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Abstract

The present paper deals with an original time-domain approach applied to

outdoor sound propagation under meteorological effects. The Transmission

Line Matrix method, based on the Huygens’ principle, had already been

validated over impedant grounds and complex topography. The presented

formulation proposes to take into account meteorological effects (wind speed

and temperature) through the relative sound speed. The necessary wavefront

direction is determined through the calculation of the averaged intensity

vector direction. A good agreement is found between simulations of both the

transmission line matrix and parabolic equation methods. A relevant use of

the method is shown in the framework of environmental acoustics and initial

applications are proposed in Part 2.
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1. Introduction

Many numerical models have been developed in order to simulate me-

teorological effects on outdoor sound propagation. One can cite analytical

formulations such as geometrical methods (e.g. ray or gaussian beam tracing

approaches) [1, 2] or numerical models based on the resolution of the wave

equation. Among these latter models, the Parabolic-Equation (PE) based

method has been widely used for this purpose [2, 3, 4, 5]. Over the last

decade, with the increasing power of computational resources, time-domain

methods have also been developed and applied successfully in environmental

acoustics [6, 7, 8, 9]. The most popular time-domain approach is undoubt-

edly the finite-difference in the time-domain (FDTD) method. Dragna has

investigated for instance sound propagation over a 100 m distance within a

realistic context in a frequency range between 100 Hz and 2 kHz [10]. An

alternative time-domain method is the Transmission Line Matrix (TLM) ap-

proach [11]. This model seems very promising for describing complex outdoor

sound propagation yet has not been used extensively. In order to incorporate

the atmospheric effects, Hofmann has proposed an interesting formulation,

which is however limited to temperature effects [12]. A first attempt to define

a TLM scheme with unidirectional mean flow (e.g. wind field) into the TLM

grid has been provided by Kagawa and his co-workers, but its method is

only successful for single wind speed direction effects [13]. In this paper, the

approach, inspired by a method proposed by Dutilleux [14], consists of mod-
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ifying the sound speed at each point of the discretized domain as a function

of the temperature and wind speed projection on the wave front direction.

This paper aims to present the integration of meteorological effects in the

TLM model and then its comparison with a PE model in academic cases.

The associated paper (part 2) addresses its validation by comparison with

results stemming from Lannemezan’s 2005 experimental campaign [15]. The

wind and temperature fields are obtained from the meso-scale meteorological

model Meso-NH [16, 17].

The first section presents the TLM model. In section 2 the formulation

taking into account wind speed and temperature effects is described. The last

section proposes evaluating the ability of the TLM to treat outdoor sound

propagation problems through a comparison with PE results in two academic

cases.

2. TLM modelling

The TLM method is based on the Huygens’ principle, which states that a

wavefront consists of a set of secondary sources radiating spherical wavelets

whose envelopes can be broken down into a new generation of secondary

sources as well. Hofmann has shown the equivalence of this approach with

the resolution of the discretized wave equation [12]. Other authors have

also derived the two-dimensional homogeneous cartesian formulation of TLM

from a Lattice Boltzmann model by removing nonlinear terms, in choosing

a suitable viscosity and selecting a square grid [18].

The TLM statement allows describing sound propagation through both

a spatial and temporal discretization of the medium as well as the propa-
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gation phenomena. This concept is numerically conveyed by replacing the

propagation medium with a transmission lines network, through which sound

propagates in the form of sound pulses. Thereby, as shown in Fig. 1, each

junction, or node, links N = 4 or N = 6 transmission lines to each other in

two dimensions (2D) or three dimensions (3D) respectively. Thereafter, the

number of dimensions is called d such that d = 2 and d = 3 for creating a 2D

and 3D model respectively. An additive branch, of index N + 1, is inserted

at each node of the transmission line network, in order to consider the inho-

mogeneities of the propagation medium (i.e. branch 7 in Fig. 1). According

to the TLM concept, sound propagates in the form of pulses. Thus, incident

and scattered pulses are considered at each transmission lines junction and

time increment. The propagation medium is discretized by means of a uni-

form cartesian meshing of mesh size (∆l)d, with ∆l being the spatial step

such that:

∆l 6
λ
√
d

10
, (1)

with λ the minimal wavelength of the simulation.

The scattered pulses at time increment t and node of discrete coordinates

r such that

r =

 (i, j) for d = 2 (i.e. in 2D),

(i, j, k) for d = 3 (i.e. in 3D),
(2)

are related with the incident pulses at this node at the same time iteration

by the following matrix relation:

tSr = tDr × tIr, (3)

where tIr and tSr are the vectors composed of the incident pulses tI
n
r and

scattered pulses tS
n
r through each transmission line n (n = 1 to N + 1)
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Figure 1: Representation of the incident (left) and the scattered (right) pulses at node

(i, j, k) in 3D.

respectively. tDr is a (N + 1)× (N + 1) scattering matrix given by:

tDr =
2

tηr + 2d



tar 1 . 1 tηr

1 tar . 1 tηr

. . . . .

1 1 . tar ηr

1 1 . 1 tbr


, (4)

with

tar = − tηr + 2 (d− 1)

2
(5)

and

tbr =
tηr − 2d

2
, (6)

where tηr allows locally modifying, and if needed during the simulation, the

sound speed in the propagation medium. In other words, this term is used in

order to model an inhomogeneous atmosphere and is defined in section 3.1.
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Finally, the nodal pressure is written as a combination of all incident

pulses, i.e.:

tpr =
2

tηr + 2d

(
N−1∑
n=1

tI
n
r + tηr tI

N
r

)
. (7)

In addition, the scattered pulses from nodes adjacent to node (i, j, k) at

time increment t become the incident pulses to this node at the next time

iteration t+ ∆t, with ∆t representing the time step defined by:

∆t =
∆l√
d c0

, (8)

with c0 the adiabatic sound speed. This diffusion process is governed by

connection laws depicted in Fig. 2 such as:

t+∆tI
n
r = tS

m
r±n

(9)

and

t+∆tI
N
r = tS

N
r , (10)

with

 n

r±n

 =



 m− 1

r−

 if m is even,

 m+ 1

r+

 if m is odd,

(11)

and

r±n =


(i± 1, j, k) , for n = 1 or 2,

(i, j ± 1, k) , for n = 3 or 4,

(i, j, k ± 1) , for n = 5 or 6.

(12)
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Figure 2: Representation of the connection laws through the main transmission lines (n = 1

to N) at the node (i, j, k) in 3D.

Boundaries are implemented in the TLM model at a distance ∆l/2 from

the nearest node in order to ensure the synchronism of sound pulses. They

can be characterized by a reflection coefficient in pressure [11] or by an
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impedance boundary condition [19]. In addition, absorbing layers can be in-

troduced in order to model an unbounded propagation medium as depicted

in Ref. [20].

3. TLM formulation for acoustic propagation in a meteorological

field

Regarding outdoor sound propagation, the temperature and wind fields

combine to produce local variations of sound speed. The literature review

above has shown that the implementation of thermal gradients is straight-

forward in TLM since sound speed is defined at the local level, whereas a

suitable implementation for wind gradients is still underdeveloped. In order

to address the general case of outdoor sound propagation, both thermal and

wind effects must be taken into account simultaneously.

In order to allow for wind speed gradients in the TLM model, the ap-

proach developed in this section satisfies the previous requirement since it is

based on the so-called effective sound speed. This approach requires knowl-

edge of the local direction of the wavefront. A proof of concept of this

approach for the TLM method has been proposed by one of the authors in

Ref. [14].

3.1. Effective sound speed

The effective sound speed is expressed as follows [2]:

tceffr =
√
γ R tTr + t~ur · t~nr (13)

where γ = 1.41 and R = 287 J.kg−1.K−1, representing the specific heat ratio

and the perfect gas constant for air respectively. tTr is the temperature, t~ur
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is the wind speed vector and t~nr is the wavefront direction. The sound speed

at a point r of the TLM grid verifies [21]:

tcTLMr
= c0

√
2

tηr + 2d
(14)

So, if one sets tceffr = tcTLMr
, solving for the inhomogeneity parameter η leads

to:

tηr =
2√

γ R tTr + t~ur · t~nr

∆l2

∆t2
− 2d. (15)

In order to ensure that η > 0, the adiabatic sound speed c0 must verify:

c0 >
√
γ RTmax + ‖~u‖max (16)

where the subscript max is computed over the whole simulated domain and

simulation duration.

3.2. Wavefront direction

Vector ~n defines the direction of the wavefront. This information is not

readily available in the TLM approach, yet it can be approximated by a

quantity relating the instantaneous sound intensity vector:

t
~Ir = tpr · t~vr (17)

where t~vr is the local instantaneous velocity defined in [22]:

t~vr =
1

ρ0 c0

(tS
m
r − tS

n
r ) (18)

where m is even (see Eq. 11).

A purely local definition of the sound intensity is not suitable as an ap-

proximation for ~n because it is influenced by the reactive intensity which
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does not propagate. In order to eliminate the reactive intensity, a pos-

sible approach is to average intensity over space, for instance over a one-

wavelength-size domain. As a first approximation and since meteorological

effects (e.g. wind-induced refraction) are a long-range phenomenon, this av-

eraging approach is only valid far away from the source. Thus, the average

intensity vector corresponds with the active intensity vector and is computed

as follows:

t
~Iavg,r =

1

(2a+ 1)d

rn+a∑
rn−a

t
~Irn , (19)

where a sets the span of the average around rn.

From Eq. (19), one defines:

t~nr =
~Iavg,r

‖~Iavg,r‖
. (20)

The angle θ between the wavefront and the wind directions can be defined

in 2D as:

tθr =
t~ur · t~nr

||t~ur| | × ||t~nr| |
. (21)

Fig. 3 illustrates the wave direction and the angle θ obtained without av-

eraging (i.e. the vector t~nr corresponds with the normalized instantaneous

intensity vector) and by averaging the variables with a spatial span a = 10.

The reactive intensity contribution appears clearly when no averaging is ap-

plied, i.e. where the sign of the sound pressure changes. Spatial averaging

significantly improves the determination of the wavefront propagation direc-

tion.
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Figure 3: Computation of the wave propagation direction and of the angle θ. Repre-

sentation of (a) the wavefront, and of the wave propagation direction and of the angle

θ obtained from (b)–(c) the instantaneous acoustic intensity and (d)–(e) the averaged

acoustic intensity with a spatial span a = 10.
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4. Comparison with PE results

In order to evaluate the ability of the proposed formulation to take into

account meteorological effects (through wind and temperature fields) in the

TLM model, 2D simulation results are compared with results obtained with

the Parabolic Equation (PE) model [3], which is widely used for this purpose.

Three simulation results are presented. The source is located alternatively

at 0.15 m, 2.05 m and 5.05 m from the ground. First, the sound attenuation

levels are compared over a line of receivers located at a height of 2.05 m and

at a fixed frequency of 200 Hz. Then, the attenuation spectra are given at

150 m from the source. The upper frequency bound is fixed in order to limit

the computation cost.

The simulation presented in Fig. 4 is performed over a rigid ground

through an atmosphere characterized by a linear vertical gradient of tem-

perature (dT/dz = 0.35◦C m−1) and a wind field set to zero. The sound

attenuations levels are very similar. The discrepancy in the first 50 m can be

explained by the PE limit at short distances from the source [2]. The depth

peak differences are due to the sensitivity and numerical uncertainties of the

two models. This academic case allows us to validate the effective sound

speed approach without any air flow (ceffr =
√
γ RTr).

Since the meteorological effets tend to increase ground effects in the case

of downward refraction conditions, the second simulation proposes to con-

sider an impedant ground defined by the Miki impedance model [23] with an

air flow resistivity σ = 100 kN.s.m−4. In addition, the effective sound speed

field is calculated for a homogeneous temperature field (T = 20◦C) and for

a realistic vertical wind gradient of 0.2 s−1. Thus, it allows evaluating the
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Figure 4: Comparison of the TLM model simulations (lines) with the PE ones (dots) for

the sound propagation over a rigid ground with a linear temperature gradient such as

dT/dz = 0.35◦Cm−1. The source is located at 0.15 m (blue), 2.05 m (green) and 5.05 m

(red) from the ground.

formulation proposed in Section 3.2. Fig. 5 shows the good agreement ob-

served between the two model results. The frequency (PE) and time-domain

(TLM) models give very similar sound level attenuations, both according to

distance and frequency. In addition, the interference patterns are almost

identically represented by the two models, except close to the source due to

PE limitations in the near field.
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Figure 5: Comparison of the TLM model simulations (lines) with the PE ones (dots)

for the sound propagation over a rigid ground with a linear wind gradient such as

dU/dz = 0.2 s−1. The source is located at 0.15 m (blue), 2.05 m (green) and 5.05 m

(red) from the ground.

5. Conclusion

This paper deals with the time-domain modelling of outdoor sound prop-

agation by using a TLM model. The proposed formulation integrates mete-

orological variables (i.e. wind and temperature fields) through the definition

of the relative sound speed. It must be noted that the use of the effective

sound speed limits this model to far-field simulations. The capability of the

TLM model in the context of outdoor sound propagation under meteorolog-

ical effects is demonstrated through a comparison with PE simulations.
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In the second part of this paper, TLM simulations are performed in re-

alistic cases (with measured meteorological fields as input data) using the

approach presented in this part. Thus, numerical sound predictions are com-

pared with experimental data obtained under various meteorological condi-

tions.
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