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(Extended Abstract)

1 Introduction

The C-Web (Community Web)1 project [2] aims at supporting the sharing, integration and retrieval of information in

a specific domain of interest for a group of people who desire to access and exchange knowledge and information in

this domain. A C-Web portal (or mediator) provides the infrastructure for (1) publishing information sources and (2)

formulating structured queries by taking into consideration the conceptual representation of a specific domain in form

of an ontology.

Query mediation has been extensively studied in the literature for different kinds of mediation models and for

various source capabilities. Tsimmis [14], YAT [5], Infomaster [9], Information Manifold [13], Tukwila [15, 12] and

PICSEL [10] are among the most prominent examples of mediation systems. In C-Web, query mediation is closely

related to the last three of them which follow the local as view approach. These systems describe the source contents

in terms of the mediator schema and the resulting query rewriting algorithms are based on efficient implementations

for evaluating query subsumption and satisfiability. Similar to the above systems, in C-Web users formulate queries

in terms of the ontology and the mediator translates these queries according to the source descriptions and the source

query facilities.

In this paper we are interested in the publication and querying of XPath [6] enabled XML resources. More pre-

cisely, we want to take advantage of the structure of XML documents (generally described by a DTD) for mapping

pieces of information contained in XML fragments [11] to domain specific ontologies. The objective here is to be

able to forward user queries to diverse XML repositories while hiding their DTD heterogeneity to the end-user. Our

contribution is two-fold : (1) we propose a simple mapping language describing sources by a set of rules relating

XPath location paths to the concepts and roles of an ontology and (2) a query rewriting algorithm for translating user

queries into queries expressed in an XML query language [3, 4, 16] that are send for evaluation to XML sources.

XPath [6, 17] is a tree pattern language which allows to characterise XML fragments according to their position

in the document tree, their type and their contents. Whereas XPath does not have the full expressive power of XML

query languages, the choice of using XPath as part of a mapping language for XML documents is interesting for

several reasons. First, XPath is already part of several XML-related languages [1] for the transformation (XSLT [8]),

linkage (XLink [7]) and querying (XQL [16], XQuery [3] and Quilt [4]) of XML documents. This implies that XPath

is used by an important number of XML developers who do not have to learn a new language for writing mapping

rules and that it is implemented in a variety of tools and can be integrated very easily in a standard Web server2.

In this paper we illustrate our approach considering the integration of cultural information sources accessible from

Web servers. We show how such Web resources can be described according to an ontology (Section 2) by creating

mapping rules between XML fragments (identified by XPath expressions) and ontology concepts and roles (Section 3).

1http://cweb.inria.fr
2See for example fragserver, http://www.xml.com/pub/r/676.
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Finally we illustrate in Section 5 how these mappings can be used for the rewriting of a restricted class of OQL queries

presented in Section 4.

2 Ontologies and Schema Paths

Ontologies : An ontology is a quintuple O = (C,R, source, target, isa), where : (i) C is a set of concepts, (ii) R
is a set of binary roles between concepts in C, (iii) functions source and target map roles to their domain and target

concepts, respectively, and (iv) isa is an inheritance relationship on C with the usual properties (hierarchy on C).

An ontology usually reflects a common understanding of a certain domain. In our case we are interested with

domain-specific information stored in one or several XML databases and we define the semantics of an ontology by

the databases that conform to it : a database for an ontology O contains a set of objects (instances) for each concept

in C which are related by instances of roles in R. The isa component of O is interpreted with a subset semantics, and

we say that two concepts c and c′ are isa-related if c = c′ or c isa c′ or c′ isa c holds.

An example of an ontology for cultural artifacts is shown in Figure 1. Ten concepts and nine roles describe

actors (persons) performing activities for producing artifacts. For example, concept Person collects all persons, is a

subconcept of Actor and inherits role performed relating actors to activities.

isa

Activity
has produced

Actor

Person
has name

String

performed

Event

Event
took place at

Place

Man Made Object Title

Material
consists of

has title

Technique/Procedure

used material

technique

Place
located_at

born

Figure 1: An Ontology for Cultural Artifacts

It is possible to follow schema paths between concepts in the ontology graph. For example, the artifacts produced

by an actor are obtained by traversing role performed (activities performed by actors), and then role has produced

(artifacts produced by these activities). Observe also, that this traversal defines the subset of all artifacts produced by

some actor. We distinguish between role paths defining derived roles and concept paths defining virtual concepts.

Role paths and derived roles : A role path of length n (n ≥ 1) is a sequence r = r1 . . . rn, where ri are roles, such

that for all 1 ≤ i < n, target(ri) and source(ri+1) are isa-related. The source and target of a role path are defined

by the source and the target of its extremities : source(r) = source(r1) and target(r) = target(rn). Clearly, the

composition of a role path r and a role path r′, denoted r ◦ r′, is well-defined provided that target(r) and source(r′)
are isa-related. Role performed is a role path of length 1 with source Actor and target Activity. A role path r of length

> 1 defines a derived role, rol(r) from instances of its source concept to instances of its target concept. For example,

role path technique.used material of length 2 defines a derived role, rol(technique.used material) between concept

Man Made Object and concept Material. A sequence r1.r2 can be viewed as a derived role whose every instance

connects an instance o of source(r1) with an instance o′ of target(r2), through an intermediary o′′ that must be an

instance of both target(r1) and source(r2). Instance o′′ can only exist if target(r1), source(r2) are isa-related, and

o′′ must be an instance of both concepts target(r1) and source(r2).

Concept paths and virtual concepts : A concept path p is either of the form c, or a sequence c.r, where c is a concept

and r is a role path, such that source(r) and c are isa-related. The length of p is 0 in the first case, and the length of

the role path r in the second case. The source and target of c are c. The source and target of p = c.r are defined as:

source(p) = c and target(p) = target(r). The composition of a concept path p and a role path r, denoted p ◦ r, is

well-defined provided that target(p) and source(r) are isa-related. A concept path p = c.r can be viewed as defining

a virtual concept denoted by con(p), standing for “the instances of target(p) that can be reached from source(p) by

following the roles in p, in order”. For example, concept path Person.performed.has produced denotes the artifacts

(instances of concept Man Made Object) produced by some person. We also consider that the suffixes of a concept
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path p define superconcepts of the virtual concept defined by p : a suffix of a concept path p is obtained by removing a

prefix, and adding an appropriate concept in the beginning. For example, if p = c1.r1.r2.r3, then source(r3).r3 and

source(r2).r2.r3 are its suffixes. It is evident that the extent of p is a subset of the extent of any of its proper suffixes.

Thus, we also relate a concept path and its suffixes (as virtual concepts) by isa.

Given an ontology, a set of role paths R, and a set of concept paths C defined on this ontology, we can define a

view ontology, OV = (CV , RV , sourceV , targetV , isaV ) where CV is the set of virtual concepts defined by each

concept path in C along with its superconcepts (as previously defined), RV is the set of derived roles defined by each

role path inR, and isaV is the isa relationship between virtual concepts.

3 A Mapping Language for XML

In the following we present a language for establishing mappings between XML fragments and ontology concepts

and roles. Suppose that http://www.art.com is a web server of XML documents about artists and art in general. The

corresponding DTD is shown in Figure 2.

<!ELEMENT ARTIST (NAME,NATIONALITY,ARTIFACT*)> <!ELEMENT NAME (#PCDATA)>

<!ELEMENT ARTIFACT (TITLE,PROCEDURE,LOCATION)> <!ELEMENT NATIONALITY (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)> <!ELEMENT MATERIAL (#PCDATA)>

<!ELEMENT LOCATION (#PCDATA)> <!ELEMENT STYLE (#PCDATA)>

<!ELEMENT PROCEDURE (MATERIAL,STYLE)>

Figure 2: A simple XML DTD for Artists and Art in general

The mapping rules in Figure 3 map XPath location paths to schema paths in the ontology of Figure 1 :

R1: http://www.art.com//ARTIST as u1 ← Person

R2: u1/NAME ← has name

R3: u1/ARTIFACT as u2 ← performed.has produced

R4: u2/TITLE ← has title

R5: u2/PROCEDURE as u3 ← technique

R6: u3/MATERIAL ← used material

R7: u1/NATIONALITY ← born.took place at

R8: http://www.art.com//ARTIFACT as u2 ← Man Made Object

R9: u2/LOCATION ← located at

Figure 3: Set of Mapping Rules

For example, rule R1 states that all fragments of element type ARTIST which are descendants of the root of

document http://www.art.com (see [6, 17] for the definition of XPath patterns/location paths) are instances of concept

Person. In the same way, rule R8 states that all elements of element type ARTIFACT, descendants of the root of

document http://www.art.com, are instances of concept Man Made Object. Rule R3 creates instances of the derived

role, rol(performed.has produced) connecting each element x of type ARTIST obtained by rule R1, to all elements

of type ARTIFACT that can be obtained from x by applying XPath /ARTIFACT.

Mapping Rules : A mapping rule is an expression of the form R : u/q [as v] ← p, where 1) R is the rule’s label,

2) u, the rule’s root, 3) q is an XPath location path, 4) [as v] is an optional binding of variable v and 5) p is a schema

path. More precisely, the root (u) is either a variable, or a URL and p is a role path if u is a variable and a concept path

otherwise. Rule R is called a relative mapping rule if its root is a variable, and an absolute mapping rule otherwise.

Let lp(R), cp(R) denote R’s location path q and schema path p, respectively.

A rule r : u/q as v ← p, is interpreted as follows : (1) apply location path q to all instances (x1) of variable u; (2)

the obtained fragments (x2) are added to the set of instances of variable v; (3) if u is a variable, add (x1, x2) to the set
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of instances of the derived role p; (4) if u is a URL, add x2 to the set of instances of virtual concept p. Observe that we

allow multiple bindings for the same variable. Such bindings reduce the number of mapping rules, while making the

structure easier to understand. In the opposite way, it is possible to map the same location path to different variables

in order to distinguish between two interpretations of the same set of fragments. Observe that rule R3 binds the same

variable (u2) as rule R8 which allows the application of rules R4 and R5 on the instances “found” by both rules to

obtain the artifacts’ title and technique.

Given a set of mapping rules, we define reachability for rules and variables, as follows: Each rule whose root is

a URL, or a reachable variable is reachable, and each variable bound in a reachable rule is reachable. A mapping M
over an ontology O is a set of mapping rules such that 1) labels are unique (that is, no two rules have the same label),

2) all rules are reachable (hence so are all variables) and 3) the concepts and roles used in its rules occur in O. Note

that the binding-use relationships between variables in a mapping may be cyclic. The simplest case of a cycle is a rule

whose left-hand-side contains v/A as v (provided that v can be reached from a URL by some other rules). A mapping

is cyclic if it contains a binding-use cycle.

Concatenation of mapping rules : Two rules R1 : a/q1 as v1 ← p1, R2 : v1/q2 [as v2]← p2, can be concatenated,

if the composition of their schema paths, p1 ◦p2 is well defined3. Note the constraint that the root of R2 is bound in R1

and that concatenation is possible only if p2 is a role path. The concatenation is the rule R1.R2 : a/q1/q2 [as v2] ←
p1 ◦ p2. Given a mapping M , its closure, denoted by M∗, is the set of all rules that can be obtained from M by

repeated concatenation. Its expansion, denoted M̂ , is the set of absolute rules in M∗ (M̂ ⊆ M∗). Given an ontology

O, a mapping M over O defines a view ontology, OM = (CM , RM , sourceM , targetM , isaM ) where CM is the set

of virtual concepts defined by the concept paths of absolute rules in M̂ and RM is the set of derived roles defined by

the relative rules in M∗.

4 Tree Queries

The user views the C-web portal as a single database of fragments without knowledge of the source on which each

fragment is located. We might then consider each fragment as an object whose identity is the location path of the

fragment. A mapping M , allows us to organise the fragments into collections of instances of concepts in OM , and

also to view certain XML paths as representing roles ofOM . It follows that one can in principle query this database of

fragments using a query language, such as OQL. The answer of a query is defined using the semantics of queries on

object bases. However, even though the answer is well-defined, an efficient evaluation requires that we use effectively

the mapping M to translate the query into one or more queries on the sources. Our ability to do so may depend on the

form of the query. We introduce a tree query language, as a restricted version of OQL, and discuss how mapping rules

can be used in the evaluation of queries in this language.

Tree queries are based on select-from-where clauses on schema paths. Figure 4 shows two tree queries Q and

Q1 where Q is the general form of a tree query and Q1 is an example of such a query that looks for “the titles and

location of all man made objects where clay was used in the applied technique”.

Q: select xi, xj , ... Q1: select b,d
from e1 x1, from Man Made Object a,

e2 x2 , a.has title b,
... , a.technique.used material c,
ei xi, a.located at d
ei xi, where c = “clay”

...

where c0 and c1 and ...

Figure 4: Tree Queries

Tree query Q is defined as follows. The xi’s are variables. Each ei in the from clause is either (1) a concept path

3We do not define any restriction on the concatenation of location paths (rule left-hand-sides).
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ci/ci.qi defining a (virtual) concept or (2) a variable xi followed by a derived role qi. In the first case, ci and ci.qi, and

in the second case, qi, are called the binding path of xi, denoted bp(xi). < is a partial order on the variables, such that

if xj .qi xi occurs in the from clause, then xj < xi (xj is called the parent of xi). The where clause is a conjunction

of simple predicates, of the form ck ≡ xiθd in which θ ∈ {=, <,>,≤,≥} and d is an atomic value. It is not possible

to express joins by equalities between variables. Schema paths appear exclusively in the from clause, a syntax that

simplifies the presentation of our rewriting algorithm4. The language has no quantifiers, aggregates, or subqueries but

a variable xj , present in the from clause but not in the select or where clauses, is implicitly existentially quantified.

5 Query Rewriting and Evaluation

We present here a query rewriting algorithm that transforms a tree query Q according to a given acyclic mapping M
into a query expressed in an XML query language. The algorithm consists of two phases, namely the binding and the

rewriting phases. In the first phase we try to find all rules whose schema paths “map” to query paths and in the second

phase we rewrite the initial query into a set of XPath expressions.

Binding Variables to Rules : Take, for example, query Q1 and the mapping shown in Figure 3. Intuitively, rules

R1.R3 and R8 might be used to find man made objects for variable a. The former finds all man made objects that have

been produced by a person and the latter can be used to find man made objects in general. Rule R4 can then be used

to find the titles for those man made objects and values for variable b. In the same way, rule R5.R6 finds the material

used to produce these objects and obtains instances for variable c.
Formally, a variable to rule binding, or shortly variable binding, for a query Q is a mapping β on a subset of

variables in Q, denoted dom(β). More precisely, if dom(β) is not empty, then β associates each variable in dom(β)
with a rule in closure M∗, such that the following holds:

1. if x is the root of query Q, then β(x) is an absolute mapping rule such that the query binding path bp(x) of

variable x denotes a superconcept of the virtual concept, con(cp(β(x))) in OM , which is the case when bp(x)
is equal to or a suffix of cp(β(x)) or a superconcept of the target of β(x);

2. else the declaration of x in Q has the form x′.q x, i.e. x is the child of variable x′ and the binding path of x is q.

Answers for x can be obtained from answers for x′, by following the binding path q of x if (1) the root variable

of rule β(x) is bound in rule β(x′), (2) the role denoted by the derived role of the rule β(x), rol(cp(β(x))), is

equal to the role denoted by the binding path of x and (3) the composition of the schema paths of the rules β(x′)
and β(x) is well-defined, i.e. the concatenation of the two rules is well-defined.

For example, for query Q1 above, the query root variable a is bound in the query to the (real) concept Man Made

Object. In this case the concept path of bp(a) is a suffix of cp(R1.R3)=Person.performed.has produced and is

equal to the concept path of cp(R8). Now, the binding path bp(b) of variable b in Q1 is has title, so we need a rule

whose schema path leads from Man Made Object to the virtual concept Man Made Object.has title; Rule R4 is

such a rule. Similar reasoning applies to the binding for variables c, d.

Binding Algorithm : A variable binding is full if it is defined on all variables of Q, and partial otherwise. Given a

query, we need to find all full variable bindings according to some mapping M . Indeed, each such binding provides, as

shown below, a subset of the answer. By taking the union of all these answers, we have a maximal answer, with respect

to the given sources and the given mapping. We assume, w.l.g, that variables are arranged in pre-order: x1, . . . , xn.

This ensures that when we try to extend a binding to a variable, it is defined on its parent. A binding is represented as

a vector of associations of variables to rules or concatenation of rules, in that order, namely {x1 7→ r1, . . . xn 7→ rn}.
We sketch here the binding algorithm for acyclic mapping rules. We assume that since the closure M∗ is finite,

it has been calculated in advance. In the first step of this algorithm, we extend the empty binding to the root variable

x1. For each absolute rule r in M∗ such that cp(r) is a subconcept of the binding concept path bp(x1), we create a

binding {x1 7→ r}. Then, we iterate through the sequence of variables, from the left. Assume we have constructed a

set of partial bindings that are defined on all variables up to and including xi, we show how to extend it to xi+1. Let

4It is easy to show that a query with schema paths in the select and the where clause can be rewritten into an equivalent query in which they

appear only in the from clause.
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xj (j < i + 1) be xi+1’s parent. Necessarily, each binding β we have constructed is defined on xj and associates a

rule r′ = β(xj) with xj . Suppose that variable v is bound in r′. Then, for each relative rule r of M∗ whose root is v,

if the schema paths of r′ and r can be composed, we extend β by xi+1 7→ r. Note that the edge from xj to xi+1 is

‘traversed in this step, and only in this step.’ After all bindings that are defined up to and including xi+1 are computed,

all previous partial bindings can be dropped.

When M is cyclic, M∗ may be infinite. In a longer version of this paper we show how to compute a useful finite

representation of M∗ that can be used to compute a finite representation of the set of bindings.

We illustrate variable binding for the mapping shown in Figure 3 and for query Q1 above. In the first step, we

need to extend the empty binding with a binding for the root variable a, associated with virtual concept Man Made

Object. An obvious one is a 7→ R8, but since Person.performed.has produced defines a subconcept, the binding

a 7→ R1.R3 is another solution and we obtain two (partial) bindings β1 and β2 defined on a. It is easy to see that each

of them can be extended afterwards by b 7→ R4, c 7→ R5.R6, d 7→ R9 to a complete binding.

Query Rewriting : Let B be a set of full variable bindings calculated by the foregoing algorithm for some query Q
and mapping M . Then for each of the variable bindings in B, we create a query QS where we replace the schema path

for a query variable with the XPath location path of the rule associated to it. For example, for query Q1, the algorithm

returns bindings β1 and β2. For binding β1 = {a 7→ R1.R3, b 7→ R4, c 7→ R5.R6, d 7→ R9} , the obtained query is :

QS1: select b, d
from http://www.art.com//ARTIST/ARTIFACT a,

a/TITLE b, a/PROCEDURE/MATERIAL c, a/LOCATION d
where c = “clay”

This query can be easily expressed in any XML query language using XPath for binding variables such as Quilt [4],

XQL [16] and XQuery [3]. However, XPath is a restricted language. For example, an XPath query can only return

one kind of node (and for each node its XML subtree). Thus, the query QS1 cannot be expressed as a single XPath

expression since it returns a set of pairs (b, d). But, we can express in XPath a request for the node of a, including in

it the conditions that the paths in the XML document leading to b, c, d exist, and that the value of node for c is equal

to “clay”. When a subtree that corresponds to a is returned, we can locally project it on the nodes for b, d.

An algorithm that decomposes a query QS into a partially ordered set of XPath expressions to be evaluated by

the sources, where the partial order implies information passing, followed by an XML query to be evaluated by the

mediator on the results of these subqueries is presented in a full version of this paper.
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