dimer as this matrix would have to be determined at every res-
onance energy and for every relevant total angular momentum
value.

Generalization of the classical phase space partition
method of Stogryn and Hirschfelder to more realistic
potentials was studied by Rainwater,42 Vigasin and co-
workers,43–46 and by Schenter47 in a quantum mechanical for-
mulation. Schenter et al.48 thus showed that the equilibrium
constant of water dimer can change by two orders of magni-
tude in the range 200–500 K depending on the choice of the
partition.

In this work, we propose to determine the equilibrium
constant from Eq. (1), where the SVC B(T) is evaluated within
a quantum quasi-exact formulation which does include its
three different contributions as explicited in Eq. (4), and from
a simple physical definition of the excluded volume b0(T)

based on the equation of state of a monomer-dimer mixture.
The outline of this paper is as follows. In Sec. II, we briefly re-
call the system definition used for a water dimer with flexible
monomers, and present our quantum formulation of the SVC.
Section III first elaborates on the relation (1) between this co-
efficient and the equilibrium constant, and uses it to determine
it over a whole range of temperatures, which are compared to
available experimental values. Finally, some conclusions are
drawn in Sec. IV.

II. SECOND VIRIAL COEFFICIENT

In this section, we present quantum calculations of the
SVC B(T) of water to different approximation levels related
to the way the density operator is handled. These results will
be compared both to their available exact quantum, obtained
by the Path Integral Monte Carlo (PIMC) method, and ex-
perimental counterparts. But first, we briefly recall the for-
mulation used to handle two interacting, rigid or flexible,
monomers as required to perform these calculations. This lat-
ter method has been described in full detail in a recent paper.49

A. System description

After reduction to its center of mass, an AB complex
made of two rigid molecules A and B can be described in
terms of the relative vector R and two sets of Euler angles �A

and �B , �X standing for the three angles labelled (χX, θX,
ϕX). We use the rigid monomers Body-Fixed formulation of
Brocks et al.50

Ĥ
(BF )
AB =− ¯2

2μAB

1

R

∂2

∂R2
R+ĤA

rot +Ĥ B
rot + VAB(R,�A,�B)

+ 1

2μABR2

{
Ĵ

2 + ĵ 2
AB − 2ĵAB. Ĵ

}
, (6)

where μAB is the reduced mass, ĤX
rot and ĵX are, respec-

tively, the rotational Hamiltonian and angular momentum of
monomer X, ĵAB = ĵA + ĵB is the coupled internal rotational
angular momentum, and Ĵ = ĵAB + L̂ is the total angular
momentum (L̂ is the relative angular momentum between the
monomers’ centers of mass).

The kinetic energy operator (KEO) of Eq. (6) leads to
simple matrix elements in the overall spectral basis set

B = {|n〉} ⊗ {|jA, kA, ωA〉} ⊗ {|jB, kB, ωB〉} ⊗ {|J,K,M〉}
(ωA + ωB = K), (7)

where {|n〉} is an appropriate basis for the interfragment dis-
tance R, |j, k, ω〉 is a Wigner function, and {|J, K, M〉} is the
Wigner basis set associated with the overall rotation of the
complex. The basis B can be projected onto the different Irre-
ducible Representations (Irreps) 
 of the molecular symmetry
group (G16 for water dimer) governing the system51

B =
⊕




{|n〉 ⊗ |ν; 
〉}.

The most compact representation for a rigid potential en-
ergy VAB(R,�A,�B) is the six-dimensional grid {ϕg × χA

q
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× χB
s × θA

α × θB
β × Rp}, where ϕ = ϕA − ϕB. Actually, the

intermolecular potential VAB does not depend on  = ϕA

+ ϕB, and this angle serves as the third angle orientating the
Body Fixed frame.50 Transformations between the spectral
and grid representations, as required to act the potential op-
erator on a wavefunction, are performed by means of a six-
dimensional pseudospectral scheme described previously.52

This pseudospectral scheme, which relies on gaussian quadra-
tures and fast Fourier transforms, allows one to easily com-
pute any integral of the form∫

. . .

∫
dR d�A d�BÔF (R,�A,�B),

where Ô is some operator. The method consists in first ex-
pressing the function F (R,�A,�B), defined by its value on
the grid, in terms of the B basis set functions by means of
the inverse transform of the pseudospectral scheme. One can
then apply the operator Ô in the basis set, transform back to
the grid representation, and evaluate the integral by the under-
lying quadratures. In practice, one first performs integration
over the Euler angles �A and �B . The resulting F(R) func-
tion is finally integrated by means of a Simpson quadrature.

B. Flexibility correction

The principle of flexible calculations has been described
in full detail in a recent paper49 which also introduced the
flexible CCpol-8sf potential to be used in this work. We only
recall here its main features for sake of clarity. In order to deal
with the flexibility of the monomers, we replace the above
rigid potential VAB(R,�A,�B) by its adiabatic counterpart
V ad

AB(R,�A,�B) which takes into account the variation of the
intramolecular zero-point energy as a function of the inter-
molecular geometry. Such an adiabatic approximation is jus-
tified by the high frequencies of these modes (1595, 3657,
and 3756 cm−1) as compared to dissociation energy
D0 � 1105 cm−1.36 More specifically, if we denote, respec-
tively, by Q and qX the intermolecular coordinates and
the intramolecular ones of monomer X, the flexible, 12-
dimensional, potential is expanded as

VAB(qA, qB, Q) = Vopt(Q) + V A(qA; Q) + V B(qB ; Q)

+�VAB (qA, qB, Q), (8)

where Vopt(Q) refers to the intermolecular potential at
optimized intramolecular geometries (qA

opt, qB
opt) for the

geometry Q,

∂V (qA, qB, Q)

∂qX

∣∣∣∣
qX

opt

= 0 (X = A,B), (9)

V X(qX; Q) corresponds to single-monomer correction, e.g.,

V A(qA; Q) = V
(
qA, qB

opt; Q
) − Vopt(Q), (10)

and �VAB(qA, qB, Q) is the residual potential coupling term.
At each point of the six-dimensional Q-grid, the ground

adiabatic potential V ad
AB(Q) can be solved either within the lo-

cal monomer model approximation,31, 53, 54 i.e., neglecting the
residual term �VAB(qA, qB, Q), or in a full variational ap-

proach explicitly considering it. We used here this later ap-
proach, more computationally demanding as it corresponds to
solving a six-dimensional vibrational problem at each point of
the six-dimensional Q-grid. However, it should be noted that
the local monomer approximation actually leads to negligible
changes (less than 0.1%) in the computed SVC values for all
temperatures considered here.

Another consequence of flexibility is to render the
monomer rotational constants 
xx, 
yy, and 
zz (entering the
definition of the ĤA

rot and Ĥ B
rot operators) dependent on the Q

intermolecular geometry,

ĤX
rot = 1

2
ĵ
†
X

⎛⎜⎝
X
xx(Q) 0 0

0 
X
yy(Q) 0

0 0 
X
zz(Q)

⎞⎟⎠ ĵX, (11)

where the 
X
αα(Q) rotational constants are averaged over the

instantaneous adiabatic monomer states. Such a dependence
was investigated in our paper, and was shown to be essentially
accounted for by only retaining the R-dependence, provided
that one defines effective rotational quantities 
̃X

zz(R) obtained
from averaging over the �A,�B Euler angles. Typically, such
an approximation allowed us to retrieve exact energies within
less than 0.1% up to more than half the dissociation energy.

C. Different approximations

The standard definition of the SVC21 reads

B(T ) = V

(
1

2
− Qd

Q2
m

)
, (12)

where Qm and Qd are the monomer and dimer partition func-
tions, respectively, and V is the volume of the vessel contain-
ing the gas. As we are considering here flexible monomers,
Qm and Qd should in principle receive contribution from the
intramolecular modes of each monomer. However, the high
frequencies of these modes render such a contribution negli-
gible in the temperature range 200–1000 K considered here
(e.g., Q1,vib(800 K) � 1.06). We will thus ignore the effect of
excited intramolecular states, both in Qm and Qd, leading to

Qm = Qm,tr × Qm,rot . (13)

It should be kept in mind that the change in zero-point energy
of these modes within the dimer is accounted for in the def-
inition of the adiabatic potential V ad

AB(Q). The SVC formula-
tion for flexible monomers can thus be recast into the standard
rigid monomer one, provided that the intermolecular potential
VAB(Q) entering Eq. (6) be replaced by its adiabatic counter-
part V ad

AB(Q), and the Q-dependence of rotational constants
(Eq. (11)) be considered.

We now capitalize on the rigid monomer second virial
formulation of Wormer,55 recalling the essential steps and the
changes we bring in his derivation. The SVC can be written
in terms of the density operator

B(T ) = V

2Q2
m

T r[e−βĤo
AB − e−βĤAB ]SF , (14)

where Ĥo
AB = Ĥo

A + Ĥo
B stands for the space-fixed total

hamiltonian of the two non-interacting monomers, ĤAB takes
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into account their interaction potential VAB (or V ad
AB), and SF

recalls that the trace has to be evaluated in the space-fixed
frame, that is considering the six coordinates �rX (position in
space) and �X (orientation) of each monomer.

We will consider different approximations to the e−βĤAB

density operator of the form

e−βĤAB � e−βĤo
AB × e−βVAB × F , (15)

where F is a function, not an operator, to be discussed later
on. Our formulation departs now from Wormer’s one as he
relied instead on the following expansion:

e−λβĤAB = e−λβVAB T̂ (λ) e−λβĤo
AB ,

and searched for an iterative solution of T̂ (λ).
This crucial approximation (Eq. (15)) allows one to ex-

plicit the coefficient, using integration over physical space to
evaluate the trace

B(T ) = V

2Q2
m

∫
. . .

∫
dxAdxB〈xAxB |e−βĤo

AB |xAxB〉

×{1 − e−βVAB (xA,xB )F(xAxB)}, (16)

where xX stands for the six coordinates of monomer X, and
we have made use of the local character of VAB and F . Using
the independence of the Slater sum 〈xX|e−βĤo

X |xX〉 over xX,

〈xX|e−βĤo
X |xX〉 = Qm,tr

V
× Qm,rot

8π2
, (17)

the coefficient expression simplifies to

B(T )= 1

2V (8π2)2

∫
. . .

∫
dxAdxB{1−e−βVAB (xA,xB )F(xAxB)}.

(18)
Finally, noting that VAB and F do not depend on the position
of the center of mass (c.m.) of the dimer, one can perform the
c.m. reduction and integrate its coordinates over the vessel
volume V

B(T ) = 1

128π4

∫
. . .

∫
{1 − e−βVAB (R,�A,�B )F(R,�A,�B)}

× dR d�Ad�B. (19)

The above integral is more easily evaluated after transforma-
tion to the body-fixed frame introduced in Sec. II A, which
we will consider from now on.

1. Classical approximation

The well known classical approximation56 consists here
in using F = 1, leading to

Bcl(T ) = 1

128π4

∫
. . .

∫
{1 − e−βVAB (R,�A,�B )}dR d�Ad�B.

(20)

2. Takahashi and Imada second-order approximation

A second order approximation has been proposed by
Takahashi and Imada57 (TI) in terms of the double commu-

tator

T r[e−βĤAB ] � T r[e−βĤ o
AB e−β(VAB+ β2

24 [VAB,[Ĥ o
AB ,VAB ]])], (21)

where Ĥ o
AB means the body-fixed counterpart of Ĥo

AB and cor-
responds to the operator of Eq. (6) minus the potential. Within
this approximation, the F quantity introduced in Eq. (15) cor-
responds to

F = e
− β3

24

[
VAB,

[
Ĥ o

AB ,VAB

]]
(22)

and will be shown later to actually be a function despite its
operatorial expression.

Following Schenter,58 the contribution of this double
commutator is usually taken into account through classical
statistical simulations: it consists in adding the term

+ ¯
2β2

24

2∑
i=1

[
F2

i

M
+

3∑
α=1

ταi

Iα

]
(23)

to the VAB potential in the second virial classical expression
(Eq. (20)). In the above equation, Fi is the force on molecule
i exerted by the partner, the τ ’s are the components of the
torque on the molecule, M is the mass of each molecule, and
the I’s are the principal moments of inertia. Calculations are
then carried out by Monte Carlo sampling over the Euler an-
gles, and a numerical quadrature for the R distance.59

In the work presented here, we consider instead an exact
quantum mechanical evaluation of the double commutator of
Eq. (21). To this aim, we first explicit Ĥ o

AB (rigid case) in the
form55

Ĥ o
AB = P̂ 2

R

2μAB

+ 1

2

∑
αX


X
ααĵ 2

αX

+ 1

2μABR2

{
Ĵ

2 + ĵ 2
AB − 2ĵAB. Ĵ

}
, (24)

where P̂R = −i¯R−1(∂/∂R)R. Straightforward algebra al-
lows one to show the following relations:[

VAB,
[
P̂ 2

R, VAB

]] = 2¯2

(
∂VAB

∂R

)2

, (25)

[
VAB,

[
ĵ 2
αX, VAB

]] = −2(ĵαXVAB)2. (26)

The Ĵ
2

and ĵAB. Ĵ operators contribute for zero as they give
rise to null ĴαVAB terms because the potential is invariant
in the overall rotation of the dimer. But, as stressed by T
Pack,56 the ĵ 2

AB terms do contribute and can be evaluated from
Eq. (26).

One finally obtains for the double commutator expression[
VAB,

[
Ĥ o

AB, VAB

]] = ¯2

μAB

(
∂VAB

∂R

)2

−
∑
αX


X
αα (ĵαXVAB)2

− 1

μABR2

∑
α

(ĵαAVAB + ĵαBVAB)2 .

(27)

It should be noted that, because the angular momentum oper-
ators are hermitian ĵα = −ı¯∂/∂ . . ., the last two terms in the
above expression are positive.
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If performing flexible calculations, the above TI correc-
tion has to be modified in two ways. The first, trivial, one
is to replace the VAB potential by its adiabatic version V ad

AB

as defined in Sec. II B. A second modification concerns the
middle term of Eq. (27). This term was established for rota-
tional operators ĤX

rot displaying fixed rotational constants. It
was mentioned in Sec. II B that a consequence of flexibility
was to turn these constants Q-dependent. However, consid-
ering R-dependent effective quantities 
̃X

zz(R), obtained from
averaging, allows one to retrieve quasi-exact energies. The
corresponding rotational operators thus display the modified
expression

ĤX
rot =

∑
α


̃X
αα(R)ĵ 2

αX (28)

as ĵαX does not contain any R-derivative. The modified TI cor-
rection Eq. (27) corresponding to flexible monomers displays
the following expression:

[
V ad

AB,
[
Ĥ o

AB, V ad
AB

]] = ¯2

μAB

(
∂V ad

AB

∂R

)2

−2
∑
αX


̃X
αα

(
ĵαXV ad

AB

)2

− 1

μABR2

∑
α

(
ĵαAV ad

AB + ĵαBV ad
AB

)2
.

(29)

It is customary to define the effective potential ṼAB from

ṼAB = VAB + β2

24

[
VAB,

[
Ĥ o

AB, VAB

]]
(30)

or from the correction Eq. (29) in case of flexible monomers,
which recasts the Takahashi-Imada approximation in a form
similar to the classical one (Eq. (20)),

Bti(T ) = 1

128π4

∫
. . .

∫
{1 − e−βṼAB (R,�A,�B )}dR d�Ad�B.

(31)
We report in Table I the B(T) values as obtained from the
above quantum TI and classical approximations for the rigid
TIP4P potential.60 Using this potential allowed us to compare
with the results obtained by Schenter,58 respectively, from a
quantum statistical (Path Integral Monte Carlo) method, the
classical TI (Eq. (23)), and the standard classical approxima-
tions. One can note that the quantum TI and PIMC results
agree within 1%, except for the lowest temperature (250 K)
where the quantum TI value lays halfway between the PIMC
and classical TI ones. Calculation of B(T) at any temperature
is extremely fast, once the corrective term [VAB, [Ĥ o

AB, VAB ]]
in Eq. (30) has been computed: typical times are 26 s and
105 s, respectively, on a 16-core processor.

D. Results

All the calculations presented in this work have been per-
formed with the following basis specifications: (i) a Wigner
basis set up to j = 11 on each monomer, (ii) a radial basis set
of 125 sine functions spanning the box 4 ≤ R ≤ 46 ao, us-
ing the same number of grid points. Fig. 1 displays the SVC
B(T) in the range 250–1000 K as obtained within the TI and
classical approximations using the recently developed flexible

TABLE I. Second virial coefficient B(T) values (cm3 mol−1), using the
TIP4P potential. Schenter’s results58 correspond, respectively, to a quantum
statistical method (Path Integral Monte Carlo), a classical statistical formula-
tion of the Takahashi-Imada approximation and the classical approximation.
Present results were obtained, respectively, from a quantum formulation of
the TI approximation, and in the classical approximation.

Schenter This work

T (K) PIMC TIcl Clas. TIqu Clas.

200.0 . . . − 72 831 − 168 650 − 68 766 − 168 827
250.0 − 8412 − 8 877 − 15 203 − 8 633 − 15 213
273.2 − 4450 − 4 539 − 7 065 − 4 452 − 7 079
300.0 − 2369 − 2 439 − 3 486 − 2 402 − 3 486
323.2 − 1557 − 1 573 − 2 122 − 1 553 − 2 122
373.2 − 752 − 756 − 936 − 750 − 936
400.0 − 552 − 555 − 666 − 551 − 665
423.2 − 434 − 439 − 515 − 436 − 515
448.2 − 338 − 350 − 404 − 348 − 404
473.2 − 279 − 286 − 325 − 285 − 325

CCpol-8sf potential.49 We also report this coefficient obtained
from the TI approximation but for the rigid version61 of this
potential. In Figure 1 are also depicted the experimental val-
ues of Osborne et al.,62 Eubank et al.,63 and Kell et al.,64 as
well as their fit by Harvey and Lemmon.65 A detailed com-
parison at temperatures used in the experiments is given in
Table II.

One can note a very good agreement between the experi-
mentally fitted curve and the results obtained within the TI ap-
proximation using the flexible potential over the whole range
of temperatures reported. As our evaluation of B(T) is nearly
exact, this agreement assesses the very high quality of the
global CCpol-8sf potential, which was previously tested only
on properties49 (VRT spectrum and IR shifts) mainly sam-
pling the inter-monomer equilibrium distance. It also demon-
strates that flexibility is required in the calculation of the SVC.
Although the rigid curve is roughly left-translated by 8 K only
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FIG. 1. Comparison of the calculated SVC B(T) within the Takahashi-Imada
quantum formulation (•) with experimental values: Ref. 62 (�), Ref. 64 (�),
Ref. 63 (+), fit (–) by Harvey and Lemmon in Ref. 65. The inset displays
these same values in the 250–500 K range, as well as those obtained from
different approximations: classical (�) and Takahashi-Imada rigid calcula-
tions (∗).
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TABLE II. Comparison of experimental second virial coefficient B(T) val-
ues (cm3 mol−1) obtained in earlier work to those calculated in this work
using the quantum TI formulation.

T (K) Exp.a Exp.b Exp.c Fitd Calc.

323.13 − 844 − 817 − 859
333.13 − 728 − 714 − 756
343.13 − 634 − 629 − 671
348.15 − 590 − 593 − 634
353.13 − 559 − 560 − 600
360.65 − 515 − 515 − 554
363.13 − 498 − 501 − 540
373.15 − 454 − 453 − 452 − 488
385.65 − 401 − 400 − 434
398.15 − 358 − 357 − 388
410.65 − 321 − 321 − 350
423.15 − 287 − 275 − 290 − 290 − 317
448.15 − 240 − 240 − 241 − 264
460.65 − 220 − 221 − 242
473.15 − 200 − 201 − 203 − 203 − 223
485.65 − 188 − 188 − 206
498.15 − 174 − 174 − 191
523.15 − 150 − 150 − 166
573.15 − 116 − 116 − 128
673.15 − 74 − 74 − 83
773.15 − 50 − 50 − 57

aFrom Osborne et al.62

bFrom Eubank et al.63

cFrom Kell et al.64

dFrom their fit by Harvey and Lemmon.65

with respect to the flexible one, their quasi-vertical asymptotic
behavior in the low temperature region leads to a 13% error
at 300 K. This contrasts with the recent claim by Donchev
et al.66 who reported a reduction of 20%–40% upon consid-
eration of flexibility in this temperature range. Eventually,
the rigid TI results finally converge to the flexible ones for
high temperatures. This can be understood as the rigid poten-
tial uses the vibrationally averaged (free) monomer geometry
which becomes preponderant at large separations, more heav-
ily sampled at high temperatures. Comparison with the clas-
sical curve shows that the quantum correction is needed up to
high temperatures. For example, the error ranges from 30% at
300 K to 10% at 500 K.

III. EQUILIBRIUM CONSTANT Kp(T)

The integration method used to evaluate the SVC
(Eq. (19)) does include the different contributions Bf, Bb,
and Bm as it corresponds to the trace of the integrand
(1 − e−βṼAB (R,�A,�B )) expressed in the physical space. It is
thus strictly equivalent to the trace performed in the energy
representation

B(T ) =
bound∑

b

〈Eb|(1 − . . .)|Eb〉

+
channels∑

n

∫ ∞

0
dE〈En|(1 − . . .)|En〉, (32)

where {|Eb〉} denotes the bound states (E < 0), and {|En〉}
corresponds to the collision eigenstates (E > 0), which en-
compass the so-called free and metastable states.

A. Relation between B(T) and Kp(T)

One considers the dimerization reaction

2M ↔ D.

If both M and D are considered as ideal gases

Kp = pD

p2
M

= α(1 − α
2 )

2(1 − α)2

1

p
, (33)

where α is the dimerization yield and p is the pressure at equi-
librium, leading to the number of dimer moles,

nD = α

2
n0 = pKp

(1 − α)2

1 − α
2

n0, (34)

n0 = nM + 2nD being the total number of moles of M, either
as monomers or within dimers.

The equation of state for the mixture reads

pV = nMRT + nDRT = n0RT − nDRT

= n0RT + n0p ×

observed B(T )︷ ︸︸ ︷[
−KpRT

(1 − α)2

1 − α
2

]
. (35)

The above equation departs from the usual formulation for
ideal mixtures (see, e.g., Lambert et al.67) in that we explicitly
consider the dimerization yield α to be finite instead of taking
the α → 0 limit. The way to take into account this nonzero
value will be discussed later after we consider below the non-
ideality of the monomer gas. In such a case, the pM expression
has to be modified according to

pMV = nMRT + nMbMpM, (36)

where bM would be the SVC of M in the absence of any
dimer in the mixture, and the definition of which is deferred to
Sec. III B.

Equation (35) has thus to be corrected according to this
contribution,

nMbMpM � n0pbM

(1 − α)2

1 − α
2

,

where we have made the approximation pM/p

� (1 − α)/(1 − α
2 ) as bM represents a small contribu-

tion as compared to B(T), and leads to the final expression for
the equilibrium constant Kp(T),

Kp(T ) = − 1

RT

[
B(T )

1 − α
2

(1 − α)2
− bM

]
, (37)

which leads to the usual relation (Eq. (1)) if we take α = 0.
As shown by Eq. (33), the dimerization yield α depends

on the equilibrium pressure p which is taken to be p = 1 atm,
Kp being usually given in atm−1 for this dimerization equilib-
rium. In order to solve Eq. (37), one thus has to know the α

value corresponding to p = 1 atm at the temperature T of inter-
est. Starting from the initial value α = 0, one iterates over first
determining Kp(T) from Eq. (37), which then provides a new



074106-7 Claude Leforestier J. Chem. Phys. 140, 074106 (2014)

α value by means of Eq. (33), until convergence. The influ-
ence of considering a nonzero α in Eq. (37) will be discussed
in Sec. III C when we present the actual values of Kp(T) ob-
tained from the SVC B(T) computed in Sec. II D. But it can
already be realized that it will lead to an increase in the Kp(T)
constant with respect to assuming α = 0 as 1 − α

2 > (1 − α)2.

B. Excluded volume bM(T)

Progress has been made recently concerning the notion
of excluded volume, in relation to the Generic van der Waals
equation, which naturally gives rise to a statistical mechanical
definition of a mean excluded volume (see, e.g., Ref. 68). We
will use below a simplistic formulation as the corrective bM

term appearing in Eq. (36) is defined as the intrinsic SVC of
the monomer. For the simple case of the hard sphere poten-
tial, it corresponds to the well known expression b0 = 2

3πσ 3,
where σ is the minimum approach distance.69 By analogy, for
an arbitrary potential V we define this intrinsic coefficient by
the integral (similar to Eq. (31))

bM (T ) = 1

128π4

∫
. . .

∫
H[V − Ethr]dR d�Ad�B, (38)

where H is the Heaviside function and Ethr is an energy thresh-
old. It corresponds to the classically excluded volume above
energy Ethr, and gives the 2

3πσ 3 factor for the hard sphere po-
tential. We define Ethr = 3

2kBT which is the mean relative ki-
netic energy at temperature T, which renders bM temperature
dependent.

A plot of bM(T) per mol is given in Fig. 2 in the range
200–600 K. After a sharp initial decrease, it coincides at room
temperature with the 38.5 cm3 mol−1 value recommended by
Hirschfelder and co-workers,37 and reaches the 31 cm3 mol−1

value currently used in the van der Waals equation. The no-
tion of excluded volume for water vapor has recently been
discussed by Tretyakov et al.70 They point out that “the ex-
cluded volume should be interpreted as the effective volume of
intermolecular interaction due to the repulsive forces.” These
authors also conclude from their analysis that “it will first vary
abruptly, probably exponentially, and then will decrease very
slowly, remaining almost unchanged.”
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0
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b from vdW Eq.

FIG. 2. Excluded volume bM(T) defined as the classically forbidden volume
at temperature T (see Eq. (38)).
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FIG. 3. Calculated equilibrium constant Kp(T) in the range 250–400 K: (—)
in the limit α = 0, (−−) considering the finite value of α, (_.._) from our
previous calculation30. Experimental data: (�) results based on the thermal
conductivity of steam experiments of Curtiss et al.;13 (�) Ptashnik et al.15

high resolution pure water vapor absorption spectra using the Ma and Tipping
continuum model; (�) Nicolaisen17 IR absorption spectrum of water in CCl4.

C. Equilibrium constant Kp(T)

The equilibrium constant Kp(T) has been determined
from Eq. (37), using the SVC B(T) obtained from Eq. (31)
and the excluded volume bM(T) defined in Eq. (38). As
already mentioned before, its values as determined from
Eq. (37) depend on the dimerization yield α corresponding
to an equilibrium pressure p = 1 atm. We thus report in Fig. 3
the results obtained either from solving Eq. (37) (Kp (α > 0))
or in the α → 0 limit (Kp (α = 0)), in the range 260–400 K, as
well as our previous results.30 In Figure 3 are also represented
the experimental results obtained by

(i) Curtiss et al.,13 at high temperatures, based on the ther-
mal conductivity of steam experiments;

(ii) Ptashnik et al.,15 at temperatures 299 K and 342 K,
from high spectral resolution pure water vapor absorp-
tion spectra, corrected from the Ma and Tipping con-
tinuum model71 and using then water dimer intensities
calculated by Schofield and Kjaergaard;72

(iii) Nicolaisen17 from IR absorption spectrum (4100–3200
cm−1) of water in CCl4 solutions at 296 K, based
on measurements of the atmospheric water absorption
continuum73 and calculations of the line strengths for
the dimer.74

Let first compare the new results with our previous
calculation.30 As was mentioned before, the empirical po-
tential used previously was deeper (D0 � 1230 cm−1) than
the CCpol-8sf potential used in this work (D0 = 1108 cm−1),
which is in very good agreement with the experimental value
1105 ± 10 cm−1 recently measured by Rocher-Casterline
et al.36 by velocity map imaging. From the influence of the
dissociation energy D0 on Kp (Eq. (2)), one expects a global
decrease in the new calculations, as shown at lower tempera-
tures. On the other hand, resonances were not taken into ac-
count, in contrast to the method used in the present work. This
should result in an increase of Kp when these resonances be-
come important, i.e., at higher temperatures.
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If we consider now the influence of the nonzero value
of the dimerization yield α in Eq. (37), one can notice that
it does play a significant role below ca. 320 K. For example,
this yield α varies from 0.17 to 0.04 in the range 260–320 K.

The actual comparison to recent spectroscopic determi-
nations of the constant is made difficult by their scarcity and
the widely different experimental methods involved. One can
however note a reasonable agreement with the estimations of
Ptashnik et al.15 at two different temperatures.

IV. DISCUSSION

We reported SVC calculations relying, for the first time,
on a quantum implementation of the Takahashi-Imada ap-
proximation, to the difference of its usual classical statistical
calculation through Monte Carlo sampling. This quantum for-
mulation allowed us to retrieve the Path Integral Monte Carlo
results obtained by Schenter58 in the low temperature range
250–450 K for the model TIP4P potential. Using a water
dimer formulation and an ab initio flexible potential recently
introduced,49 we first computed the SVC taking fully into ac-
count the monomers’ flexibility. This new potential lead to
a very good agreement with available experimental values.
It was shown that flexibility of monomers has to be consid-
ered as it leads, e.g., to a 13% change at 300 K due to the
asymptotic behavior of this coefficient at low temperatures.
The SVC evaluation was made particularly efficient by use
of a pseudospectral scheme based on Fourier and Gaussian
quadratures, fully benefiting from parallelization.

We then extracted from these results the dimerization
equilibrium constant Kp(T) by means of the relation Kp(T)
= −(B(T) − bM)/RT. We proposed a simplistic excluded vol-
ume bM definition, assimilated to the SVC of a pure water
monomer vapor, and computed as the classically excluded
volume for the mean relative kinetic energy 3

2kBT at temper-
ature T. It displays a slight dependence on temperature in ac-
cordance with the empirical formula used by Ben-Amotz and
Herschbach,75 σ (T ) = σ0[1 + √

T/T0]−η, to summarize the
various effective diameters σ (T) of molecules proposed in the
literature. It allowed us to retrieve at room temperature the
38.5 cm3 mol−1 value recommended by Hirschfelder and co-
workers,37 and reaches around 500 K the 31 cm3 mol−1 value
currently used in the van der Waals equation. At room temper-
ature or below, this excluded volume plays a marginal role in
the equilibrium constant calculation as −B(T) is much bigger.
But its contribution changes from important (10%) to essen-
tial (100%) in the range 400–1000 K. It should be noted that
the higher the temperature, the more valid the classical ap-
proximation used to define bM(T).

It was mentioned before in Sec. III that metastable states
do contribute to the SVC, and hence to the equilibrium con-
stant according to the method used for its evaluation in this
work. Two remarks then arise: (i) how do these metastable
or resonant states contribute to these functions?; (ii) how the
Kp(T) values obtained in this way are related to the exper-
imental ones obtained from absorption spectra? To answer
the first point, one can quote Stogryn and Hirschfelder:14

“If the half-life for dissociation is greater than the average
time between collisions, the resonances behave like bound

states. But if the time between collisions is long compared
to this half-life, they behave like free molecules.” Their as-
sertion can be understood as the SVC depends on the trace
T r[e−βHAB − e−βHo

AB ]. Sharp resonances are strongly local-
ized above the interaction well, that is where HAB and Ho

AB

differ most, and henceforth their contribution to the trace will
be more important. On the converse, broad resonances extend
well beyond the interaction region where HAB converges to
Ho

AB , resulting in a smaller contribution.
This discussion leads to the second point as it high-

lights the importance of the experiment timescale. As noted
by Schenter et al.,48 “states above dissociation may corre-
spond to collision complexes or resonances that are too short
lived to contribute to any physically observable property of
the dimer.” Similarly, Vigasin76 pointed out the difference
between “statistical” and “spectroscopical” definitions of
short-lived pair states: “the use of various spectroscopic meth-
ods to probe molecular pairs may result in the identification
of various fractions of short-lived states either with stable or
with quasistable species.” An accurate comparison to experi-
ment should thus take into account its timescale and consider
it the calculation of Kp(T).
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