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ABSTRACT 
 

This paper aims at obtaining an advanced formulation of the time-domain 

Boundary Element Method (BEM) for two-dimensional dynamic analysis of 

unsaturated soil. Unlike the usual time-domain BEM the present formulation applies 

a Convolution Quadrature which requires only the Laplace-domain instead of the 

time-domain fundamental solutions. The coupled equations governing the dynamic 

behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids 

(water and air) are derived based on the poromechanics theory within the framework 

of the suction-based mathematical model. In this formulation, the solid skeleton 

displacements, water pressure and air pressure are presumed to be independent 

variables. As there is no analytical solution for the 2D wave propagation in 

unsaturated soils in the literature, to verify the accuracy of this implementation, the 

displacement response obtained by the boundary element formulation is partially 

verified by comparison with the elastodynamics problem.  

 

INTRODUCTION 
 

It has long been recognized that surface topographies can have crucial 
influences on damage severity and its spatial distribution during strong earthquakes. 
Site response analysis of topographical structures could only be solved accurately, 

economically and under realistic conditions, with the aid of numerical methods such 

as the Boundary Element Method (BEM).  

Unsaturated soils are encountered near the earth’s surface where most 
engineering structures are ultimately supported. Saturated and dry soils can become 

unsaturated due to seasonal variations. In the current state of the art, it could be 

claimed that behavior of the saturated porous media has been well understood. 

Conversely, the study of the dynamic behavior of unsaturated porous media is a 

relatively new area in the field of geotechnical earthquake engineering.  

The BEM is a very effective numerical tool for dynamic analysis of linear 

elastic bounded and unbounded media. The method is very attractive for wave 

propagation problems, because the discretization is done only on the boundary, 

yielding smaller meshes and systems of equations. Another advantage is that this 
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method represents efficiently the outgoing waves through infinite domains, which is 

very useful when dealing with scattered waves by topographical structures.  

This paper aims at obtaining an advanced formulation of the time-domain 

Boundary Element Method (BEM) for two-dimensional dynamic analysis of 

unsaturated soil. Unlike the usual time-domain BEM the present formulation applies 

a Convolution Quadrature developed by Lubich (1988) which requires only the 

Laplace-domain instead of the time-domain fundamental solutions. 

In this paper first of all, a set of fully coupled governing differential equations 

of a porous medium saturated by two compressible fluids (water and air) subjected to 

dynamic loadings is obtained. These phenomenal formulations are presented based on 

the experimental observations and with respect to the poromechanics theory within 

the framework of the suction-based mathematical model presented by Gatmiri et al. 

(1998). In this model, the effect of deformations on the suction distribution in the soil 

skeleton and the inverse effect are included in the formulation via a suction-

dependent formulation of state surfaces of void ratio and degree of saturation. In this 

formulation, the solid skeleton displacements ��, water pressure �� and air pressure �� are presumed to be independent variables. Secondly, the Boundary Integral 

Equation (BIE) is developed directly from those equations via the use of the weighted 

residuals method in a way that permits an easy discretization and implementation in a 

numerical code. The associated fundamental solution obtained by Maghoul et al. 

(2011) is used in the BIE.  

Finally, as it seems that there is no analytical solution for the 2D wave 
propagation in unsaturated soils in the literature, to verify the accuracy of this 
implementation, the displacement response obtained by the boundary element 
formulation is partially verified by comparison with the elastodynamic problem. 
 
GOVERNING EQUATIONS 

 

Governing differential equations consist of mass conservation equations of 

liquid and gaseous phases, the equilibrium equation of the skeleton associated with 

water and air flow equations and constitutive relation. The assumption of 

infinitesimal transformation and incompressibility of solid matrix is considered. 

Solid Skeleton. The equilibrium equation and the constitutive law for the soil’s solid 
skeleton including the effect of suction are written: 

 ( �   � ��)   �� �   �   �ሷ � (1) 

 ( �   � ��)  (  �        � )   �  ሺ��  ��ሻ (2) 

where     are Lame coefficients, ��=� � is the water or air pressure,  �  is the 
Kronecker delta and  �   is the suction modulus matrix: 

  �    �   ሺ    ሻ   (3) 

in which      is a vector obtained from the state surface of void ratio ሺ�ሻ which is a 
function of the independent variables of ሺ  ��ሻ and ሺ��  ��ሻ: 
 ሺ    ሻ   ቀ � (ሺ  �ሻ ሺ��  ��ሻ)ቁ [   ]  (4) 



The elasticity matrix ( �   ) can be presented by using the bulk modulus and the 
tangent modulus: 

  �   ሺ   ሻ   �   ሺ     ሻ   �   ሺ  �� ��  ��ሻ (5) 

where    is tangent elastic modulus which can be evaluated as: 

          (6) 

in which    is the elastic modulus in absence of suction and 

      ሺ��  ��ሻ (7)    being a constant,    represents the effect of suction on the elastic modulus.    is 
the bulk modulus of an open system and evaluated from the surface state of void 
ratio: 

      (  ሺ  �ሻ) �  ሺ  ��ሻ (8) 

Mass Conservation of Water. The mass of the water in a representative elementary 
volume can be written as: 

  ሶ � ��    � ሶ��   ���ሶ�   ���ሶ� (9) 

where  ��  ሺ     �  �ሻ and  ��      .  
In this equation,  ��=� � is the displacement of water or air relative to solid,  �=� � is 
the degree of saturation relative to water or air,  �=� � is the compressibility of water 
or air  �=� �  � � ሺ ����ሻ and    � � �ሺ��  ��ሻ.                                                 
Mass Conservation of Air. With the same approach presented before, the mass 
conservation of the air can be written as: 

  ሶ � ��    � ሶ��   ���ሶ�   ���ሶ� (10) 

where  ��  ሺ     �  �ሻ and  ��      . 
Flow Equation for the Water. Based on generalized Darcy’s law for describing the 
balance of the forces acting on the liquid phase of the representative elementary 
volume, the water velocity in the unsaturated soil takes the following form: 

  �� �   ��ሷ �   ሶ ��  �   � � (11) 

in which  � denotes the water permeability in an unsaturated soil. 
Flow Equation for the Air. With the same approach presented for the water based on 
generalized Darcy’s law, the air velocity in the unsaturated soil takes the following 
form: 

  �� �   ��ሷ �   ሶ ��  �   � � (12) 

in which  � denotes the air permeability in an unsaturated soil. 
Summary of the Governing Differential Equations in Laplace Domain. By 
introducing (2) into (1), (11) into (9) and (12) into (10) and by applying the Laplace 
transform to eliminate the time variable of partial differential equations, assuming ��ሺ = ሻ   �ሺ = ሻ�   �ሺ = ሻ�    and ��ሺ = ሻ  ��ሺ = ሻ   , we obtain the final set of 
governing equations in Laplace transform domain: 

  [�̃� �̃� �̃�]  [ ̃�   ]    (13) 



with the not self-adjoint operator  : 

   [ሺ      ሻ �  ሺ   ሻ �     � ሺ    ሻ �       �   ��  ��        ��  �   �� ] (14) 

where    ሺ �   � � ሻ and    ሺ �   � � ሻ. 
In equations (13) and (14), � �     ̅̅ ̅̅  in two dimensional problems. Also in (14), the 
partial derivative ሺ ሻ �, is denoted by  � and    �� is the Laplacian operator.  
 

BOUNDARY INTEGRAL EQUATION 
 

The boundary integral equations for this problem will be derived by taking the 

fundamental solution as the weighted function and using the method of weighted 

residuals, which is essentially an integration by parts technique. In this method, the 

integral equation is derived directly by equating the inner product of eq. (13) and the 

matrix of the adjoint fundamental solutions �̃ implying that  

   �̃    ሺ   ሻ    (15) 

to a null vector, i.e. ∫  Ω [�̃� �̃� �̃�] �̃ �Ω    with 

 �̃  [ ̃�  ̃��  ̃�� ̃�  ̃��  ̃�� ̃�  ̃��  ̃��]  [
 ̃�   ̃��  ̃�  ̃ �  ̃�  ̃�  ̃ �  ̃�  ̃� ] (16) 

where the integration is performed over a domain Ω with boundary Ȟ and vanishing 

body forces and sources are assumed. In eq. (15),    is the adjoint operator to   used 
for the deduction of fundamental solutions (Maghoul et al. 2011).   

After integrating by parts twice over the domain according to the theory of 

Green’s formula and using partial integration, the operator   is transformed from 

acting on the vector of unknowns [�̃� �̃� �̃�]  to the matrix of fundamental 

solutions �̃. After some algebraic manipulations and using the property of Dirac’s 
delta function, we reach the transformed dynamic unsaturated poroelastic boundary 
integral representation for the transformed internal displacements and pressures given 
in matrix form, i.e., 
 [ �         ]  [�̃��̃��̃� ] ∫ [ ̃�    ̃��   ̃��  ̃    ̃�   ̃�  ̃    ̃�   ̃� ] [  ̃� ̃� ̃� ] �  

 ∫ [ ̃�   ̃��  ̃��  ̃   ̃�  ̃�  ̃   ̃�  ̃� ] [�̃ �̃ �̃ ] �Ȟ  

(17) 

where the traction vector, the normal water flux and the normal air flux are 
respectively: 



  ̃   �    [( �̃      ሺ�̃�  �̃�ሻ  �̃�) �   (�̃  �  �̃�  )]   (18) 

  ̃    �(�̃�    �  �̃� �) (19) 

  ̃�    �(�̃�    �  �̃� �) (20) 

The coefficient  �  has a value  �  for points inside Ω and zero outside Ω. The value of  �  for points on the boundary Ȟ is determined from the Cauchy principal value of the 
integrals. 

The corresponding 2D fundamental solutions �̃ as well as the �̃  , �̃�  and �̃�   in Eq. (17) which can be interpreted as the adjoint terms to the traction vector  ̃ , the water flux  ̃  and the air flux  ̃  were already derived in Maghoul et el. 

(2011). 

The time dependent boundary integral equation for the unsaturated soil is 

obtained by a transformation to time domain: 

  � ሺ ሻ� ሺ   ሻ  ∫ ∫[ �  ሺ       ሻ  ሺ   ሻ   �  ሺ       ሻ� ሺ   ሻ]�Ȟ 
 
  

(21) 

 
BOUNDARY ELEMENT FORMULATION 
 

Eq. (21) is an exact represent of the dynamic response of a multiphase porous 

medium, involving integrations over the surface as well as the time history. For the 

practical problem, suitable approximations are needed for both spatial and temporal 

variations of field variables. As will be shown, temporal integrations of the time 

functions involved will be performed numerically using an operational convolution 

quadrature method (CQM), as like as the spatial integration which be evaluated using 

numerical techniques. The salient features of the temporal and spatial integrations are 

outlined below. 

 

Temporal integration. Since it seems too difficult to obtain the time-dependent 

fundamental solution in an explicit analytical form by an inverse transformation of 

the frequency domain results, the convolution quadrature method (CQM) proposed 

by Lubich (1988 a, b) is used. In this formulation, the convolution integral is 

numerically approximated by a quadrature formula whose weights are determined by 

the Laplace transform of the fundamental solution and a linear multistep method 

(Schanz and Antes, 1997). By applying this method, the convolution integrals 

between the fundamental solutions and the nodal values in eq. (21) are approximated 

by: 

 ∫  �  ሺ       ሻ  ሺ   ሻ�  
  ∑ ( �  )     ሺ   ሻ   ሺ ሻ  =  

(22) 

 ∫  �  ሺ       ሻ� ሺ   ሻ�  
  ∑ ( �  )     ሺ   ሻ�  ሺ ሻ  =  

(23) 

in which ( �  )      and ( �  )      are the influence function which are defined 

by: 



 ( �  )�ሺ   ሻ  ℛ �� ∑  ̃�  �   = ሺ      ሻ� ��  ��  (24) 

 ( �  )�ሺ   ሻ  ℛ �� ∑  ̃�  �   = ሺ      ሻ� ��  ��  (25) 

where    is given by    �(ℛ�  ��  �) ȟ . 
By substituting Eqs. (22) and (23) into Eq. (21), the time-convoluted boundary 

element equation is: 

  � ሺ ሻ�  ሺ ሻ  ∑ ቆ∫( �  )     ሺ   ሻ   ሺ ሻ�Ȟ   =  ∫( �  )     ሺ   ሻ�  ሺ ሻ�Ȟ ቇ 

(26) 

 
Spatial integration. In this section in order to numerically evaluate the integrals on 
the surface Ȟ ሺEq.  ሺ ͸ሻሻ, a spatial discretization will be performed. Using 
isoparametric quadratic elements and assuming a quadratic variation over both 
geometry and field variables, the functions (displacements and tractions) at any point 
over an element can be expressed in terms of the nodal values as ��  ��ሺ�ሻ ��� ,  �  ��ሺ�ሻ ��� , ��  ��ሺ�ሻ ��� ,  �  ��ሺ�ሻ ��� , ��  ��ሺ�ሻ ���  and  �  ��ሺ�ሻ ���  where �      for 2D and       ͵ for a quadratic element and �� are 
the shape functions in the local intrinsic coordinates ሺ�ሻ of the element. Once the 
spatial discretization process described above has been accomplished, the nodal 
quantities can be brought outside the surface integrals of Eq. (26), since now the 
integrands contain only known functions. Therefore, the discretized BE equation 
corresponding to point   can be written as: 
  � ሺ ሻ�  ሺ ሻ  ∑ ∑ ∑ [(  �� ) ቀȟ � � �ቁ      = �=  �=   =  (  �� ) ቀȟ � ��ቁ     ] 

(27) 

in which the integrals which have to be evaluated over the isoparametric element Ȟ�, 
can be written in intrinsic coordinates. Then: 

 ቀȟ � � �ቁ      ∫ ( �  )     ሺ ሺ�ሻ  ሻ��ሺ�ሻ| ሺ�ሻ|�� 
   (28) 

 ቀȟ � ��ቁ      ∫ ( �  )     ሺ ሺ�ሻ  ሻ��ሺ�ሻ| ሺ�ሻ|�� 
   (29) 

where | ሺ�ሻ| is the Jacobian of transformation. 
The usual point collocations scheme, i.e. by allowing point   to coincide sequentially 
with all the nodal points of the boundary, is used to establish a set of integral 
equations in order to obtain unknown boundary values. Since there are four degrees 
of freedom ሺ�  Ͷሻ for each node of the problem [�  �  �� ��] , there are �  Ͷ 
integral equations per location  . Eq. (27) can be written in matrix form by replacing 
the double sum Σ�=  = Σ�=  =  by a matrix multiplication, where coefficients are 
assembled in a similar way as in the FEM. Then, 



  ̅    ȟ� �  ∑ [ȟ�     �  ȟ        ]    =  (30) 

 
VERIFICATION 

 

As explained above, this research is the first attempt to develop BEM 

formulations for the problem of 2D wave propagation in unsaturated soils. The 

complexity of the coupled hydro-mechanical model in unsaturated porous media, 

subjected to dynamic loadings, leads to the fact that no analytical solution is known 

in the literature. 

Therefore, the results obtained by BEM for the dynamic behavior of 
unsaturated soils will be partially verified by comparison with elastodynamic result 
which is related to a purely mechanical simulation. In this case, the nodal degrees of 
freedom related to water pressure and air pressure are blocked. 

A 3m high soil column, meshed by 32 quadratic elements on the boundary and 
a total of 64 nodes is considered (Fig. 1). At the upper surface of the column a sudden 
and constant longitudinal pressure,  �     �   �ሺ ሻ which is distributed 
uniformly is applied. On the side walls the movements in the horizontal direction are 
restricted, while at the bottom surface they are blocked in the vertical direction. In 
addition, all the boundaries are assumed to be permeable, i.e. the water pressure is 
zero. Also, the air pressure is assumed to be zero. 

 

 
Figure 1. Unsaturated column of soil. 

 

The hydraulic and mechanical properties of the soil are presented in the table 
1. 

The result of the numerical calculation by BEM at the central point of the 
upper surface is compared to elastodynamic results (Fig. 2). There is a good 
agreement between the elastodynamic solution and the numerical results obtained by 
the proposed formulation. 

 
 

3m

1m

-1000 N/m2 H(t)



Table 1. Hydraulic and mechanical properties of unsaturated column  ሺ�   ሻ   ሺ�   ሻ ��ሺ ሻ ��ሺ ሻ � ሺ ሻ  �ሺ�   ሻ  .ͷͶ ×       . ×       .   . ͷ  .͹͵ ͺ.ͷ ×   ଼ ��ሺ   ሻ ��ሺ ሻ  ��ሺ ሻ ��ሺ  ሻ  �ሺ�    ሻ � ሺ   �ሻ  . ×    ଼ ͷ.   . ͷ  . ×    ଼  .ͺͶ͸ ×    5  ͷ. ×    ଻ 
 

 

CONCLUSION 
 

In this paper, an advanced formulation of the time-domain Boundary Element 

Method (BEM) for two-dimensional dynamic analysis of unsaturated soil is obtained. 

Unlike the usual time-domain BEM the present formulation applies a Convolution 

Quadrature which requires only the Laplace-domain instead of the time-domain 

fundamental solutions. 

 
 

Figure 2. Vertical displacements obtained at the central point at the upper 

surface 
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