
HAL Id: hal-00948975
https://hal.science/hal-00948975v1

Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Place-Boundedness for Vector Addition Systems with
one zero-test

Rémi Bonnet, Alain Finkel, Jérôme Leroux, Marc Zeitoun

To cite this version:
Rémi Bonnet, Alain Finkel, Jérôme Leroux, Marc Zeitoun. Place-Boundedness for Vector Addition
Systems with one zero-test. FSTTCS 2010, Dec 2010, India. pp.192–203. �hal-00948975�

https://hal.science/hal-00948975v1
https://hal.archives-ouvertes.fr


Place-Boundedness for Vector Addition Systems

with one zero-test ∗

Rémi Bonnet1, Alain Finkel1, Jérôme Leroux2, and Marc Zeitoun1,2

1 LSV, ENS Cachan, CNRS & INRIA, France.

firstname.lastname@lsv.ens-cachan.fr

2 LaBRI, Univ. Bordeaux & CNRS, France.

firstname.lastname@labri.fr

Abstract

Reachability and boundedness problems have been shown decidable for Vector Addition Systems

with one zero-test. Surprisingly, place-boundedness remained open. We provide here a variation

of the Karp-Miller algorithm to compute a basis of the downward closure of the reachability set

which allows to decide place-boundedness. This forward algorithm is able to pass the zero-tests

thanks to a finer cover, hybrid between the reachability and cover sets, reclaiming accuracy on

one component. We show that this filtered cover is still recursive, but that equality of two such

filtered covers, even for usual Vector Addition Systems (with no zero-test), is undecidable.

1 Introduction

Context. Petri Nets, Vector Addition Systems (VAS), and Vector Addition Systems with

control states (VASS) are equivalent well-known classes of counter systems for which the

reachability problem is decidable [19, 17, 18], even if its complexity is still an open problem.

On the other hand, testing equality of the reachability sets of two such systems is unde-

cidable [12]. For that reason, one cannot compute a canonical finite representation of the

reachability set that would make it possible to test for equality. However, there is such an ef-

fective finite representation for the cover, a useful over-approximation of the reachability set

which is connected to various verification problems.

If we add to VAS the ability to test at least two counters to zero, one obtains a model

equivalent to Minsky machines, for which all nontrivial properties are undecidable. The

study of VAS with a single zero-test transition began recently, and very few results are known

for this model. Reinhardt [21] has shown that the reachability problem is decidable for VASS

with one zero-test transition (as well as for hierarchical zero-tests). Abdulla and Mayr have

shown that the coverability problem is decidable in [2], by using the backward procedure

of Well Structured Transition Systems [1]. See [10] for a survey. The boundedness prob-

lem (whether the reachability set is finite), the termination and the reversal-boundedness

problem (whether the counters can alternate infinitely often between the increasing and the

decreasing modes) are all decidable by using a forward procedure, a finite but non-complete

Karp and Miller tree [9]. The place-boundedness problem, and more generally the possibility

to compute a finite representation of the cover were still open problems. Only in the par-

ticular case of dimension 2 with control states, the reachability set is semilinear reachability

and its basis and periods are computable [11] and then the place-boundedness is decidable;

but this result cannot be extended in dimension 3, even without zero-test [14].

∗ Supported by the Agence Nationale de la Recherche, AVERISS (grant ANR-06-SETIN-001) and AVER-
ILES (grant ANR-05-RNTL-002).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Our contribution. We give an algorithm for computing a finite representation of the cover

for a VAS with one zero-test. This result makes it possible to decide the place-boundedness,

which is in general is undecidable for VAS extensions (such as VAS with resets [5] or Lossy

Minsky machines, i.e. Lossy VAS with zero-test transitions [3, 20]). Our proof techniques

introduce a filtered cover, an hybrid between the reachability and cover sets, which unlike the

cover reclaims accuracy on one component. We show that this set is recursive, but that one

cannot decide the equality of such filtered covers of two VAS (even without zero-test). Thus,

our work is a contribution to understanding the limits of decidability, taking into account

two parameters: the models (VAS and VAS with zero-test) and the problems (reachability,

cover and filtered cover).

The difficulty. The central problem is to compute the cover of a VAS with one zero-test.

Let us explain the reasons why the usual Karp and Miller is not sufficient for that purpose.

A natural idea appearing in [9] is to adapt the classical Karp-Miller construction [15], first

building the Karp-Miller tree, but without firing the zero test. To continue the construction

after this first stage, we need to fire the zero test from the leaves of the Karp-Miller tree

carrying a 0 value on the component tested to 0. The problem is that accelerations performed

while building the Karp-Miller tree may have produced, on this component in the label of

such a leaf, an ω value which represents infinity, and abstracts actual values. For that reason,

one may not be able to determine if the zero test succeeds or not. We therefore want a more

accurate information for the labeling of the leaves, for the component tested to 0. This is

what the filtered cover actually captures.

The schema of our proof.

1. We start in Section 3 with usual VAS: we extend the decidability of the reachability

problem for VAS, in proving that the set Lim Reach of limits of increasing sequences

of reachable states is also recursive (Lim Reach contains the reachability set). The set

Lim Reach is a more sophisticated set than both the cover and the reachability set. It

allows us to know whether an element in (N∪{ω})d is a reachable state or is the limit of a

sequence of reachable states. This information is not given by the reachability set neither

by the cover. The proof carries on by using Higman’s Lemma, using a nontrivial ordering.

2. In Section 4, we refine the definition of the cover in which the first component has now

to be exactly known (and not only bounded by a maximum). We prove that, for VAS, a

finite basis of this filtered cover is still computable by using the recursivity of Lim Reach.

3. We finally compute in Section 5 the finite basis of the cover of a VAS with one zero-test

by using a variation of the Karp and Miller algorithm that uses the previously defined

filtered covers in order to convey enough information to go through the zero-test.

Due to lack of space, some proofs are omitted.

2 Vector Addition Systems

Orderings and vectors. An ordering 4 on a set X is a reflexive, transitive and antisym-

metric binary relation on X. Given x, y ∈ X, we write x ≺ y for x 4 y and x 6= y. For d > 1,

we write any x ∈ Xd as x = (x(1), . . . , x(d)), with x(i) ∈ X. The pointwise ordering on

Xd, still denoted 4, is defined by x 4 y if x(i) 4 y(i) for all i. For x1 ∈ Xd1 and x2 ∈ Xd2 ,

we let (x1, x2) ∈ Xd1+d2 be the vector obtained by gluing x1 and x2. For X = N, let 0 be

the vector whose components are all 0, and for i ∈ {1, . . . , d}, let ei be the vector such that

ei(i) = 1 and ei(k) = 0 if k 6= i. Finally, given Y ⊆ X, let ↓4Y = {x ∈ X | ∃y ∈ Y, x 4 y}

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


denote the downward closure of Y with respect to 4. The set Y is said downward closed

if Y = ↓4Y . When working in N
d or N

d
ω (see below) we shorten the downward closure

operator ↓6 as ↓.

Downward closed sets of N
d. Given an ordered set, one may under suitable hypotheses

construct a topological completion of this set to recover a finite description of downward

closed sets [7, 8]. The completion of Nd is N
d
ω, with Nω = N ∪ {ω}, where we extend 6 by

n 6 ω for all n ∈ Nω. The results of [7, 8] in this case yield that, if D ⊆ N
d is downward

closed, then D = N
d ∩ ↓B for some finite set B ⊆ N

d
ω, which we call a (finite) basis of D.

One can show that the maximal elements of any basis B of D still form a basis which does

not depend of B. It is minimal for inclusion among all basis, and is called the minimal basis.

An example. Let us consider in N
2 the downward closed set

{

(x, y) ∈ N
2 | x 6 3 ∨ y 6 1

}

∪
{

(4, 2), (4, 3), (5, 2)
}

. A (non-

minimal) basis is ({0, 1, 2, 3}×{ω})∪{(4, 3), (5, 2)}∪ {ω}×{0, 1}.

It is shown with dots • in the figure, where elements involving ω

fall beyond the grid. The elements of the minimal basis are circled.

◮ Definition 1. (VAS0). A Vector Addition System of dimension d with one zero-test

(VAS0) is a tuple 〈A, aZ , δ, xin〉, where A is a finite alphabet of actions, aZ /∈ A is called the

zero-test, δ : A ∪ {aZ} → Z
d is a mapping, and xin ∈ N

d is the initial state.

Intuitively, a VAS0 works on d counters, one for each component, whose initial values

are given by xin. Executing a ∈ A ∪ {aZ} translates the counters according to δ(a) ∈ Z
d.

The mapping δ extends to a monoid morphism δ : (A ∪ {aZ})
∗ → Z

d, so that δ(ε) = 0 and

δ(uv) = δ(u)+δ(v) for u, v ∈ (A∪{aZ})
∗. A word u ∈ (A∪{aZ})

∗ is fireable from x ∈ N
d if

(a) for every prefix v of u, we have x + δ(v) > 0, and

(b) for every prefix waZ of u, we have [x + δ(w)](1) = 0.

The first condition means that all counters must remain nonnegative while firing actions.

The second one says that the zero-test aZ is possible only when the first counter is zero.

We write x
u
−→ y if u is fireable from x and y = x + δ(u). This implies in particular that

x, y > 0.

◮ Definition 2. (VAS). A Vector Addition System (VAS) of dimension d is a tuple 〈A, δ, xin〉,

where A is a finite alphabet, δ : A→ Z
d is a mapping, and xin ∈ N

d is the initial state.

A VAS is a particular VAS0: choosing δ(aZ) = −e1 makes the zero-test aZ never fireable.

Given the VAS S = 〈A, δ, xin〉, we say that u ∈ A∗ is fireable if condition (a) above is

satisfied.

For a VAS0 or a VAS S, the reachability set Reach(S) and the cover Cover(S) of S are:

Reach(S) = {xin + δ(u) | u is fireable in S},

Cover(S) = ↓Reach(S).

We call elements of Reach(S) reachable states (also called reachable markings in related

work). The reachability (resp. coverability) problem consists in deciding membership in

the set Reach(S) (resp. in Cover(S)). Reachability is decidable for VAS [19, 17, 18] and

VAS0 [21].

◮ Theorem 3. Given a VAS S, the reachability problem is decidable.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Testing membership in the cover set is easier. One even gets a more precise result [15, 10, 8].

◮ Theorem 4. Given a VAS S, one can effectively compute a finite basis of Cover(S).

Observe that from a finite basis B of a downward closed set D, one can effectively test

membership in D. Therefore, one can effectively test membership in Cover(S). Computing

a finite basis of the cover makes it possible to decide place-boundedness, that is, whether

the projection of Reach(S) on some given component is bounded. In the next sections, we

will show that one can also effectively compute a finite basis for the cover of a VAS0.

3 Limits of reachable states of a VAS

Limits in N
d
ω. A sequence (ℓn)n>0 (also written (ℓn)n) of elements of Nω has limit ℓ ∈ Nω,

noted limn ℓn = ℓ, if either it is ultimately constant with value ℓ, or its subsequence of

integer values is infinite, it tends to infinity, and ℓ = ω. A sequence (xn)n of vectors of Nd
ω

has limit x ∈ N
d
ω, noted limn xn = x, if limn xn(i) = x(i) for all i ∈ {1, . . . , d}.

For M ⊆ N
d
ω, we denote by Lim M the set of limits of sequences of elements of M . Note

that M ⊆ Lim M . Topologically speaking, Lim M is the least closed set (for the topology

associated with the ordering) containing M and is usually called the (topological) closure

of M . Also note that for M ⊆ N
d, if Lim M is recursive, then so is M = N

d ∩ Lim M .

However, in general, M may be recursive while Lim M is not.

We prove in this section the following statement.

◮ Theorem 5. Lim Reach(S) is recursive.

We do so by proving that Lim Reach(S) and its complement in N
d
ω are both recursively enu-

merable. We start by proving that Lim Reach(S) is recursively enumerable, by introducing

productive sequences, a notion inspired by Hauschildt [13].

◮ Definition 6. Let S = 〈A, δ, xin〉 be a VAS. A sequence π = (ui)06i6k of words ui ∈ A∗

is productive in S for a word v = a1 · · · ak (ai ∈ A) if

(1) the partial sums δ(u0) + · · ·+ δ(ui) are nonnegative for every i ∈ {0, . . . , k}, and

(2) the word u0a1u1 · · · akuk is fireable from xin.

The total sum
∑k

i=0 δ(ui) is called the production of π and is simply denoted δ(π).

The following lemma provides a characterization of the productive sequences.

◮ Lemma 7. A sequence π = (ui)06i6k is productive for v = a1 · · · ak if and only if the

words un
0 a1un

1 · · · akun
k are fireable from xin for all n > 1. In particular, every marking in

xin + δ(v) + nδ(π) where n > 1 is reachable from xin.

Proposition 9 below shows that limits of reachable states can be witnessed by productive

sequences. Its essential argument is Higman’s Lemma. Recall that an ordering 4 is well if

every infinite sequence (ℓn)n∈N admits an infinite increasing subsequence (ℓnk
)k∈N: ℓn0

4

ℓn1
4 ℓn2

4 · · · . The pointwise ordering on N
d or on N

d
ω is well (Dickson’s Lemma).

Higman’s Lemma. For a (possibly infinite) set Σ, we denote by Σ∗ the set of finite words

over Σ. Given an ordering 4 on Σ, let 4∗ be the ordering on Σ∗ defined as follows: for

u, v ∈ Σ∗, we have u 4∗ v if u = a1 · · · an with ai ∈ Σ, v = v0b1v1 · · · vn−1bnvn, with vi ∈ Σ∗,

bj ∈ Σ, and for all i = 1, . . . , n, we have ai 4 bi. In other words, u is obtained from v by

removing some letters, and then replacing some of the remaining letters by smaller ones.

Higman’s Lemma is the following result, see [4] for instance for a proof.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


◮ Lemma 8. (Higman) If 4 is a well ordering on A, then 4∗ is a well ordering on A∗.

We extend the multiplication on Nω by ω · 0 = 0 = 0 · ω and ω · k = ω = k · ω if k 6= 0.

This multiplication then extends componentwise to the scalar multiplication of Nd
ω by Nω.

◮ Proposition 9. Let S = 〈A, δ, xin〉 be a VAS. Then

Lim Reach(S) =
{

xin + δ(v) + ωδ(π) | π is productive for v
}

.

Proof. For the inclusion from right to left, if π is a productive sequence for a word v, then

xin +δ(v)+ωδ(π) is the limit of the sequence (xn)n∈N with xn = xin +δ(v)+nδ(π), and xn

is a reachable state by Lemma 7. We prove the reverse inclusion thanks to Higman’s lemma.

We first introduce a well ordering ⊑ over Reach(S), using an temporary ordering 4.

Consider the infinite set Σ = A× N
d
ω. This set is well ordered by 4, defined by

(a, y) 4 (b, z) if and only if a = b and y 6 z.

Since 4 is a well ordering, Higman’s lemma shows that 4∗ is a well-ordering over Σ∗. Let

us now associate to every reachable state y ∈ Reach(S) a word αy in Σ∗ as follows: since

y is reachable, we can choose a word v = a1 · · · ak, with ai ∈ A, such that xin
v
−→ y. We

introduce the sequence (yi)06i6k of states defined by yi = xin + δ(a1 · · · ai), and we let:

αy = (a1, y1) · · · (ak, yk).

The ordering ⊑ over Reach(S) is defined by y ⊑ z if αy 4∗ αz and y 6 z. Since the

orderings 4∗ over Σ∗ and 6 over N
d are well, we deduce that ⊑ is a well ordering over

Reach(S).

To show the inclusion from left to right, pick x ∈ Lim Reach(S): x is the limit of a

sequence (xk)k∈N of reachable states. By extracting a subsequence we can assume that

(xk(i))k∈N is strictly increasing if x(i) = ω, and xk(i) = x(i) if x(i) < ω. Denote by

αk the word αxk
associated to the reachable state xk. Since ⊑ is a well ordering, there

exist m < n such that xm ⊑ xn. By construction of αm there exists a word v = a1 · · · ak

with aj ∈ A such that the sequence (yj)06j6k defined by yj = xin + δ(a1 · · · aj) for every

j ∈ {1, . . . , k} satisfies:

αm = (a1, y1) · · · (ak, yk).

Since xm 4∗ xn and by definition of 4∗, there exist a sequence (zj)16j6k of states with

yj 6 zj , and a sequence (βj)06j6k of words in Σ∗ such that the following equality holds:

αn = β0(a1, z1)β1 · · · (ak, zk)βk

We call label of a word (b1, t1) · · · (bℓ, tℓ) over Σ the word b1 · · · bℓ over A. Consider the

sequence π = (uj)06j6k where uj is the label of βj . By definition of αn, we have

xin
u0a1−−−→ z1 · · ·

uk−1ak

−−−−−→ zk
uk−→ xn

In particular, zj = yj +δ(u0)+ · · ·+δ(uj−1) for every j ∈ {1, . . . , k} and xn = zk +δ(uk) =

yk + δ(π) = xm + δ(π). As yj 6 zj for every j ∈ {1, . . . , k} and xm 6 xn, we deduce that

π is productive for v.

Finally, let us prove that x = y where y = xin +δ(v)+ωδ(π). We have xn = xm +δ(π).

Let us consider i ∈ {1, . . . , d}. If x(i) < ω then xm(i) = x(i) = xn(i). Thus δ(π)(i) = 0

and we deduce that x(i) = y(i). If x(i) = ω then xm(i) < xn(i) and we deduce that

δ(π)(i) > 0 and in particular x(i) = ω = y(i). Thus x = y. We have proved that there

exists a productive sequence π for a word v such that x = xin + δ(v) + ωδ(π). ◭

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


It is easier to prove that the complement of Lim Reach(S) recursively enumerable. We just

give the construction. Let S = 〈A, δ, xin〉 and y ∈ N
d
ω. We introduce d distinct additional

elements b1, . . . , bd 6∈ A. Let B = {b1, . . . , bd}. We introduce the VAS Sy = 〈A⊎B, δy, xin〉,

where δy extends δ by:

δy(bi) =

{

0 if y(i) < ω,

−ei if y(i) = ω.

Finally, we define from y a sequence (yℓ)ℓ converging to y, by yℓ(i) =

{

ℓ if y(i) = ω,

y(i) if y(i) < ω.
◮ Lemma 10. Let Sy and (yℓ)ℓ constructed from y as above. Then,

y 6∈ Lim Reach(S)⇐⇒ ∃ℓ ∈ N, yℓ /∈ Reach(Sy). (1)

In particular, the complement of Lim Reach(S) is recursively enumerable.

Theorem 5 now follows from Proposition 9 and Lemma 10.

4 Between the cover and the reachability set: the filtered covers

In this section, we introduce a set hybrid between the reachability and cover sets, which to

our knowledge has not yet been considered. Instead of the downward closure Cover(S) of

Reach(S) wrt. the pointwise ordering 6, we consider Cover6
P

(S) = ↓6P
Reach(S), that is,

we replace 6 with an ordering 6P parametrized by a set of “positions” P ⊆ {1, . . . , d}:

x 6P y if

{

x(i) = y(i) for i ∈ P ,

x(i) 6 y(i) for i /∈ P .

The set P contains the components for which we insist on keeping equality. Thus, 6∅ is

the usual pointwise ordering 6, while 6{1,...,d} boils down to equality. Note that 6P is

not a well ordering, except if P = ∅ (e.g., N ordered by 6{1} consists only of incomparable

elements).

The ordering 6{1} will be abbreviated as 61. It is a natural order to study for a VAS0

(recall that the zero-test occurs on the first component). Indeed, the transition relation of

a VAS0 is monotonic regarding this order: if x
u
−→ x′ and x 61 y, then there exists y′ with

y
u
−→ y′ and x′ 61 y′. More precisely, testing if Cover61

(S) contains a vector whose first

component is 0 is what we need to design our algorithm computing the cover of a VAS with

one zero test. Unfortunately, this set has infinitely many maximal elements for 61, and thus

cannot be represented by a finite basis. The following theorem shows that we cannot find a

sensible way to compute a representation of this set, as any representation would not allow

to test for equality.

◮ Theorem 11. Given two VAS S1 and S2 of the same dimension d, the equality problem

Cover61
(S1) = Cover61

(S2) is undecidable.

Proof. We reduce this problem to the equality problem Reach(S1) = Reach(S2). This

problem is known to be undecidable [12]. Let us first consider a VAS S = 〈A, δ, xin〉 of

dimension d. We introduce a VAS S ′ = 〈A, δ′, x′

in〉 of dimension d + 1 that counts in the

first component the sum of the other components. Formally, x′

in = (
∑d

i=1 xin(i), xin) and

δ′(a) = (
∑d

i=1 δ(a)(i), δ(a)) for every a ∈ A. Observe that the following equivalence holds:

(n, x) ∈ Reach(S ′) ⇐⇒ x ∈ Reach(S) and n =

d
∑

i=1

x(i)

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Finally let us consider two VAS S1 and S2 and just observe that Reach(S1) = Reach(S2) if

and only if Cover61
(S ′

1) = Cover61
(S ′

2). ◭

So, we cannot hope for a useful representation of the sets Cover6
P

(S) themselves. How-

ever, one can capture the needed information differently, by replacing the downward closure

↓6P
in Cover6

P
(S) = ↓6P

Reach(S) with an operator ⇓f parametrized by a vector f of

N
d
ω. Informally, ⇓f M takes into account only elements of M that agree with f on its finite

components. Formally, for f ∈ N
d
ω and M ⊆ N

d, let

Filter(M, f) =
{

x ∈M |
d

∧

i=1

[

f(i) < ω =⇒ x(i) = f(i)
]

}

,

⇓f M =


yFilter(M, f).

Note that ⇓f M = ↓M for f = (ω, ω, . . . , ω). On the other hand, if f ∈ N
d, then ⇓f M = ↓f

if f ∈ M , and ⇓f M = ∅ otherwise. Observe also that ⇓f M is downward closed and that

the maximal elements of any basis of ⇓f M agree with f on every component i where f(i)

is finite. The next lemma provides a relationship between the sets ⇓f M and ↓6P
M .

◮ Lemma 12. Let M ⊆ N
d. Then, the following conditions are equivalent:

(a) For all f ∈ N
d
ω, one can effectively compute the basis of ⇓f M .

(b) For all P ⊆ {1, . . . , d}, the set Lim ↓6P
M is recursive.

The main result of this section states that both conditions of Lemma 12 actually hold

when M is the reachability set of a VAS. This is obtained by first proving that Cover6
P

(S) =

Reach(SP ) where SP is a VAS constructed from S and P . From this equality, we deduce that

Lim Cover6
P

(S) = Lim Reach(SP ). Applying Theorem 5, it follows that this set is recursive,

which proves condition (b) for M = Reach(S). Then by Lemma 12, condition (a) also holds.

Let S = 〈A, δ, xin〉 be a VAS and P ⊆ {1, . . . , d}. Let us define a VAS SP such that

Reach(SP ) = Cover6
P

(S). We consider d distinct additional elements b1, . . . , bd 6∈ A. Let

B = {b1, . . . , bd}. We consider the VAS SP = 〈A ⊎B, δP , xin〉, where δP extends δ by:

δP (bi) =

{

0 if i ∈ P

−ei if i /∈ P .

◮ Lemma 13. Let SP constructed from S and P as above. Then Cover6
P

(S) = Reach(SP ).

Proof. Consider a state x ∈ Cover6
P

(S). By definition, there exists y ∈ Reach(S) such that

x 6P y. Observe that xin
∗
−→ y

u
−→ x in SP with u =

∏d

i=1 b
y(i)−x(i)
i . Hence x ∈ Reach(SP ).

Conversely let x ∈ Reach(SP ) and let u ∈ (A ∪B)∗ such that xin
u
−→ x in SP . Consider the

word v obtained from u by erasing all letters of B. Since δP (b) 6 0 for b ∈ B, the word v is

still fireable from xin. Thus y = xin + δ(v) ∈ Reach(S). Moreover, by definition of SP we

have x 6P y. Therefore x ∈ Cover6
P

(S). ◭

Combining Lemma 13, Theorem 5 and Lemma 12 as explained above yields:

◮ Theorem 14. Given f ∈ N
d
ω and a VAS S, one can effectively compute a basis of

⇓f Reach(S).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


5 Computing the cover of a VAS with one zero-test

We provide an algorithm computing the basis of Cover(S) of any VAS0 S = 〈A, aZ , δ, xin〉.

Intuitively the algorithm, inspired by the Karp and Miller algorithm for VAS [15], builds a

tree with nodes labeled by vectors in {0} × N
d−1
ω such that the finite set R of node labels

satisfies the following equality when the algorithm terminates:

⇓f Reach(S) = (↓R) ∩ N
d, where f = (0, ω, . . . , ω).

In order to simplify the presentation, we assume without loss of generality that xin ∈

{0} × N
d−1 and δ(aZ) ∈ {0} × Z

d−1. In the sequel we denote by SV AS the VAS SV AS =

(A, δ, xin) obtained from S by removing the zero-test aZ . Moreover, given s ∈ {0}×Nd−1 we

denote by S(s) and SV AS(s) the VASs obtained respectively from S and SV AS by replacing

the initial state xin by s.

At any step of the execution, in the tree built in the algorithm, every ancestor node n

of a node n′ satisfies the invariant x
∗

=⇒ x′ where x, x′ are the labels of n, n′ and where
∗

=⇒

is the binary relation defined over the vectors in {0} × N
d−1
ω by:

x
∗

=⇒ x′ if (↓x′) ∩ N
d ⊆

⋃

s∈(↓x)∩Nd

⇓f Reach(S(s)).

By the next lemma, it is sufficient to maintain this invariant along each parent-child edge.

◮ Lemma 15. The binary relation
∗

=⇒ is reflexive and transitive.

Proof. The reflexivity is immediate. For the transitivity, we first introduce the binary

relation
∗
−→ over N

d defined by x
∗
−→ x′ if there exists u ∈ (A ∪ {aZ})

∗ such that x
u
−→ x′.

We observe that x
∗

=⇒ x′ if and only if the following relation holds:

∀s′ ∈ (↓x′) ∩ N
d ∃s ∈ (↓x) ∩ N

d ∃z ∈ {0} × N
d−1
ω s

∗
−→ s′ + z.

Assume that x
∗

=⇒ x′ and x′ ∗
=⇒ x′′. Let s′′ ∈ (↓x′′) ∩ N

d. From x′ ∗
=⇒ x′′, we deduce that

there exist z′ ∈ {0} × N
d−1 and s′ ∈ (↓x′) ∩ N

d such that s′
∗
−→ s′′ + z′. From x

∗
=⇒ x′,

we deduce that there exist z ∈ {0} × N
d−1 and s ∈ (↓x) ∩ N

d such that s
∗
−→ s′ + z. In

particular we deduce that s
∗
−→ s′′ + z + z′. We have proved that x

∗
=⇒ x′′. ◭

Assume now that x ∈ {0}×N
d−1
ω labels a leaf. We create a child of this leaf if the vector

y = x + δ(aZ) is nonnegative. Note that in this case y ∈ {0} × N
d−1
ω , since δ(aZ)(1) = 0.

We do not violate the invariant when creating the child labeled y since x
∗

=⇒ y. We may also

add new children labeled by elements of the minimal basis B(x) of the following downward-

closed set:
⋃

s∈(↓x)∩Nd

⇓f Reach(SV AS(s))

We observe that x
∗

=⇒ b for every b ∈ B(x), so that the invariant will still be fulfilled after

adding elements of B(x).

◮ Lemma 16. The basis B(x) is effectively computable.

Proof. We introduce the set I of components i ∈ {2, . . . , d} such that x(i) = ω. We

consider the VAS S ′
V AS = (A, δ′, x′) obtained from SV AS(x) by preventing any modification

of components in I. More formaly δ′ and x′ are defined by δ′(a)(i) = 0 and x′(i) = 0 if i ∈ I

and δ′(a)(i) = δ(a)(i) and x′(i) = x(i) if i 6∈ I. Theorem 14 shows that we can effectively

compute the basis B′ of ⇓f Reach(S ′
V AS). Now B(x) = {y + z | y ∈ B′}, where z is the

vector defined by z(i) = ω if i ∈ I and z(i) = 0 if i 6∈ I. ◭

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


The algorithm termination is obtained by introducing an acceleration operator ∇. We

define the vector x∇y for every x, y ∈ {0} × N
d−1
ω such that x 6 y by

(x∇y)(i) =

{

ω if x(i) < y(i)

x(i) if x(i) = y(i).

◮ Lemma 17. If x
∗

=⇒ y with x 6 y then x
∗

=⇒ x∇y.

Let us now describe informally the algorithm. It inductively computes a tree with nodes

labeled by vectors in {0} × N
d−1
ω . The tree is rooted at a node labeled by xin (recall that

xin ∈ {0} × N
d−1). The tree is modified in such a way that for every node n and for every

child n′ of n, the labels x, x′ of n, n′ satisfy x
∗

=⇒ x′. While there exists a leaf n′ labeled

by a vector x′ that admits an ancestor n labeled by a vector x such that x 6 x′ < x∇x′,

we replace the label x′ of node n′ by x∇x′. From Lemma 17, we deduce that the invariant

still holds. Since this loop just replaces some components by ω, it terminates. Then, the

algorithm checks if for every leaf n labeled by x, there exists a strict ancestor (i.e., different

from n) labeled by the same vector x. In this case, the algorithm terminates and it returns

the set of node labels. Otherwise the algorithm considers a leaf n not fulfilling this condition,

and it creates a new child of n labeled by b for each b ∈ B(x). It also creates a new child

labeled by x + δ(aZ) if this vector is nonnegative. The modification of the tree is then

restarted.

The termination of this algorithm follows from König’s lemma. If the algorithm does not

terminate, then it would generate an infinite tree. Because this tree has a finite branching

degree, by König’s lemma, there is an infinite branch. Since 6 is a well-ordering over

{0} ×N
d−1
ω , this implies that we can extract from this infinite branch an infinite increasing

subsequence. However, since we add children to a leaf only if there does not exist a strict

ancestor labeled by the same vector, this sequence cannot contain the same vector twice, and

must therefore be strictly increasing. But, due to the use of the operator ∇, a component

with an integer is replaced by ω at every acceleration step. Because the number of ω’s in

the vectors labeling a branch cannot decrease, we obtain a contradiction. We deduce the

following proposition.

◮ Proposition 18. Algorithm 1 terminates and it returns a finite set R such that

⇓f Reach(S) = ↓R ∩ N
d

We have proved that we can effectively compute a basis R of ⇓f Reach(S). Now, observe

that the following equality holds:

Cover(S) =
⋃

b∈R

⋃

s∈(↓b)∩Nd

Cover(SV AS(s))

A reduction similar to the one provided in the proof of Lemma 16 shows that the basis

of
⋃

s∈(↓b)∩Nd Cover(SV AS(s)) can be obtained from a basis of Cover(S ′
V AS), where S ′

V AS

is a VAS obtained from SV AS and b by removing the components i ∈ {2, . . . , d} such that

b(i) = ω. We deduce the following theorem.

◮ Theorem 19. Given a VAS0 S, one can effectively compute the finite basis of Cover(S).

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Algorithm 1 An algorithm to compute a basis of ⇓f Reach(S)

Inputs: A VAS0 S such that xin ∈ {0} × N
d−1 and a δ(aZ) ∈ {0} × Z

d−1.

Outputs: R, a finite subset of {0} × N
d−1
ω .

Internal Variables:

T , a tree labeled by elements of Nd
ω.

N , a set of nodes.

Algorithm:

1: Initialize T as a single root nin, labeled by xin

2: N ← {nin}

3: while N 6= ∅ do

4: Take a node n from N

5: x← label(n)

6: if the label of every strict ancestor of n is not equal to x then

7: for all strict ancestor n0 of n do

8: x0 ← label(n0)

9: if x0 6 x then

10: x← x0∇x

11: end if

12: end for

13: Replace the label of n by x

14: if x + δ(aZ) > 0 then

15: Create a new node in T labeled by x + δ(aZ), as a child of n

16: Add this node to N

17: end if

18: for all b ∈ B(x) do

19: Create a new node in T labeled by b, as a child of n

20: Add this node to N

21: end for

22: end if

23: end while

24: R← {label(n) | n ∈ nodes(T )}

25: return R

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


6 Conclusion and perspectives

Our main result is a forward algorithm, à la Karp&Miller, to compute the downward closure

of the reachability set of a nonmonotonic transition system: VAS0. This implies that place-

boundedness is decidable. For our purposes, we introduced new sets, sitting between the

cover and the reachability set. Unfortunately, we cannot say anything about the complexity

of the computation of the cover for VAS0, because our proof uses the decidability of the

reachability problem for VAS as an oracle, whose complexity is still open.

Since we have solved the place-boundedness problem, a natural question would be an

instance of a liveness problem, like the repeated control-state reachability problem (RCSRP).

One could think of a reduction from the RCSRP to the place-boundedness problem (or to

the computation of the cover), by adding a new counter cq getting increased each time the

control-state q is hit. This does actually not work, because cq might be unbounded even if

on each single run, it is bounded. It seems that these two problems are not close: for solving

the RCSRP, we need to decide whether there is an infinite run along which a given counter

is unbounded, while the cover gives boundedness information about the global reachability

set, but not on infinite runs. For VAS with one weak zero-test (for instance a lossy zero-test,

like a reset), the usual Karp and Miller algorithm can be easily extended, and the RCSRP

is decidable; for VAS with two weak zero-test (two resets), the techniques used in [6] allow

one to show that this problem is undecidable. Finally, the RCSRP remains open for VAS0.

We have proved new decidability results for VAS0. One could think that maybe, VAS0

can be simulated by VAS. The answer is negative: the language {anbn | n > 1}∗ can be easily

recognized by a VAS0, but not by a VAS [16]. More generally, one may prove that for every

VAS-language L, there is a VAS0 S such that L(S) = L∗. One can also separate VAS and

VAS0 wrt. the reachability set. Hence, even if their reachability problem is decidable [21]

and their cover is computable (this paper), VAS0 are strictly more powerful than VAS.

References

1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for

infinite-state systems. In LICS’96, pages 313–321, 1996.

2 P. A. Abdulla and R. Mayr. Minimal cost reachability/coverability in priced timed Petri

nets. In L. de Alfaro, editor, FOSSACS, volume 5504 of LNCS, pages 348–363. Springer,

2009.

3 A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In STACS’99,

volume 1563, pages 323–333, 1999.

4 R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,

Heidelberg, third edition, 2005.

5 C. Dufourd. Réseaux de Petri avec Reset/Transfert : décidabilité et indécidabilité. Thèse

de doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France, Oct. 1998.

6 C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of reset P/T nets. In J. Wie-

dermann, P. van Emde Boas, and M. Nielsen, editors, ICALP’99, volume 1644 of LNCS,

pages 301–310, Prague, Czech Republic, July 1999. Springer.

7 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions. In

STACS’09, pages 433–444, 2009.

8 A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, Part II: Complete WSTS.

In ICALP’09, volume 5556 of LNCS, pages 188–199, 2009.

9 A. Finkel and A. Sangnier. Mixing coverability and reachability to analyze VASS with one

zero-test. In D. Peleg and A. Muscholl, editors, SOFSEM’10, volume 5901 of LNCS, pages

394–406. Springer, 2010.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.

Comput. Sci., 256(1–2):63–92, 2001.

11 A. Finkel and G. Sutre. Decidability of reachability problems for classes of counters au-

tomata. In STACS’00, volume 1770 of LNCS, pages 346–357, 2000.

12 M. Hack. The equality problem for vector addition systems is undecidable. Theor. Comput.

Sci., 2(1):77–95, 1976.

13 D. Hauschildt. Semilinearity of the Reachability Set is Decidable for Petri Nets. PhD thesis,

University of Hamburg, 1990.

14 J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector

addition systems. Theor. Comput. Sci., 8:135–159, 1979.

15 R. M. Karp and R. E. Miller. Parallel program schemata. Journ. Computer and System

Sciences 3, 2:147–195, 1969.

16 S. R. Kosaraju. Limitations of Dijkstra’s Semaphore Primitives and Petri Nets. In SOSP,

pages 122–136, 1973.

17 S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary version).

In STOC’82, pages 267–281, New York, NY, USA, 1982. ACM.

18 J. Leroux. The general vector addition system reachability problem by Presburger inductive

invariants. In LICS’09, pages 4–13, 2009.

19 E. W. Mayr. An algorithm for the general Petri net reachability problem. In STOC’81:

Proceedings of the thirteenth annual ACM symposium on Theory of computing, pages 238–

246, New York, NY, USA, 1981. ACM.

20 R. Mayr. Undecidable problems in unreliable computations. Theor. Comput. Sci., 297(1-

3):337–354, 2003.

21 K. Reinhardt. Reachability in Petri Nets with inhibitor arcs. Electr. Notes Theor. Comput.

Sci., 223:239–264, 2008.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Vector Addition Systems
	Limits of reachable states of a VAS
	Between the cover and the reachability set: the filtered covers
	Computing the cover of a VAS with one zero-test
	Conclusion and perspectives

