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Abstract

Tire/road contact is the main source of car noise at speeds gteatebOkmy/h. In this context, we have developed a new
approach for modeling tire vibrations and the contact wigidrroad surfaces during rolling. For tires, a periodic ralod

is used to compute Green'’s functions. The response of taethus be modeled over a large frequency range. Then &
fast convolution and a new contact model are developed aadghes of computations of contact forces are given for real
road textures. Spectra of forces foffdrent tire velocities are also computed.
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1. Introduction

The prediction of tire road noise needs both a tire vibratimodel and a method for computing the contact forces
between a tire and a road.

For the tire vibrations, the simplest approach is the cénctihg model as in [1]. However, for complex geometrical
or material properties of the tire, a finite element model ilmmore appropriate. To avoid the heavy three-dimensional
computations of [2], severaliecient models have been proposed such as the wave finite dlemgioach in [3] or the
recursive method presented in [4, 5].

Here the dynamic response of the tire is calculated by catieol of the contact forces with the Green’s functions
of the tire. The convolution technique for contact probleémgsed by many authors : M. Mcintyre al. [6] have applied
the approach to the striffgpw contact to study large-amplitude oscillations of malkiastruments. C. Wang and J. Kim.
[7, 8] have used the same approach for a thin beam impactaigsica stop, A. Nordborq [9] for the wheelil contact
problem and many other authors have used this technique itytiroad contact [10, 11, 12].

For orthotropic plates such Green’s functions were areifti found in [13], but here they are found from the recugsiv
model [4]. However the computation of the convolution cartibee consuming. In this work we have used &etient
method. First it consists in the modal expansion of the piteuwtated Green’s functions. The modal parameters are
then used to construct a new convolution which allows quickdculations than the traditional convolution. Then moda
convolution is adapted to dynamic contact problems by uaikimematic contact condition.

The outline of the paper is thus the following. In sectionti® tontact model, including the fast convolution and
the kinematic contact condition is described. Then in sacB, a simple one-dimensionnel model is used as example tc
illustrate the advantages of this contact model. Then a 3 felement model of the tire is presented and its Green’s
functions are computed. Finally, section 4 gives numerieallts of displacements and contact forces for two road
textures.

2. Contact model

A linear discretized dynamic problem can be generally esg@d by a second ordelfidirential equation in the time
domain:
M(t) + Cu(t) + Ku(t) = q(t) @
whereM, C, K, u andq are the mass matrix, the damping matrix, théfrstiss matrix, displacement and force,
respectively. In the frequency domain, the problem can higenr
0(w) = §(w) G(w) 2)
where( is the Green function :
A 2 . -1
§(w) = [-0w™™ + juC +K] (3)

The traditional method when the time Green’s functgft) is known, is to calculate the dynamic response of the
system by convolving the force with the Green’s function:

t

u(t) = fo ot - (@) @)

For a unilateral contact between a dynamic system (tiregangid body (road), both forcg(t) and displacemeni(t)
are unknown. In addition to the convolution equation (4, fitllowing contact conditions must be verified:

u(t) = u'(t) ; a(t) >0 (5)

u(t) > u'(t) ; a(t) =0 (6)

whereu' is the vertical road position (only vertical displacememts considered here).



2.1. Fast convolution

The computation of the response of the tire by a standardobation requires a large number of ¢heients. Here we
try to reduce the computing time by simplifying the Greenigdtion which can be approximated by a linear combination
of Nm modes (not necessarily the true modes) as:

k=Nm Alk
Gij (w) = (7
! Z;—w2+2\/_§a)a)+w:‘]2
Knowing §ij(w) by a finite element model or by measurements, we must igetiié residuesAi‘j, the dampingsgfikj

and the resonance frequenc&d%.There are several methods to solve this problem. In thig/ghe LSCE (Least Squares
Complex Exponential) is used. The principle of this aldoritis detailed in Appendix A.
By taking the analytical inverse Fourier transform, thedars function in the time domain can be found by:

ke AI!(' kK
gij(t) = > —e I H(t) (8)
k=1 “ij

with:

andH(t) is the Heaviside step function:

H(t)=0 for t<O0 9)
H(t)=1 fort>0

The displacement(t) is obtained from the contact forcgt) by the convolution:

t

t
u(t) = fo 9(r)q(t - 7)dr = . g(t - n)a(r)dr (10)

Inserting expression (8) fag;;(t) in Eq. (10) yields to the displacement at paint
i=Np 4 k—

ui(t) = Z f & 56 [sin(wd (t - 7)) g (r)de (11)

whereNp, is the size of displacements

Separating theandr variables and rearranging, the displacement can be wegen

JNpkN

ui(t) = ZZ f‘“ [sin(w3<t) ok (1) - cos(w 1) 8K )] (12)

jlkl

wherea (t) and,B (t) are computed by:

t
= [ elfrcoguffng e (13)
0
B (1) = f i sin(wl 1) ()de (14)
0
The parameters (t+ At) andﬁ (t + At) can be computed by the discrete versions of Eq. (14) as:

oS ((n+ DAY = aff(nAt) + i i"cogwl? nAt)g;(nAt)AL

B ((n+ 1)AL) = S (nAt) + Rt "Msin(wk? nAt)gj(NADAL
(15)



2.2. Kinematic contact conditions

When there is no contact, the contact force equals zero axitplacement can be computed by the fast convolution.
When there is contact, conditions must be written to find trarct force. We propose here to write two conditions, one
for the displacement and the other for the velocity.

Eq. (10) can be separated into a term depending on the pé&styhid forcesun(t) and another term depending only
on the present time step:

t—At At
u(t) = fo ot - )a(r)dr + fo gt - T)de (16)

Un(t)

The displacement in poirtis :

At

I=Np | At
a®= ([ et-na@drs [ g@a-nd 17)
j=1 |0 0

ui (t)

In the same way taking the derivative of Eqg. (17) leads to araton in term of the velocity(t) :

I=Np [ \t-At At
CED) [ ge-namdr [ goa- (18)
Vi (t)
Denoting :
Uy (t) [ U ]
(o) v*;,(t)
Yt)=| ;oYh= : (19)
Un, (1) uf ,(t)
N, (1) vh i@ |
leads to:
j=Np
MOEDIRUCERICIO) (20)
=1

whereVY is an integral operator giving the influence of the contaotdat the present time on the displacement and
the velocity. So the contact conditions are:

du, (0
dt

1() r

=Y = [Ui(t) Uy () " (21)

whereu! (t) and — dq(t) are the position of the road and its velocity at poiat seen in the tire reference system. Using the
modal decomposmon for the displacement, Eq. (12) yieddhé following expression :

j=Np k=N A,kf
vi(t) = - Z Z u u g &wit sm( dkt)a}‘j(t)—cos(wﬂkt)ﬁ}‘j(t)]
j=1 k=1
j=Np k=N
+ 2 ZAﬁe fieit [eos(wift) afi ) + sin(wff ) 85 0] (22)

j=1 k=1



uh(t) andv(t) are obtained from Eq. (12) and (22) by computingndg with q = 0 at the present time. The real
value of this forcey(t) at present time is such that:

AY = Y, -Y"
i k=N Ak
f > —e e [sin(wdk (t - 1)) qj(x)dr
) At 3 “’1;
t k=N A Kk
f Z € e €Lt [ flja)ljsm(a)lk (t- T)) + wy; cos(wlk (t- T))] qj(r)dr
j=Np At 3 6‘)lj
=1 k—N AN,
f & ENpiNpi (-7) [sln(wN | (t- T))] gj(r)dr
At 421 “’N o
t
o) & R (1) ok sin(wd (t - 1)) + Wik cos(wik. (t - 17))| gj(r)dr
ft_M;wNj [ Npj™Np] (NJ ) NJ (NJ )]J _

The integrals can be computed by Gauss quadratures with dimtsp The values of the forces at these two Gauss
points are obtained by:

o ] k k -1
q% l}lll l}lle dU1
ql k=N . . . dV]_
NS I N @
q]Np k=1 lPk : lPk duNp
i qﬁlp | Nol " TNpN, dv,
with ¥ a 2x2 matrix defined by:
A
P = A”’ efu @i 1) gk Ut - 1)) at (24)
a)” 2
e Ao K (t-t2) iy kd At
Wil? = e sin(wi(t - 1)) = (25)
wj; 2
k21 A'!(J' KK t) [ kK o At
PEt = —etuent gk ol sin(wff (t - t)) + wifcos(wf (t - ta))] -
ij
(26)
AI!(' —eK ok (t— At
‘Pikaz = w—djke &je tZ)[ f sm( (t—tz))+wﬂ-kcos(a)idjk (t—tz))] >
ij
(27)
with
1\ At
t, = t+(1——)—
V3/) 2
1\At
t, = +(1+—)— (28)
V3) 2

From the knowledge of the contact forces at timeandts,, the parameter@ (t+Ab) and,B (t + At) can be computed by

Eq. (15). The number of contact points can change with tine. dontact occurs Wheu*l‘(t) < U'(t) for each point in the
contact zone. Eq. (21) for the points where the contact hregppkows to determine the contact forces at these points.
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3. A simple one-dimensional model

3.1. Description of the model

To illustrate the approach presented above, let us conaiganple dynamic contact problem. The purpose of this
example is to test the fast convolution method, to compaweétiit the traditional convolution and to test the kinematic
contact conditions. The simplest dynamic system congidarevibration problems is the Single Degree of Freedom
(SDoF) oscillator. In this example, the system moves thinoaigrofileu’ (x) with a constant speedg = 0.1 m.st. It is
supposed that the displacement occurs without slippingp@srsin figure (A.1).

[Figure 1 about here.]

Consider a sinusoidal profile for the road :

U = Agsinkx) = Aosin(%vot) (29)

whered; = 10 mmis the wavelength of the profile arfg = 5 mmits amplitude.
The system verifies the equations:

MU+ Cu+ Ku=-Mg+ F¢ (30)

u(t) > u'(t) (31)

Fe>0 (32)

with the initial conditions:
Up = u(0) = u"(0) (33)
du(t)
= — = 4
Vo= ¢ o 0 (34)

The displacement(t) at timet depends on the contact forces histégft) imposed by the texture of the surface. Two
situations arise: there is a contact between the systenharslitface and the displacement of the system equals tHa heig
of the surfacas (t) and the velocities are also equal, or there is no contaciratiis case the contact force is null and the
displacement of the system is strictly higher than that efghrface.

If there is no contact, the displacement and contact foraegigen by :

u(t) = eéwolt-) [uc Cosq(t — o)) + e EWe Gt — tc))] (35)
wd
Fe() = 0 (36)

whereu; andy; are respectively the displacement and velocity at the tagiact instant..
The result will also be compared with the case where a costifittess is included. In this case, if there is contact, the
contact force is computed by (37) :

Fe(t) = keAx = ke [u' (1) — u"(t)] (37)
wherek; is the contact sfiness.

3.2. Comparison with standard convolutions

The traditional method when the time Green’s functgft) is known, is to calculate the dynamic response of the
system by convolving the contact forces with the Green'sfion:

t

u(t) = fo ot - 7)o(x)dr (38)

Equation (38) can be discretized as follows:



k
Uk = Z Ok-m0m (39)
m=0

Whereuy is the displacement at timeit.

Let’s noteN; the number of time steps used to calculate the displaceraadiNg the number of time steps for the
influencing Green’s function. Thefect of the Green’s function is neglected when the amplitudesscillation at time
greater thamMgAt are hundred times smaller than the maximum of the Greendifumg(t) (in this example the maximum
amplitude is 5 10% mN1).

Equation (39) is reduced to :

min(k,Ng)
Uk = Z Ok-m0m (40)
m=0

The parameters used in the model for the simulations ar@ givéable A.1.
[Table 1 about here.]

Using standard convolution is costly in terms of computintet especially with a small time step. Indeed, from equmtio
(40) and (12) we can see that in the case of a classical cdinmlthe number of calculation operations is proportidoal
the number of time steps; and to the size of the Green'’s functioNg, while in the modal decomposition it is proportional
to N; and to the approximation ordék,. Table A.2 shows a comparison of computing times betweem inethods.

[Table 2 about here.]

3.3. Comparison with penalty methods

Figures (A.2), (A.3) and (A.4) show the displacemenfy and the contact forceB.(t) calculated by the penalty
method and the present method foffelient values of the contact fftiessk;. In the figures, we observe that the result
obtained with the penalty method depends on the choice afdhtact stithess. If we use a low value &f, we obtain
an unphysical solution (interpenetration phenomena) fand use a high value, numerical instabilities appear. Rinl
we use a suitable value the results converge to those of gsemr method. In other words, the drawback of the penalty
method is its instability due to the arbitrary choice of tlmmtact stifness, while the present method that only uses a
kinematic condition is always stable.

[Figure 2 about here.]
[Figure 3 about here.]

[Figure 4 about here.]



4. Tire model

4.1. Tire section

The first step is to have a model for the vibrations of the titere a periodic model has been developed. It consists
in modeling a short cell of the tire as in Figure A.5 and usiafgglations on this cell for computing Green’s functions
as described below. $iness and mass matrices of a cell are obtained from comméniialelement software. In a first
step they are obtained in a cartesian coordinate systermhandtiey are transformed in a cylindrical coordinate system
in which the whole structure is periodic.

The tire is also inflated with an internal pressilite So its vibrations are considered as a small perturbatictheof
prestressed static state shown in Figure A.5. This prestreserates an additionalfBtiess matrix denotelp. So, the
full dynamic stitness matrix is given by:

D(w) = [K°+ Kp + juC® - w?M?| (41)
[Figure 5 about here.]

The tire studied here is of type Michelin /65/R13 77T. Its geometric properties are given in Table A.3. fieehanical
properties of the dierent parts of the tire are given in Table A.4.

[Table 3 about here.]
[Table 4 about here.]

4.2. Reference cell

Consider a periodic structure consistinghotells. Let's denoté the geometric transformation that connects the real
cell and the reference cell (see Figure A.6). Denotfjghe coordinates of nodeof the real cell and' the coordinates
of nodei of the reference cell yields :

(x}] [ttt 0 0 0 O][x}]
X |[={0 0 t 0 0]|x] (42)
[ x-] 0o 0 0 0 t- || x5

T

wheret' is the local transformation matrix of the nodandL is the number of nodes.
[Figure 6 about here.]

Therefore, the mass matrM and the sfiness matriX are calculated in the reference frame from the mass matrices
(M) and stitness K °) of the real cell by:

M =TMOT? (43)
K =T(K+Ky)T™? (44)

The dynamic sfthess matrix is calculated from the matrices and the dampaigxC

D = D(w) =K + jwC — w?M (45)



4.3. Equivalent matrix

The aim of the periodic model is to build the global dynamiffiseéss matrix of the structure from the dynamiéfatss
matrix of a single period. It is obtained by recursively ghating the internal degrees of freedom between adjacdst ce
Consider the dynamic $fhess matriceB! andD? of two neighbouring cells:

Di. Dig D, Dir
D! = - D2 = (46)
Dk, Dgr D& Dir
The equivalent matrix of the two cells structure is obtaibgaliminating the internal degrees of freedom by:
Di, -D{gD'D. ~ -DirD'Dis
Ded — 47
~DZD'Dg.  Dir— D& D'Dig
with:
D* = [Dkg+ D]
This operation is repeatattimes withn such as :
n
N=Zzpi; PL> P2 > ...> Pn (48)
i=1

with p; the position of theé'™" figure 1 in the binary representation of the numNeof cells in the tire.

4. 4. Green’s functions

Consider the domaif of the tire. It can be separated into two subdom&nand Q.. The number of cells in the
domainQ; where the contact occurs, is denotedNpy The other free pa®, of the tire had\, cells, see Figures A.7 and
A.8.

[Figure 7 about here.]

The dynamic sffness matrix of domaif,, denotedD®9, is computed by the method presented in section 4.3. Then the
full dynamic stifness matrix of the tire is computed by a standard finite el¢assembling betwedd® and the matrices

of the N cells of Q, see Figure A.8 and Eq. (49). The matrix of Green’s functisrabtained by solving a linear system
with Eq. (49) and dterent load cases associated tfiadent points in the contact zone. The number of load cases is
limited to the number of dofs in a section of the tire.

[Figure 8 about here.]
[ Dll + Dig D12 0 v Dig
D21 D2 + D11

0 (49)

D11+ D2o DIP)

Dgg .. D21 D22 + Dgg ]
D
Full tire is modeled using parameters summarized in Tabl8saAd A.4 with an internal pressure obars Then
Green’s functions are calculated using the finite elemeiftitvace Abaqus. Figure A.9 shows an example of comparison
of Green’s function obtained by the periodic model and thuist@ined by Abaqus. The results show a good consistency

between the two methods of calculation which confirms theectmess of the implementation of the dynamiéfiséiss
matrix in the periodic method.




[Figure 9 about here.]

Each Green’s function is approximated by a modal expanditodal parameters are identified by the LSCE algorithm
presented in Appendix A. For each ¢ideient of the Green’s matrix an optimal number of ffment Ny, is chosen to get
the best approximation. To check the accuracy of estimatathirdata, the Green’s function is regenerated. This method
aims to find the best estimates of modal data that minimizeetior defined in Eq. (50)

k=Nm
fwmax IG(a)) _ Z Ak |d(1)

0 i 2
 —w? + 2jéwwx + wy

b ™ IG(w)dw
The error is low, generally below 5%. In Figure A.10, a Gredahction and its approximation are presented for the

codficient with the maximal error (6%). One can see that the approximation is very good. In #@mele we consider

ten sections, each section contains thousand 1034 nodksaah Green function is approximated by around fifty modes

(N ~ 50).

E-= (50)

[Figure 10 about here.]
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5. Road contact

5.1. Road textures

We assume that the roads are perfectly rigid and that thewcbatea remains constant with time. We consider two
road textures which are measured in [14]. The measured stea i2m long andb = 0.35m width with a sampling of
dx = dy = 384um. Figure A.11 presents the samples of twiiatient roads of sizesDm by 0.1 m, see [14] for other
examples.

[Figure 11 about here.]

We want to compute the displacements and forces in the dardaes. The Green’s functions of the tire are computed as
in section 4.3 in the frequency range [0 408€]. The contact zone is changing as the tire is moving duriegrttiing
process. The contact points are moving in the fixed coorelisgttem as:

Xo + Vot
Yo
u' (X, y) (51)

where o, Yo, Zp) are the coordinates in the system moving at constant wglggiwith the tire. The maximal contact
area is constant with time while the real contact area anduh&er of contact points can change.

z

5.2. Numerical results

All simulations are made for a contact lendth= 6 cmand a width. = 8 cm The number of points isly = 10 along
X andNy = 12 alongY. The tire is rolling over a length = 2m. The tread is discretized with stegX ~ dY ~ 5 mm
with an interpolation of the tire height between two treaéthpo Figures A.12 and A.13 present the displacements anc
stress for the two road surfaces of Figure A.11. The disph&cds have shapes similar to road textures. Losses of ¢tontac
and high stress are seen at the maximal heights of aspeRtdesl (A) generates higher stress than road (B).

[Figure 12 about here.]
[Figure 13 about here.]

The stress level, denotéd and computed in decibels relatively to a reference value®cf 10°N/m, is obtained by:

Iff(w)l)

o0

L =20 Ioglo( (52)

Figures A.14 and A.15 present the third octave force spéatraads (A) and (B) and for lierent velocities. When the
velocity increases the spectra are shifted towards highguéncies and the maximal level is also increased. The forc
level is quite significant for frequencies between $00and 5000Hz. For road (A) the maximum level is obtained for
4000 Hz, while for road (B) it is for 2000Hz. Globally the force level is higher for road (A) than for roé®i). More
examples can be found in [15].

[Figure 14 about here.]

[Figure 15 about here.]
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6. Conclusion

A new approach of dynamic contact computation is developeiieat a tire road contact problem. For the tire, a
periodic model is used to compute Green’s function of theeitirthe contact area. The model is validated by comparison
to a classical finite element model. The periodic model lead#gnificant reduction of time computing. Then the contact
model developed in this paper consist of the modal expansidhe modal expansion of the pre-calculated Green'’s
functions. The modal parameters are then used to constmetvaonvolution which allows quicker calculations than
the traditional convolution. The modal convolution is aapto dynamic contact problems by using a kinematic contact
condition. Contact model is validated in the case of an anamexample by comparison to the penalty method. Both
methods give the same result but the developed method isstaiyke and easier to implement. Results of the presentec
tire/road contact model show that the force levels are highly nidgiet on the texture levels and the rolling velocities.
Increasing the rolling velocity clearly shifts the forcerdés towards higher frequencies and increases the glogall le
Force levels are also significant between 500 Hz and 5000 Hz.
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Appendix A. LSCE algorithm

The Green’s functiomy(w) is supposed to be knowg(t) is its inverse Fourier transform. The Green’s functionhia t
frequency domain can be written in the form

k=N %
Y A1)

= Jo—A& Jw-—A

DenotingRq:k = Ry andAn.k = 4y, the Green’s function can be written as

N R«
= - A.2
9(w) ; N (A2)
Then by using an inverse Fourier transform, the Green’stiomén the time domain can be found as,
k=2N
ot) = > Re™ (A.3)
k=1
g(t) is sampled by equally spaced time intervats At the timenAt, the discrete Green’s function can be written as
k=2N
gnat) = " Reh™t (A.4)
k=1
By settingz = e**!, the Green’s function can be written as,
k=2N
gt = > R (A.5)
k=1
We write g(t) for different timesnAt (m = 1, 2...2N)
k=2N
do=00)= > R
k=1
k=2N
o1 = 9(At) = Z Riz
k=1
k=2N

% =92A) = ) R
k=1

[.]
k=2N

don = 9(2NAD) = > Rz (A.6)
k=1

We assume tha is the solution of the polynomial equation (A.7).

Bo + P1z +,822§ +....0 |ZL +,82NZ§N =0 (A.7)

This equation is known as the Prony equation, and was dexelbp Gaspard Riche in 1975.
So, by multiplying equations (A.6) by correspondjgcand taking a sum fror= 1 to 2N

N =N k=2N  k=2N =N
Zﬁigi = Z(ﬁi Z Rez) = Z(Rk Z,BiZL) =0 (A.8)
=y 0 i k=1 i-o

Using equation (A.7), we can write
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Bo9(0) + B19(At) + B20(2At) + ..... ig(iAY).... + BonG(2NAL) = 0 (A.9)

If we know the Green’s function atNHime steps, we can build the Hankel matrix, then thevalues of; can be
found by resolving the matrix equation

% 01 92 - Ona Bo 2N

0 g2 g3 -+ N B O2N+1

=] (A.10)
Oon-2 Oon-1 O2n o0 Oan-3 || Bon-2 Jan-2
Oon-1 Oon Oon+1 o0 Oan—2 || Bon-1 Oan-1

The number of rows in the equation (A.10) can be increasea feast square solution. By settihtythe Hankel
matrix, b = [Bo B1....8on] " andh = [gon....0an-1] T, the N values ofg; are calculated as

b=(HTH) "Hh (A.11)

The z values can be found easily as roots of the polynomial equé#or). Then the natural frequencieg and the
damping ratiog are related to the, codficients by

o= 1 \Jlog(@) 109(z) (A12)

—log(zz)
k= —4 (A.13)
2wy At
To determine the residue valuBg, the Green’s function can be expressed fiedent frequencies)y, Q,...),
-1 ... 1 A a(Q1)
—QZ+2j§191w1+w2 —QZ+2j§2N91w2N+w2 1 >
i S - A ((97))
—Q2+2jé1Q0w1 +w? —Q2+2jénQowan+way = .. (A.14)
1 N ; e
-Q2, +2j&1 Qw1 +w? —Q2, +2]jéan Qonwan+way Ao a(Q2n)

The solution of this set of linear equations will yield theidries.
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Figure A.1: SDOF mass-spring system on a sinusoidal surface
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Figure A.2: Displacement (a) and contact force (b) obtaimggenalty (low contact stinessk. = 10° m/N) and
kinematic methods : —road profilep— penalty method +-— kinematic method
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Figure A.3: Displacement (a) and contact force (b) obtaimggenalty (high contact sfhessk. = 10° m/N) and
kinematic methods : —road profilep— penalty method +-— kinematic method
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Figure A.4: Displacement and contact force obtained by Ipefsuitable contact sinessk. = 10’ m/N) and kinematic
methods : —road profile;o— penalty method ;-— kinematic method
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Figure A.5: Section of the tire and displacements for anfioitepressure of bars
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Figure A.6: Geometric transformation
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Figure A.7: Contact zone with the road.
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Figure A.8: Dofs of the global matrix.
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Figure A.9: Periodic model validation with internal pressB = 2 bars: — periodic model;-o- full tire Abaqus model
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Figure A.10: Comparison between a Green'’s functioaind its approximation+- in the least favorable case.

24



Surface (A)

Y [m] X[m]

Z[m]
& & N o

Sé

Y [m] X[m]

Figure A.11: D texture of two roads: (A) upper figure and (B) lower figure.
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Figure A.12: Displacements and stress for road (A) and fartpsuch thaky = 0 with Vg = 90 knv/h.
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Figure A.13: Displacements and stress for road (B) and fortpsuch thaky = 0 with Vo = 90 km/h.
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Figure A.14: 13 octave spectrum of the contact stress at point=(0, yo = 0) for road (A) and for the velocities :
-*- Vg = 50km/h, -0- Vg = 70knvh, Vo = 90kmyh.
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Figure A.15: 13 octave spectrum of the contact stress at 7¢hkin point xg = 0,y = 0) :
-*- road (A);o0- road (B).
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MI[Kg] K[N/m] £ ke[N/m]
1 410 0.02 10

Table A.1: SDoF parameters used in the simulations
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Time step [ms] N Standard con.volu.tion Modal decompo§ition
Ng Computing time [s]| Ny, | Computing time [s]
01 2000 | 1900 0.06 1 0.02
01 20000 | 1900 101 1 0.10
0.01 20000 | 19000 5.50 1 0.15
0.01 200000| 19000 10514 1 150

Table A.2: Comparison of the computing times between stahcanvolutions and fast convolutions
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Internal diameter 137 (3302 mm)
Width of the tread 165mm
Height of the sidewall 65mm

Table A.3: Properties of tire Michelin 188yR13 77T.

32



Part Material Property Value
0 1000kg/m?
;;Te‘:n Rubber E 7 MPa
v 0.49
0 7850kg/m°
Bead Steel E 1626 GPa
v 0.33
Rubber P 1000kg/m®
Sidewall +nylon belt E 109 MPa
v 0.48
0 2014kg/m?
E: 663 MPa
Tread Rubber Ey 624 MPa
+steel belt Vry 0.4
Gry 330MPa

Table A.4: Mechanical properties of the tire.
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