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We give the smallest closed ideal with given hull and inner factor for some weighted big Lipschitz algebras of analytic functions.

Introduction.

Let H ∞ be the space of all bounded analytic functions on the open unit disk D of the complex plane. Various authors have characterized completely the structure of the closed ideals in some separable Banach algebras of analytic functions in D, we refer the reader for instance to [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF][START_REF] Korenblum | Invariant subspaces of the shift operator in a weighted Hilbert space[END_REF][START_REF] Matheson | Cyclic vectors for invariant subspaces in some classes of analytic functions[END_REF][START_REF] Shamoyan | Closed ideals in algebras of functions that are analytic in the disk and smooth up to its boundary[END_REF][START_REF] Shirokov | Analytic functions smooth up to the boundary[END_REF] and some references therein. They have proved that this structure is standard in the sense of that given by Beurling and Rudin in the usual disk algebra A(D), of functions f ∈ H ∞ that are continuous up to the boundary T, see [START_REF] Hoffman | Banach spaces of analytic functions[END_REF]Page. 85] and [START_REF] Rudin | The closed ideals in an algebra of analytic functions[END_REF]. However, the structure of closed ideals in nonseparable Banach algebras of analytic functions seems much more difficult to characterize, we can see for instance [START_REF] Bouya | On closed ideals in the big Lipschitz algebras of analytic functions[END_REF][START_REF] Gorkin | Higher order hulls in H ∞ . II[END_REF][START_REF] Hedenmalm | Bounded analytic functions and closed ideals[END_REF][START_REF] Hoffman | Bounded analytic functions and Gleason parts[END_REF][START_REF] Pedersen | Ideals in big Lipschitz algebras of analytic functions[END_REF][START_REF] Sherbert | The structure of ideals and point derivations in Banach algebras of Lipschitz functions[END_REF]. In this paper we are interested in the description of the closed ideals in the following weighted big Lipschitz algebra where ω = 0 is a modulus of continuity, i.e., a nonnegative nondecreasing continuous function on [0, 2] with ω(0) = 0 and t → ω(t)/t is nonincreasing. Our main result is stated in Theorem 1 below. It is well-known that Lip ω is a nonseparable commutative Banach algebra when equipped with the norm

f ω,D := f ∞ + sup z,w∈D z =w |f (z) -f (w)| ω(|z -w|) ,
where f ∞ := sup Tamrazov [START_REF] Tamrazov | Contour and solid structural properties of holomorphic functions of a complex variable, (Russian) Uspehi Mat[END_REF] has shown that the algebras Lip ω (D) and Lip ω := Lip ω (T) coincide for any modulus of continuity ω, see also [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF]Appendix A]. Furthermore, the norms f ω,D and f ω := f ω,T are equivalent, where

f ω,T := f ∞ + sup z,w∈T z =w |f (z) -f (w)| ω(|z -w|) .
In what follows, we denote by E a closed subset of T of Lebesgue measure zero and by U ∈ H ∞ an inner function such that σ(U) ∩ T ⊆ E, where σ(U) := {λ ∈ D : lim inf

z→λ z∈D |U(z)| = 0},
is called the spectrum of U, see for instance [START_REF] Nikolskii | Treatise on the shift operator[END_REF]. It is known that σ(U) = Z U ∪ supp(µ U ), where Z U is the zero set in D of U and supp(µ U ) is the closed support of the singular measure µ U associated with the singular part of U.

For a closed ideal I of Lip ω , we denote by U I the greatest inner common divisor of the inner parts of functions in I \ {0} and by E I the standard hull of I, that is E I := {ξ ∈ T : f (ξ) = 0, ∀f ∈ I}, see [START_REF] Hoffman | Banach spaces of analytic functions[END_REF]Page. 85] and [START_REF] Rudin | The closed ideals in an algebra of analytic functions[END_REF]. We define as it is obtained in Proposition 5 of section 6.1 below. For 0 < α ≤ 1, we set

ω α (t) := t α , 0 ≤ t ≤ 2.
A classical result due to Carleson [START_REF] Carleson | Sets of uniqueness for functions regular in the unit circle[END_REF] A result of type (1.2) was stated first by H. Hedenmalm [START_REF] Hedenmalm | Bounded analytic functions and closed ideals[END_REF] in the algebras H ∞ and Lip ω 1 , for closed ideals I such that E I is a single point. Later, T. V. Pederson [START_REF] Pedersen | Ideals in big Lipschitz algebras of analytic functions[END_REF] has obtained the same result in Lip ωα , for closed ideals I such that E I is countable. In this paper we are interested in the case where ω satisfies the following condition

inf 0<t≤1 ω(t 2 ) ω(t) =: η ω > 0. (1.3)
We obtain the following theorem which will be proved in the next section.

Theorem 1. Let I ⊆ Lip ω be a closed ideal, where ω is a modulus of continuity satisfying (1.3). Then J ω (E I , U I ) ⊆ I.

In particular Theorem 1 provides us with an extension of (1.2) to a large class of smooth algebras between H ∞ and 0<α≤1 Lip ωα , such as Lip χ β and Lip ψ β , where

ψ β (t) := log -β log 2e 1+β t , 0 < t ≤ 2.
As consequence of Theorem 1 we deduce the following corollary.

Corollary 1. We suppose that E or U are nontrivial such that E ⊇ σ(U) ∩ T and

T log ω d(ξ, Z U ∪ E) |dξ| > -∞, (1.4) 
where ω is a modulus of continuity satisfying (1.3). Then J ω (E, U) is a nontrivial principal closed ideal with E as hull and U as inner factor.

The estimate (1.4) is in fact a necessary condition guaranteeing that J ω (E, U) is nontrivial, see the proof of Corollary 1. By joining together the results established in Theorem 1 and Corollary 1 we deduce that J ω (E, U) is the smallest closed ideal with E as hull and U as inner factor provided that (1.4) is satisfied.

To prove Theorem 1 we give an adaptation in the space J ω (E) := J ω (E, 1) of Korenblum's functional approximation method, see for instance [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF][START_REF] Korenblum | Invariant subspaces of the shift operator in a weighted Hilbert space[END_REF][START_REF] Matheson | Cyclic vectors for invariant subspaces in some classes of analytic functions[END_REF]. To do so, we will use some properties enjoyed by the space J ω (E) which we describe in the following theorem.

Theorem 2. Let g ∈ J ω (E) be a function, where ω is an arbitrary modulus of continuity.

Let V ∈ H ∞ be an inner function dividing g, that is g/V ∈ H ∞ . Then V O g ∈ J ω (E), (1.5) 
where O g is the outer factor of g.

Let {V n : n ∈ N} ⊂ H ∞ be a sequence of inner functions dividing g such that σ(V n )∩T ⊆ E, for every n ∈ N. If lim n→∞ V n O g -V O g ∞ = 0, (1.6) then lim n→∞ V n O g -V O g ω = 0. (1.7) 
In particular, assertion (1.5) shows that J ω (E) possesses the F-property. This kind of factorization property has been proved by Havin, Shamoyan and Shirokov for the whole space Lip ω with respect to any modulus of continuity, see for instance [START_REF] Havin | Analytic functions with a Lipschitzian modulus of the boundary values[END_REF], [START_REF] Shirokov | Analytic functions smooth up to the boundary[END_REF]Chapter I] and also [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF]Appendix B].

The remainder of this paper is organized as follows: In section 2, we give the proof of Theorem 1 and Corollary 1. Section 3 is devoted to presenting some needed results. Sections 4 and 5 contain respectively the proofs of Propositions 3 and 4. In the last section we give the proof of Theorem 2.

Proofs of Theorem 1 and Corollary 1.

In section 4.2 we give the proof of the following proposition. Proposition 3. Let I ⊆ Lip ω be a closed ideal and let g ∈ J ω (E I ) be a function, where ω is a modulus of continuity satisfying (1.3). We suppose that gf ∈ I for some outer function f ∈ Lip ω . Then g ∈ I.

For f ∈ H ∞ we denote by U f and O f respectively the inner and the outer factor of f . In section 5 we will use both Theorem 2 and Proposition 3 to give the proof of the following proposition.

Proposition 4. Let I ⊆ Lip ω be a closed ideal, where ω is a modulus of continuity satisfying (1.3). There exists a function f ∈ I such that U f = U I .

Proof of Theorem 1. Let I ⊆ Lip ω be a closed ideal. By applying Proposition 4, there exists a function f ∈ I such that U f = U I . Let g ∈ J ω (E I , U I ) be a function. We note that g/U I ∈ Lip ω , by using the F-property of Lip ω . Since gO f = (g/U I )f then gO f ∈ I. Thus g ∈ I, by applying Proposition 3. Therefore J ω (E I , U I ) ⊆ I, which is the desired result.

Proof of Corollary 1. It is known [START_REF] Shirokov | Analytic functions smooth up to the boundary[END_REF]Page. 137] that (1.4) ensure the existence of a function f ∈ Lip ω such that f -1 (0) = Z U ∪ E and f /U ∈ H ∞ . The functions O f and UO f belong to Lip ω , since Lip ω possesses the F-property. Therefore g := UO 2 f ∈ J ω (E, U), as product of two functions in I ω (E) := I ω (E, 1). Hence J ω (E, U) is non trivial and possesses E as hull and U as inner factor. Now, we let [g] be the closed ideal in Lip ω generated by g.

Clearly [g] ⊆ J ω (E, U). Since E [g] = E and U [g] = U, then J ω (E, U) ⊆ [g],
by applying Theorem 1. Therefore J ω (E, U) = [g] and hence J ω (E, U) is principal. The proof of Corollary 1 is completed.

Approximation Lemmas.

We first note that ω is positive on ]0, 2] and since t → ω(t)/t is nonincreasing, The next lemma will be used to simplify the following proofs of Lemma 

ω(2t) ≤ 2ω(t), t ∈ [0, 1]. (3.1) 
gh n (ξ) -gh n (ζ) ω(|ξ -ζ|) = g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) + h n (ζ) g(ξ) -g(ζ) ω(|ξ -ζ|) , (3.4 
lim n→∞ sup ξ,ζ∈T\E(δ) ξ =ζ |gh n (ξ) -gh n (ζ)| ω(|ξ -ζ|) = 0 (3.5) 
for each δ ∈]0, 1], and

lim δ→0 sup ξ,ζ∈E(δ) ξ =ζ |gh n (ξ) -gh n (ζ)| ω(|ξ -ζ|) = 0 (3.6)
uniformly with respect to n ∈ N, then gh n ∈ J ω (E), for sufficiently large numbers n ∈ N, and lim n→∞ gh n ω = 0. Indeed, we suppose that (3.5) and (3.6) are satisfied. Let ε be a positive number. Using (3.6), there exists

δ ε ∈]0, 1] such that sup ξ,ζ∈E(δε) ξ =ζ |gh n (ξ) -gh n (ζ)| ω(|ξ -ζ|) ≤ ε, for every n ∈ N. (3.7) 
We observe that

T \ E(δ ε ) ⊆ T \ E(δ ε /2).
Then, by using (3.5), there exists

n ε ∈ N such that sup ξ,ζ∈T\E(δε ) ξ =ζ |gh n (ξ) -gh n (ζ)| ω(|ξ -ζ|) ≤ ε, for every n ≥ n ε . (3.8)
On the other hand, for two points

ξ 0 ∈ E(δ ε ) and ζ 0 ∈ T \ E(δ ε ) we can associate a third point z ξ 0 ,ζ 0 in the boundary of E(δ ε ) such that max{|ξ 0 -z ξ 0 ,ζ 0 |, |z ξ 0 ,ζ 0 -ζ 0 |} ≤ |ξ 0 -ζ 0 |.
Then,

|gh n (ξ 0 ) -gh n (ζ 0 )| ω(|ξ 0 -ζ 0 |) ≤ |gh n (ξ 0 ) -gh n (z ξ 0 ,ζ 0 )| ω(|ξ 0 -z ξ 0 ,ζ 0 |) + |gh n (z ξ 0 ,ζ 0 ) -gh n (ζ 0 )| ω(|z ξ 0 ,ζ 0 -ζ 0 |) , (3.9) 
since ω is nondecreasing. Combining the estimates (3.7), (3.8) and (3.9), we obtain

sup ξ,ζ∈T\E ξ =ζ |gh n (ξ) -gh n (ζ)| ω(|ξ -ζ|) ≤ 2ε, for every n ≥ n ε . (3.10)
It follows gh n ∈ I ω (E), for every n ≥ n ε , and hence gh n ∈ J ω (E), since we have assumed (3.6). We now observe that for each δ ∈]0, 1], there exists

n δ ∈ N such that T \ E(δ) ⊆ ∆ n , for all numbers n ≥ n δ , since n∈N ∆ n = T \ E.
Then, for each δ ∈]0, 1], the sequence {h n :

n ∈ N} converges uniformly to 0 on T \ E(δ), by using the hypothesis i 3 . Furthermore, by using hypothesis i 1 , lim

δ→0 sup ξ∈E(δ) n∈N |gh n (ξ)| = 0.
We deduce lim n→∞ gh n ∞ = 0. Hence lim n→∞ gh n ω = 0, by using once more (3.10).

So, it remains to show that (3.5) and (3.6) are fulfilled if (3.3) holds. For this we fix two distinct points ξ, ζ ∈ T \ E and a number δ ∈]0, 1]. We consider the following cases:

Case A. We suppose that ξ, ζ ∈ T \ E(δ). A 1 . If |ξ -ζ| ≥ 1 2 d(ξ, E), then ω(|ξ -ζ|) ≥ ω( 1 2 d(ξ, E)) ≥ 1 2 ω(d(ξ, E)),
by using the properties of ω. Thus In all what follows we use the notation X Y to mean that there exists a positive constant c such that X ≤ cY, where X and Y are two nonnegative functions. Since t → t/ω(t) is nondecreasing,

g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) ≤ 4 g ω sup z∈T\E(δ) |h n (z)|, n ≥ n δ . ( 3 
g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) ≤ |g(ξ)| |h n (ξ) -h n (ζ)| |ξ -ζ| |ξ -ζ| ω(|ξ -ζ|) 2 g ∞ ω(2) sup z∈(ξ,ζ) |h ′ n (z)| g ∞ sup z∈T\E(δ) |h ′ n (z)|, n ≥ n δ . (3.12)
From (3.11) and (3.12) we deduce that for each δ ∈]0, 1], there exists

n δ ∈ N such that sup ξ,ζ∈T\E(δ) ξ =ζ g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) g ω sup z∈T\E(δ) |h n (z)| + sup z∈T\E(δ) |h ′ n (z)| , (3.13) 
for all numbers n ≥ n δ . On the other hand it is plain that 

sup ξ,ζ∈T\E(δ) ξ =ζ h n (ζ) g(ξ) -g(ζ) ω(|ξ -ζ|) g ω sup z∈T\E(δ) |h n (z)|, n ∈ N. ( 3 
g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) ≤ 4 sup n∈N h n ∞ sup ξ∈E(δ) |g(ξ)| ω(d(ξ, E)) = o(1), as δ → 0, (3.15) 
by using the hypothesis i 1 and the fact that g ∈ J ω (E). It follows

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ and |ξ-ζ|≥ 1 2 d(ξ,E) g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) = 0, (3.16) 
and hence

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ g(ξ) h n (ξ) -h n (ζ) ω(|ξ -ζ|) = 0, (3.17) 
uniformly with respect to n ∈ N, since we have assumed (3.3). On the other hand, by using again the hypothesis i 1 and the fact that g ∈ J ω (E), it is easily seen that

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ h n (ζ) g(ξ) -g(ζ) ω(|ξ -ζ|) = 0, (3.18) 
uniformly with respect to n ∈ N. Hence, the equality (3.6) is deduced by combining together (3.4), (3.17) and (3.18). The proof of Lemma 1 is completed.

Let f ∈ A(D) be an outer function and let Γ ∈ Ω E , for some closed subset E of T. We define the following Korenblum's outer function

f Γ (z) := exp 1 2π Γ ξ + z ξ -z log |f |(ξ)|dξ| , z ∈ D. (3.19)
We observe that f Γ belongs to H ∞ with boundary values satisfying

|f Γ |(ξ) = |f |(ξ), if ξ ∈ Γ, 1, if ξ ∈ T \ Γ.
We also observe that f Γ = f × f -1 T\Γ and that f Γ has an extension both to an analytic function on C \ Γ and to a continuous one on D \ E. For a function f ∈ A(D), we denote by E f the boundary zero set of f. The following lemma will be used in the proofs of Proposition 3 and Proposition 4.

Lemma 2. Let f ∈ Lip ω be an outer function, where ω is a modulus of continuity satisfying (1.3). Let g ∈ Lip ω be a function and let E be a closed subset of E g . Then gf Γ ∈ Lip ω and

gf Γ ω ≤ c ω,f g ω , for every Γ ∈ Ω E , (3.20) 
where c ω,f > 0 is a constant not depending on both Γ and g. If moreover g ∈ J ω (E), then

gf Γ ∈ J ω (E), for every Γ ∈ Ω E , (3.21) 
and

lim n→∞ gf Γn -g ω = 0, (3.22) 
where

Γ n := m>n (a m , b m ), for each n ∈ N. Proof. Let g ∈ Lip ω be a function. Let Γ ∈ Ω E , where E is a fixed closed subset of E g . Since f Γ ∈ H ∞ and has a continuous extension on D \ E, then gf Γ ∈ A(D) with vanishing values on E. Let ξ, ζ ∈ T \ E be two distinct points such that d(ξ, E) ≤ d(ζ, E). Two cases are possible; Case A. We suppose that |ξ -ζ| ≥ 1 4 d 2 (ξ, E). Since ω satisfies (1.3), g(ξ) f Γ (ξ) -f Γ (ζ) ω(|ξ -ζ|) ≤ 2 max{1, f ∞ } |g(ξ)| ω(|ξ -ζ|) ≤ 4η -1 ω max{1, f ∞ } |g(ξ)| ω(d(ξ, E)) (3.23) ≤ 4η -1 ω max{1, f ∞ } g ω . (3.24) Case B. We suppose that |ξ -ζ| ≤ 1 4 d 2 (ξ, E). In this case, we let (ξ, ζ) be the arc such that (ξ, ζ) ⊆ T \ E. We observe that d(z, E) ≥ d(ξ, E), for all z ∈ (ξ, ζ). B 1 . We assume that (ξ, ζ) ⊆ T \ Γ. We simply compute f Γ (ξ) -f Γ (ζ) ξ -ζ sup z∈(ξ,ζ) |f ′ Γ (z)| ≤ c f d 2 (ξ, E) ,
where c f > 0 is a constant not depending on both Γ and the points ξ and ζ. Since t → t/ω(t)

is nondecreasing, ω satisfies (1.3) and |ξ -ζ| ≤ 1 4 d 2 (ξ, E), we get g(ξ) f Γ (ξ) -f Γ (ζ) ω(|ξ -ζ|) = |g(ξ)||ξ -ζ| ω(|ξ -ζ|) |f Γ (ξ) -f Γ (ζ)| |ξ -ζ| ≤ c f |g(ξ)||ξ -ζ| ω(|ξ -ζ|)d 2 (ξ, E) ≤ c f η -1 ω 2 |g(ξ)| ω(d(ξ, E)) (3.25) ≤ c f η -1 ω 2 g ω . (3.26) B 2 . We now assume that (ξ, ζ) ⊆ Γ. We have |f T\Γ (ξ)| = |f T\Γ (ζ)| = 1.
The inequality (3.25) and the following equality

f Γ (ξ) -f Γ (ζ) = f (ξ)f -1 T\Γ (ξ) -f (ζ)f -1 T\Γ (ζ) = f -1 T\Γ (ξ) f (ξ) -f (ζ) + f (ζ) f -1 T\Γ (ξ) -f -1 T\Γ (ζ) = f -1 T\Γ (ξ) f (ξ) -f (ζ) -f (ζ)f -1 T\Γ (ξ)f -1 T\Γ (ζ) f T\Γ (ξ) -f T\Γ (ζ) (3.27) 
give the following estimate

g(ξ) f Γ (ξ) -f Γ (ζ) ω(|ξ -ζ|) ≤ |g(ξ)| |f (ξ) -f (ζ)| ω(|ξ -ζ|) + |f (ζ)||g(ξ)| |f T\Γ (ξ) -f T\Γ (ζ)| ω(|ξ -ζ|) ≤ |g(ξ)| f ω + c f η -1 ω 2 f ∞ |g(ξ)| ω(d(ξ, E)) (3.28) ≤ (1 + c f η -1 ω 2 ) g ω f ω . (3.29)
Joining together the estimates (3.24), (3.26) and (3.29), we obtain

sup ξ,ζ∈T\E ξ =ζ g(ξ) f Γ (ξ) -f Γ (ζ) ω(|ξ -ζ|) ≤ C ω,f g ω , Γ ∈ Ω E ,
where C ω,f > 0 is a constant not depending on Γ and g. On the other hand, it is obvious that

sup ξ,ζ∈T\E ξ =ζ f Γ (ζ) g(ξ) -g(ζ) ω(|ξ -ζ|) ≤ f ∞ g ω , Γ ∈ Ω E . Therefore sup ξ,ζ∈T\E ξ =ζ gf Γ (ξ) -gf Γ (ζ) ω(|ξ -ζ|) ≤ C ω,f + f ∞ g ω , Γ ∈ Ω E ,
which proves (3.20), and so gf Γ ∈ Lip ω .

We now suppose additionally that g ∈ J ω (E). Then, by using (3.23), (3.25) and (3.28),

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ g(ξ) f Γ (ξ) -f Γ (ζ) ω(|ξ -ζ|) = 0, (3.30) 
uniformly with respect to all Γ ∈ Ω E . On the other hand, it is plain that

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ f Γ (ξ) g(ξ) -g(ζ) ω(|ξ -ζ|) = 0, (3.31) 
uniformly with respect to all Γ ∈ Ω E , since we have supposed g ∈ J ω (E). Therefore gf Γ ∈ J ω (E). Taking account of the estimate (3.30), we can now apply Lemma 1 with ∆ n = T \ {Γ n ∪ E} and h n = 1 -f Γn to deduce (3.22). This finishes the proof of Lemma 2.

4. Proof of Proposition 3.

The proof of the proposition will be given in subsection 4.2. Before this we need to point out some technical results. 4.1. Technical Lemmas. We start with the following classical lemma. Lemma 3. Let g ∈ J ω (E) be a function, where ω is an arbitrary modulus of continuity. Let A := {a k : 0 ≤ k ≤ K} be a finite sequence of points in E not necessarily distinct, where K ∈ N. Then

lim ρ→0 + ϕ ρ,K g -g ω = 0, (4.1) 
where

ϕ ρ,K (z) := k=K k=0 za k -1 za k -1 -ρ , z ∈ D,
and ρ ≤ 1 is a positive number.

Proof. We will apply Lemma 1 with ∆ n = T \ E, for every n ∈ N. To prove (4.1) it is sufficient to show that

lim δ→0 sup ξ,ζ∈E(δ)\E ξ =ζ and |ξ-ζ|≤ 1 2 d(ξ,E) g(ξ) h ρ (ξ) -h ρ (ζ) ω(|ξ -ζ|) = 0, (4.2) 
uniformly with respect to all positive numbers ρ ≤ 1, where h ρ := 1 -ϕ ρ,K . For this, we let ξ, ζ ∈ E(δ) \ E be two distinct points such that |ξ -ζ| ≤ 1 2 d(ξ, E). We consider the arc

(ξ, ζ) satisfying (ξ, ζ) ⊆ T \ E. A simple calculation gives d(z, E) ≥ 1 2 d(ξ, E), for all z ∈ (ξ, ζ),
and

|ϕ ′ ρ,K (z)| ≤ K d(z, E) , z ∈ T \ E.
Since t → t/ω(t) is nondecreasing, we obtain

g(ξ) h ρ (ξ) -h ρ (ζ) ω(|ξ -ζ|) = |g(ξ)| |ϕ ρ,K (ξ) -ϕ ρ,K (ζ)| |ξ -ζ| |ξ -ζ| ω(|ξ -ζ|) |g(ξ)| sup z∈(ξ,ζ) |ϕ ′ ρ,K (z)| |ξ -ζ| ω(|ξ -ζ|) ≤ 2K |g(ξ)| d(ξ, E) |ξ -ζ| ω(|ξ -ζ|) ≤ 2K |g(ξ)| ω(d(ξ, E)) . (4.3) 
Since by hypothesis g ∈ J ω (E), the desired result (4.2) follows from (4.3).

The next lemma will be used to simplify the proof of the following one. 

lim ε→0 φ 2 ρ,0 φ ρ,ε f γ\γε -φ 3 ρ,0 ω = 0,
where ρ is a fixed positive number and

φ ρ,ε (z) := zae -iε -1 zae -iε -1 -ρ zbe iε -1 zbe iε -1 -ρ , z ∈ D. Proof. Using (3.20), φ ρ,0 φ ρ,ε f γ\γǫ ω ≤ c ω,f φ ρ,0 ω φ ρ,ε ω , (4.4) 
where c ω,f > 0 is a constant not depending on ε. Clearly

φ ρ,ε ω ≤ zae -iε -1 zae -iε -1 -ρ ω zbe iε -1 zbe iε -1 -ρ ω = z -1 z -1 -ρ 2 ω . (4.5) Thus φ ρ,0 φ ρ,ε f γ\γǫ ω ≤ c ω,f z -1 z -1 -ρ 4 ω . (4.6) 
We set F := {a, b}. We have φ 2 ρ,0 φ ρ,ε f γ\γǫ ∈ J ω (F), as product of two functions φ ρ,0 and φ ρ,0 φ ρ,ε f γ\γǫ from I ω (F). Taking account of (4.5), (4.6) and the fact that φ ρ,ε ∞ ≤ 1, we calculate, for all distinct points ξ, ζ ∈ T, that

|φ 2 ρ,0 φ ρ,ε f γ\γǫ (ξ) -φ 2 ρ,0 φ ρ,ε f γ\γǫ (ζ)| ω(|ξ -ζ|) ≤ |φ ρ,0 φ ρ,ε f γ\γǫ (ξ)| |φ ρ,0 (ξ) -φ ρ,0 (ζ)| ω(|ξ -ζ|) + |φ ρ,0 (ζ)| |φ ρ,0 φ ρ,ε f γ\γǫ (ξ) -φ ρ,0 φ ρ,ε f γ\γǫ (ζ)| ω(|ξ -ζ|) ≤ |φ ρ,0 (ξ)|( f ∞ + 1) φ ρ,0 ω + |φ ρ,0 (ζ)| φ ρ,0 φ ρ,ε f γ\γǫ ω ≤ c ω,f,ρ |φ ρ,0 (ξ)| + |φ ρ,0 (ζ)| , (4.7) 
where c ω,f,ρ > 0 is a constant not depending on ε. Then

lim δ→0 sup ξ,ζ∈F(δ) ξ =ζ |φ 2 ρ,0 φ ρ,ε f γ\γǫ (ξ) -φ 2 ρ,0 φ ρ,ε f γ\γǫ (ζ)| ω(|ξ -ζ|) = 0, (4.8) 
and since φ 3 ρ,0 ∈ J ω (F), we get

lim δ→0 sup ξ,ζ∈F(δ) ξ =ζ |k ε (ξ) -k ε (ζ)| ω(|ξ -ζ|) = 0, (4.9) 
uniformly with respect to ε, where k ε := φ 2 ρ,0 φ ρ,ε f γ\γε -φ 3 ρ,0 . We will now show that

lim ε→0 sup ξ,ζ∈T\F(δ) ξ =ζ |k ε (ξ) -k ε (ζ)| ω(|ξ -ζ|) = 0, (4.10) 
for each number δ ∈]0, 1]. We first remark that the function k ε has an analytic extension across T \ F(δ), for sufficiently small numbers ε. A simple calculation gives For two distinct points ξ, ζ ∈ T \ F(δ), we clearly have two possible cases:

Case 1. |ξ -ζ| ≤ 1 2 d(ξ, F) or Case 2. |ξ -ζ| ≥ 1 2 d(ξ, F).
In the first case, by using the fact that t → t/ω(t) is nondecreasing

|k ε (ξ) -k ε (ζ)| ω(|ξ -ζ|) sup z∈(ξ,ζ) |k ′ ε (z)| |ξ -ζ| ω(|ξ -ζ|) sup z∈T\F(δ) |k ′ ε (z)|, (4.12) 
where (ξ, ζ) is the open arc joining the points ξ and ζ, and such that (ξ, ζ) ⊆ T \ F(δ). In the second case, by using the fact that ω is nondecreasing and (3.1), we get

|k ε (ξ) -k ε (ζ)| ω(|ξ -ζ|) ≤ 2 sup z∈T\F(δ) |k ε (z)| ω( 1 2 d(ξ, F)) ≤ 4 ω(δ) sup z∈T\F(δ) |k ε (z)|. (4.13)
Hence the desired equality (4.10) is deduced from (4.11), (4.12) and (4.13). As we have done in the proof of Lemma 1 (see formulas from (3.5) to (3.10) above), we derive from the estimates (4.9) and (4.10) that lim ε→0 k ε ω = 0, which is the desired result of our lemma.

The following lemma will be used in the proof of both Proposition 3 and Proposition 4. Let ε be a nonzero real number such that γ ε := (ae iε , be -iε ) ⊂ γ. According to Lemma 2, the functions φ ρ,ε f γε and φ ρ,ε f T\γε belong to Lip ω , since φ ρ,ε ∈ I ω ({ae iε , be -iε }). Now, for π : Lip ω → Lip ω /I being the canonical quotient map, we clearly have

0 = π φ 2 ρ,ε gf = π φ ρ,ε gf T\γε π φ ρ,ε f γε . Then π(φ ρ,ε gf T\γε ) = 0, since the function π φ ρ,ε f γε is invertible. It follows φ ρ,ε gf T\γε ∈ I. Since g ∈ J ω (E I ) then gf Γ ∈ J ω (E I )
, by applying again Lemma 2. Using Lemma 4 and the following inequality

φ 2 ρ,0 φ ρ,ε gf T\γε -φ 3 ρ,0 gf Γ ω ≤ gf Γ ω × φ 2 ρ,0 φ ρ,ε f γ\γε -φ 3 ρ,0 ω , we obtain lim ε→0 φ 2 ρ,0 φ ρ,ε gf T\γε -φ 3 ρ,0 gf Γ ω = 0. (4.14) 
We deduce that φ 3 ρ,0 gf Γ ∈ I, for all ρ > 0. On the other hand lim 

Proof of Proposition 4.

To prove the proposition we need first to establish some lemmas.

Lemma 6. Let f ∈ Lip ω be a function, where ω is a modulus of continuity satisfying (1.3). Let E be a closed subset of E f and let S ∈ H ∞ be a singular inner function such that σ(S) ⊆ E and T dµ S (e iθ ) ≤ M, where M > 0 is a constant. Then Sf ∈ Lip ω and

Sf ω ≤ c ω,M f ω , (5.1) 
where c ω,M > 0 is a constant not depending on f. If moreover f ∈ J ω (E) then Sf ∈ J ω (E).

Proof. We let ξ, ζ ∈ T \ E be two distinct points such that d(ξ,

E) ≤ d(ζ, E). Since Sf (ξ) -Sf (ζ) ω(|ξ -ζ|) = f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) + S(ζ) f (ξ) -f (ζ) ω(|ξ -ζ|) (5.2) then Sf (ξ) -Sf (ζ) ω(|ξ -ζ|) ≤ f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) + f ω . (5.3)
We have two situations: 

Case A. We suppose that |ξ -ζ| ≥ 1 4 d 2 (ξ, E). Since ω satisfies (1.3), f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) ≤ 2 |f (ξ)| ω( 1 4 d 2 (ξ, E)) ≤ 4η -1 ω |f (ξ)| ω(d(ξ, E)) (5.4) ≤ 4η -1 ω f ω . ( 5 
(ξ, E) ≤ d(ζ, E), then d(z, E) ≥ d(ξ, E), z ∈ (ξ, ζ).
We have

|S(ξ) -S(ζ)| |ξ -ζ| sup z∈(ξ,ζ) |S ′ (z)| sup z∈(ξ,ζ) a S (z),
where

a S (z) := 1 π T 1 |e iθ -z| 2 dµ S (e iθ ), z ∈ T \ E. Then |S(ξ) -S(ζ)| |ξ -ζ| M d 2 (ξ, E) ,
and consequently

f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) M |f (ξ)| d 2 (ξ, E) |ξ -ζ| ω(|ξ -ζ|) .
Therefore, by using the facts that t/ω(t) is nondecreasing and that ω satisfies (1.3),

f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) Mη -1 ω |f (ξ)| ω(d(ξ, E))
(5.6)

Mη -1 ω f ω . (5.7)
Using the inequalities (5.3), (5.5) and (5.7) we deduce that Sf ω ≤ c ω,M f ω , and hence Sf ∈ Lip ω . It remains to prove that if f ∈ J ω (E) then so is for Sf. Using (5.2)

sup ξ,ζ∈E(δ) ξ =ζ Sf (ξ) -Sf (ζ) ω(|ξ -ζ|) ≤ sup ξ,ζ∈E(δ)\E ξ =ζ f (ξ) S(ξ) -S(ζ) ω(|ξ -ζ|) + sup ξ,ζ∈E(δ) ξ =ζ f (ξ) -f (ζ) ω(|ξ -ζ|) , (5.8) 
for every δ ∈]0, 1]. The desired result follows by combining (5.4), (5.6) and (5.8) and using the hypothesis that f ∈ J ω (E).

For a function f ∈ H ∞ , we denote by B f and S f respectively the Blaschke product associated to Z U f , and the singular part of U f . Similarly, B I and S I are respectively the Blaschke product constructed from Z U I , and the singular part of U I . For completeness, we give the proof of the following classical lemma. Lemma 7. Let I ⊆ Lip ω be a closed ideal, where ω is an arbitrary modulus of continuity. There exists a sequence of functions {g k : k ∈ N} ⊆ I satisfying the following properties:

i. The greater common divisor of the singular functions S g k , k ∈ N, is equal to S I and

lim k→∞ µ Sg k -µ S I = 0.
ii. The sequence {B g k : k ∈ N} converges uniformly to B I on each compact subset of D.

Proof. We denote by I the closedness of I in A(D). According to Beurling-Rudin Theorem, we have I := {g ∈ A(D) : g/U I ∈ H ∞ and g(z) = 0, for every z ∈ E I }.

(5.9) Let now O ∈ A(D) be an outer function vanishing on E I . Since E I ⊇ σ(U I ) ∩ T, then U I O ∈ A(D). Thus U I O ∈ I, by using (5.9). We suppose that U I O / ∈ I, otherwise the lemma is obvious. By applying again (5.9), there exists a sequence of functions {f k : k ∈ N} ⊆ I converging uniformly to U I O. As it is done in [4, Lemma 1.3], we can extract a subsequence {g k : k ∈ N} of {f k : k ∈ N} satisfying the desired results of the lemma.

We also give the proof of the following simple lemma. Lemma 8. Let {S k : k ∈ N} be a sequence of singular functions such that supp(µ S k ) ⊆ F, for every k ∈ N, where F is a closed subset of T. We suppose that lim k→∞ µ S k -µ S = 0, for some singular function S. Then {S k : k ∈ N} converges uniformly to S on each compact subset of D \ F.

Proof. We let K be a compact subset of D \ F. It is obvious that

T e iθ + z e iθ -z dµ S k (e iθ ) - T e iθ + z e iθ -z dµ S (e iθ ) ≤ 2 µ S k -µ S δ K , z ∈ K, (5.10) 
where δ K := inf z∈K d(z, F). We remark that δ K > 0. Using the estimate (5.10) and the simple fact that there exists a neighborhood U of 0 such that

|e z -1| ≤ 2|z|, z ∈ U,
we deduce that for sufficiently large numbers k ∈ N,

|S k (z) -S(z)| ≤ exp 1 2π T e iθ + z e iθ -z d(µ S -µ S k )(e iθ ) -1 ≤ 4 µ S k -µ S δ K , (5.11) 
for all points z ∈ K. Which gives the desired result of the lemma.

With a singular function S ∈ H ∞ and a closed subset K ⊆ T we associate the following singular function

S K (z) := exp - 1 2π K e iθ + z e iθ -z dµ S (e iθ ) , z ∈ D.
Proof of Proposition 4. Let f ∈ I be a function. We define B {f,n} and B {I,n} to be respectively the Blaschke product with zeros Z U f ∩ D n and Z U I ∩ D n , where

D n := {z ∈ D : |z| < n n + 1 }, n ∈ N \ {0}.
For a fixed n ∈ N \ {0}, we set

J n := {g ∈ Lip ω : gB {I,n} ∈ I}.
Let {g k : k ∈ N} ⊆ I be the sequence of Lemma 7. Since Z B {I,n} is finite, then B {g k ,n} = B {I,n} for a sufficiently large number k ∈ N, by using the property (ii) of Lemma 7. Then g k /B {g k ,n} ∈ J n , for a large k ∈ N. Thus the zero set g∈Jn g -1 (0) of the ideal J n is contained in D \ D n , since g k /B {g k ,n} does not vanish on D n . Therefore B {f,n} is invertible in the quotient algebra Lip ω /J n .

We now let π n : Lip ω → Lip ω /J n be the canonical quotient map. Since f ∈ I then f ∈ J n , and hence

0 = π n f = π n f /B {f,n} π n B {f,n} .
Therefore π n f /B {f,n} = 0, and consequently f /B {f,n} ∈ J n . It follows that

B {I,n} (f /B {f,n} ) ∈ I. Since the sequence {B {I,n} (B f /B {f,n} ) : n ∈ N} converges uniformly on compact subsets of D \ E f to B I , and since S f O 2 f is continuous on D and vanishes on E f , then lim n→∞ B {I,n} (B f /B {f,n} )S f O 2 f -B I S f O 2 f ∞ = 0. Thus lim n→∞ B {I,n} (B f /B {f,n} )S f O 2 f -B I S f O 2 f ω = 0,
by using Theorem 2 and the fact that

f O f ∈ J ω (E f ), as product of two functions f, O f ∈ I ω (E f ). Therefore B I S f O 2 f ∈ I.
We let ε be a nonzero real number such that γ ε := (ae iε , be It is obvious that

E Lε = {ae iε , be -iε } ∪ γ ε ∩ E f . Since σ((S f ) γε ) ⊆ γ ε ∩ E f ⊆ E Lε , then S f γε L ε ∈
Lip ω , by applying Lemma 6. Furthermore, we remark that B I S f T\γε O f ∈ Lip ω , by using the F-property of Lip ω . We just proved above that 

B I S f O 2 f ∈ I, then 0 = π L ε B I S f O 2 f = π S f γε L ε × π B I S f T\γε O 2 f ,
B I S f T\∆ N O 2 f ∈ I, where ∆ N := n≤N (a n , b n ) ∈ Ω E I
. As it is just done above, a simple application of Lemma 8 gives lim

N →∞ B I S f T\∆ N O 2 f -B I S f E I O 2 f ∞ = 0. Then lim N →∞ B I S f T\∆ N O 2 f -B I S f E I O 2 f ω = 0,
by using again Theorem 2. Therefore

B I S f E I O 2 f ∈ I.
We deduce

B I S g k E I O 2 g k ∈ I, for every k ∈ N,
and hence

B I S g k E I O 2 g k O 2 f ∈ I, for every k ∈ N, (5.12) 
where {g k : k ∈ N} ⊆ I is the sequence of Lemma 

B I S g k E I O 2 f -U I O 2 f ∞ = 0,
by using Lemma 8 and also the simple fact that B I O 2 f is continuous on D and vanishes on E I . Then

lim k→∞ B I S g k E I O 2 f -U I O 2 f ω = 0,
by using once more Theorem 2. Hence U I O 2 f ∈ I, which gives the desired result of the proposition.

Proof of Theorem 2.

Before giving the proof of the theorem, we need first to establish some needed results. Some of these results are actually inspired from [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF][START_REF] Shirokov | Analytic functions smooth up to the boundary[END_REF][START_REF] Havin | Analytic functions with a Lipschitzian modulus of the boundary values[END_REF].

6.1. Some properties of functions from J ω (E). The next lemma will simplify the proof of the following one. Lemma 9. Let g ∈ J ω (E) be a function, where ω is an arbitrary modulus of continuity. For every ν ≥ 0, we have

exp 1 2π ξ∈T 1 -|z| 2 |ξ -z| 2 log |g(ξ) -g(z/|z|)| + ν |dξ| ≤ o(ω(1 -|z|)) + Aν, as d(z, E) → 0 and z ∈ D, (6.1) 
where A ≥ 1 is an absolute constant.

Proof. Since g ∈ J ω (E),

lim δ→0 sup ξ,ζ∈E(δ) ξ =ζ |g(ξ) -g(ζ)| ω(|ξ -ζ|) = 0. (6.2)
Let ε ≤ 1 be a positive number. By using (6.2), there exists a positive number c ε such that

|g(ξ) -g(z/|z|)| ≤ ε ω(|ξ -z/|z||)
for every z ∈ D for which d(z, E) ≤ c ε and for every ξ ∈ T satisfying |ξ -z/|z|| ≤ c ε . For a point z ∈ D, we divide T into the following three parts

Γ 1 (z) := ξ ∈ T : |ξ -z/|z|| ≤ 1 -|z| ≤ c ε , Γ 2 (z) := ξ ∈ T : 1 -|z| ≤ |ξ -z/|z|| ≤ c ε , Γ 3 (z) := ξ ∈ T : c ε ≤ |ξ -z/|z|| .
As in the proof of [1, Lemma A.2] (with δ = ν ) we deduce that, for all points z ∈ D sufficiently close to E,

1 2π ξ∈T 1 -|z| 2 |ξ -z| 2 log |g(ξ) -g(z/|z|)| + ν |dξ| ≤ 1 2π Γ 1 (z) + 1 2π Γ 2 (z) + 1 2π Γ 3 (z) ≤ log ε ω(1 -|z|) + ν + c t≥1 log(t) t 2 dt -ε log(ε), (6.3) 
where c > 0 is a constant. Hence (6.1) is deduced from (6.3).

An application of Lemma 9 provide us with the following proposition.

Proposition 5. Let ω be an arbitrary modulus of continuity. Then J ω (E) = K ω (E), where

K ω (E) := f ∈ I ω (E) : lim δ→0 sup d(z,E),d(w,E)≤δ z,w∈D and z =w |f (z) -f (w)| ω(|z -w|) = 0 .
Proof. It is obvious that J ω (E) ⊇ K ω (E). We now let g ∈ J ω (E) be a function and ε be a fixed positive number. We remark that, for z, w ∈ D such that min{|z|, |w|} ≥ We let z, w ∈ D be two distinct points such that min{|z|, |w|} ≥ 1 2 . In the first case, by using the facts that both ω and t → t/ω(t) are nondecreasing functions, and (3.1),

|g(z) -g(w)| ω(|z -w|) ≤ 2 g((z) -g( z |z| ) ω(1 -|z|) + 4 g( z |z| ) -g( w |w| ) ω(| z |z| -w |w| |) + 2 g(w) -g( w |w| ) ω(|1 -|w||) . (6.4) 
Furthermore, by applying Lemma 9 with ν = 0,

g(z) -g( z |z| ) ≤ exp 1 2π ξ∈T 1 -|z| 2 |ξ -z| 2 log g(ξ) -g( z |z| ) |dξ| = o(ω(1 -|z|)), as d(z, E) → 0. (6.5) 
Thus, by combining the estimates (6.4) and (6.5), and using our assumption that g ∈ J ω (E), we obtain

|g(z) -g(w)| ω(|z -w|) ≤ ε, (6.6) 
if z, w ∈ D are two distinct points sufficiently close to E, and satisfying |z -w| ≥ 1 2 max{1-|z|, 1 -|w|}.

In the second case, it can be assumed without loss of generality that max{1 -|z|, 1 -|w|} = 1 -|z|. Since t → t/ω(t) is nondecreasing, we clearly have

|g(z) -g(w)| ω(|z -w|) ≤ sup |q-z|≤ 1 2 (1-|z|) |g ′ (q)| |z -w| ω(|z -w|) ≤ sup |q-z|≤ 1 2 (1-|z|) |g ′ (q)| 1 -|z| ω(1 -|z|) . (6.7) 
On the other hand, for a point q ∈ D satisfying |q -z| ≤ 1 2 (1 -|z|), the classical Cauchy formula gives

g ′ (q) = 1 2iπ |p-z|= 3 4 (1-|z|) f (p) -f (z) (p -q) 2 dp. It follows |g ′ (q)| ≤ 1 2π |p-z|= 3 4 (1-|z|) |f (p) -f (z)| |p -q| 2 |dp|. (6.8) Then |g ′ (q)| ≤ 12 1 -|z| sup |p-z|= 3 4 (1-|z|) |f (p) -f (z)|. (6.9)
Thus, by using (6.6) and since ω is nondecreasing, We now arrive to the conclusion that g ∈ K ω (E), by joining together the estimates (6.6) and (6.11). Hence J ω (E) ⊆ K ω (E), which completes the proof of the proposition.

|g ′ (q)| ≤ ε ω(1 -|z|) 1 -|z| , ( 6 

For an inner function

U ∈ H ∞ we set a U (ξ) := n 1 -|z n | 2 |ξ -z n | 2 + 1 π T 1 |e iθ -ξ| 2 dµ U (θ), ξ ∈ T \ E f ,
where z n , n ∈ N, are the zeros of U, each z n is repeated according to its multiplicity, and µ U is the positive singular measure associated with the singular factor of U, with the understanding that a U = 0 if U is constant. In [START_REF] Shirokov | Ideals and factorization in algebras of analytic functions that are smooth up to the boundary[END_REF] Shirokov proved

sup ζ∈T\E f |f (ζ)| ω(min{1, a -1 U f (ζ)})
< +∞, (6.12)

for every function f ∈ Lip ω , see also [START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF]Lemma B.5]. However, functions from the space J ω (E) admit more precise control than (6.12); Lemma 10. Let g ∈ J ω (E) be a function, where ω is an arbitrary modulus of continuity. Then ≤ 24Aε ω(a -1 Ug (ζ)). The lemma follows by joining together the results of the above two cases. 6.2. Proof of Theorem 2. Let g ∈ Lip ω be a function and V ∈ H ∞ (D) be an inner function dividing g. We have O g ∈ Lip ω and V O g ∈ Lip ω , by the F-property of Lip ω . Now, we suppose additionally that g ∈ J ω (E). We will first show that 

  Lip ω (D) := f ∈ H ∞ : sup z,w∈D z =w |f (z) -f (w)| ω(|z -w|) < +∞ ,

  z∈D |f (z)| is the supremum norm. Similarly the weighted big Lipschitz algebra Lip ω (T) is defined by Lip ω (T) := f ∈ A(D) : sup z,w∈T z =w |f (z) -f (w)| ω(|z -w|) < +∞ .

I

  ω (E, U) := {f ∈ Lip ω : f |E ≡ 0 and f /U ∈ H ∞ }, andJ ω (E, U) := f ∈ I ω (E, U) : lim δ→0 sup ξ,ζ∈E(δ) ξ =ζ |f (ξ) -f (ζ)| ω(|ξ -ζ|) = 0 , where E(δ) := {ξ ∈ T : d(ξ, E) ≤ δ}, δ > 0,and d(z, E) designs the Euclidian distance from the point z ∈ D to the set E. It should be mentioned that for any ω, the closed ideal J ω (E, U) coincides with K ω (E, U) := f ∈ I ω (E, U) : lim δ→0 sup d(z,E),d(w,E)≤δ z,w∈D and z =w |f (z) -f (w)| ω(|z -w|) = 0 ,

For a closed

  subset E ⊆ T, we let {(a m , b m ) : m ∈ N} be a sequence of distinct arcs such that T \ E = m∈N (a m , b m ), where (a m , b m ) is an open arc of T \ E joining the points a m , b m ∈ E. We set Ω E := { m∈M (a m , b m ) : M ⊆ N}.

. 11 )A 2 .

 112 In the case where |ξ -ζ| ≤ 1 2 d(ξ, E), we consider the open arc (ξ, ζ) of T joining the points ξ and ζ, and such that (ξ, ζ) ⊆ T \ E(δ).

Lemma 4 .

 4 Let f ∈ Lip ω be an outer function, where ω is a modulus of continuity satisfying (1.3). Let γ := (a, b) be an open arc joining two points a, b ∈ E f such that γ ⊆ T \ E f . Let ε be a nonzero real number such that γ ε := (ae iε , be -iε ) ⊂ γ. Then

Lemma 5 .

 5 Let I ⊆ Lip ω be a closed ideal and let g ∈ J ω (E I ) be a function, where ω is a modulus of continuity satisfying(1.3). Let Γ ∈ Ω E I be such that T \ {Γ ∪ E I } isa finite union of arcs (a, b) ⊆ T \ E I (a, b ∈ E I ). We suppose that gf ∈ I for some outer function f ∈ Lip ω . Then gf Γ ∈ I. Proof. For simplicity we suppose that T \ {Γ ∪ E I } = (a, b) =: γ, where a, b ∈ E I and (a, b) ⊆ T \ E I .

ρ→0 φ 3 4 . 2 .

 342 ρ,0 gf Γ -gf Γ ω = 0, by applying Lemma 3. Therefore gf Γ ∈ I. Proof of Proposition 3. Let I ⊆ Lip ω be a closed ideal and let g ∈ J ω (E I ) be a function. We suppose that gf ∈ I, for some outer function f ∈ Lip ω . We set T \ E I = n∈N (a n , b n ), where (a n , b n ) ⊆ T \ E I and a n , b n ∈ E I . We have lim n→+∞ gf Γn -g ω = 0, by applying Lemma 2 with Γ n = m>n (a m , b m ). Then g ∈ I, since, by applying Lemma 5, gf Γn ∈ I for all n ∈ N.

. 5 ) 4 d 2

 542 Case B. We now suppose that |ξ -ζ| ≤ 1 (ξ, E). In this case we let (ξ, ζ) be the open arc joining the points ξ and ζ, and such that (ξ, ζ) ⊆ T \ E. Since we have assumed d

  -iε ) ⊂ γ := (a, b), where (a, b) ⊆ T \ E I is the open arc joining the points a, b ∈ E I . Using Lemma 2, we have L ε := p ε × O f γε ∈ Lip ω , where p ε (z) := (zae -iε -1)(zbe iε -1), z ∈ D.

  where π : Lip ω → Lip ω /I is the canonical quotient map. The function S f γε L ε is invertible in the quotient algebra Lip ω /I, since its zero set E Lε does not intersect with the spectrum σ(U I )∪E I of the Banach algebra Lip ω /I. Thus π B I S f T\γε O 2 f = 0, and hence B I S f T\γε O 2 f ∈ I. Using Lemma 8, we deduce that the sequence of elements S f T\γε converges uniformly on compact subsets of D \ E f to S f T\γ , when ε goes to 0. This fact and the clearly fact that B I O 2 f is continuous on D and vanishes on E f , give simply lim ε→0 B I S f T\γε O 2 f -B I S f T\γ O 2 f ∞ = 0. Then lim ε→0 B I S f T\γε O 2 f -B I S f T\γ O 2 f ω = 0, by using Theorem 2. Thus B I S f T\γ O 2 f ∈ I. We now argue similarly to arrive at

From Proposition 5 ,-ρ ζ 8 a

 58 2 |ξ -z| 2 log |g(ξ) -g(z/|z|)| + |g(z/|z|)| |dξ| , z ∈ D. (6.13) Then, using Lemma 9 with ν = |g(z/|z|)|, |O g (z)| ≤ o(ω(1 -|z|)) + A|g(z/|z|)|, as d(z, E) → 0. (6.14) |g(z) -g(ζ)| = o(ω(|z -ζ|)), as d(z, E), d(ζ, E) → 0. (6.15)We let ε ≤ 1 be a positive number. Using (6.14) and (6.15), there exists a positive numberδ ε such that |O g (z)| ≤ εω(|1 -|z|) + A|g(z/|z|)|,(6.16)and|g(z) -g(ζ)| ≤ εω(|z -ζ|),(6.17)whenever 1 -|z| ≤ δ ε , d(z/|z|, E) ≤ δ ε and d(ζ, E) ≤ δ ε . Let ζ ∈ E(δ ε ) \ E g be a point satisfying 8Aa -1 Ug (ζ) < 1.Two cases are possible;Case A. We assume that d(ζ, Z g ) ≤ 8Aa -1 Ug (ζ). Using (6.17)|g(ζ)| ≤ εω(d(ζ, Z g )). Then |g(ζ)| ≤ εω(8Aa -1 Ug (ζ)) ≤ 8Aεω(a -1 Ug (ζ)). Case B. We now assume that d(ζ, Z g ) ≥ 8Aa -1 Ug (ζ). Then 1 -ρ ζ ≤ d(ζ, Z g ), where ρ ζ := 1 -8Aa -1Ug (ζ). We have|U g (ρ ζ ζ)| ≤ exp -1 Ug (ζ) = e -A ,(6.18)as it is already computed in[START_REF] Bouya | Closed ideals in analytic weighted Lipschitz algebras[END_REF] Lemma B.4]. We observe that1 -ρ ζ ≤ d(ζ, Z g ) ≤ d(ζ, E g ) ≤ d(ζ, E) ≤ δ ε .From (6.16) and (6.18)|g(ρ ζ ζ)| = |U g (ρ ζ ζ)||O g (ρ ζ ζ)| ≤ Ae -A ε ω(1 -ρ ζ ) + |g(ζ)| . (6.19) Therefore |g(ζ)| ≤ |g(ζ) -g(ρ ζ ζ)| + |g(ρ ζ ζ)| ≤ ε ω(1 -ρ ζ ) + Ae -A ε ω(1 -ρ ζ ) + |g(ζ)| . Hence |g(ζ)| ≤ ε(1 -Ae -A ) -1 (1 + Ae -A )ω(1 -ρ ζ ) ≤ 3ε ω(1 -ρ ζ )

  to any inner function V dividing U g . Let ξ, ζ ∈ T\E g be two distinct points. We have two possibilities;Case A. We suppose that |ξ -ζ| ≥ 1 2 d(ζ, Z g ). Since g ∈ J ω (E), then |g(ζ)| ω(d(ζ, Z g )) = o(1), as d(ζ, E) → 0. (6.21)by using(6.15). It followsg(ζ) V (ξ) -V (ζ) ω(|ξ -ζ|) ≤ 2 |g(ζ)| ω(d(ζ, Z g )) = o(1), as d(ζ, E) → 0. (6.22) Case B. We now suppose that |ξ -ζ| ≤ 1 2 d(ζ, Z g ). Let (ξ, ζ) ⊂T \ E g be the arc joining the points ξ and ζ. We have1 2 |ζ -w| ≤ |z -w| ≤ 3 2 |ζ -w|, z ∈ (ξ, ζ) and w ∈ Z g . Since |V (ξ) -V (ζ)| |ξ -ζ| sup z∈(ξ,ζ) |V ′ (z)| sup z∈(ξ,ζ) n 1 -|z n | 2 |z -z n | 2 + 1 π T 1 |e iθ -z| 2 dµ Ug (θ) ,where {z n : n ∈ N} is the zero set of g in D and µ Ug is the positive singular measure associated with the singular factor of U g . Then|V (ξ) -V (ζ)| |ξ -ζ| a Ug (ζ).(6.23)Case B.1. We assume that |ξ -ζ| ≤ a -1 Ug (ζ). Since t → t/ω(t) is nondecreasing, and by applying Lemma 10, we have|g(ζ)|a Ug (ζ) |ξ -ζ| ω(|ξ -ζ|) ≤ |g(ζ)| ω(min{1, a -1 Ug (ζ)}) = o(1), as d(ζ, E) → 0. (6.24) Using (6.23) and (6.24), g(ζ) V (ξ) -V (ζ) ω(|ξ -ζ|) = |g(ζ)| |V (ξ) -V (ζ)| |ξ -ζ| |ξ -ζ| ω(|ξ -ζ|) = o(1), as d(ζ, E) → 0. (6.25)

  says that E is a boundary zero set of a function f ∈ Lip ωα \ {0} if and only if In this case E is called a Beurling-Carleson set. Recently, it is proved [2, Theorem 1] that if I is a closed ideal of Lip ωα , then J ωα (E I , U I ) ⊆ I. (1.2) The proof of this result uses the following stronger property: If E is a Beurling-Carleson set then there exists a function f holomorphic in D and continuously differentiable in D such that both f and f ′ vanish exactly on E. On the other hand, Shirokov [17, Chapter III] has shown that generally the boundary zero set of a function f ∈ Lip ω does not necessarily satisfy (1.1) as in the case of Lip χ

T log d(ξ, E)|dξ| > -∞.

(1.1) β , where

χ β (t) := log -β 2e β t , 0 < t ≤ 2,

and β > 0 is a fixed real number. According to these facts, we see that the method used in [2, Proof of Theorem 1] to prove (1.2) does not work for Lip χ β .

  Let g ∈ I ω (E) be a function, where ω is an arbitrary modulus of continuity. Let {∆ n ∈ Ω E : n ∈ N} be a sequence such that ∆ n ⊆ ∆ n+1 , for every n ∈ N, and We consider a sequence of functions {h n ∈ H ∞ : n ∈ N} such that; For each n ∈ N, the function h n has an extension both to a continuous function on D \ E and to an analytic function across ∆ n , i 3 . For each p ∈ N, the both sequences {h n : n ≥ p} and {h By definition, a function g ∈ I ω (E) is continuous on D and vanishes on E. Let {h n ∈ H ∞ : n ∈ N} be a sequence of functions satisfying the hypotheses i 1 , i 2 and i 3 of the lemma. Since h n is bounded and has an extension to a continuous function on D \ E, the product gh n possesses an extension to a function in A(D) with vanishing values on E, for every n ∈ N. Using the facts that h n ∈ H ∞ , g ∈ Lip ω and the following equality

	where n ∈ N. If moreover we suppose that g ∈ J ω (E) and
		lim δ→0	sup ξ,ζ∈E(δ)\E 2 d(ξ,E) ξ =ζ and |ξ-ζ|≤ 1	g(ξ)	h n (ξ) -h n (ζ) ω(|ξ -ζ|)	= 0,	(3.3)
	uniformly with respect to all numbers n ∈ N, then gh n ∈ J ω (E) for sufficiently large
	numbers n ∈ N, and lim n→∞	gh n ω = 0.		
	Proof.					
							2, Lemma 3 and
	Theorem 2.					
	Lemma 1. i 1 . sup	h n ∞ < +∞,				
	n∈N					
	i 2 . ′ n : n ≥ p} converge
	uniformly to 0 on each compact subset K ⊆ ∆ p .
	Then gh n ∈ I ω (E) if and only if			
			sup ξ,ζ∈T\E ξ =ζ	g(ξ)	h n (ξ) -h n (ζ) ω(|ξ -ζ|)	< +∞,	(3.2)

n∈N

∆ n = T \ E.

  .14) Taking account of the hypothesis i 3 , the equality (3.5) is deduced by combining together (3.4), (3.13) and (3.14). Case B. Now, we suppose that ξ, ζ ∈ E(δ) \ E. If we suppose additionally that |ξ -ζ| ≥

	1 2	d(ξ, E), then

  7. Using respectively the F-Property of Lip ω and Lemma 6, we obtain B I O f ∈ Lip ω and S g k E I O f ∈ Lip ω . Since this two functions vanish on E I , we obtain B I S g k E I

								O 2 f ∈ J ω (E I ). Thus, by applying Proposition
	3,						
		B I S g k E I	O 2 f ∈ I,	for every k ∈ N,
	since we proved (5.12). We deduce that the singular functions S g k E I S I , and since	are all divided by
	µ	Sg k E I	-µ S I	≤ µ Sg k	-µ S I	,	for every k ∈ N,
	then, by using Lemma 7,					
			lim k→∞	µ	Sg k E I	-µ S I	= 0.
	Thus						
			lim k→∞				
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Case B.2. We assume that |ξ -ζ| ≥ a -1 Ug (ζ). Then, by applying once more Lemma 10,

Hence, the equality (6.20) is deduced by combining (6.22), (6.25) and (6.26). We now clearly have

for all distinct points ξ, ζ ∈ T \ E g . By considering the particular case V = U g in the equality (6.27), we obtain

for all distinct points ξ, ζ ∈ T\ E g . Therefore V O g ∈ J ω (E), since by hypothesis g ∈ J ω (E), and combining the estimates (6.20) and (6.29). Which finishes the proof of (1.5). In particular we deduce that O g ∈ J ω (E).

We now let {V n : n ∈ N} ⊂ H ∞ be a sequence of inner functions dividing g, satisfying (1.6) and such that σ(V n ) ∩ T ⊆ E, for every n ∈ N. Then σ(V ) ∩ T ⊆ E. The equality (6.20) gives the following one,

uniformly with respect to n ∈ N, where h n := V n -V. Tacking account of (6.30) and the fact that O g ∈ J ω (E), the equality (1.7) is deduced by applying Lemma 1 with ∆ n = T \ E, for every n ∈ N. This completes the proof of the theorem.