
HAL Id: hal-00948943
https://hal.science/hal-00948943

Submitted on 18 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Separating Regular Languages by Piecewise Testable
and Unambiguous Languages

Thomas Place, Lorijn van Rooijen, Marc Zeitoun

To cite this version:
Thomas Place, Lorijn van Rooijen, Marc Zeitoun. Separating Regular Languages by Piecewise
Testable and Unambiguous Languages. Mathematical Foundations of Computer Science, Aug 2013,
Austria. pp.729-740, �10.1007/978-3-642-40313-2_64�. �hal-00948943�

https://hal.science/hal-00948943
https://hal.archives-ouvertes.fr

Separating regular languages by piecewise

testable and unambiguous languages

Thomas Place, Lorijn van Rooijen and Marc Zeitoun

LaBRI, Universités de Bordeaux & CNRS
UMR 5800. 351 cours de la Libération, 33405 Talence Cedex, France.

tplace@labri.fr, lvanrooi@labri.fr, mz@labri.fr

Abstract. Separation is a classical problem asking whether, given two
sets belonging to some class, it is possible to separate them by a set from
a smaller class. We discuss the separation problem for regular languages.
We give a Ptime algorithm to check whether two given regular languages
are separable by a piecewise testable language, that is, whether a BΣ1(<)
sentence can witness that the languages are disjoint. The proof refines an
algebraic argument from Almeida and the third author. When separation
is possible, we also express a separator by saturating one of the original
languages by a suitable congruence. Following the same line, we show that
one can as well decide whether two regular languages can be separated
by an unambiguous language, albeit with a higher complexity.

1 Introduction

Separation is a classical notion in mathematics and computer science. In general,
one says that two structures L1, L2 from a class C are separable by a set L if
L1 ⊆ L and L2 ∩ L = ∅. In this case, L is called a separator.

In separation problems, the separator L is required to belong to a given
subclass Sep of C. The problem asks whether two disjoint elements L1, L2 of C
can always be separated by an element of the subclass Sep.

In the case that disjoint elements of C cannot always be separated by an
element of Sep, several natural questions arise:

(1) given elements L1, L2 in C, can we decide whether a separator exists in Sep?
(2) if so, what is the complexity of this decision problem?
(3) can we, in addition, compute a separator, and what is the complexity?

In this context, it is known for example that separation of two context-free
languages by a regular one is undecidable [11].

Separating regular languages. In this paper, we look at separation problems
for the class C of regular languages. These separation problems generalize the
task of finding decidable characterizations for subclasses Sep of C which are closed
under complement: a separation algorithm for a subclass Sep entails an algorithm
for deciding membership in Sep (i.e., membership reduces to separability). Indeed,

2

membership in Sep can be checked by testing whether the input language is
Sep-separable from its complement.

While finding a decidable characterization for Sep already requires a deep
understanding of the subclass, the search for separation algorithms is intrinsically
more difficult. Indeed, powerful tools are already available to decide membership
in Sep: one normally makes use of a recognizing device of the input language,
viz. its syntactic monoid. A famous result along these lines is Schützenberger’s
Theorem [15], which states that a language is definable in first-order logic if and
only if its syntactic monoid is aperiodic, which is easily decidable.

Now for a separation algorithm, the question is whether the input languages
are sufficiently different, from the point of view of the subclass Sep, to allow this
to be witnessed by an element of Sep. Note that we cannot use standard methods
on the recognizing devices, as was the case for the membership problem. We now
have to decide whether there exists a recognition device of the given type that
separates the input: we do not have it in hand, nor its syntactic monoid. An even
harder question then is to actually construct the so-called separator in Sep.

Contributions. In this paper, we study this problem for two subclasses of the
regular languages: piecewise testable languages and unambiguous languages.

Piecewise testable languages are languages that can be described by the
presence or absence of scattered subwords up to a certain size within the words.
Equivalently, these are the languages definable using BΣ1(<) formulas, that is,
first-order logic formulas that are boolean combinations of Σ1(<) formulas. A
Σ1(<) formula is a first-order formula with a quantifier prefix ∃∗. A well-known
result about piecewise testable languages is Simon’s Theorem [17] that states
that a regular language is piecewise testable if and only if its syntactic monoid is
J-trivial. This property yields a decision procedure to check whether a language
is piecewise testable. Stern has refined this procedure into a polynomial time
algorithm [19], of which the complexity has been improved by Trahtman [22].

The second class that we consider is the class of unambiguous languages, i.e.,
languages defined by unambiguous products. This class has been given many
equivalent characterizations [20]. For example, these are the FO2(<)-definable
languages, i.e., languages that can be defined in first-order logic using only two
variables. Equivalently, this is the class ∆2(<) of languages that are definable
by a first-order formula with a quantifier prefix ∃∗∀∗ and simultaneously by
a first-order formula with a quantifier prefix ∀∗∃∗. Note that consequently, all
piecewise testable languages are FO2(<)-definable. It has been shown in [12]
for ∆2(<), and in [21] for FO2(<) that these are exactly the languages whose
syntactic monoid belongs to the decidable class DA.

There is a common difficulty in the separation problems for these two classes.
A priori, it is not known up to which level one should proceed in refining
the candidate separators to be able to answer the question of separability. For
piecewise testable languages, this refinement basically means increasing the size
of the considered subwords. For unambiguous languages this means increasing
the size of the unambiguous products. For both of these classes, we are able to

3

compute, from the two input languages, a number that suffices for this purpose.
This entails decidability of the separability problem for both classes.

A rough analysis yields a 3-Nexptime upper bound for separation by unam-
biguous languages. For separability by piecewise testable languages, we obtain a
better bound starting from NFAs: we show that two languages are separable if
and only if the corresponding automata do not contain certain forbidden patterns
of the same type, and we prove that the presence of such patterns can be decided
in polynomial time wrt. the size of the automata and of the alphabet. This yields
a Ptime algorithm for deciding separation by a piecewise testable language.

Related work. The classes of piecewise testable and unambiguous languages are
varieties of regular languages. For such varieties, there is a generic connection
found by Almeida [1] between profinite semigroup theory and the separation
problem: Almeida has shown that two regular languages over A are separable by
a language of a variety A∗V if and only if the topological closures of these two
languages inside a profinite semigroup, depending only on A∗V, intersect. Note
that this theory does not give any information about how to actually construct

the separator, in case two languages are separable. To turn Almeida’s result into
an algorithm deciding separability, we should compute representations of these
topological closures, and test for emptiness of intersections of such closures.

So far, these problems have no generic answer and have been studied in
an algebraic context for a small number of specific varieties. Deciding whether
the closures of two regular languages intersect is equivalent to computing the
so-called 2-pointlike sets of a finite semigroup wrt. the considered variety, see [1].
This question has been answered positively for the varieties of finite group
languages [4,14], piecewise testable languages [3,2], star-free languages [10,9], and
a few other varieties, but it was left open for unambiguous languages.

A general issue is that the topological closures may not be describable by
a finite device. However, for piecewise testable languages, the approach of [3]
builds an automaton over an extended alphabet, which recognizes the closure of
the original language. This can be performed in polynomial time wrt. the size
of the original automaton. Since these automata admit the usual construction
for intersection and can be checked for emptiness in Nlogspace, this gives a
polynomial time algorithm wrt. the size of the original automata. The construction
was presented for deterministic automata but also works for nondeterministic ones.
One should mention that the extended alphabet is 2A (where A is the original
alphabet). Therefore, these results give an algorithm which, from two NFAs,
decides separability by piecewise testable languages in time polynomial in the
number of states of the NFAs and exponential in the size of the original alphabet.

Our proof for separability by piecewise testable languages follows the same
pattern as the method described above, but a significant improvement is that
we show that non-separability is witnessed by both automata admitting a path
of the same shape. This allows us to present an algorithm that provides better
complexity as it runs in polynomial time in both the size of the automata, and
in the size of the alphabet. Also, we do not make use of the theory of profinite
semigroups: we work only with elementary concepts. We have described this

4

algorithm in [23]. Furthermore, we show how to compute from the input languages,
an index that suffices to separate them. Recently, Martens et. al. [6] also provided
a Ptime algorithm for deciding separability by piecewise testable languages,
using different proofs but do not provide the computation of such an index.

Finally, for separation by unambiguous languages, the positive decidability
result of this paper is new, up to the authors’ knowledge. It is equivalent to the
decidability of computing the 2-pointlike sets for the class DA.

2 Preliminaries

We fix a finite alphabet A = {a1, . . . , am}. We denote by A∗ the free monoid
over A. The empty word is denoted by ε. For a word u ∈ A∗, the smallest B ⊆ A

such that u ∈ B∗ is called the alphabet of u and is denoted by alph(u).

Separability. Given languages L,L1, L2, we say that L separates L1 from L2 if

L1 ⊆ L and L2 ∩ L = ∅.

Given a class Sep of languages, we say that the pair (L1, L2) is Sep-separable if
some language L ∈ Sep separates L1 from L2. Since all classes we consider are
closed under complement, (L1, L2) is Sep-separable if and only if (L2, L1) is, in
which case we simply say that L1 and L2 are Sep-separable.

We are interested in two classes Sep of separators: the class of piecewise
testable languages, and the class of unambiguous languages.

Piecewise Testable Languages. We say that a word u is a piece of v, if

u = b1 · · · bk, where b1, . . . , bk ∈ A, and v ∈ A∗b1A
∗ · · ·A∗bkA

∗.

For instance, ab is a piece of bbaccba. The size of a piece is its number of letters. A
language L ⊆ A∗ is piecewise testable if there exists a κ ∈ N such that membership
of w in L only depends on the pieces of size up to κ occurring in w. We write
w ∼κ w′ when w and w′ have the same pieces of size up to κ. Clearly, ∼κ is an
equivalence relation, and it has finite index (since there are finitely many pieces
of size κ or less). Therefore, a language is piecewise testable if and only if it is a
union of ∼κ-classes for some κ ∈ N. In this case, the language is said to be of
index κ. It is easy to see that a language is piecewise testable if and only if it is
a finite boolean combination of languages of the form A∗b1A

∗ · · ·A∗bkA
∗.

Piecewise testable languages are those definable by BΣ1(<) formulas. BΣ1(<)
formulas are boolean combinations of first-order formulas of the form:

∃x1 . . . ∃xn ϕ(x1, . . . , xn),

where ϕ is quantifier-free. For instance, A∗b1A
∗ · · ·A∗bkA

∗ is defined by the
formula ∃x1 . . . ∃xk

[
∧

i<k(xi < xi+1)∧
∧

i6k bi(xi)
]

, where the first-order variables
x1, . . . , xk are interpreted as positions, and where b(x) is the predicate testing
that position x carries letter b.

We denote by PT[κ] the class of all piecewise testable languages of index κ or
less, and by PT =

⋃

κ PT[κ] the class of all piecewise testable languages.

5

Given L ⊆ A∗ and κ ∈ N, the smallest PT[κ]-language containing L is

[L]∼κ = {w ∈ A∗ | ∃u ∈ L and u ∼κ w}.

In general however, there is no smallest PT-language containing a given language,
because removing one word from a PT-language yields again a PT-language.

Unambiguous Languages. A product L = B∗
0a1B

∗
1 · · ·B

∗
k−1akB

∗
k is called un-

ambiguous if every word of L admits exactly one factorization witnessing its
membership in L. The integer k is called the size of the product. An unambiguous

language is a finite disjoint union of unambiguous products. Observe that unam-
biguous languages are connected to piecewise testable languages. Indeed, it was
proved in [16] that the class of unambiguous languages is closed under boolean
operations. Moreover, languages of the form A∗b1A

∗ · · ·A∗bkA
∗ are unambiguous,

witnessed by the product (A \ {b1})
∗b1(A \ {b2})

∗ · · · (A \ {bk})
∗bkA

∗. Therefore,
piecewise testable languages form a subclass of the class of unambiguous ones.

Many equivalent characterizations for unambiguous languages have been
found [20]. From a logical point of view, unambiguous languages are exactly
the languages definable by an FO2(<) formula [21]. FO2(<) is the two-variable
restriction of first-order logic. Another logical characterization which further
illustrates the link with piecewise testable languages (i.e. BΣ1(<)-definable
languages) is ∆2(<). A Σ2(<) formula is a first-order formula of the form:

∃x1 . . . ∃xn ∀y1 . . . ∀ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is quantifier-free. A language is ∆2(<)-definable if it can be defined both
by a Σ2(<) formula and the negation of a Σ2(<) formula. It has been proven
in [12] that a language is unambiguous if and only if it is ∆2(<)-definable.

For two words w,w′, we write, w ∼=κ w′ if w,w′ satisfy the same unambiguous
products of size κ or less. We denote by UL[κ] the class of all languages that are
unions of equivalence classes of ∼=κ, and we let UL =

⋃

κ UL[κ]. Observe that
because unambiguous languages are closed under boolean operations, UL is the
class of all unambiguous languages.

Given L ⊆ A∗ and κ ∈ N, the smallest UL[κ]-language containing L is

[L]∼=κ = {w ∈ A∗ | ∃u ∈ L and u ∼=κ w}.

In general again, there is no smallest UL-language containing a given language.

Automata. A nondeterministic finite automaton (NFA) over A is denoted by
a tuple A = (Q,A, I, F, δ), where Q is the set of states, I ⊆ Q the set of initial
states, F ⊆ Q the set of final states and δ ⊆ Q×A×Q the transition relation.
The size of an automaton is its number of states plus its number of transitions.
We denote by L(A) the language of words accepted by A. Given a word u ∈ A∗,
a subset B of A and two states p, q of A, we denote

− by p
u

−−→ q a path from state p to state q labeled u.

− by p
⊆B
−−→ q a path from p to q of which all transitions are labeled over B.

− by p
=B
−−→ q a path from p to q of which all transitions are labeled over B, with

the additional demand that every letter of B occurs at least once along it.

6

Given a state p, we denote by scc(p,A) the strongly connected component of p
in A (that is, the set of states that are reachable from p and from which p can
be reached), and by alph scc(p,A) the set of labels of all transitions occurring in
this strongly connected component. Finally, we define the restriction of A to a

subalphabet B ⊆ A by A ↾B
def
= (Q,B, I, F, δ ∩ (Q×B ×Q)).

Monoids. Let L be a language and M be a monoid. We say that L is recognized

by M if there exists a monoid morphism α : A∗ → M together with a subset
F ⊆ M such that L = α−1(F). It is well known that a language is accepted by
an NFA if and only if it can be recognized by a finite monoid. Further, one can
compute from any NFA a finite monoid recognizing its accepted language.

3 Separation by piecewise testable languages

Since PT[κ] ⊂ PT, PT[κ]-separability implies PT-separability. Further, for a
fixed κ, it is obviously decidable whether two languages L1 and L2 are PT[κ]-
separable: there is a finite number of PT [κ] languages over A, and for each of them,
one can test whether it separates L1 and L2. The difficulty for deciding whether
L1 and L2 are PT-separable is to effectively compute a witness κ = κ(L1, L2),
i.e., such that L1 and L2 are PT-separable if and only if they are PT [κ]-separable.
Actually, we show that PT-separability is decidable, by different arguments:

(1.a) We give a necessary and sufficient condition on NFAs recognizing L1 and L2,
in terms of forbidden patterns, to test whether L1 and L2 are PT-separable.

(1.b) We give a polynomial time algorithm to check this condition.
(2) We compute κ ∈ N from L1, L2, such that PT-separability and PT [κ]-

separability are equivalent for L1 and L2. Hence, if the Ptime algorithm an-
swers that L1 and L2 are PT-separable, then [L1]∼κ is a valid PT-separator.

Let us first introduce some terminology to explain the necessary and sufficient
condition on NFAs. Let A be an NFA over A. For u0, . . . , up ∈ A∗ and nonempty

subalphabets B1, . . . , Bp ⊆ A, let u = (u0, . . . , up) and B = (B1, . . . , Bp). We
call (u,B) a factorization pair. A (u,B)-path in A is a successful path (leading
from the initial state to a final state of A), of the form shown in Fig. 1.

u0 ⊆ B1 ⊆ B1 u1
up−1 ⊆ Bp ⊆ Bp up

= B1
= Bp

Fig. 1. A (u,B)-path

Recall that edges denote sequences of transitions (see section Automata, p. 5).
Therefore, if A has a (u,B)-path, then L(A) contains a language of the form
u0(x1y

∗
1z1)u1 · · ·up−1(xpy

∗
pzp)up, where alph(xi) ∪ alph(zi) ⊆ alph(yi) = Bi.

Given NFAs A1 and A2, we say that a factorization pair (u,B) is a witness

of non PT-separability for (A1,A2) if there is a (u,B)-path in both A1 and A2.
For instance, A1 and A2 pictured in Fig. 2 have a witness of non PT-separability,
namely the factorization pair (u,B) with u = (ε, c, ε) and B = ({a, b}, {a}).

7

Automaton A1

a

b
c a

a
b

a
b c

Automaton A2

a

Fig. 2. A witness of non PT-separability for (A1,A2): u = (ε, c, ε), B = ({a, b}, {a})

We are now ready to state our main result regarding PT-separability.

Theorem 1. Let A1 and A2 be two NFAs over A. Let L1 = L(A1) and L2 =
L(A2). Let k1, k2 be the number of states of A1 resp. A2. Define p = max(k1, k2)+1

and κ = p|A|22
|A||A|(p|A|+1). Then the following conditions are equivalent:

(1) L1 and L2 are PT-separable.

(2) L1 and L2 are PT[κ]-separable.
(3) The language [L1]∼κ separates L1 from L2.

(4) There is no witness of non PT-separability in (A1,A2).

Condition (2) yields an algorithm to test PT-separability of regular languages.
Indeed, one can effectively compute all piecewise testable languages of index κ

(of which there are finitely many), and for each of them, one can test whether it
separates L1 and L2. Before proving Theorem 1, we show that Condition (4) can
be tested in polynomial time (and hence, PT-separability is Ptime decidable).

Proposition 2. Given two NFAs A1 and A2, one can determine whether there

exists a witness of non PT-separability in (A1,A2) in polynomial time wrt. the

sizes of A1 and A2, and the size of the alphabet.

Proof. Let us first show that the following problem is in Ptime: given states
p1, q1, r1 of A1 and p2, q2, r2 of A2, determine whether there exists a nonempty

B ⊆ A and paths pi
⊆B
−−→ qi

(=B)
−−−→ qi

⊆B
−−→ ri in Ai for both i = 1, 2.

To do so, we compute a decreasing sequence (Ci)i of alphabets overapproxi-
mating the greatest alphabet B that can be chosen for labeling the loops. Note
that if there exists such an alphabet B, it should be contained in

C1
def
= alph scc(q1,A1) ∩ alph scc(q2,A2).

Using Tarjan’s algorithm to compute strongly connected components in linear
time, one can compute C1 in linear time as well. Then, we restrict the automata
to alphabet C1, and we repeat the process to obtain the sequence (Ci)i:

Ci+1
def
= alph scc(q1,A1 ↾Ci

) ∩ alph scc(q2,A2 ↾Ci
).

After a finite number n of iterations, we obtain Cn = Cn+1. Note that n 6

|alph(A1) ∩ alph(A2)| 6 |A|. If Cn = ∅, then there exists no nonempty B for
which there is an (= B)-loop around both p1 and p2. If Cn 6= ∅, then it is
the maximal nonempty alphabet B such that there are (= B)-loops around q1
in A1 and q2 in A2. It then remains to determine whether there exist paths

p1
⊆B
−−→ q1

⊆B
−−→ r1 and p2

⊆B
−−→ q2

⊆B
−−→ r2, which can be performed in linear time.

8

To sum up, since the number n of iterations to get Cn = Cn+1 is bounded
by |A|, and since each computation is linear wrt. the size of A1 and A2, one can
decide in Ptime wrt. to both |A| and these sizes whether such pair of paths occurs.

Now we build from A1 and A2 two new automata Ã1 and Ã2 as follows. The
procedure first initializes Ãi as a copy of Ai. Denote by Qi the state set of Ai.
For each 4-uple τ = (p1, r1, p2, r2) ∈ Q2

1 ×Q2
2 such that there exist B 6= ∅, two

states q1 ∈ Q1, q2 ∈ Q2 and paths pi
⊆B
−−→ qi

=B
−−→ qi

⊆B
−−→ ri both for i = 1 and

i = 2, we add in both Ã1 and Ã2 a new letter aτ to the alphabet, and “summary”
transitions p1

aτ−→ r1 and p2
aτ−→ r2. Since there is a polynomial number of tuples

(p1, q1, r1, p2, q2, r2), the above shows that computing these new transitions can
be performed in Ptime. So, computing Ã1 and Ã2 can be done in Ptime.

By construction, there exists some factorization pair (u,B) such that A1 and
A2 both have a (u,B)-path if and only if L(Ã1)∩L(Ã2) 6= ∅. Since both Ã1 and
Ã2 can be built in Ptime, this can be decided in polynomial time as well. ⊓⊔

The following is an immediate consequence of Theorem 1 and Proposition 2.

Corollary 3. Given two NFAs, one can determine in polynomial time, with

respect to the number of states and the size of the alphabet, whether the languages

recognized by these NFAs are PT-separable. ⊓⊔

In the rest of the section, we sketch the proof of Theorem 1. The implications
(3)⇐⇒(2) =⇒ (1) are obvious. To show (1) =⇒ (2), we introduce some terminol-
ogy. Let us fix an arbitrary order a1 < · · · < am on A.

(p,B)-patterns. Let B = {b1, . . . , br} ⊆ A with b1 < · · · < br, and let p ∈ N. We
say that a word w ∈ A∗ is a (p,B)-pattern if w ∈ (B∗b1B

∗ · · ·B∗brB
∗)p. The

number p is called the power of w. For example, set B = {a, b, c} with a < b < c.
The word bbaababccacbabaca is a (2, B)-pattern but not a (3, B)-pattern.

ℓ-templates. An ℓ-template is a sequence of length ℓ, T = t1, . . . , tℓ, such that
every ti is either a letter a or a subset B of the alphabet A. The main idea behind
ℓ-templates is that they yield decompositions of words that can be detected using
pieces and provide a suitable decomposition for pumping. Unfortunately, not all
ℓ-templates are actually detectable. Because of this we restrict ourselves to a
special case of ℓ-templates. An ℓ-template is said to be unambiguous if all pairs
ti, ti+1 are either two letters, two incomparable sets or a set and a letter that is
not included in the set. For example, T = a, {b, c}, d, {a} is unambiguous, while
T ′ = b, {b, c}, d, {a} and T ′′ = a, {b, c}, {c}, {a} are not.

p-implementations. A word w ∈ A∗ is a p-implementation of an ℓ-template T =
t1, . . . , tℓ if w = w1 · · ·wℓ and for all i either ti = wi ∈ A or ti = B ⊆ A, wi ∈ B∗

and wi is a (p,B)-pattern. For example, abccbbcbdaaaa = a.(bccbbcb).d.(aaaa)
is a 2-implementation of the 4-template T = a, {b, c}, d, {a}, since bccbbcb is a
(2, {b, c})-pattern and aaaa is a (2, {a})-pattern.

We now use p-implementations to prove (1) =⇒ (2). The proof is divided
in two steps. First, we prove that there exists p such that if two words are p-
implementations of the same ℓ-template for some ℓ, then they can be pumped into
words containing the same pieces of size k for any k, while keeping membership

9

in the regular languages. We will then prove that if two words contain the same
pieces for a large enough size, they are both p-implementations of a common
unambiguous ℓ-template. We begin with the first step in the following lemma.

Lemma 4. Let w1 ∈ L1 and w2 ∈ L2. From L1, L2, we can compute p ∈ N such

that whenever w1, w2 are both p-implementations of an ℓ-template T for some ℓ,

then for every κ ∈ N, there exist w′
1 ∈ L1 and w′

2 ∈ L2 such that w′
1 ∼κ w′

2.

Proof. This is a pumping argument. Let k1, k2 be the number of states of automata
recognizing L1 and L2 and set p = max(k1, k2). Set w1, w2 and T = t1, . . . , tℓ as in
the statement of the lemma. Fix κ ∈ N. Whenever ti is a set B, the corresponding
factors in w1, w2 are (p,B)-patterns. By choice of p, it follows from a pumping
argument that these factors can be pumped into (κ,B)-patterns in L1 and L2. It
is then easy to check that the resulting words have the same pieces of size κ. ⊓⊔

We now move to our second step. We prove that there exists a number κ

such that two words having the same pieces of size up to κ must both be p-
implementations of a common unambiguous ℓ-template (where p is the number
introduced in Lemma 4). Again, we split the proof in two parts. We begin by
proving that it is enough to look for ℓ-templates for a bounded ℓ.

Lemma 5. Let p ∈ N. Every word is the p-implementation of some unambiguous

NA-template, for NA = 22
|A||A|(p|A|+1).

Proof. We first get rid of the unambiguity condition. Any ambiguous ℓ-template
T can be reduced to an unambiguous ℓ′-template T ′ with ℓ′ < ℓ by merging the
ambiguities. It is then straightforward to reduce any p-implementation of T into
a p-implementation of T ′. Therefore, it suffices to prove that every word is the
p-implementation of some (possibly ambiguous) NA-template.

The choice ofNA comes from Erdös-Szekeres’ upper bound of Ramsey numbers.
Indeed, for this value of NA, from every complete graph of size NA with edges
labeled over 2|A| colors, there must be some complete monochromatic subgraph
of size p|A|+ 1 (see [5] for a short proof that this bound suffices).

Observe that a word is always the p-implementation of the ℓ-template which
is just the sequence of its letters. Therefore, in order to complete our proof, it
suffices to prove that if a word is the p-implementation of some ℓ-template T

with ℓ > NA, then it is also the p-implementation of an ℓ′-template with ℓ′ < ℓ.

Fix a word w, and assume that w is the p-implementation of some ℓ-template
T = t1, . . . , tℓ with ℓ > NA. By definition, we get a decomposition w = w1 · · ·wℓ.
We construct a complete graph Γ with vertices {0, . . . , ℓ} and edges labeled by
subsets of A. For all i < j, we set alph(wi+1 · · ·wj) as the label of the edge (i, j).
Since Γ has more than ℓ > NA vertices, by definition NA there exists a complete
monochromatic subgraph with p|A|+ 1 vertices {i1, . . . , ip|A|+1}. Let B be the
color of the edges of this monochromatic subgraph. Let w′ = wi1+1 · · ·wip|A|+1

,
which is the concatenation of the p|A| words, wij+1 · · ·wij+1

, for j < p|A|. By
construction, these words have alphabet exactly B, hence w′ is a (p,B)-pattern. It
follows that w is a p-implementation of the ℓ′-template t1, . . . , ti1 , B, tip|A|+2

, . . . , tℓ
with ℓ′ = ℓ− p|A|+1. Hence ℓ′ < ℓ (except for the trivial case p = |A| = 1). ⊓⊔

10

The next lemma shown in App. A proves that once ℓ and p are fixed, given w it is
possible to describe by pieces the unambiguous ℓ-templates that w p-implements.

Lemma 6. Let ℓ, p ∈ N. From p and ℓ, we can compute κ such that for every pair

of words w ∼κ w′ and every unambiguous ℓ-template T , w′ is a p-implementation

of T whenever w is a (p+ 1)-implementation of T .

We finish the proof of the implication (1) =⇒ (2) by assembling the results.
Assume that Li is recognized by an NFA with ki states. Let p = max(k1, k2)
be as introduced in Lemma 4, NA as introduced in Lemma 5 for p + 1, and
κ = |A|(p + 1)NA be as introduced in Lemma 6. Fix κ′ > κ and assume that
we have w1 ∈ L1 and w2 ∈ L2 such that w1 ∼κ w2. By Lemma 5, w1 is the
(p+1)-implementation of some unambiguous NA-template T . Moreover, it follows
from Lemma 6 that w2 is a p-implementation of T . By Lemma 4, we finally get
that there exists w′

1 ∈ L1 and w′
2 ∈ L2 such that w′

1 ∼κ′ w′
2.

The implication (1) =⇒ (4) of Theorem 1 is easy and shown by contraposition,
see [23, Lemma 2] and Appendix. The remaining implication (4) =⇒ (1) can be
shown using Lemma 6 (see Appendix). For a direct proof, see [23, Lemma 3],
where the key for getting a forbidden pattern out of two non-separable languages
is to extract a suitable p-implementation using Simon’s factorization forests [18].

4 Separation by unambiguous languages

This section is devoted to proving that UL-separability is a decidable property.
We use an argument that is analogous to property (2) of Theorem 1 in Section 3.
We prove that if L1, L2 are languages, it is possible to compute a number κ such
that L1, L2 are UL-separable iff they are UL[κ]-separable. It is then possible to
test separability by using a brute-force approach that tests all languages in UL[κ].

In this case, we were not able to prove equivalence between UL-separability
and the existence of some common witness inside the automata of both input
languages. Because of this, we have a much higher complexity. A rough analysis
of the problem, which can be found in the Appendix, gives an algorithm that runs
in nondeterministic 3-exponential time in κ. It is likely that this can be improved.
We now state the main theorem of this section.

Theorem 7. Let M1 and M2 be monoids recognizing L1, L2 ⊆ A∗. Let κ =
(2|M1||M2|+ 1)(|A|+ 1)2. Then the following conditions are equivalent:

(1) L1 and L2 are UL-separable.

(2) L1 and L2 are UL[κ]-separable.
(3) The language [L1]∼=κ separates L1 from L2.

As in the previous section, Condition (2) yields an algorithm for testing
whether two languages are separable. Indeed, the algorithm simply computes all
languages in UL[κ] and checks for each of them whether it is a separator.

Corollary 8. It is decidable whether two regular languages can be separated by

a unambiguous language.

11

Observe that in contrast to Theorem 1, the bound κ of Theorem 7 is stated in
terms of monoids rather than in terms of automata which means an exponential
blow-up. This is necessary for our proof technique to work.

Another remark, is that by definition of UL[κ], the bound κ is defined in terms
of unambiguous products. A rephrasing of the theorem would be: there exists a
separator iff there exists one defined by a boolean combination of unambiguous
products of size κ. It turns out that κ also works for FO2(<), i.e., there exists a
separator iff there exists one defined by an FO2(<)-formula of quantifier rank κ.
This can be proved by making minor adjustements to the proof of Theorem 7.

The proof of Theorem 7 is inspired from techniques used in [13] and relies
heavily on the notion of (B, p)-patterns. The full proof, which works by induction
on the size of the alphabet, can be found in the Appendix. We actually prove
a proposition that is basically a rephrasing of Theorem 7 as a pumping-like
property. In the remainder of this section, we state this proposition and explain
why it implies Theorem 7.

Fix two regular languages L1, L2 over A, as well as their syntactic monoids
M1,M2, and the corresponding morphisms α1, α2.

Proposition 9. Let κ = (2|M1||M2| + 1)(|A| + 1)2. For all pairs of words

w1
∼=κ w2 and all κ′ > κ, there exists w′

1
∼=κ′ w′

2 such that α1(w1) = α1(w
′
1) and

α2(w2) = α2(w
′
2).

Let us briefly explain why Proposition 9 implies Theorem 7. We explain why
the direction (1) =⇒ (3) holds, since (3) =⇒ (2) and (2) =⇒ (1) are trivial.
We prove the contrapositive: assume that [L1]∼=κ is not a separator. Hence, by
definition of [L1]∼=κ, there exist w1 ∈ L1 and w2 ∈ L2 such that w1

∼=κ w2. Now,
let κ′ > κ. From Proposition 9, it follows that there exist w′

1 ∈ L1 and w′
2 ∈ L2

such that w′
1
∼=κ′ w′

2. This means that L1 and L2 cannot be separated by a
language of UL[κ′]. Since this holds for all κ′ > κ, it follows that L1 and L2 are
not UL-separable.

5 Conclusion

We proved separation results for both piecewise testable and unambiguous lan-
guages. Both results provide a way to decide separability. In the PT case, we
even prove that this can be done in Ptime. Moreover, in both cases we give an
insight on the actual separator by providing a bound on its size should it exist.

There remain several interesting questions in this field. First, one could
consider other subclasses of regular languages, the most interesting one being
full first-order logic. Separability by first-order logic has already been proven to
be decidable using semigroup theory [9]. However, this approach is difficult to
understand, it yields a costly algorithm, it only provides a yes/no answer, and no
insight about a possible separator. Another question is to get tight complexity
bounds. For unambiguous languages for instance, one can show a 3Nexptime

bound using translation to automata, but in this case, and even for piecewise
testable languages, we do not know any tight bounds on the size of separators.

12

Another observation is that right now, we have no general approach and are
bound to use ad-hoc techniques for each subclass. An interesting direction would
be to invent a general framework that is suitable for this problem in the same
way that monoids are a suitable framework for decidable characterizations.

References

1. J. Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen,
54(suppl.):531–552, 1999. Automata and formal languages, VIII (Salgótarján, 1996).

2. J. Almeida, J. C. Costa, and M. Zeitoun. Pointlike sets with respect to R and J. J.
Pure Appl. Algebra, 212(3):486–499, 2008.

3. J. Almeida and M. Zeitoun. The pseudovariety J is hyperdecidable. RAIRO Inform.

Théor. Appl., 31(5):457–482, 1997.
4. C. J. Ash. Inevitable graphs: a proof of the type II conjecture and some related

decision procedures. Internat. J. Algebra Comput., 1:127–146, 1991.
5. R. Bacher. An easy upper bound for Ramsey numbers. HAL, 00763927.
6. W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular

languages by subsequences and suffixes. In ICALP, 2013.
7. K. Etessami, M. Y. Vardi, and T. Wilke. First-order logic with two variables and

unary temporal logic. Inf. Comput., 179(2), 2002.
8. P. Gastin and D. Oddoux. LTL with past and two-way very-weak alternating

automata. In MFCS, 2003.
9. K. Henckell. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure

Appl. Algebra, 55(1-2):85–126, 1988.
10. K. Henckell, J. Rhodes, and B. Steinberg. Aperiodic pointlikes and beyond. IJAC,

20(2):287–305, 2010.
11. H. B. Hunt, III. Decidability of grammar problems. J. ACM, 29(2):429–447, 1982.
12. J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of

Computing Systems, 30(4):383–422, 1997.
13. T. Place and L. Segoufin. Deciding definability in FO2(<h, <v) on trees. Journal

version, to appear, 2013.
14. L. Ribes and P. A. Zalesskĭı. On the profinite topology on a free group. Bull.

London Math. Soc., 25:37–43, 1993.
15. M. Schützenberger. On finite monoids having only trivial subgroups. Information

and Control, 8(2):190–194, 1965.
16. M. Schützenberger. Sur le produit de concaténation non ambigu. Semigroup Forum,

13:47–75, 1976.
17. I. Simon. Piecewise testable events. In Proc. of the 2nd GI Conf. on Automata

Theory and Formal Languages, pages 214–222. Springer, 1975.
18. I. Simon. Factorization forests of finite height. Th.. Comp. Sci., 72(1):65 – 94, 1990.
19. J. Stern. Complexity of some problems from the theory of automata. Information

and Control, 66(3):163–176, 1985.
20. P. Tesson and D. Therien. Diamonds are forever: The variety DA. In Semigroups,

Algorithms, Automata and Languages, pages 475–500. World Scientific, 2002.
21. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier

alternation. In Proc. of STOC’98, pages 234–240. ACM, 1998.
22. A. N. Trahtman. Piecewise and local threshold testability of DFA. In Proc. FCT’01,

pages 347–358. Springer, 2001.
23. L. van Rooijen and M. Zeitoun. The separation problem for regular languages by

piecewise testable languages. http://arxiv.org/abs/1303.2143, 2013.

http://arxiv.org/abs/1303.2143

13

Appendix

A: Proofs of Section 3

Proof of Condition (4) Theorem 1

We prove Condition (4). We prove (4) =⇒ (1) and (3) =⇒ (4).

(4) =⇒ (1). We proceed by contraposition. Assume that L1, L2 are not PT-
separable. Recall that A1 and A2 are NFAs for L1, L2 and that k1, k2 are their

sizes. Set p = max(k1, k2) + 1 and ℓ = 22
|A||A|(p|A|+1). We prove that L1, L2 both

contain p-implementations of some NA-template T and use T to construct a
witness of non PT-separability in (A1,A2).

Let κ be as defined in Lemma 6 from ℓ and p. Because L1, L2 are not PT-
separable, there exist w1 ∈ L1 and w2 ∈ L2 such that w1 ∼κ w2. By choice
of ℓ, p and Lemma 5, w1 must be the p-implementation of some unambiguous
ℓ-template T . Applying Lemma 6, we obtain that w1, w2 are both (max(k1, k2))-
implementations of T .

Let B = (B1, . . . , Bn) be the subsequence of elements T that are sets. Let
u = (u0, . . . , un), where ui is the word obtained by concatenating the letters that
are between Bi and Bi+1 in T . By definition (u,B) is a factorization pair.

Because w1 is a (max(k1, k2))-implementation, the path used to read w1 in A1

must traverse loops labeled by each of the Bi, and clearly this is a (u,B)-path.
Using the same argument we get that the path of w2 in A2 is also a (u,B)-path.
Therefore (u,B) is a witness of non PT-separability.

(3) =⇒ (4). Again, we proceed by contraposition. Set κ as in Theorem 1 and
assume that there exists a factorization pair (u,B) that is a witness of non
PT-separabilty. We prove that [L1]∼κ is not a separator.

Set B = (B1, . . . , Bn) and u = (u0, . . . , un). By definition, this means that
there exists w1 ∈ L1 and w2 ∈ L2 of the form

u0viu1v1 · · · vnun,

where the words such that alph(vi) = Bi and vi contains a (Bi, κ)− pattern. It is
straightforward to see that w1 ∼κ w2. Therefore, w2 ∈ L2 ∩ [L1]∼κ and [L1]∼κ is
not a separator.

Proof of Lemma 6

Lemma 6. Let ℓ, p ∈ N. From p and ℓ, we can compute κ such that for every pair

of words w ∼κ w′ and every unambiguous ℓ-template T , w′ is a p-implementation

of T whenever w is a (p+ 1)-implementation of T .

Proof. We prove that the lemma holds for κ = |A|pℓ. Let w ∼κ w′ and let
T = {t1, t2, . . . , tℓ} be an unambiguous ℓ-template such that w is a p + 1-
implementation of T . We begin by giving a decomposition of w′ and prove
that it indeed witnesses the fact that w′ is a p-implementation of T . We define

14

w′
1 · · ·w

′
ℓ = w′ inductively as follows: assume that the factors are defined up to

w′
i and let u be such that w′ = w1 · · ·w

′
i · u. If ti+1 is a letter then wi+1 is just

the first letter of u, otherwise ti+1 = B ⊆ A, and in that case wi+1 is the largest
prefix of u which contains only letters of B. We will prove that w′

1 · · ·w
′
ℓ witnesses

that w′ is a p-implementation of T . The proof relies on a subresult that we state
and prove below.

To every unambiguous ℓ-template T = {t1, t2, . . . , tℓ} and p ∈ N, we associate
a piece vT,p = v1 · · · vℓ, such that for all i:

vi =

{

a if ti = a ∈ A

(b1 · · · bn)
p if ti = {b1, . . . , bn} ⊆ A

By definition, if w is a p-implementation of T then vT,p is a piece of w. Consider
vT,1 = v1 · · · vℓ. A piece v is incompatible with T when v is of the following form:
v = v1 · · · vi · u · vi+1 · · · vℓ such that if ti (resp. ti+1) is a set the first letter (resp.
last letter) of u is not in ti (resp. ti+1).

Claim 1 If w is a 1-implementation of some unambiguous ℓ-template T , then

there is no piece of w that is incompatible with T .

Proof. This is a consequence of the fact that T is unambiguous. ⊓⊔

We now prove that for all i, w′
i = a if ti is the letter a or w′

i is a word over
some B ⊆ A containing a (p,B)-pattern if ti = B. We proceed by induction,
assume that this is true up to w′

i and consider w′
i+1. Set vT,1 = v1 · · · vℓ and

vT,p+1 = v1 · · · vℓ. By induction hypothesis and by choice of κ, we know that
vi+1 · · · vℓ and vi+1 · · · vℓ are pieces of wi+1 · · ·wℓ. We distinguish two cases
depending on the nature of ti+1.

Case 1: ti+1 is some letter a. We have to prove that w′
i+1 = a. Assume that

w′
i+1 = b 6= a. Then v1 · · · vi · b · vi+1 · · · vℓ must be a piece of w′ and therefore a

piece of w (w ∼κ w′). We prove that this piece is incompatible with T , which
contradicts Claim 1. Observe that by definition of wi, if ti is a set then b 6∈ ti
(otherwise it would have been included in ti). Therefore v1 · · · vi · b · vi+1 · · · vℓ is
incompatible with T and we are done for this case.

Case 2: ti+1 is a set B = {b1, . . . , bn}. By construction, wi+1 contains only letters
in B. Therefore, we have to prove that it contains a (p,B)-pattern. Assume that it
does not. By contruction, the first letter of wi+2 is some letter c 6∈ B. If wi+1 = ε,
then v1 · · · vi · c · vi+1 · · · vℓ must be a piece of w′. Using a similar argument to
the one of the previous case, we can prove that this piece is incompatible with T ,
which contradicts Claim 1.

Otherwise, let b be the first letter of wi+1. Recall that by definition, ri+1

contains a (p+1, B)-pattern and that ri+1 · · · rℓ is a piece of wi+1 · · ·wℓ. Therefore,
since wi+1 does not contain a (p,B)-pattern, the last suffix of ri+1 containing
a (1, B)-pattern must fall in wi+2 and consequently, vi+1 · · · vℓ must be a piece
of wi+2 · · ·wℓ. It follows that v1 · · · vi · b · c · vi+1 · · · vℓ is a piece of w′ and of
w (w ∼κ w′). By definition, c 6∈ ti+1. Moreover, by construction, if ti is a set,
then b 6∈ ti. Therefore, v1 · · · vi · b · c · vi+1 · · · vℓ is incompatible with T which
contradicts Claim 1 since it is also a piece of w. ⊓⊔

15

B: Proofs of Section 4

Complexity Analysis

We briefly explain how UL-separability can be checked in 3Nexptime. This is
a very rough analysis and it is likely that this can be improved. We use the
connection between UL and FO2(<) to prove that any language in UL[κ] is
recognized by a deterministic automaton that is 3-exponential in κ. In order to
check separability it is then enough to non-deterministically guess an automaton
of size 3-exponential in κ, check if the automata recognizes an unambiguous
language and check if it is a separator. This can be done in non-deterministic
3-exponential time.

It is straightforward to see that any unambiguous product can be described
by an FO2(<) formula whose nesting depth of quantifiers is polynomial in the
size κ of the product. One can then construct an equivalent unary temporal
logic (UTL) formula that is exponential in size [7]. From this UTL formula, it is
then possible to construct an equivalent deterministic automaton that is double
exponential in size [8]. This automaton is 3-exponential in κ.

Proof of Theorem 7

We prove Proposition 9. As we explained, our proof relies heavily on the notion
of (B, p)-patterns. However, in this case we will only need to use (B, p)-patterns
where B is the whole alphabet A. For this reason, we simply write p-pattern for
(A, p)-pattern. We begin by giving a brief outline of the proof. We fix a large
enough l, intuitively l needs to be large enough so that we can apply our pumping
arguments to words of length l. Then, we show that κ is large enough in order to
ensure that w1, w2 are both a 2l-pattern or neither of them are. In both cases,
we are then able to decompose w1, w2 into sequences of factors that are pairwise
equivalent and use a smaller alphabet. We then apply induction on these factors.
In the second case, it then suffices to reconcatenate the factors to obtain the
desired result. In the first case, a pumping argument depending on l will also be
needed. Before providing the lemmas involved in the construction, we first give
some additional definitions concerning k-patterns that will come in conveniently.

Decompositions for k-patterns. Recall that by definition, a word w is a k-
pattern iff w ∈ (A∗a1 · · ·A

∗anA
∗)k. This means that w can be decomposed into

a sequence of factors witnessing its membership in (A∗a1 · · ·A
∗anA

∗)k:

w =

kn
∏

i=1

(wi · ai mod n) · wkn+1.

To each word w we associate a unique such decomposition for the largest integer k
such that w is a k-pattern. Let w ∈ A∗, we say that w admits a k-decomposition iff
w is a k-pattern but not a k+1-pattern. It is straightforward to see that if w admits

16

a k-decomposition then there exists an integer l such that kn < l < (k+1)n, and

w =

l
∏

i=1

(wi · ai mod m) · wl+1, (1)

such that for all i, ai mod m 6∈ wi. The integer l is called the length of the
decomposition. We give an example of a word that admits a 1-decomposition (of
length 5) in Figure (3).

bcacbbcccaccbaa

{

w1

{

w2

{

w3

{

w4

{

w5

{

w6

Fig. 3. w = bcacbbcccaccbaa over A = {a, b, c} admits a 1-decomposition

We now state two lemmas that are needed for our construction. Both lemmas
link k-decompositions to unambiguous languages. The first one states that k-
decompositions can be detected using an unambiguous product with large enough
size. Moreover, using products of the same size, one can also describe the products
that are satisfied by the factors in the k-decomposition.

Lemma 7. Let k, κ̃ ∈ N such that κ > κ̃ + k(|A| + 1). Then for every pair

of words u ∼=κ v and all h 6 k, u admits an h-decomposition iff v admits an

h-decomposition. Moreover, the associated decompositions, as described in (1),
are of the same length l:

u =
∏l

i=1(ui · ai mod m) · ul+1

v =
∏l

i=1(vi · ai mod m) · vl+1

and for all i, ui
∼=κ̃ vi.

Proof. For the sake of readability, for all a ∈ A we will write Aa for the alphabet
A \ {a} and for all number i, we will write bi for ai mod m. Assume that u admits
an h-decomposition and consider the associated decomposition:

u =

l
∏

i=1

(ui · bi) · ul+1.

Consider the following unambiguous product:

P =

l
∏

i=1

(Abi · bi) ·Abl+1
.

By construction, P is of size l 6 k(|A|+ 1) < κ and u ∈ P . Therefore, v ∈ P

and v admits an h-decomposition together with the associated decomposition:

17

v =
l

∏

i=1

(vi · bi) · vl+1.

It remains to prove that for all i, ui
∼=κ̃ vi. Assume that ui belongs to some

unambiguous product P ′ of size κ̃. This means that u is in the unambiguous
product:

P ′′ =
i−1
∏

j=1

(Abj · bj) · (P
′ · bi) ·

l
∏

j=i+1

(Abj · bj) ·Abl+1
.

Because P ′′ is of size at most κ̃+ k(|A|+ 1), we have v ∈ P ′′. By assumption
on the decomposition of v, this means that vi ∈ P ′ and we are done. ⊓⊔

Our second lemma states that if a word has both a prefix and a suffix that are
large enough k-patterns, then the middle part has no influence on membership
in an unambiguous product.

Lemma 8. Let κ′ ∈ N, and let u, v be two words that are both κ′-patterns. Then

for all words w1, w2, the following equivalence holds:

u · w1 · v ∼=κ′ u · w2 · v.

Proof. We begin by observing a simple property of unambiguous products.

Remark 1 Let B∗
0a1B

∗
1 · · ·B

∗
κ′−1aκ′B∗

κ′ be an unambiguous product. There can

be at most one set Bi such that Bi = A.

Let P = B∗
0a1B

∗
1 · · ·B

∗
κ′−1aκ′B∗

κ′ an unambiguous product of size κ′ and
assume that uw1v ∈ P . We prove that uw2v ∈ P . Since uw1v ∈ P , there exists
some decomposition

uw1v = x0a1x1 · · ·xκ′−1aκ′xκ′

that is a witness. If no set Bi is the whole alphabet A, then uw1v is at most a
κ′-pattern, which is impossible since it is by definition a 2κ′-pattern. Therefore, by
Remark 1 there is exactly one set Bi such that Bi = A. It follows that the words
x0a1x1 · · ·xi−1 and ai+1 · · ·xκ′−1aκ′xκ′ are at most κ′ − 1-patterns. Therefore,
they are respectively a prefix of u and a suffix of v (which are κ′-patterns). It
follows that there exists some word yi such that

uw2v = x0a1x1 · · ·xi−1yiai+1 · · ·xκ′−1aκ′xκ′ .

Such a decomposition for uw2v is witness for membership in P . We conclude
that uw2v ∈ P .

⊓⊔

18

We can now finish our construction by using Lemma 7 and Lemma 8 and
prove Proposition 9. The proof goes by induction on the size of the alphabet.

We begin by fixing the size of the patterns we are going to look for in w1, w2.
Set k = |M1||M2|. A pigeonhole principle argument proves that for s0, . . . , sk ∈ M1

and r0, . . . , rk ∈ M2, there exist i < j such that both s0 · · · si−1 = s0 · · · sj and
r0 · · · ri−1 = r0 · · · rj . We will look for k-patterns.

Observe that κ = (2k+1)(m+1)2 (recall thatm = |A|). We prove Proposition 9
by induction on m. Let κ′ > κ, w1

∼=κ w2 and set κ̃ = (2k + 1)m2. By Lemma 7,
either both w1, w2 admit h-decompositions for some h < 2k or both w1, w2 do
not admit h-decomposition for h 6 2l. We treat these cases separately.

Case 1: both w1 and w2 admit h-decompositions for h < 2k. Observe that
κ̃ = (2k + 1)m2 implies that κ > κ̃ + 2k(m + 1). Therefore, we can apply the
second part of Lemma 7 to w1 and w2. This yields the following decompositions:

w1 =
∏l

i=1(ui · ai mod m) · ul+1

w2 =
∏l

i=1(vi · ai mod m) · vl+1

such that for all i, ui
∼=κ̃ vi. Also observe that by definition of these decompositions

ui, vi use a strict subalphabet of A. Therefore, the induction hypothesis can be
used and for all i we get words u′

i, v
′
i such that u′

i
∼=κ′ v′i, α1(ui) = α1(u

′
i) and

α2(vi) = α2(v
′
i). Now, consider the words:

w′
1 =

∏l

i=1(u
′
i · ai mod m) · u′

l+1

w′
2 =

∏l

i=1(v
′
i · ai mod m) · v′l+1

By construction, we have w′
1
∼=κ′ w′

2, α1(w1) = α1(w
′
1) and α2(w2) = α2(w

′
2) and

we are done.

Case 2: both w1 and w2 do not admit h-decompositions for h 6 2k. This
means that w1, w2 are both 2k-patterns. A simple argument as in the proof of
Lemma 7 shows that w1, w2 can be decomposed into three factors:

w1 = ul · uc · ur

w2 = vl · vc · vr

such that ul
∼=κ−k(m+1) vl, ur

∼=κ−k(m+1) vr, uc
∼=κ−k(m+1) vc and ul, vl, ur, vr

admit k-decompositions. We prove that it is possible to construct u′
l
, v′

l
, u′

r
, v′

r

such that:

(1) u′
l
∼=κ′ v′

l
and u′

r
∼=κ′ v′

r
.

(2) α1(ul) = α1(u
′
l
), α1(ur) = α1(u

′
r
), α2(vl) = α2(v

′
l
) and α2(vr) = α2(v

′
r
).

(3) u′
l
, v′

l
, u′

r
, v′

r
are all κ′-patterns.

We only give the proof for u′
l
, v′

l
, as the proof for u′

r
, v′

r
is identical. Observe

that κ− k(m+ 1) > κ̃+ k(m+ 1). Therefore, we can apply Lemma 7 to ul and
vl. This yields the following decompositions:

ul =
∏l

i=1(ui · ai mod m) · ul+1

vl =
∏l

i=1(vi · ai mod m) · vl+1

19

such that for all i, ui
∼=κ̃ vi. Moreover the length l of the decompositions is

l > km. Also observe that by definition of these decompositions, ui, vi use a strict
subalphabet of A. Therefore, the induction hypothesis can be used and for all i
we get words u′

i, v
′
i such that u′

i
∼=κ′ v′i, α1(ui) = α1(u

′
i) and α2(vi) = α2(v

′
i). We

now use the fact that our choice of k allows us to pump the sequences of factors
into large sequences: there exist numbers 0 6 j1 < j2 6 k such that

∏(j1−1)n
i=1 α1(u

′
i · ai mod m) =

∏j2n

i=1 α1(u
′
i · ai mod m)

∏(j1−1)n
i=1 α2(v

′
i · ai mod m) =

∏j2n

i=1 α1(u
′
i · ai mod m)

Now set,

e1 =
∏j2n

i=(j1−1)n+1 u
′
i · ai mod m

e2 =
∏j2n

i=(j1−1)n+1 v
′
i · ai mod m

u′
l
=

∏j1n

i=1(u
′
i · ai mod m) · (e1)

κ′

·
∏l

i=j2n+1(u
′
i · ai mod m) · u′

l+1

v′
l
=

∏j1n

i=1(v
′
i · ai mod m) · (e2)

κ′

·
∏l

i=j2n+1(v
′
i · ai mod m) · v′l+1

Observe that by construction u′
l
∼=κ′ v′

l
(they are products of pairwise equiv-

alent factors). Moreover, by construction of e1, e2, we have α1(ul) = α1(u
′
l
)

and α2(vl) = α1(v
′
l
). Finally, since e1, e2 are 1-patterns, u′

l
, v′

l
are κ′-patterns.

Using the same construction for ur, vr, we obtain u′
r
, v′

r
. We can now finish our

construction by giving w′
1, w

′
2:

w′
1 = u′

l
· uc · u

′
r

w′
2 = v′

l
· vc · v

′
r

By construction it is clear that α1(w1) = α1(w
′
1) and α2(w2) = α2(w

′
2).

Moreover, because u′
l
, u′

r
are κ′-patterns it follows from Lemma 8 that

u′
l
· uc · u

′
r
∼=κ′ u′

l
· vc · u

′
r

Finally, since u′
l
∼=κ′ v′

l
and u′

r
∼=κ′ v′

r
, we have

u′
l
· vc · u

′
r
∼=κ′ v′

l
· vc · v

′
r

Combining the two equivalences we obtain w′
1
∼=κ′ w′

2, which concludes the proof.

	Separating regular languages by piecewise testable and unambiguous languages

