Thomas Place

Lorijn Van Rooijen

Marc Zeitoun

Separating Regular Languages by Locally Testable and Locally Threshold Testable Languages

Keywords: Automata, Logics, Monoids, Locally testable, Separation, Context-free. 1

A separator for two languages is a third language containing the first one and disjoint from the second one. We investigate the following decision problem: given two regular input languages, decide whether there exists a locally testable (resp. a locally threshold testable) separator. In both cases, we design a decision procedure based on the occurrence of special patterns in automata accepting the input languages. We prove that the problem is computationally harder than deciding membership. The correctness proof of the algorithm yields a stronger result, namely a description of a possible separator. Finally, we discuss the same problem for context-free input languages.

Introduction

Context. The strong connection between finite state devices and descriptive formalisms, such as first-order or monadic second-order logic, has been a guideline in computer science since the seminal work of Büchi, Elgot and Trakhtenbrot. This bridge has continuously been fruitful, disseminating tools and bringing a number of applications outside of its original research area. For instance, compiling logical specifications into various forms of automata has become one of the most successful methods in automatic program verification [START_REF] Vardi | An automata-theoretic approach to automatic program verification[END_REF].

One of the challenging issues when dealing with a logical formalism is to precisely understand its expressiveness and its limitations. While solutions to decide such logics often use a compilation procedure from formulas to automata, capturing the expressive power amounts to the opposite translation: given a language, one wants to know whether one can reconstruct a formula that describes it. In other words, we want to solve an instance of the membership problem, which asks whether an input language belongs to some given class.

For regular languages of finite words, the main tool developed to capture this expressive power is the syntactic monoid [START_REF] Pin | Syntactic semigroups[END_REF]: this is a finite, computable, algebraic abstraction of the language, whose properties make it possible to decide membership. An emblematic example is the membership problem for the class of first-order definable languages, solved by Schützenberger [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF] and McNaughton and Papert [START_REF] Mcnaughton | Counter-free automata[END_REF], which has led to the development of algebraic methods for obtaining decidable characterizations of logical or combinatorial properties.

The separation problem and its motivations. We consider here the separation problem as a generalization of the membership problem. Assume we are given two classes of languages C and S. The question is, given two input languages from C, whether we can separate them by a language from S. Here, we say that a language separates K from L if it contains K and is disjoint from L. An obvious necessary condition for separability is that the input languages K, L be disjoint. A separator language witnesses this condition.

One strong motivation for this problem is to understand the limits of logics over finite words. Notice that membership reduces to separation when C is closed under complement, because checking that a language belongs to S amounts to testing that it is S-separable from its complement. Deciding S-separation is also more difficult than deciding membership in S, as one cannot rely on algebraic tools tailored to the membership problem. It may also be computationally harder, as we shall see in this paper. Thus, solving the separation problem requires a deeper understanding of S than what is sufficient to check membership: one not only wants to decide whether S is powerful enough to describe a language, but also to decide whether it can discriminate between two input languages. This discriminating power provides more accurate information than the expressive power.

While our main concern is theoretical, let us mention some motivating applications. In model checking, reachable configurations of a system can be represented by a language. Separating this from the language representing bad configurations proves to be effective for verifying safety of a system. Craig interpolation is a form of separation used in this context [START_REF] Mcmillan | Applications of Craig interpolants in model checking[END_REF][START_REF] Henzinger | Abstractions from proofs[END_REF]. In this line of work, Leroux [START_REF] Leroux | Vector addition systems reachability problem (a simpler solution)[END_REF] simplified the proof that reachability in vector addition systems is decidable [START_REF] Mayr | An algorithm for the general Petri net reachability problem[END_REF]: he proved that a recursively enumerable set of separators witnesses non-reachability. Finally, questions in database theory also motivated separation questions [START_REF] Czerwinski | Efficient separability of regular languages by subsequences and suffixes[END_REF].

Although the separation problem frequently occurs, it has not been systematically studied, even in the restricted, yet still challenging case of regular languages.

Contributions.

In general, elements of C cannot always be separated by an element of S and there is no minimal separator wrt. inclusion. We are interested in the following questions:

can we decide whether one can separate two given languages of C by a language of S? what is the complexity of this decision problem? if separation is possible, can we compute a separator, and at which cost? A motivating but difficult objective is to understand separation by first-order definable languages, whose decidability follows from involved algebraic methods [START_REF] Henckell | Pointlike sets: the finest aperiodic cover of a finite semigroup[END_REF][START_REF] Henckell | Aperiodic pointlikes and beyond[END_REF]. A first step is to look at easier subclasses. Indeed, the question was raised and solved for separation by piecewise-testable languages [START_REF] Czerwinski | Efficient separability of regular languages by subsequences and suffixes[END_REF][START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF], and unambiguous languages [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF], which sit in the lower levels of the quantifier-alternation hierarchy of first-order logic. In this paper, we look at yet another widely studied class, whose properties are orthogonal to those of the above classes.

We investigate the separation problem by locally and locally threshold testable languages. A language is locally testable (LT) if membership of a word can be tested by inspecting its prefixes, suffixes and infixes up to some length (which depends on the language). The membership problem for this class was raised by McNaughton and Papert [START_REF] Mcnaughton | Counter-free automata[END_REF], and solved independently by McNaughton and Zalcstein [START_REF] Zalcstein | Locally testable languages[END_REF][START_REF] Mcnaughton | Algebraic decision procedures for local testability[END_REF] and by Brzozowski and Simon [4]. This class has several generalizations. The most studied one is that of locally threshold testable languages (LTT), where counting infixes is allowed up to some threshold. These are the languages definable in FO(+1), i.e., first-order logic with the successor relation (but without the order). Again, membership is decidable [START_REF] Thérien | Graph congruences and wreath products[END_REF], and can actually be tested in Ptime [START_REF] Pin | Expressive power of existential first-order sentences of Büchi's sequential calculus[END_REF].

Our results are as follows: we show that separability of regular languages by LT and LTT languages is decidable, first for a fixed threshold, by reduction to fixed parameters: we provide a bound on the length of infixes that define a possible separator. This reduces the problem to a finite number of candidate separators, and hence entails decidability. For LTT-separability, we also provide a bound for the threshold. We further get an equivalent formulation on automata in terms of forbidden patterns for the languages to be separable, which yields an Nexptime algorithm. We also obtain lower complexity bounds: even starting from DFAs, the problem is Np-hard for LT and LTT (while membership to LTT is in Ptime). Finally, we discuss the separation problem starting from context-free input languages rather than regular ones. Due to lack of space, several proofs only appear in the journal version of the paper.

The main arguments rely on pumping in monoids or automata. The core of our proof is generic: we show that if one can find two words, one in each input language, that are close enough wrt. the class of separators, then the languages are not separable. Here, "close enough" is defined in terms of parameters of the input languages, such as the size of input NFAs.

Related work.

In the context of semigroup theory, it has been proven [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] that the separation problem can be rephrased in purely algebraic terms. Solving the separation problem for a class S amounts to computing the so-called pointlike sets for the algebraic variety corresponding to S. While it has been shown that the varieties corresponding to both LT and LTT have computable pointlike sets [START_REF] Beauquier | Languages and scanners[END_REF][START_REF] Steinberg | On pointlike sets and joins of pseudovarieties[END_REF][START_REF] Steinberg | A delay theorem for pointlikes[END_REF], this approach suffers two drawbacks. First, being purely algebraic, the proofs provide no insight on the underlying class S. In particular, they provide only yes/no answers without giving any description of what an actual separator might be.

Finally, the separation problem for the class of piecewise-testable languages has recently been shown Ptime-decidable, independently and with different techniques in [START_REF] Czerwinski | Efficient separability of regular languages by subsequences and suffixes[END_REF] and [START_REF] Place | Separating regular languages by piecewise testable and unambiguous languages[END_REF].

Preliminaries

Words and Languages. We fix a finite alphabet A. We denote by A * the free monoid over A. The empty word is denoted by ε. If w is a word, we set |w| as the length, or size of w. When w is nonempty, we view w as a sequence of |w| positions labeled over A. We number positions from 0 (for the leftmost one) to |w| -1 (for the rightmost one).

Infixes, Prefixes, Suffixes. An infix of a word w is a word Profiles. For k ∈ N, let k ℓ = ⌊k/2⌋ and k r = kk ℓ . A k-profile is a pair of words (w ℓ , w r) of lengths at most k ℓ and k r , respectively. Given w ∈ A * and x a position of w, the k-profile of x is the pair (w ℓ , w r) defined as follows: w ℓ = w[max(0, xk ℓ), x] and w r = w[x, min(x + k r , |w|)] (see Figure 1). A k-profile (w ℓ , w r) occurs in a word w if there exists some position x within w whose k-profile is (w ℓ , w r). Similarly, if n ∈ N, we say that (w ℓ , w r) occurs n times in w if there are n distinct positions in w where (w ℓ , w r) occurs. Intuitively, the k-profile is the description of the infix of w that is centered at position x. Observe in particular that the k-profiles that occur in a word determine the prefixes and suffixes of length k -1 of this word. This is convenient, since we only have to consider one object instead of three in the usual presentations of the classes LT and LTT.

w ′ such that w = u • w ′ • v for some u, v ∈ A * . Moreover, if u = ε (resp. v = ε) we say that w ′ is a prefix (resp.
We denote by A k the set of k-profiles over the alphabet A. It is of size exponential in k.

Separability. Given languages

L, L 1 , L 2 over A * , we say that L separates L 1 from L 2 if L 1 ⊆ L and L 2 ∩ L = ∅.
Given a class S of languages, we say that the pair (

L 1 , L 2) is S-separable if some language L ∈ S separates L 1 from L 2 . When S is closed under complement, (L 1 , L 2) is S-separable if and only if (L 2 , L 1)
is, in which case we simply say that L 1 and L 2 are S-separable.

Automata.

A nondeterministic finite automaton (NFA) over A is denoted by a tuple A = (Q, A, I, F, δ), where Q is the set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states and δ ⊆ Q × A × Q the transition relation. The size of an automaton is its number of states plus its number of transitions. If δ is a function, then A is a deterministic finite automaton (DFA). We denote by L(A) the language of words accepted by A.

Monoids.

Let L be a language and M be a monoid. We say that L is recognized by M if there exists a monoid morphism α :

A * → M together with a subset F ⊆ M such that L = α -1 (F).
It is well known that a language is accepted by an NFA if and only if it can be recognized by a finite monoid. Further, one can compute from any NFA a finite monoid recognizing its accepted language.

Locally Testable and Locally Threshold Testable Languages

In this paper, we investigate two classes of languages. Intuitively, a language is locally testable if membership of a word in the language only depends on the set of infixes, prefixes and suffixes up to some fixed length that occur in the word. For a locally threshold testable language, membership may also depend on the number of occurrences of such infixes, which may thus be counted up to some fixed threshold.

In this section we provide specific definitions for both classes. We start with the larger class of locally threshold testable languages. In the following, we say that two numbers are equal up to threshold d if either both numbers are equal, or both are greater than or equal to d.

Locally Threshold Testable Languages. Let L be a language, we say that L is locally threshold testable (LTT) if it is a boolean combination of languages of the form: LTT languages can actually be defined in terms of first-order logic. A language is LTT if and only if it can be defined by an FO(+1) formula [START_REF] Beauquier | Languages and scanners[END_REF][START_REF] Thomas | Classifying regular events in symbolic logic[END_REF], i.e., a first-order logic formula using predicates for the equality and next position relations, but not for the linear order.

1. uA * = {w | u is a prefix of w}, for some u ∈ A * . 2. A * u = {w | u is
We also define an index on LTT languages. Usually, this index is defined as the smallest size of infixes, prefixes and suffixes needed to define the language. However, since we only work with k-profiles, we directly define an index based on the size of k-profiles. Given words w, w ′ and natural numbers k, d, we write w ≡ d k w ′ if for every k-profile (w ℓ , w r), the number of positions x such that (w ℓ , w r) is the k-profile of x is equal up to threshold d in w and w ′ . One can verify that for all k, d ∈ N, ≡ d k is an equivalence relation of finite index. For k, d ∈ N we denote by LTT[k, d] the set of the finitely many languages that are unions of

≡ d k -classes. We have LTT = k,d LTT[k, d]. Given L ⊆ A * , the smallest LTT[k, d]- language containing L is [L] ≡ d k = {w ∈ A * | ∃u ∈ L such that u ≡ d k w}.
As it is often the case, there is no smallest LTT language containing a given regular language.

Locally Testable Languages. The class of locally testable languages is the restriction of LTT languages in which infixes cannot be counted. A language L is locally testable (LT) if it is a boolean combination of languages of the form 1, 2 and the following restriction of 3: No simple description of LT in terms of first-order logic is known. However, there is a simple definition in terms of temporal logic. A language is LT if and only if it can be defined by a temporal logic formula using operators X (next), Y (yesterday), and G (globally).

Given two words w, w ′ and a number k, we write w ≡ k w ′ for w ≡ 1 k w ′ . For all k ∈ N, we denote by LT[k] the set of languages that are unions of ≡ k -classes, and

LT = k LT[k]. Given L ⊆ A * and k ∈ N, the smallest LT[k]-language containing L is [L] ≡ k = {w ∈ A * | ∃u ∈ L such that u ≡ k w}.

Separation for a Fixed Threshold

In this section, we prove that if the counting threshold d is fixed, it is decidable whether two languages can be separated by an LTT language of counting threshold d (i.e., by an LTT[k, d] language for some k). In particular, this covers the case of LT, which corresponds to d = 1. All results in this section are for an arbitrary d. Our result is twofold.

First, we establish a bound on the size of profiles that need to be considered in order to separate the languages. This bound only depends on the size of monoids recognizing the languages, and it can be computed. One can then use a brute-force algorithm that tests separability by all the finitely many LTT[k, d] languages, where k denotes this bound.

The second contribution is a criterion on the input languages to check separability by an LTT[k, d] language for some k. This criterion can be defined equivalently on automata or monoids recognizing the input languages, in terms of the absence of common patterns.

The section is organized into three subsections: our criterion is stated in the first one, and the second and last ones are devoted to the statement and proof of the theorem.

Patterns

In this section we define our criterion that two languages must satisfy in order to be separable. The criterion can be defined equivalently on automata or monoids recognizing the languages. Block Patterns. A block is a triple of words b = (v ℓ , u, v r) where v ℓ , v r are nonempty. Similarly, a prefix block is a pair of words p = (u, v r) with v r nonempty, and a suffix block is a pair of words s = (v ℓ , u) with v ℓ nonempty. Let d ∈ N. A d-pattern P is either a word w, or a triple (p, f, s) where p and s are respectively a prefix and a suffix block, and f is a function mapping blocks to the set {0, . . . , d}, such that all but finitely many blocks are mapped to 0.

Decompositions. Let w be a word and let P be a d-pattern. We say that w admits a P-decomposition if w admits a decomposition w = u 0 v 1 u 1 v 2 • • • v n u n with n 0 and such that either n = 0 and P = u 0 = w, or P = (p, f, s) and the following conditions are verified:

1. p = (u 0 , v 1) and s = (v n , u n). 2. for all blocks b, if f (b) < d, then there are exactly f (b) indices i such that (v i , u i , v i+1) = b. 3. for all blocks b, if f (b) = d, then there are at least d indices i such that (v i , u i , v i+1) = b.
Sometimes, we just say P-decomposition to mean P-decomposition of some word. Let α : A * → M be a morphism into a monoid M , and let s ∈

M . A P-decomposition is (α, s)-compatible if α(w) = s and α(u 0 • • • v i) = α(u 0 • • • v i) • α(v i), for 1 i n.
Similarly, if A is an automaton, we say that a P-decomposition is A-compatible if there is an accepting

u 0 u 1 u i-1 u i+1 u n-1 u i u n v 1 v i v i+1 v n Figure 2 An A-compatible P-decomposition u0v1u1v2 • • • vnun
run for w and each infix v i labels a loop in the run, for 1 i n, as pictured in Figure 2 (where edges denote sequences of transitions). 2 with the same set of triples (v i , u i , v i+1).

A useful property about common patterns is that whether such a pattern exists only depends on the recognized languages, and not on the choice of

A 1 , A 2 , M 1 , M 2 . ◮ Proposition 1. Fix d ∈ N. Let L 1 ,

Separation Theorem for a Fixed Threshold

We can now state our main theorem for this section.

The language [L

1] ≡ d k separates L 1 from L 2 . 4. M 1 , M 2 do not have a common d-pattern. 5. A 1 , A 2 do not have a common d-pattern.
Observe that Item 2 is essentially a delay theorem [START_REF] Straubing | Finite semigroup varieties of the form V * D[END_REF] for separation restricted to the case of LTT: we prove that the size of profiles (i.e., infixes) that a potential separator needs to consider can be bounded by a function of the size of the monoids recognizing the languages. By restricting Theorem 2 to the case d = 1, we get the following separation theorem for LT. ◮ Theorem 3. Let L 1 , L 2 be regular languages and let M 1 , M 2 , A 1 , A 2 be arbitrary monoids and automata recognizing L 1 , L 2 respectively. Let k = 4(|M 1 ||M 2 | + 1). Then the following conditions are equivalent: 1. L 1 and L 2 are LT-separable.

L 1 and L

2 are LT[k]-separable. 3. The language [L 1] ≡ k separates L 1 from L 2 . 4. M 1 , M 2 do not have a common 1-pattern. 5. A 1 , A 2 do not have a common 1-pattern.
Theorem 2 and Theorem 3 yield algorithms for deciding LT-and LTT-separability for a fixed threshold. Indeed, the algorithm just tests all the finitely many LTT[k, d] languages as potential separators. This brute-force approach yields a very costly procedure. It turns out that a better algorithm can be obtained from Items 4 and 5 (the proof is available in the full version of the paper). This yields the following corollary.

◮ Corollary 4. Let d ∈ N. It is decidable whether two given regular languages are LTT[l, d]separable for some l ∈ N. In particular, it is decidable whether they are LT-separable.

More precisely, given NFAs A 1 , A 2 , deciding whether L(A 1) and L(A 2) are LT-separable is in co-Nexptime. It is co-Np-hard, even starting from DFAs.

It remains to prove Theorem 2. The implications (3) ⇒ (2) ⇒ (1) are immediate by definition. We now prove (1) ⇒ (5) ⇒ (4) ⇒ (3). The implication (5) ⇒ (4) is immediate from Proposition 1. The implication (1) ⇒ (5) is a consequence of the following proposition.

◮ Proposition 5. Let d ∈ N and let A 1 , A 2 be NFAs. If A 1 , A 2 have a common d-pattern, then, for all k ∈ N, there exist w 1 , w 2 accepted respectively by A 1 , A 2 such that w 1 ≡ d k w 2 .
An immediate consequence of Proposition 5 is that as soon as A 1 , A 2 have a common d-pattern, the recognized languages cannot be separated by an LTT[k, d] language for any k. This is exactly the contrapositive of (1) ⇒ (5). We now prove Proposition 5.

Proof of Prop. 5. Let P be a common d-pattern

of A 1 , A 2 . If P = w ∈ A * , then by definition, w ∈ L(A 1) ∩ L(A 2)
, so it suffices to choose w 1 = w 2 = w. Otherwise, P = (p, f, s) and there are w 1 , w 2 having an A 1 -, respectively A 2 -compatible P-decomposition. Let

w 1 = u 0 v 1 u 1 v 2 • • • v n u n and w 2 = u ′ 0 v ′ 1 u ′ 1 v ′ 2 • • • v ′ m u ′ m be these decompositions. For k ∈ N, set w 1 = u 0 (v 1) k(d+1) u 1 (v 2) k(d+1) • • • (v n) k(d+1) u n w 2 = u ′ 0 (v ′ 1) k(d+1) u ′ 1 (v ′ 2) k(d+1) • • • (v ′ m) k(d+1) u ′ m
By definition of compatibility, w 1 ∈ L(A 1) and w 2 ∈ L(A 2). From the fact that (p, f, s) is a d-pattern, it then follows that w 1 ≡ d k w 2 . ◭

The remaining and most difficult direction, (4) ⇒ (3) is a consequence of the next proposition whose proof is outlined in the next subsection.

◮ Proposition 6. Let α 1 : A * → M 1 and α 2 : A * → M 2 be morphisms, and k = 4(|M 1 ||M 2 | + 1). Let d ∈ N and let w 1 , w 2 be words such that w 1 ≡ d k w 2 . Then there exists a d-pattern P, an (α 1 , α 1 (w 1))-compatible P-decomposition, and an (α 2 , α 2 (w 2))-compatible P-decomposition.

Before explaining how to show Proposition 6, let us explain how to conclude the proof of Theorem 2. We prove the contrapositive of (4) ⇒ (3). If Item 3 does not hold, then by definition there must exist

w 1 ∈ L 1 and w 2 ∈ L 2 such that w 1 ≡ d k w 2 . If w 1 = w 2 , L 1 ∩ L 2 = ∅, therefore, M 1 , M 2 have a common d-pattern.
Otherwise, by Proposition 6 we get a d-pattern (p, f, s). Since w 1 ∈ L 1 and w 2 ∈ L 2 , the d-pattern (p, f, s) is common to both M 1 and M 2 , which ends the proof.

Proof of Proposition 6

We set w 1 , w 2 , k and d as in the statement of the proposition. Observe first that if w 1 = w 2 = w, then it suffices to take P = w. Therefore, we suppose for the remainder of the proof that w 1 = w 2 . We proceed as follows: we construct two new words w ′ 1 , w ′ 2 from w 1 , w 2 admitting respectively a (α 1 , α 1 (w 1))-compatible P-decomposition and a (α 2 , α 2 (w 2))compatible P-decomposition, for some d-pattern P = (p, f, s). In this outline, we only provide the construction, the proof of correctness is available in the full version of the paper. The construction of w ′ 1 , w ′ 2 , amounts to duplicating infixes in w 1 , w 2 verifying special properties. We first define these special infixes that we will call k-loops. k-loops. Let w ∈ A * , x be a position in w, and (w ℓ , w r) be the ⌊k/2⌋-profile of x. We say that x admits a k-loop if there exists a nonempty prefix u of w r such that α 1 (w ℓ) = α 1 (w ℓ • u) and α 2 (w ℓ) = α 2 (w ℓ • u). In this case, we call the smallest such u the k-loop of x. See Figure 3.

b aa c b c ba a x ⌊k/2⌋-profile of x k-profile of x w ℓ w r u for i = 1, 2, α i (w ℓ) = α i (w ℓ) • α i (u) Figure 3 A position x admitting a k-loop u: αi(w ℓ) = αi(w ℓ • u), for i = 1, 2
For our construction to work, we need k-loops to have three properties that we state now. The first two are simple facts that are immediate from the definition: k-loops are determined by profiles and can be duplicated without modifying the image of the word under α. ◮ Fact 7. Let x be a position. Whether x admits a k-loop, and if so, which k-loop x admits, only depends on the ⌊k/2⌋-profile of x.

◮ Fact 8. Let w be a word and let x be a position within w such that x admits a k-loop u.

Then for i = 1, 2, α i (w[0, x]) = α i (w[0, x]) • α i (u).
The last property we need is that k-loops occur frequently in words, i.e., at least one of ⌊k/4⌋ consecutive positions must admit a k-loop. This follows from pumping arguments: ◮ Lemma 9. Let w be a word and let x 1 , . . . , x ⌊k/4⌋ be ⌊k/4⌋ consecutive positions in w. Then, there exists at least one position x i with i < ⌊k/4⌋ that admits a k-loop.

Construction of w ′

1 , w ′ 2 . We can now construct w ′ 1 and w ′ 2 . If w, u are words and x is a position of w, the word constructed by inserting u at position x is the word w

[0, x] • u • w[x, |w|].
From w 1 (resp. w 2), we construct w ′ 1 (resp. w ′ 2) by inserting simultaneously all infixes (u x) k ′ in w 1 (resp. w 2) at any position x that admits a k-loop, and where u x is the k-loop of x. Using Fact 7, Fact 8 and Lemma 9 one can then verify that w ′ 1 admits a (α 1 , α 1 (w 1))compatible P-decomposition and w ′ 2 admits a (α 2 , α 2 (w 2))-compatible P-decomposition, for some d-pattern P = (p, f, s). The proof is available in the full version of the paper.

Separation by LTT Languages

This section is devoted to LTT. Again, our theorem actually contains several results. In the case of LTT, two parameters are involved: the size k of profiles and the counting threshold d.

The first result in our theorem states that the bound on k of Theorem 2 still holds for full LTT. This means that two languages are LTT-separable if and only if there exists some counting threshold d such that they are LTT[k, d]-separable with the same bound k as in Theorem 2. It turns out that this already yields an algorithm for testing LTT-separability. The algorithm relies on the decidability of Presburger arithmetic and is actually adapted in a straightforward manner from an algorithm of [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF] for deciding membership in LTT. While this first result gives an algorithm for testing separability, it gives no insight about an actual separator. Indeed, the procedure does not produce the actual counting threshold d. This is obtained in the second part of our theorem: we prove that two languages are LTTseparable if and only if they are LTT[k, d]-separable, where k is as defined in Theorem 2, and d is bounded by a function of the size of the monoids (or automata) recognizing the input languages. Note that this result also gives another (brute-force) algorithm for testing LTT-separability. We now state our theorem. Recall that A k denotes the set of k-profiles. ◮ Theorem 10. Let L 1 , L 2 be regular languages and let M 1 , M 2 , A 1 , A 2 be arbitrary monoids and automata recognizing

L 1 , L 2 . Set n to be either max(|M 1 |, |M 2 |)+1 or max(|A 1 |, |A 2 |)+1. Let k = 4(|M 1 ||M 2 | + 1) and d = (|A k |n) |A k | .
Then, the following conditions are equivalent: 1. L 1 and L 2 are LTT-separable.

There exists

d ′ ∈ N such that L 1 and L 2 are LTT[k, d ′]-separable. 3. There exists d ′ ∈ N such that M 1 , M 2 do not have a common d ′ -pattern. 4. There exists d ′ ∈ N such that A 1 , A 2 do not have a common d ′ -pattern. 5. L 1 and L 2 are LTT[k, d]-separable. 6. The language [L 1] ≡ d k separates L 1 from L 2 .
Observe that decidability of LTT-separability is immediate from Item 5 by using the usual brute-force algorithm. As it was the case for a fixed counting threshold, this algorithm is slow. In the full version of the paper, we obtain a faster algorithm by using Items 3 and 4.

◮ Corollary 11. It is decidable whether two given regular languages are LTT-separable. More precisely, given NFAs A 1 , A 2 , deciding whether L(A 1) and L(A 2) are LTT-separable is in 2-Expspace. It is co-Np-hard, even starting from DFAs.

By definition, a language is LTT if it is LTT [k, d] for some natural numbers k, d. Hence, the equivalence between Items 1, 2, 3 and 4 is an immediate consequence of Theorem 2. Therefore, we only need to prove Items 5 and 6, i.e., the bound on the threshold d. Unfortunately, these are exactly the items we need for Corollary 11. However, we will prove that by reusing an algorithm of [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF], Corollary 11 can also be derived directly from Item 2.

We now explain how to derive the first part of Corollary 11 from Item 2 without relying on the actual bound on the counting threshold. The bound itself is proved in the full version.

Decidability of LTT-separability as a consequence of Theorem 2

As we explained, the equivalence of Item 2 to LTT-separability is immediate from Theorem 2. We explain how to combine this fact with an algorithm of [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF] to obtain decidability directly.

In [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF], it is proved that once k is fixed, Parikh's Theorem [START_REF] Parikh | On context-free languages[END_REF] can be used to prove that whether a language is LTT[k, d] for some d can be rephrased as a computable Presburger formula. Decidability of membership in LTT can then be reduced to decidability of Presburger Arithmetic. For achieving this, two ingredients were needed: a) a bound on k, and b) the translation to Presburger arithmetic. It turns out that in [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF], only the proof of a) was specific to membership. On the other hand, separation was already taken care of in b), because the intuition behind the Presburger formula was testing separability between the input language and its complement. In our setting, we have already replaced a), i.e., bounding k, by Item 2. Therefore, the argument can be generalized. We explain in the remainder of this subsection how to construct the Presburger formula. The argument makes use of the notion of commutative image, which we now recall.

The commutative image of a word w ∈ A * , denoted π(w), is a vector of length |A| of natural numbers counting, for all a ∈ A, how many occurrences of a there are in w. This notion can be easily generalized in order to count profiles rather than just letters. Let k ∈ N. The k-image of w, π k (w), is a vector of length |A k | of numbers counting for every k-profile (w ℓ , w r) the number of positions in w with k-profile (w ℓ , w r). If L is a language, the k-image of L, π k (L) is the set A well-known result about commutative images is Parikh's Theorem [START_REF] Parikh | On context-free languages[END_REF], which states that if L is context-free (so in particular if L is regular), then π(L) is semilinear, i.e., Presburger definable [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF]. As explained in [START_REF] Bojańczyk | A new algorithm for testing if a regular language is locally threshold testable[END_REF], Parikh's Theorem extends without difficulty to k-images. ◮ Theorem 13. Let L be a context-free language and let k ∈ N. Then π k (L) is semilinear. Moreover, a Presburger formula for this semilinear set can be computed.

{π k (w) | w ∈ L} ⊆ N A k
Proof. For k = 1, this is Parikh's Theorem. When k > 1, let L ′ ⊆ A *
k such that w ′ ∈ L ′ if there exists w ∈ L of the same length, and such that a position in w ′ is labeled by the k-profile of the same position in w. One can verify that L ′ is (effectively) context-free, and that the k-image of L is the commutative image of L ′ , which is semilinear by Parikh's Theorem. ◭

We can now explain how to decide LTT-separability. By Item 2 in Theorem 10, L 1 , L 2 are LTT-separable if and only if they are LTT[k, d]-separable for k = 4(|M 1 ||M 2 | + 1) (where M 1 , M 2 are monoids recognizing L 1 , L 2) and some natural number d. Therefore, whether L 1 , L 2 are LTT-separable can be rephrased as follows: does there exist some threshold d such that there exist no words w 1 ∈ L 1 , w 2 ∈ L 2 such that w ≡ d k w ′ ? By Fact 12, this can be expressed in terms of k-images: does there exist a threshold d such that there exist no vectors of natural numbers x1 ∈ π k (L 1), x2 ∈ π k (L 2) that are equal up to threshold d? It follows from Theorem 13 that the above question can be expressed as a computable Presburger formula. Decidability of LTT-separability then follows from decidability of Presburger Arithmetic.

6

The Case of Context-Free Languages

In order to prove decidability of LTT-separability for regular languages, we needed three ingredients: Parikh's Theorem, decidability of Presburger Arithmetic and Item 2 in Theorem 10. Since Parikh's Theorem holds not only for regular languages but also for context-free languages, we retain at least two of the ingredients in the context-free setting.

In particular, we can reuse the argument of Section 5 to prove that once the size k of the profiles is fixed, separability by LTT is decidable for context-free languages. For any fixed k ∈ N, we write LTT

[k] = d∈N LTT[k, d]. ◮ Theorem 14. Let L 1 , L 2 be context-free languages and k ∈ N. It is decidable whether L 1 , L 2 are LTT[k]-separable.
An interesting consequence of Theorem 14 is that LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF]-separability of context-free languages is decidable. A language is LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] if and only if it can be defined by a first-order logic formula that can only test equality between positions, but not ordering. This result is surprising since membership of a context-free language in this class is undecidable. We give a proof of this fact below, which is a simple adaptation of the proof of Greibach's Theorem (which is in particular used to prove that regularity of a context-free language is undecidable). ◮ Theorem 15. Let L be a context-free language. It is undecidable to test whether L ∈ LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF].

Proof. We reduce universality of context-free languages to this membership problem. Fix L a context-free language over A and let # ∈ A. Let K ∈ LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] be some context-free language and set L

1 = (K • # • A *) ∪ (A * • # • L).
Clearly, a context-free grammar for L 1 can be computed from a context-free grammar for L. We show that L = A * iff L 1 ∈ LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF].

If L = A * , then L 1 = A * • # • A * ∈ LTT[1]
. Conversely, assume that L 1 ∈ LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF], and suppose by contradiction that L = A * . Pick w ∈ A * such that w ∈ L. By definition, K = {u | u#w ∈ L 1 }. One can verify that LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] is closed under right residual. Therefore, K = L 1 (#w) -1 ∈ LTT [START_REF] Almeida | Some algorithmic problems for pseudovarieties[END_REF] which is a contradiction by definition of K. ◭ Theorems 14 and 15 may seem contradictory. Indeed in the setting of regular languages, membership can be reduced to separability (a language belongs to a class if the class can separate it from its complement). However, context-free languages are not closed under complement, which makes the reduction false in this larger setting.

An interesting question is whether decidability extends to full LT and LTT-separability of context-free languages. This would also be surprising since membership of a context-free language in LT or LTT is undecidable. Such a result would require to generalize our third ingredient, Item 2 in Theorem 10, to context-free languages. This means that we would need a method for computing a bound on the size of the infixes that a potential separator has to consider. It turns out that this is not possible. ◮ Theorem 16. Let L 1 , L 2 be context-free languages. It is undecidable to test whether L 1 , L 2 are LT-separable. It is undecidable to test whether L 1 , L 2 are LTT-separable.

It was already known [START_REF] Szymanski | Noncanonical extensions of bottom-up parsing techniques[END_REF] that separability by a regular language is undecidable for context-free languages. The proof of Theorem 16 is essentially the same since the reduction provided in [START_REF] Szymanski | Noncanonical extensions of bottom-up parsing techniques[END_REF] actually works for any class of regular separators that contains languages of the form K 1 A * ∪ K 2 where K 1 , K 2 are finite languages. Since this is clearly the case for both LT and LTT, Theorem 16 follows.

Conclusion

We proved separation theorems for both LT and LTT. In both cases, algorithms to test separability, in co-Nexptime and 2-Expspace respectively, are derived from these theorems. Another contribution is a description of possible separators, given by bounds defining them.

Several questions remain open in this line of research. A first one is to obtain tight complexity bounds for both classes. While we have co-Nexptime and 2-Expspace upper bounds for LT and LTT respectively, we have only co-NP lower bounds. The upper bounds rely on a reduction to the case k = 1, i.e., a translation to the special case when the size of infixes is fixed to 1. This translation is exponential wrt. the size of the input automata. Improving the upper bounds would likely require improving this reduction.

Another question is to consider other fragments for separability. A natural generalization of LTT is LTT+MOD, in which infixes can now also be counted modulo constants. The most interesting fragment is of course full first-order logic. While the problem was shown decidable [START_REF] Henckell | Pointlike sets: the finest aperiodic cover of a finite semigroup[END_REF][START_REF] Henckell | Aperiodic pointlikes and beyond[END_REF], the proofs rely on involved algebraic techniques and give an algorithm that provides only a yes/no answer. Furthermore, the techniques bring no insight on the expressive power of first-order logic. It remains a challenging open problem to obtain a combinatorial proof that FO-separability is decidable, as well as a description of a separator.

 suffix) of w. Let 0 x < y |w|. We write w[x, y] for the infix of w starting at position x and ending at position y -1. By convention, we set w[x, x] = ε. Observe that by definition, when x y z, we have w[x, z] = w[x, y] • w[y, z].

 bac) (aab, cba) (aab, ba) 6-profiles of x, y and z:

Figure 1

 1 Figure 1 Illustration of the notion of k-profile for k = 6

 a suffix of w}, for some u ∈ A * . 3. {w | w has u as an infix at least d times} for some u ∈ A * and d ∈ N.

4 .

 4 A * uA * = {w | w has u as an infix} for some u ∈ A * .

◮ Theorem 2 .

 2 Fix d ∈ N. Let L 1 , L 2 be regular languages and let M 1 , M 2 , A 1 , A 2 be arbitrary monoids and automata recognizing L 1 , L 2 respectively. Set k = 4(|M 1 ||M 2 | + 1). Then the following conditions are equivalent: 1. L 1 and L 2 are LTT[l, d]-separable for some l. 2. L 1 and L 2 are LTT[k, d]-separable.

◮ Fact 12 .

 12 . The definition of ≡ d k yields the following fact. Let w, w ′ ∈ A * and k, d ∈ N. Then w ≡ d k w ′ if and only if π k (w) and π k (w ′) are equal componentwise up to threshold d.

 Common Patterns. Let d ∈ N and M 1 , M 2 be two monoids together with morphisms α 1 : A * → M 1 and α 2 : A * → M 2 and accepting setsF 1 ⊆ M 1 , F 2 ⊆ M 2 . We say that M 1 , M 2 have a common d-pattern if there exist a d-pattern P, two elements s 1 ∈ F 1 , s 2 ∈ F 2 ,and two P-decompositions of (possibly different) words that are respectively (α 1 , s 1)-compatible and (α 2 , s 2)-compatible. Similarly, if A 1 , A 2 are automata, we say that A 1 , A 2 have a common d-pattern if there exist a d-pattern P and two P-decompositions of words that are respectively A 1 -compatible and A 2 -compatible. In particular, by the very definition, A 1 and A 2 have a common 1-pattern if there are successful paths in A 1 , A 2 of the form shown in Figure

 L 2 be regular languages and let M 1 , M 2 , A 1 , A 2 be arbitrary monoids and automata recognizing L 1 , L 2 , respectively. Then M 1 , M 2 have a common d-pattern if and only if A 1 , A 2 have a common d-pattern.

* Work supported by Agence Nationale de la Recherche ANR 2010 BLAN 0202 01 FREC. licensed under Creative Commons