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CONTROL OF BLOW-UP SINGULARITIES
FOR NONLINEAR WAVE EQUATIONS

SATYANAD KICHENASSAMY

Laboratoire de Mathématiques
Université de Reims Champagne-Ardenne
Moulin de la Housse, B.P. 1039
F-51687 Reims Cedex 2, France

ABSTRACT. While the global boundary control of nonlinear wave equations
that exhibit blow-up is generally impossible, we show on a typical example,
motivated by laser breakdown, that it is possible to control solutions with
small data so that they blow up on a prescribed compact set bounded away
from the boundary of the domain. This is achieved using the representation of
singular solutions with prescribed blow-up surface given by Fuchsian reduction.
We outline on this example simple methods that may be of wider applicability.

1. Introduction.

1.1. Objectives. It is well-known that the boundary control of solutions of non-
linear Klein-Gordon equations that exhibit blow-up in finite time is, in general,
impossible. Indeed, assume that the given initial and boundary data lead to blow-
up for t = tg and = = zy, where the distance of xy from the boundary is greater
than cty, ¢ being the speed of propagation; then, the boundary data do not have
time to influence the solution at zy before the blow-up time. The solution near
the blow-up point is entirely determined by the initial conditions, and no choice of
boundary conditions can modify this blow-up behavior. In other words, boundary
conditions, whatever their type, cannot, in general, arrest blow-up. Nevertheless, it
is often possible to steer small data to zero (“local controllability”).! The purpose
of this paper is to show that it is also possible, for cubic wave equations, to steer
small data in order to achieve blow-up on a prescribed compact set in the interior
of the domain.

This possibility is suggested by the method of Fuchsian reduction [10, 11, 9]
that yields solutions that blow up on a given set in spacetime, for wide classes of
equations. More precisely, given a sufficiently smooth graph ¥ = {(z,t) e R* xR :
t = (x)}, with [Ve)| < 1 on the entire space, the method yields a solution wu(z,t)
that becomes singular precisely as ¢ — ¥ (x)—, and that is defined and regular in
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LGeneral methods and results on the control of hyperbolic problems, together with further
references, may be found in the following papers: [17, 12, 13, 14, 15, 16, 1, 23, 24]. Among works
more particularly relevant to the present paper, we may mention [4, 5, 20, 8, 21, 22], where further
references may be found. We do not aim at completeness. The considerations of the present paper
also apply to other nonlinearities, such as those considered in [21]. For recent results on interior
control, see e.g. [6].
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an open set limited by 3. Walter Littman observed to me, many years ago, that
this type of result suggests the possibility of a control of blow-up singularities, since
it furnishes an explicit construction of boundary data that steer a particular set
of Cauchy data so that they blow up on a specified set, while remaining smooth
elsewhere. Indeed, taking ¥ to be positive, and a smooth bounded domain 2 C R”
that contains a compact set K on which v reaches its (positive) minimum ,,i,, the
restriction of u and wu; to the set where t = 0 and = € Q) furnishes a pair of Cauchy
data, and its trace on the boundary of 2 provides Dirichlet boundary data, such
that the solution of the initial-boundary value problem with these data first blows
up precisely for ¢ = ¥y, and x € K. In other words,

It may not be possible to arrest blow-up, but it may be possible to force
blow-up to occur at a specified time and place.

This explicit construction has the same advantages as the classical restriction argu-
ment for the linear wave equation [18, 16]. However, it requires the initial data, as
well as the boundary data, to be chosen in a special way to ensure blow-up occurs
only on X. We show in this paper, on a typical example that may be of some inter-
est in applications, that if the problem is locally controllable, it is possible to steer
the solution, starting from arbitrary small data, so that it blows up on a prescribed
set inside the domain. In a nutshell, the above construction will be modified so as
to ensure that v has not only smooth, but also small data, that may, in turn, be
steered to zero by local controllability.

1.2. The model. Our model is
Ou = 2u®, (1)

in three space dimensions, to fix ideas. Similar considerations apply to complex
solutions of (u + au, = Bulu|?, where o and 3 are constants. This latter problem
is a model for the envelope of the electric field of an ultra-short optical pulse, taking
normal dispersion and paraxiality corrections into account. In the language of laser
breakdown, our statement may be translated as follows:

While it is impossible to arrest laser self-focusing, it is possible to arrange
boundary data so that breakdown occurs at a place and time specified in
advance.

Before outlining the proof of this statement, we introduce some notation. We shall
have to work with two sets of variables: the original space and time variables
(z,t) € R" x R, and variables adapted to 3X: T = ¢(z) — t; X = x. We write 0;
for 9/0X;, where i runs from 1 to n; we have n = 3 in the example from nonlinear
optics, but this will not be used in the sequel. Also, ¥ may be viewed as a function
of z or X. The smoothness of ¥ is measured in Sobolev spaces: we take ¢ € H?,
where o will be taken sufficiently large. Throughout, we assume sup |[V¢| < 1 and
sup || < 1 everywhere. Therefore, [t — T| < 1. The regularity of the solution
w(X,T) will be estimated in H* x H*~1, with s > o — 4, this choice being dictated
by the regularity of the coefficients of the Fuchsian system introduced in Sect. 3.
We also let S = (1 — A)*/2. Finally, | ||s stands for the norm in H*. Recall that
multiplication is a continuous bilinear map from H® x H® to H®.

1.3. Outline of the argument. The argument for proving this controllability
of blow-up singularities for the model at hand is as follows. We are given the
compact set K within Q. We are also given sg and € > 0 so that one has local
controllability in the smooth bounded domain €2 for Cauchy data of norm less than
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g in H% x H*~1(Q) [20, 4]. We may assume sg > n/2+ 1 without loss of generality.
We first of all choose @ > 2 so that the Cauchy data for the exact solution 1/¢, for
t = a, have norm less than /4 in H*® x H*~!. The objective is to show that,
if the constants « and o are taken large enough, there is a constant p such that
|l < p ensures that there are solutions u of (1) that blow-up for ¢ = ¢ (z) and
have data on the hyperplane (¢ = «) that are less than ¢ in H® x H%~1(Q). It
is always possible to choose 1 so that it vanishes precisely on K, and is negative
elsewhere; one may also assume its H? norm to be as small as we wish—consider
A, with A positive and small if necessary. By time reversal (considering u(« — t)),
we obtain a solution with Cauchy data on (¢t = 0) that are less than ¢ in norm, and
that first blows up on K. Taking the trace of this solution on 92, we obtain the
result

There are small Cauchy data, and boundary controls on 02 that yield
a solution that blows up for t = a and « € K, and remains finite for
t=aandzx € Q\ K.

Combining this with the local controllability result gives the desired boundary con-
trol of blow-up singularities.

The rest of the paper is devoted to showing that one can choose o, o and p with
the above properties. This is achieved by constructing a solution u of (1) consisting
of three parts:

1
u:¥+<I>+T3w, (2)

where T' =t — ¢(x), and ® is an explicit expression involving ¢ and its derivatives,
and that vanishes when ¢ is identically zero. In fact, 1/t is an exact solution of
(1). In Sect. 2, ® is obtained by truncating a formal solution of (1); it is completely
determined by ¢, and has small Cauchy data on (¢ = «) is 1 is small. In Sect. 3,
w is found as the solution of a degenerate initial-value problem of Fuchsian type.
The restriction wy of w to ¥, must be specified in order to determine w. Sect. 4
deals with the estimation of w. Since |t — T'| < 1, in order to estimate the Cauchy
data of T3w in H*° x H*°~! on the hyperplane {t = a}, it suffices to estimate the
space-time Sobolev norm of index s of w on some slab of the form (a—1 < T <b),
where b > a + 1, with s > sg + 1/2, and then take the traces of T3w and (T3w);
on the hyperplane (t = «). It is such an estimate that we obtain in Sect. 5: these
traces are small if ||¢)||, + ||wo]|s is, provided o is large enough. The estimation of u
is then easily completed: « has been chosen at the outset to make the Cauchy data
of 1/t less than €/4; the Cauchy data of ® have the same property if |[¢], is less
than some M7, and those of Tw are less than £/2 if ||1||, + ||wol|s does not exceed
some Ms. Therefore, if |9l < min(M;, Ms), and ¢ is nonpositive and vanishes
only on K, we may take wg so that the resulting solution v has Cauchy data less
than € in norm, and blows up precisely on the compact K, as desired .

2. Step 1: Introduction of the formal expansion of u. In the variables (X, T),
the wave equation (1) takes the form

yury — Axu + 2V - Vup + up A = 2u?, (3)

where v = 1 — |[V4|2. The solvability of the standard Cauchy problem for (3) with
Cauchy data (f,g) on ¥ means that, if f and g in suitable function spaces, there
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is, near ¥, a unique function v such that u = f + Tg + T?%v solves (3).? Singular
solutions may be obtained by a closely related Ansatz: seek solutions in the form

1
u:T{uo—l—ulT—l—...}.

This may be viewed as a perturbation of the exact solution 1/t of (1).* In the
present situation, (1) is formally solved by an expression of the form

1
U= T {UQ +u T + ’U,QT2 + U3T3 + U4,1T4 InT + T4w} )

where w is a series in 7 and T'In T, with coefficients depending on X.* The co-
efficients ug, w1, u2, ug and ug; are entirely determined by v and its derivatives
up to order four; one finds ug = /7. They may be found recursively, and have
a geometric interpretation [9, pp. 271-273], [2]. All we need here is that they are
obtained by dividing polynomials in derivatives of ¢ by powers of v and that, apart
from wug, they vanish when v is identically zero. The rest of the series is entirely
determined by the value wo(X) of w for T' = 0, and the coefficients of the expansion
of w may be found recursively, as long as ¥ possesses sufficiently many derivatives.
Thus, the Cauchy data are replaced by the pair of singularity data (¥, wp).

There are two essential differences with the Cauchy problem: the expansion must
include logarithmic terms, even if the solution is infinitely smooth off ¥, and the
singularity data are not the first two terms in the expansion.” For our purposes,
the exact expression for the coefficients of the expansion is not needed. It suffices
to write

1
u:¥+<1>+T3w,

where

1
o — (% - 2) +uy +uT + usT? + ug 1 T3 InT.

Since o > 2, this expression has no singularity on (¢t = «); it also vanishes with
1 (and its derivatives). Because smooth functions act on Sobolev spaces of index
higher than n/2, is follows that

[@]ls + [ Pells—1 < Cla)l[¥llo (1 + [1113)

for a suitable integer ¢, and the Sobolev norms are taken on the hyperplane ¢t = «.
By the above estimate on ®, there is a constant M, that also depends on «, hence
on g, such that the Cauchy data of ® have the same property if ||¢|, < M.

2The local solvability of this problem is a very special case of standard results on symmetric-
hyperbolic systems, since any strictly hyperbolic operator admits of symmetrization, see e.g. [19,
§5.2-5.3]. An explicit reduction is given below, see (5).

3The existence of an exact solution simplifies matters, but is not essential: it is possible to
construct singular solutions by a similar Ansatz even if there is no exact solution independent of
space variables. Also, since —u is a solution if u is, there are also solutions that blow up to —oo.
Both solutions are very easy to produce numerically, by using a local explicit scheme [2].

41t is convenient to treat 7" and T'InT as if they were independent variables for bookkeeping
purposes, when computing formal series solutions.

5There are general rules to determine the form of the expansion and the nature of the data (see
[9]), that generalize the usual rules for the form of series solutions of ODEs of Fuchsian type, such
as the Bessel or hypergeometric equations, hence the name of the method; however, the present
solutions are not necessarily analytic. More general examples require even more complicated series
solutions that have no counterpart in the ODE case.
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3. Step 2: Reduced equation for w. Let us examine the equation satisfied by
w: this is the reduced equation (RE). Writing D = T, its form is

(yD(D +5) — T?Ax + T*VVOr)w = lower-order terms,

where v = 1 — |V¢(z)|?. Observe that the singular set (" = 0) is characteristic
for the operator on the left-hand side, but not for the wave operator. To obtain
w, we solve the initial-value problem for the RE with only one initial condition:
w(T = 0) = wp. This may be achieved by casting the problem in the form of a first-
order reduced system (RS), that is symmetric hyperbolic for T' # 0 [9, Th. 10.10,
pp. 186-8]:

Theorem 3.1. For s and m large enough, there are symmetric matrices Q@ and
AT 1< j <n, a constant matriz A and functions fo and f1 such that the solution
w = (w, w0y, we) of the reduced system (RS)

QD+ Ayw =TA 0w +Tfo(T, TInT,X,w)+TInTf(T,TInT, X,w), (4)
exists for small T, and generates a solution u = 1/t+®+T>3w of the wave equation,
provided that w(T = 0) is small in H® and belongs to the null-space of A.

Proof. The RS is derived from the usual symmetric system associated with the wave
equation (1) in the new variables X and T letting u := (u,u(0), u(;)), where u)
and the u; correspond to the time and space derivatives of u, this system reads:

8Tu = U(0)7

(1= |Vy|*)0ru ) = Z(aiu(i) — 20;u(0)) — (AY)ugg) + 2u®, (5)

3

aTU(Z-) = &»u(o).
Define the unknown w = (w, w(q), w(;)) through

u
u = t_O —+ U1 —+ Ugto + U3t(2) + U411t(2)t1 —+ w(to,tl,X)tg,
0

uo
U(O) = —g —+ uo + 2U3t0 + (t% —+ 3t0t1)11,471 —+ w(o) (to, tl, X)tg, (6)
Uos
U(l) = t—OOZ + uy; + u2it0 + U31‘t% + ’LU(l) (to, tl, X)t%

About the derivation of this expression, see Remark 1 below. After substitution,
the symmetric system for (u, u(g), u(;)) goes into the desired system, where Q, A7, A
are given by

1 . 0 0 0
Q= vy , and A= | 0 —2¢7 & |,
I, 0 % 0
where e/ = (0,...,1,...,0) is the jth vector of the standard basis of n-space, and

3 —-1(0 --- O
-6 210 --- 0
A= 0 0|2 0
0 010 2

The matrix A is constant, with eigenvalues 0 and 5; the former is simple. For
T =0, (4) forces Aw(T = 0) = 0, which is why the solution of the RS is determined
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by only one initial value, namely, the first component of w. The exact form of
f=Tfy+TInTf, is again not essential:® all we need is that

f =90+ g1w + gow? + gsw?,

where the coefficients gi are polynomials in 7" and T'InT without constant term,
with coefficients that are products of the coefficients of ® and of 7. The coefficient
go vanishes with ). O

Remark 1. The RS was derived by the following argument: to obtain the reduced
first-order system corresponding to a nonlinear wave equation, first reduce it to a
symmetric-hyperbolic system for the unknown u and its first derivatives ug (0 <
k < n). Determine the formal expansion a;, of u up to some given order h inclusive,
and the expansion ap—1 of uy up to order h — 1. Then, let v = (u — ah)/Th7
v = (ur — ap—14)/T"" 1. The resulting system for v and the vy is the desired
reduced system if & is sufficiently large.

Remark 2. It may be shown that the reduced system has a unique local solu-
tion that may be viewed as a continuous function of 7" and T'In7T with values in
a Sobolev space, the existence proof being carried out by performing the same
computations on a regularized system obtained by Yosida regularization, or using
Friedrichs mollifiers, as in the symmetric-hyperbolic case, see e.g. [19, 9].

Remark 3. Even though @Q is positive definite, and A has no eigenvalues with
negative real parts, A is not positive definite. For this reason, we shall introduce in
the next section a weighted the L? scalar product. This annoyance could have been
avoided at the expense of further expansion of the solution by introducing a new
unknown z = [w—wo—Tw1 (T, X)—---—wy, (T, X)]/T", where wo+Twy (T, X)+- - -
is the formal expansion of w, and the wy, (kK = 0,1,...) are polynomials in InT.
By substitution, one checks that z solves a system of the same form as the first
reduced system, but with A replaced by A 4+ h. Taking h large enough, one may
always assume that A + h is positive definite.

4. Step 3: Estimating w. The local solution of the reduced system is obtained by
a modification of the method of solution of symmetric hyperbolic systems. The net
result, for our purposes, is that there is a Ty > 0 (possibly smaller than b or &), and
a unique solution w for every choice of wy small in H?, that is continuous with values
in H®. Let us therefore fix some constant M > e such that, for ||¢]s + [Jwolls < M,
we have ||w(T)||s < 2M for T < T,. By the continuity of w, this is certainly true
for small T. Since s > n/2, this implies an L> bound as well. We may also assume
that v is small enough in H to ensure that (= 1 — |V|?) remains bounded away
from zero. Since the RS is a standard symmetric hyperbolic system for T > 0, its
solutions persist as long as they do not blow up in C! (this means that u has no
singularity other than the one for T = 0). Since s > n/2 + 1, this follows from
a bound in H® x H*"!. We proceed to show that w actually satisfies stronger
estimates that will enable us to show that it actually extends to all T € [0,d], and
remains small there.

For this, we must first estimate f =T fy + T InT f1. Recall that, by Moser-type
estimates, the H® Sobolev norms of the powers of w are estimated linearly in terms

6See [9, p. 187] for the complete expressions.
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of the Sobolev norms of w if w is known to be bounded. By consideration of the
expression for f, one obtains an estimate of the form

I1£1ls < KxM)T|InT[(1 + T®)([[¢]lo + [[W(T)]ls)-

Similarly, we also have an H° (i.e., L?) estimate
11l < K2(M)T I T|(1+ TH)([|¢ o + [W(T)]o)-

The derivation of the L? estimates on w requires a slight modification of the stan-
dard scalar product. Let us write (f, g) for the real L? scalar product on functions
of the space variables X. Introduce the matrix V' = diag(6+,1,...,1); the ma-
trix VQA is then nonnegative, and satisfies VA? = A’. Multiplying (4) by V
and taking the scalar product with w, we obtain, since V'@ is independent of T',
D(w,VQw) = 2(w,VQDw), hence

%D(w, VW) + (w, VQAW) = ;T(W,Ai&w) + (w,Vf).

Now, (w,VQAw) > 0 and (w, A'‘O;w) = (—0;[A'w], w) since A’ is symmetric. It
follows, by expanding 0;[A’w], that 2(w, A'0;w) = (—[0;A")]w,w). This quantity
may be estimated by C|0; A%||~(w,Vw) < C(M)(w,Vw), since A® involves the
first derivatives of ¢. Consider now eo(T) = (w,VQw)(T), a quantity equivalent
to the L? norm since v is bounded away from zero. We obtain

Dey < T|InT|(K3(M)|[¢]lo + Ka(M)eo)(1 +T%),
hence (remembering that D = T0r),
or {(In(Ks|lls + Kaeo(T))} < |InT|(1 +T%).
Integrating, we obtain that for 0 <7 < b, one has

b
Ks3||[¢]lo + Kaeo(T) < (K40 + K4€0(0))6Xp{/0 [In7|(1+7%)dr}.

Since eo(T) is estimated by a multiple of ||wp]|s, we obtain an inequality of the form
eo(T) < Ks vl + K| wolls-

To obtain spatial derivative norms, one performs the same work on the system
solved by v = Sw, estimating es(T) = (Sw, V.Sw) (this is equivalent to the norm
of w(T') in H®). This system satisfies the same assumptions as the original one
because of commutator estimates. Time derivatives are then estimated using the
reduced system itself.

Take now s to be an integer. If o is large enough at the outset, there is a positive
d such that the inequality ||¢||» + ||wo|ls < ¢ ensures that w remains less than e,
hence less than M up to time T° = b at least, and therefore is well-defined on the
slab a—1 < T < b. Furthermore, by induction, 8%11} is, for s —k > n/2, bounded in
H*~F in this slab, so that w belongs to the Sobolev class H™ in space and time with
respect to the (X, T) variables if the integer m satisfies 2m > s and s —m > n/2.
For o, hence s large enough, we may take m greater than both n/2+ 1 and s + 1.
Since the mapping (¢,2) — (t — ¢(z),z) is a local diffeomorphism of class H?® for
any s > n/2+ 1,7 w is also of class H™ with respect to the original (x,¢) variables.
This is also true of T%w. The traces of this function and its t-derivative on (t = «)

"The composition of Sobolev maps with s > n/2 + 1 is discussed, for instance, in [7, p. 108].
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therefore belong in particular to H*° and H*°~! respectively, and are small in these
spaces if ||¥]|s + ||wo]|s is small enough.

5. Step 5: Estimating the Cauchy data of u. At this stage, we know that the
Cauchy data of 1/t and ® on {(x,t) : t = o and = € Q} are both less than /4 if
1 is small enough. We also know that the Cauchy data of T3w on (t = «) may
be made less than /2 in H*® x H*°~! by choosing o and s large enough, and the
singularity data 1 and wg small enough in their respective spaces. Therefore, the
Cauchy data of u = 1/t + ® + T3w are less than ¢ in H% x H*~! if the singularity
data are small enough, QED.

6. Concluding remarks. We have shown that the reachable set in the cubic non-
linear wave equation contains solutions that blow up on any prescribed compact
set. The control time is here a priori very large if € is (that is, if the local controlla-
bility set is very small). However, the solution is far from unique, since all solutions
having the same ¢ but different wq all have the same blow-up set. This raises the
question whether one may optimize the control time by proper choice of wg.® Also,
since there are many different functions ¢ that have the same zero set, the choice
of ¥ could also be of some interest, given that the curvature of the blow-up set is
related to the rate of concentration of the so-called “energy” [3].7

The possibility of control of singularities seems to be a further illustration of
Russell’s suggestion [17, pp. 640-641] that the development of control theory was
slowed down by the “historically dominant emphasis on well-posedness and regular-
ity” in the study of PDEs, putting to the fore the search for conditions under which
the influence of the data on the solution is “not too great.” By contrast, in control
theory “we want to know that the influence of the control functions on [the solution]
is ‘not too little’—"and the present paper shows that this influence may be largest
possible, and force the solution to become infinite. The main technical point is that
the solution admits a stable parameterization of solutions by singularity data—and
not only by Cauchy data: blow-up is a stable phenomenon, amenable to control.
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