
HAL Id: hal-00948905
https://hal.science/hal-00948905v1

Preprint submitted on 18 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control plane extension - Status of the SFA deployment
Thierry Parmentelat, Jordan Auge, Loïc Baron, Mohamed Amine Larabi,

Nikos Mouratidis, Harris Niavis, Mohammed Yasin Rahman, Thierry
Rakotoarivelo, Florian Schreiner, Donatos Stavropoulos, et al.

To cite this version:
Thierry Parmentelat, Jordan Auge, Loïc Baron, Mohamed Amine Larabi, Nikos Mouratidis, et al..
Control plane extension - Status of the SFA deployment. 2013. �hal-00948905�

https://hal.science/hal-00948905v1
https://hal.archives-ouvertes.fr

SEVENTH FRAMEWORK PROGRAMME

Theme 3

Information and Communication Technologies

Deliverable D1.2

Control plane extension – Status of the SFA deployment

Grant Agreement number: 287581

Project acronym: OpenLab

Project title: OpenLab: Extending FIRE testbeds and tools

Funding Scheme: Large scale integrating project

Project website address: www.ict-openlab.eu

Date of preparation: August 29th, 2013

Project co-funded by the European Commission within the
Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

OpenLab: Extending FIRE testbeds and tools page 2/45

Document properties

People

Document Editor: Thierry Parmentelat (INRIA)

Authors:

Jordan Augé (UPMC)
Löıc Baron (UPMC)
Amine Larabi (INRIA)
Nikos Mouratidis (CSE)
Harris Niavis (UTH)
Mohammed-Yasin Rahman (UPMC)
Thierry Rakotoarivelo (NICTA)
Florian Schreiner (FOKUS)
Donatos Stavropoulos (UTH)
Christos Tranoris (UoP)
Alexander Willner (TUB)

History

This version : 1.0 (August 29th, 2013): Final

Tagged releases : 1.0 (August 29th, 2013): Final
0.9 (July 28th, 2013): Prerelease
0.8 (June 17th, 2013): Draft, Mostly complete
0.1 (May 14nd, 2013): Skeleton

Git repo : https://git.ict-openlab.eu/?p=deliverable1.2.git

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

https://git.ict-openlab.eu/?p=deliverable1.2.git

OpenLab: Extending FIRE testbeds and tools page 3/45

Abstract

This document describes the progress made within Work Package 1 “Control Plane Extensions”
over the second year of the OpenLab project. In a nutshell, it highlights our progress and
achievements along the four strategical directions that we have been pursuing as part of our
roadmap, and namely

SFA SfaWrap v3 now comes with support for the AM API v3, that exposes a more elaborate
lifecycle for slices provisioning; for that reason SfaWrap expects a slightly different interface
to be fulfilled by testbed drivers, although a compatibility layer is available until all drivers
have migrated; we also describe in more details how the actual SFA interfaces have been
implemented for both the NITOS and OSIMS testbeds.

Teagle The teagle codebase has taken advantage of the move towards supporting SFA to undertake
a rather deep redesign, in order to achieve a fully recursive federation model; in addition
we describe the implications for the UoP and TSSG testbeds.

FRCP As announced in the year-1 review meeting, we have made great progress towards specify-
ing and implementing FRCP as a new esperanto for Experimental Plane tools to be able
to manage resources; this paradigm, although under active development, is expected to
have shortly support in user tools (EC, NEPI) as well as in testbeds (PLE).

MySlice A great deal of resources have been dedicated to the design and implementation of MyS-
lice, both on the backend and frontend aspects. On the backend side, a generic software
component named manifold has been isolated and packaged separately. On the frontend
side, we have the seeds of a portal that can support a great portion of the experiment
lifecycle.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools page 4/45

Contents

1 Introduction 8

2 Task 1.1 “Improve and Contribute to the SFA” 8
2.1 Aggregate Manager API v3 . 8

2.1.1 Implementation . 8
2.1.2 Experiment lifecycle within AM API v3 10

2.2 Resource reservation . 11
2.3 Exposing NITOS testbed through SFA . 11
2.4 SFA interface for the OSIMS testbed . 15

2.4.1 Enabling OSIMS with SFA . 15
2.4.2 Advertised RSpec . 17

3 Task 1.2 - “Federation Framework Interoperability” 19
3.1 Contributions to the SFA-Teagle interoperability 19

3.1.1 SFA-related extensions of the Teagle framework 20
3.1.2 Enabling PTM with SFA and SFAAdapter 26
3.1.3 Integrating the TSSG IMS testbed with the control framework 29

3.2 Contributions to the SFA-OMF interoperability 30

4 Task 1.3 “Bridging SFA and the Experimental Plane” 31
4.1 FRCP Design and Specification . 31

4.1.1 Messaging System, Naming and Addressing 31
4.1.2 Protocol and Interactions . 32
4.1.3 Message Syntax . 33

4.2 FRCP Implementation and Deployment Status 35
4.2.1 Implementation . 35
4.2.2 Deployment . 35

5 Task 1.4 “Extension of the Facility and Ops-oriented Tools” 36
5.1 MySlice developments . 36

5.1.1 Description . 36
5.1.2 Evolutions to the MySlice web frontend 36
5.1.3 MySlice portal functionalities . 37
5.1.4 Improvements to the backend . 38

5.2 Provisioning reservable resources through MySlice 40
5.2.1 Developing NITOS Scheduler’s plugin . 40
5.2.2 NITOS Scheduler’s plugin layout . 40

5.3 Extension of the TSSG testbed facilities with OpenFlow 42

6 Task 1.5 “Enlarging the facility Consortium” 43

7 Conclusion 43

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools page 5/45

List of Figures

1 Sliver allocation states . 9
2 SfaWrap on top of NITOS testbed . 12
3 NITOS and PlanetLab Europe federation via SfaWrap 14
4 OSIMS testbed resources . 16
5 Teagle Architecture, Components and Layers . 20
6 Initial Approach for an SFA-enabled Teagle . 21
7 FITeagle Architecture, Components, and Layers 22
8 FITeagle Overall Architecture and Components 23
9 FITeagle Sequence Diagram (first steps only) . 25
10 PTM enhanced architecture with SFAAdapter . 26
11 TSSG IMS Testbed Integration . 29
12 Basic protocol interaction using FRCP. 32
13 Screenshots from the MySlice portal . 37
14 MySlice dashboard . 38
15 NITOS Scheduler plugin layout . 40
16 Updating the slice . 41
17 TSSG Floodlight OpenFlow Controller . 42

List of Tables

1 AM API methods in v2 and v3 . 9

Listings

1 An rspec fragment for a lease . 11
2 Structure of NITOS RSpec. 13
3 OSIMS SFA configuration. 15
4 OSIMS advertised rspec. 17
5 OSIMS lease . 18
6 OSIMS lease rspec example . 18
7 The SFAresp tag . 26
8 A simplified response RSpec . 27
9 How to set a user and password . 28
10 FRCP Message Format . 33
11 Example of a FRCP Message Exchange . 34

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools page 6/45

Acronyms

AM Aggregate Manager . 8

AMQP Advanced Message Queuing Protocol. .23

BonFIRE Building Service Testbeds on FIRE [10] . 21

CORBA Common Object Request Broker Architecture . 24

DSL Domain Specific Language . 19

FCI Federation Computing Interface [18] . 23

FI-PPP Future Internet Public Private Partnership [9] .24

FI-WARE Future Internet Core Platform [8] . 24

FIRE Future Internet Research and Experimentation . 21

FRCP Federated Resource Control Protocol .21

FSDL Federation Scenario Description Language [19] . 19

FSToolkit Federation Scenario Toolkit [19] . 19

GE Generic Enabler . 24

GENI Global Environment for Networking Innovations. .8

GID Global Identifier . 14

GUI Graphical User Interface . 23

GW Teagle Gateway. 21

IMS IP Multimedia Subsystem. .20

J2EE Java Platform Enterprise Edition . 25

JMS Java Message Service . 25

JSON JavaScript Object Notation . 24

LDAP Lightweight Directory Access Protocol . 24

OCCI Open Cloud Computing Interface . 21

OMF cOntrol and Management Framework . 23

OSGI Open Services Gateway initiative . 26

PII PII [20, 24]

PLE PlanetLab Europe . 14

PTM PanLab Testbed Manager . 19

RA Resource Adapter . 19

REST Representational State Transfer . 23

RSpec Resource Specification . 10

SFA Slice-based Federation Architecture [13] . 8

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools page 7/45

SFI SFA Command-Line Interface . 23

SLA Service-Level Agreement . 24

SMTP Simple Mail Transfer Protocol . 24

SOAP Simple Object Access Protocol . 23

SSH Secure Shell . 24

Teagle Teagle [18, 22,23,25]

TSSG Telecommunications Software & Systems Group. 20

URN Uniform Resource Name . 11

VCT Virtual Consumer Testbed . 19

VCTTool Virtual Customer Testbed Tool [22] . 19

XML-RPC XML Remote Procedure Call . 23

XML eXtensible Markup Language . 24

XMPP eXtensible Messaging and Presence Protocol . 23

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 8/45

1 Introduction

This document describes the progress made by the team involved in Work Package 1 Control
plane extension over the first year of the project, i.e. from September 2011 to August 2012.
It is organised along the various tasks that are defined in Work Package 1 as per the Project’s
“Description of Work” [3].

2 Task 1.1 “Improve and Contribute to the SFA”

During this second year project period, our contribution to Slice-based Federation Architecture
was focused on extending our implementation of Slice-based Federation Architecture [13] (SFA),
known as Generic SFA Wrapper (a.k.a. SfaWrap), by implementing the Aggregate Manager
API v3 [17], adding support for time-based resource reservation, and enlarging the federation
by exposing NITOS [12] and OSIMS testbeds through SFA.

2.1 Aggregate Manager API v3

The Aggregate Manager (AM) API, which is part of the Global Environment for Networking
Innovations (GENI) [7] specifications, is the control plane interface through which experimenters
discover resources and allocate resources to their slices in the form of slivers at resource providers.
The AM API does not include resource specific interactions, application level interactions, or
monitoring and management functions, which are deemed as belonging to the Experimental
Plane.

2.1.1 Implementation

Following our contribution to the specification of the AM API v3, that was reported in the
previous Deliverable D1.1, we have focused on coming up with a separate implementation of
SfaWrap that supports AM API v31.

Firstly, we started by implementing the AM API v3 methods, knowing that since the AM API
v2 [16], several changes have been introduced in terms of method names, signatures and scopes.
Multiple methods have been renamed by removing the sliver term from the method names. The
AM API v2 CreateSliver method has been broken into three new methods: Allocate to reserve
the resources, Provision to instantiate the resources and PerformOperationalAction to start,
stop or restart the resources. Also, ListResources is no longer used to list the resources that are
attached to a slice, the new method Describe has been introduced to handle this functionality.
Table 1 depicts the AM API methods changes between v2 and v3.

Secondly, our AM API v3 implementation had to manage a new allocation mechanism which
specifies three sliver allocation states, and the transitions between them that are made through
new methods: Allocate, Provision and Delete as depicted in Figure 1.

Then, we worked on the testbed’s driver side of SfaWrap, by implementing an AM API

1SfaWrap v3 http://git.onelab.eu/?p=sfa.git;a=shortlog;h=refs/heads/geni-v3.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://git.onelab.eu/?p=sfa.git;a=shortlog;h=refs/heads/geni-v3

OpenLab: Extending FIRE testbeds and tools Section 2 – page 9/45

AM API v2 AM API v3

GetVersion GetVersion

ListResources () ListResources ()
ListResources (slice) Describe (slice)

CreateSliver Allocate
Provision
PerformOperationalAction

DeleteSliver Delete

SliverStatus Status

RenewSliver Renew

Shutdown Shutdown

Table 1: AM API methods in v2 and v3

Figure 1: Sliver allocation states

v3 compliant driver for PlanetLab2 and also the driver around the Dummy3 testbed, which
represents a key developer brick for testbed providers willing to write a driver for their own
testbed.

Finally, we implemented a v2 to v3 adapter4 which represents the glue between the already
existing AM API v2-compliant drivers, such as: NITOS, SensLab [15], Federica [5], and the AM
API v3 compliant interfaces of SfaWrap. The v2 to v3 adapter provides v3 compatibility to
already existing v2-based testbed drivers, until their authors find the time to adapt their driver
for a native support of AM API v3 if they want to take full advantage of the new lifecycle. It
is hopefully a temporary component, since we expect all known drivers to migrate to this new
model eventually.

2PlanetLab driver http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/planetlab;hb=refs/heads/geni-v3.
3Dummy driver http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/dummy;hb=refs/heads/geni-v3.
4v2-to-v3 adapter http://git.onelab.eu/?p=sfa.git;a=blob;f=sfa/managers/v2_to_v3_adapter.py;hb=

refs/heads/geni-v3.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/planetlab;hb=refs/heads/geni-v3
http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/dummy;hb=refs/heads/geni-v3
http://git.onelab.eu/?p=sfa.git;a=blob;f=sfa/managers/v2_to_v3_adapter.py;hb=refs/heads/geni-v3
http://git.onelab.eu/?p=sfa.git;a=blob;f=sfa/managers/v2_to_v3_adapter.py;hb=refs/heads/geni-v3

OpenLab: Extending FIRE testbeds and tools Section 2 – page 10/45

2.1.2 Experiment lifecycle within AM API v3

The experiment lifecycle, also called the experiment workflow process, is commonly broken down
into the following steps [11]:

1. (CP) Account management and authentication

2. (CP) Resource discovery

3. (CP) Resource reservation

4. (EP) Experiment configuration

5. (EP) Experiment running

6. (EP) Data collection

7. (CP) Resource release

Steps 1, 2, 3 and 7 are referred to as the control plane, while steps 4, 5 and 6 correspond to
the experimental plane. Being a control plane component for browsing, reserving and releasing
resources offered by the federated networking testbeds, SfaWrap thus only addresses steps 1, 2,
3 and 7.

In this sense, the experimenter, using his client tool, starts by authenticating through the
Registry API and retrieves his Certificate and Credentials granting him rights to reserve re-
sources.

Then, through the AM API v3, the experimenter will discover resources by calling ListRe-

sources, which returns a detailed listing of the resources, known as an advertisement Resource
Specification (RSpec).

Once the experimenter has selected the resources he wants and how to configure them, he
produces a request RSpec that reflects his wishes, and reserves the wanted resources by calling
Allocate, which takes the already produced request RSpec and his slice credentials as parameters.
The aggregate then attempts to satisfy the experimenter’s resource request by reserving the
requested resources.

At that point, the resources have not been provisioned yet, giving the experimenter a chance
to verify the reservation by calling Status, or check for corresponding resource availability at
another aggregate. If it is acceptable, the experimenter calls Provision to set up the resources,
which returns a manifest RSpec, listing the resources as reserved and initially configured for
the experimenter. The purpose of returning a manifest is for cases when the actual reservation
does not exactly fit the request, like e.g. if 1Gb/s of bandwidth is requested but due to policies,
hardware and current usage, only 500Mb/s have been set aside for that slice.

Then, the experimenter will typically call PerformOperationalAction to start the resources
(e.g. boot a machine).

Now that the resources are ready and started, the experimenter can configure and run his
experiment, and then collect results and measurements. The experimenter can repeat this
process as many times as needed, as far as the resources are still reserved to his slice, nowing
that a slice expiration period can be extended via the AM API call Renew.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 11/45

Finally, when the experimenter is done using the resources, he calls Delete to end his reser-
vation. The aggregate then stops and clears all related resources. If a user fails to do so – which
unfortunately happens a lot in real life –, the slice expiration period comes in, that is to say
that Delete gets called automatically by that time.

2.2 Resource reservation

Within SfaWrap, resource discovery and reservation is made through RSpecs, in which we dis-
tinguish two types of resources: Shared Resources and Exclusive Resources. Reserving a shared
resource (like the majority of PlanetLab Europe Nodes) is simply done by adding the selected
resource description to Request RSpec. Reserving an exclusive resource (like NITOS nodes
and channels, or SensLab nodes) needs more information regarding the time dimension of the
reservation, which led us to introduce the concept of Leases in the RSpecs.

A lease is defined by a slice id representing the Uniform Resource Name (URN) of the slice, a
start time representing the starting time of the time-based reservation, a duration representing
the duration of the time-based reservation in terms of timeslots, and finally, the list of reserved
exclusive resources referred by their component id, which represents the URN of the resource.
Below is an example of a lease that reserves NITOS exclusive resources (Nodes and Channels):

Listing 1: An rspec fragment for a lease

<lease slice id=”urn:publicid:IDN+omf:nitos+slice+plenitos” start time=”1363032000” duration=”6”>
<node component id=”urn:publicid:IDN+omf:nitos+node+node001”/>
<node component id=”urn:publicid:IDN+omf:nitos+node+node002”/>
<channel channel num=”2”/>
<channel channel num=”1”/>

</lease>

Leases are used in Request RSpec to reserve exclusive resources and are also present in the
Advertisment RSpec, in a blacklist approach, in order to advertise about the already booked
timeslots of exclusive resources.

2.3 Exposing NITOS testbed through SFA

Over the project’s second year, we have worked, in collaboration with University of Thessaly

(UTH) [21], on exposing NITOS testbed resources through SFA by developing a SfaWrap driver
for NITOS testbed. Please note that the work described in this section was done during early
this second year, and was based on OMF-v5; later during the project we have pursued the same
goal but based on OMF-v6, and that work is described in section 3.2.

Figure 2 depicts the overall architecture of SfaWrap on top of NITOS testbed.
NITOS is a wireless experimental testbed which consists of nodes based on commercial WiFi

cards and Linux Open Source drivers, distributed over several floors on a facility building. The
control and management of the testbed is done using OMF combined with NITOS Scheduler,
that enforces exclusive resource reservation, supports the concept of Slice and implements a
spectrum slicing scheme preventing experiments to interfere with each other. NITOS testbed
presents two types of exclusive resources: Wireless Nodes and Wireless Channels.

The development effort to wrap NITOS testbed using SfaWrap was divided as follows:

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 12/45

Figure 2: SfaWrap on top of NITOS testbed

NITOS Scheduler API. SfaWrap, being a control plane component, needs to communicate
with NITOS Scheduler in order to manage NITOS resources, slices and users. Thus, UTH
has developed the NITOS Scheduler API which is a XML-RPC interface that wraps the NITOS

Scheduler with a set of methods for managing users and slices, and also for describing, reserving,
provisioning and releasing resources.

NITOS Driver for SfaWrap. On the SfaWrap side, we had to develop a driver for NITOS 5

implementing the logic to deal with NITOS testbed specifities, and translating the Registry API
calls and the AM API calls into NITOS Scheduler API calls. The NITOS driver performs on
the one hand, Registry operations in order to keep synchronized the users and slices information
between both SfaWrap Registry and NITOS Scheduler, and on the other hand, it describes,
reserves and provisions NITOS resources.

NITOS RSpecs. In NITOS testbed, we distinguished two caracteristics of the resources.
Firsty, all the resources are exclusive, and secondly, two types of resources are available: Nodes
and Channels. Those two caracteristics lead us to define a new version of RSpecs for SfaWrap
(aka. NITOSv1), in order to accurately describe NITOS resources.

As already mentioned in Section 2.2, we have taken advantage of Leases to express time-based
reservation of resources within the RSpecs.

5NITOS v2-compliant driver http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/nitos;hb=HEAD.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://git.onelab.eu/?p=sfa.git;a=tree;f=sfa/nitos;hb=HEAD

OpenLab: Extending FIRE testbeds and tools Section 2 – page 13/45

On the other hand, we defined two new RSpec elements, namely: spectrum and channel, to
describe and reserve wireless channels through RSpecs. For describing nodes, the node RSpec
element was already existing in SfaWrap RSpecs.

The structure of NITOS RSpec is depicted in Listing 2.

<RSpec type=”SFA” expires=”2013−06−13T10:14:43Z” generated=”2013−06−13T09:14:43Z”>
<statistics call=”ListResources”>
<aggregate status=”success” name=”omf” elapsed=”1.28529906273”/>

</statistics>
<network name=”omf”>
<node component manager id=”urn:publicid:IDN+omf+authority+cm” component id=”urn:publicid:IDN+omf:nitos

+node+node001” component name=”node001” site id=”urn:publicid:IDN+omf:nitos+authority+sa”>
<hostname>node001</hostname>
<location country=”unknown” longitude=”39.360839” latitude=”22.949989”/>
<position 3d x=”1” y=”1” z=”5”/>
<exclusive>TRUE</exclusive>
<gateway>nitlab.inf.uth.gr</gateway>
<granularity>1800</granularity>
<hardware type>orbit</hardware type>

</node>
<node component manager id=”urn:publicid:IDN+omf+authority+cm” component id=”urn:publicid:IDN+omf:nitos

+node+node002” component name=”node002” site id=”urn:publicid:IDN+omf:nitos+authority+sa”>
<hostname>node002</hostname>
<location country=”unknown” longitude=”39.360839” latitude=”22.949989”/>
<position 3d x=”1” y=”2” z=”6”/>
<exclusive>TRUE</exclusive>
<gateway>nitlab.inf.uth.gr</gateway>
<granularity>1800</granularity>
<hardware type>orbit</hardware type>

</node>
<spectrum>

<channel channel num=”36” frequency=”5180.0” standard=”IEEE802 11a”/>
<!−− ... −−>

<!−− other channel descriptions go here −−>

<!−− ... −−>

<channel channel num=”13” frequency=”2472.0” standard=”IEEE802 11b g”/>
</spectrum>

<lease slice id=”urn:publicid:IDN+omf:nitos+slice+nbarati” start time=”1349796600” duration=”320”>
<node component id=”urn:publicid:IDN+omf:nitos+node+node001”/>
<node component id=”urn:publicid:IDN+omf:nitos+node+node002”/>

</lease>
<lease slice id=”urn:publicid:IDN+omf:nitos+slice+plenitos” start time=”1363032000” duration=”6”>
<node component id=”urn:publicid:IDN+omf:nitos+node+node001”/>
<node component id=”urn:publicid:IDN+omf:nitos+node+node002”/>
<channel channel num=”2”/>
<channel channel num=”1”/>

</lease>
</network>

</RSpec>

Listing 2: Structure of NITOS RSpec.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 14/45

NITOS Driver deployment. Finally, we federated NITOS testbed with PlanetLab Europe

via SfaWrap, in order to allow the execution of cross-testbed experiments that combine wired and
wireless nodes. A trust relationship is established between NITOS and PlanetLab Europe (PLE)
by exchanging their respective Global Identifier (GID)’s. As a result, NITOS users can reserve
and provision PLE resources and vice-versa. The overall architecture of the federation between
NITOS and PLE is depicted in Figure 3.

Figure 3: NITOS and PlanetLab Europe federation via SfaWrap

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 15/45

2.4 SFA interface for the OSIMS testbed

For the latest developments in the OSIMS testbed of University of Patras, we implemented and
deployed an SFA solution, in order to make the testbed resources available for reservation to the
rest of the federation and any SFA compliant tools. The next sections describe our solution to
be SFA compliant through details of the RSpec exposed.

2.4.1 Enabling OSIMS with SFA

Figure 4 displays how SFA Aggregate Manager and registry are deployed, with the rest of our
resources. The SFA AM are hosted on a Linux Ubuntu machine. The implementation is based
on python scripts while the configuration follows concepts of the SFA service configuration.

Our typical configuration is as follows:

========== Category = SFA REGISTRY
SFA REGISTRY ROOT AUTH = upatras
========== Category = SFA DB
SFA DB PASSWORD = sfadbpwd
========== Category = SFA UOP
SFA UOP URL = http://nam.ece.upatras.gr/fedway/sfa/xmlrpc.php
========== Category = SFA
SFA INTERFACE HRN = upatras
SFA GENERIC FLAVOUR = p2e
SFA API LOGLEVEL = 2

Listing 3: OSIMS SFA configuration.

Our implementation was based on a clone of the SFA driver originally written for Federica,
which was implementing the communication with an xmlrpc server. Therefore we have created
a P2EDriver class inside the SFA service deployment. This class implements several commands
for responding to external events (like list resources, manage the life-cycle of slivers, etc). The
P2EDriver class makes certain calls to the class P2EShell which is responsible of communicating
with our XMLRPC implementation on the host machine where other services of the testbed are
located.

In detail, the XMLRPC module is implemented by PHP scripts that are in front of our
fedway6 component. Fedway is a small gateway that monitors and logs all requests towards our
testbed. The XMLRPC calls are transformed into requests that our testbed understands and
pushed via the fedway to an FCI enabled layer (a TeagleGateway implementation) down to our
domain manager (the PTM).

6http://nam.ece.upatras.gr/fedway/

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://nam.ece.upatras.gr/fedway/

OpenLab: Extending FIRE testbeds and tools Section 2 – page 16/45

Figure 4: OSIMS testbed resources

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 17/45

2.4.2 Advertised RSpec

Our OSIMS testbed as of today advertises the following (part) RSpec on listing resources:

<rspec type=”advertisement” valid until=”2013−05−20T16:03:57+03:00” generated=”2013−05−20T15:03:57+03:00”>
<statistics call =”ListResources”>
<aggregate status=”success” name=”upatras” elapsed=”0.1”/>
</statistics >
<network name=”upatras”>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm” component id= ”urn:publicid:IDN+

upatras:p2e+node+orOSIMSCreateSubscriberAccount” component name=”imscreateuseraccount” site id=”urn:
publicid:IDN+upatras:p2e+authority+sa”>

<displayname>imscreateuseraccount</displayname>
<servicename>imscreateuseraccount</servicename>
<description>The resource for creating a subscriber account on OSIMS</description>
<taxonomy>OSIMS</taxonomy>
<location country=”unknown” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”Username” description=”username used for OSIMS subscriber”> </setting>
<setting name=”Password” description=””></setting>
</settings>
<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>false</lease>
</node>

< node component manager id=”urn:publicid:IDN+upatras+authority+cm” component id=”urn:publicid:IDN+upatras:
p2e+node+orOSIMSCreateFullAccess” component name=”imsfullaccess” site id=”urn:publicid:IDN+upatras:p2e+
authority+sa”>

<displayname>imsfullaccess</displayname>
<servicename>imsfullaccess</servicename>
<description>Resource for creating an SSH account and providing shell access to all servers of OSIMS</description

>

<taxonomy>OSIMS</taxonomy>
<location country=”unknown” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”SSHUsername” description=”username used for OSIMS subscriber”></setting>
<setting name=”SSHPassword” description=”password used for OSIMS subscriber”></setting>
<setting name=”CoreReset” description=”if true recreates the OSIMS IMSCore server and resets it to the initial state.

All user modifications are lost . ”> </setting>
<setting name=”OpenSIPSReset” description=”if true recreates the OSIMS OpenSIPS server and resets it to the

initial state. All user modifications are lost . ”></setting>
<setting name=”MediaServerReset” description=”if true recreates the OSIMS MediaServer server and resets it to the

initial state. All user modifications are lost . ”> </setting>
</settings>
<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>false</lease>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm” component id=”urn:publicid:IDN+upatras:

p2e+node+orOSIMSFloodlightAccess” component name=”imsfloodlightaccess” site id=”urn:publicid:IDN+upatras
:p2e+authority+sa”>

<displayname>imsfloodlightaccess</displayname>
<servicename>imsfloodlightaccess</servicename>
<description>Enable OSIMS OpenFlow controller Floodlight</description>
<taxonomy>OSIMS</taxonomy>
<location country=”unknown” longitude=”21.7885” latitude=”38.2845”/>
<settings>
</settings>
<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>false</lease>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm” component id=”urn:publicid:IDN+upatras

:p2e+node+orOSIMSOpenFlowSwitchAccess” component name=”imsopenflowaccess” site id=”urn:publicid:IDN+
upatras:p2e+authority+sa”>

<displayname>imsopenflowaccess</displayname>
<servicename>imsopenflowaccess</servicename>
<description>Enable access to OSIMS openflow switch</description>

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 2 – page 18/45

<taxonomy>OSIMS</taxonomy>
<location country=”unknown” longitude=”21.7885” latitude=”38.2845”/>
<settings>
</settings>
<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>false</lease>
</node>

<!−− MORE Nodes follow −−>

</network>
</rspec>

Listing 4: OSIMS advertised rspec.

Our RSpec has similarities with most published RSPecs of other testbeds. However there are
some extra elements that may help tools to display information to experimenters. For example
there are description elements, a potential taxonomy and display name of the resource.

Within the RSpec there is a lease element. It has a slot of 1 day. That is the next available
day that this resource is available. Tools that consume this rspec and want to reserve resources,
just need to turn into true the lease element. For example, if an experimenter via a tool wants
to reserve the OpenFlow switch of OSIMS on the corresponding lease element one should write:

<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>true</lease>

Listing 5: OSIMS lease

This means that the node will be reserved for one day from 20/5/2013 15:00 UTC for the
next 24 hours.

Of course together with the lease, the requester should configure the requested resource. As
an example, assume that we want to reserve the IMS core testbed and get full access to the core
for that particular period. The following request can be prepared like in listing 6:

<rspec type=”request” >

<network name=”upatras”>
< node component manager id=”urn:publicid:IDN+upatras+authority+cm” component id=”urn:publicid:IDN+upatras:

p2e+node+orOSIMSCreateFullAccess” component name=”imsfullaccess” site id=”urn:publicid:IDN+upatras:p2e+
authority+sa”>

<servicename>imsfullaccess</servicename>
<settings>
<setting name=”SSHUsername”>ctranoris</setting>
<setting name=”SSHPassword”>mypass</setting>
<setting name=”CoreReset”>true</setting>
<setting name=”OpenSIPSReset”>true</setting>
<setting name=”MediaServerReset”>false</setting>
</settings>
<lease from=”2013−05−20T15:03:57+03:00” until=”2013−05−21T15:03:57+03:00”>true</lease>
</node>
</network>
</rspec>

Listing 6: OSIMS lease rspec example

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 19/45

3 Task 1.2 - “Federation Framework Interoperability”

The aim of Task 1.2 – “Federation Framework Interoperability” is to make emerged federation
frameworks interoperable and come up with a recursive federation model and implementation
that allows for federation at any granularity. In the subsequent sections the latest developments
are described that were conducted after last Deliverable 1.1 was issued. It was agreed within
the OpenLab consortium, that the SFA acts as the common denominator for resource federa-
tion frameworks. Therefore, this task focuses on the interoperability efforts between existing
frameworks and SFA.

3.1 Contributions to the SFA-Teagle interoperability

Figure 5 depicts the Teagle [18, 22, 23, 25] federation architecture and its components, as were
developed in PII [20, 24]. The overview is divided into four different layers as follows:

User Level. On this level the experimenters and testbed owners have different tools to interact
with the Teagle framework. A testbed owner can register and manage his testbed and involved
resources using a web portal. These resources are then shown in the Virtual Customer Testbed
Tool [22] (VCTTool). The VCTTool allows the user the select, configure and interconnect
arbitrary resources from involved testbeds. This set of resources are then described, stored
and forwarded as a Virtual Consumer Testbed (VCT). Based on this VCT the Federation
Scenario Toolkit [19] (FSToolkit) can be used to conduct an experiment. The FSToolkit is a
tool used for defining experiments in a textual way and enables federation scenarios by accessing
different testbeds via different authentication methods and API schemes. It supports a textual
Domain Specific Language (DSL) called Federation Scenario Description Language [19] (FSDL).
Extensions made in FSToolkit are described in Section 3.1.2.

Federation Level. The Teagle architecture follows a centralized approach. A single Teagle
instance is used to enforce the legal federation framework on a technical level by carrying out
according policies. This central systems is composed of different components to evaluate and
authorize incoming requests, to store the requested VCTs, to resolve resource dependencies
and to execute the needed requests to the involved testbeds in order. Enhancements on the
Teagle architecture, that lead to the development of the FITeagle framework, is described in
Section 3.1.1.

Testbed Control Level. In order to join a Teagle federation, a testbed owner must run a
PanLab Testbed Manager (PTM). This PTM is responsible to receive resource provisioning
requests and to call the according Resource Adapters (RAs). The RAs are then translating the
requests to resource specific commands to control the certain resources of a testbed. Enhance-
ments on the PTM level are discussed in Section 3.1.1.

Testbed Level. The testbeds contain the actual resources. Since the Teagle federation ar-
chitecture allows everything to be a resource, a wide-ranging diversity of testbeds can be sup-

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 20/45

Domain

Manager

PTM

Domain

Manager

PTM

Experimenter

U
se

r
Te

st
b
e
d

VCTTool

Exp. Resource

Description

Web Portal

Admin

Interface

Repo
Policy Engine

PE

Request

Processor

RP

Orchestration

Engine

OE

Teagle

Gateway

TGW

Domain

Manager

PTM
Resource

Adapter

RA

store testbed config

add resources

retrieve VCT info

booking requests /
add VCTs

evaluate

book VCT
provision /

execute

workflow

evaluate

T1 interface

Resource

Adapter

RA

Resource

Adapter

RA

RA interface

resource specific

Testbed

Owner

FCI / FSToolkit

Exper. Descr.

& Conrol

control

Fe
d
e
ra

ti
o
n

Te
st

b
e
d
 C

o
n
tr

o
l

Figure 5: Teagle Architecture, Components and Layers

ported. In particular the enhancements of the IP Multimedia Subsystem (IMS) testbed from
the Telecommunications Software & Systems Group (TSSG) are described in Section 3.1.3.

3.1.1 SFA-related extensions of the Teagle framework

The Teagle [18,22,23,25] federation architecture as defined within the PII [20,24] project, exposes
four different interfaces (cf. Figure 5):

1. Policy Engine Interface. Used for example by the VCTTool in order to indicate which
resources are allowed to be connected with each other.

2. Request Processor Interface. Used to provision, start, and stop a given VCT.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 21/45

PlanetLab Site Teagle Site

Repo data ID + Slice data

Repository

PTM

Teagle

R

RA

R

OE

GW

AM

R R

myPLC DB R

FM

SFAenabler

R

AM

SFA
myPLC

SM

 PTMRA

RP

Figure 6: Initial Approach for an SFA-enabled Teagle

3. Repository Interface. Used by the by portal or the VCTTool to create, read, update,
delete VCTs, resource types or testbeds.

4. Domain Manager Interface. Each involved testbed must implement this interface that
is used by the Teagle Gateway (GW).

The initial mapping between these interfaces and the SFA interfaces was described in Deliverable
1.1 and is reminded in Figure 6.

In line with the overarching goal of this task, namely “Federation Framework Interoperabil-
ity”, other federation mechanisms must be taken into account. It turned out that within the
Future Internet Research and Experimentation (FIRE) community, other interfaces than SFA
are also considered. For example within the Building Service Testbeds on FIRE [10] (BonFIRE)
project an extended version of the Open Cloud Computing Interface (OCCI) is being developed.
But mainly, the Federated Resource Control Protocol (FRCP) (cf. Section 4) is getting more
attention as an complementary interface, as it addresses Experimental Plane.

Therefore, it was decided to follow a more sustainable approach by redesigning the Teagle ar-
chitecture to be agnostic to the actual federation protocol. This new design is being implemented
within the FITeagle7 framework with a current focus on SFA AM v3 [17] and ProtoGeni Reg-
istry v1 [14] interoperability. In Figure 7 a high-level architecture is shown, that is based on the
aforementioned Teagle architectural layers. The basic concepts of testbeds, control components
on testbed level, a federation layer, and user clients on top, were inherited.

7http://fiteagle.org

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://fiteagle.org

OpenLab: Extending FIRE testbeds and tools Section 3 – page 22/45

Experimenter

U
se

r
Te

st
b
e
d

VCTTool

Exp. Resource

Description

Web Portal

User / amin

Interface

Storage

Delivery Mechanism

XMLRPC / REST / SOAP / XMPP / BOSH / CORBA / ...

FITeagle

SFA/FRCP/

PTM/...
Resource

Adapter

RA

Resource

Adapter

RA

Resource

Adapter

RA

RA interface

resource specific

Testbed

Owner

FCI / FSToolkit

Exper. Descr.

& Conrol

control

Fe
d

e
ra

ti
o

n
Te

st
b

e
d

 C
o

n
tr

o
l

Interactor

SFA / Teagle-PTM / Teagle-Registry / FRCP / OCCI / ...

Entities

Request Proc. / Policy Engine / Gateway / Orchestration / ...

Resource Adapters

Arbitrary Resource / SFA / FRCP / OCCI / Teagle-PTM / ...
Federationfederation specific

testbed specific

evaluate, book, store add testbeds / resource
native user UI

Standard Tool

SFA MySlice,

OMF EC, ...

federation specific

federation specific

Figure 7: FITeagle Architecture, Components, and Layers

The most crucial design changes were: the partitioning of the core functionalities into un-
coupled modules; the abstraction of the offered interfaces (Delivery Mechanisms) and protocols
(Interactors); the refactoring of core functionalities into protocol-independent libraries (Entities);
and the possibility for testbed owners to offer resources by different federation mechanisms using
a single tool.

In Figure 8 the overall architecture with its components is illustrated: it follows a modular
event-driven design pattern, which is going to be described in the subsequent paragraphs and
will be subject of subsequent publications. This architecture allows the framework to scale
with the number of handled messages, to develop separate components following a test-driven
approach, and to be very agnostic regarding external interfaces.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 23/45

Adapters
(resource specific drivers)

Interactors
(use case implementation, business rules)

Entities
(generic core libraries)

Delivery Mechanisms
(no business logic, single point of entry)

E
v

e
n

t
B

u
s

 (
p

u
b

lis
h

/s
u

b
s
c
ri
b

e
 s

y
s
te

m
)

Clients
(user interfaces and developer tools) federation

Resources
(actual resources)

Premises
(external services)

Figure 8: FITeagle Overall Architecture and Components

Clients As described in Section 3.1 there are several existing clients for federated resource
provisioning and control. They are well established in their own user communities and some are
under active development. Clients range from command line tools, e.g. SFA Command-Line
Interface (SFI), to more sophisticated graphical user interfaces, e.g. MySlice or VCTTool, as
well as developer kits, e.g. Federation Computing Interface [18] (FCI). Depending on the exper-
imenter’s working environment, specific tools will be used and it is unlikely that a user would
change to another one. Therefore, these clients are out of scope of the FITeagle development,
but are used to ensure compatibility with other implementations. The main target is not to
offer new tools, but to support these clients and to use them for acceptance testing. The current
focus lies on SFA compliant systems and will then be extended to FRCP and Teagle related
clients. Furthermore, a web-based Graphical User Interface (GUI) is in development.

Delivery Mechanisms Analog to the number of clients, there are also countably many stan-
dardized interfaces that are used by federation and experiment control protocols. Each fed-
eration mechanism uses one or more different web service interfaces to communicate with the
users, tools or federated testbeds. While the SFA exposes information using XML Remote
Procedure Call (XML-RPC), the cOntrol and Management Framework (OMF) offers two inter-
faces based on eXtensible Messaging and Presence Protocol (XMPP) and Advanced Message
Queuing Protocol (AMQP) respectively. Additionally, the Teagle framework uses Simple Object
Access Protocol (SOAP) and Representational State Transfer (REST) protocols. Therefore, the
Delivery Mechanisms module, which is the single point of entry to FITeagle, offers several
interfaces at once and handles the transport layer security. Currently, this module contains an
SSL-secured XML-RPC interface to support SFA and will be extended to support REST, eX-

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 24/45

tensible Messaging and Presence Protocol (XMPP), AMQP and SOAP for other mechanisms.
On this level no business logic is implemented, and a message contents is only forwarded to
the according protocol implementation in the Interactors module, and for this reason adding
other delivery mechanisms is a very lightweight task. Furthermore, other legacy interfaces such
as Common Object Request Broker Architecture (CORBA) or other proprietary message pro-
tocols could also be exposed on this level, in order to interact with a wide range of services.
This approach also allows to offer the same protocol using different interfaces simultaneously,
and decouples the involved marshalling medium like eXtensible Markup Language (XML) or
JavaScript Object Notation (JSON) from the underlying protocol.

Interactors In this module, the federation and experiment control protocol-specific logic is
implemented in separate packages. It is agnostic to the used delivery mechanism. The package
receives the messages from the associated Delivery Mechanisms module as an object and acts
accordingly. In order to perform the needed actions, the central idea is that mainly protocol-
agnostic libraries from the Entities and resources from the Adapters modules are going to be
used. As a result, each interactor will contain only a few logic rules, and the core libraries are
reused by all interactors, since they might share many functionalities.

Entities This module contains all the core libraries that are needed by more than one inter-
actor. They either implement the offered functionalities their self or delegate them to another
existing service in the Premises module. For example a persistence library implementations
can be used either in-memory storage for testing, sqlite storage for simple persistence, or ex-
isting SQL compatible storage services. Other possible functionalities include scheduling, or-
chestration, authentication, authorization or even Service-Level Agreement (SLA) evaluation
mechanisms. These are in the process of being ported from the Teagle framework.

Premises This module represents existing services that are available at the related testbed.
These services might need to be consulted by a core library. An example is a user database func-
tionality that delegates the request to an existing Lightweight Directory Access Protocol (LDAP)
database. Other examples are the use of several Future Internet Core Platform [8] (FI-WARE)
Generic Enablers (GEs) in the Future Internet Public Private Partnership [9] (FI-PPP) context,
or the integration into a local payment system in a commercial environment.

Adapters The Adapters module contains the resource drivers, also named RAs. The concept
of adapters is mainly adopted from the Teagle architecture and gets extended. Each RA en-
capsulates one or multiple resource instances of a single resource type in the Resources module
by offering a unified interface for resource description, provisioning, control, monitoring, and
release. The translation from the incoming function call to the actual outgoing call is very
resource-specific. It can be mapped for example to Telnet or Secure Shell (SSH) connections,
Simple Mail Transfer Protocol (SMTP) commands or even could invoke a call to another fed-
eration. Many existing Teagle RAs will be adopted and on this level also another federation is
handled as a group of available resources.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 25/45

Resources Like in the Teagle architecture, everything is a resource and they can contain or
be linked with other resources. Examples are: a coffee machine, physical or virtual machines,
the network or specific network components, software packages, services, testbeds or other fed-
erations. In this context also a testbed itself or another federation is a resource.

Event Bus The core to loosely interconnecting the different modules, and to exchanging
messages and events is an asynchronous, bi-directional publish-subscribe system. This allows to
potentially distribute several components and therefore scale the framework as demands raises
or to add and remove components without interfering with the running system. Depending on
the environment, different implementations are going to be supported. In an Java Platform
Enterprise Edition (J2EE) environment Java Message Service (JMS) compatible system could
be used. Other options are for example XMPP or AMQP.

The current implementation for the FITeagle framework is being tested by several SFA com-
pliant user tools such as: sfi, omni, jFed, and MySlice. An UML Sequence Diagram of the
message flow is depicted in Figure 9.

FITeagle

SFA client

SFA client

XMLRPC Interface

XMLRPC Interface

SFA Interactor

SFA Interactor

Core

Core

VM Adapter

VM Adapter

VM

VM

bootup

auto start <init.d>

import trusted CAs

register

start SFA

listen on TCP 443

SSL authentication

SSL authentication

X.509 authentication

user authentication

X.509 authentication

ACK

protoGeni authorization

getCredential (null)

getCredential (ssl_cert_chain, null)

getUserCredential (ssl_cert_chain)

get/create signed credential

signed credential

signed credential

signed credential

listResources

listResources (cred, options[])

listResources (cred, options[])

giveMeAllResourceTypes (cred)

lookUpResourceTypes (cred)

listOfAllResourceTypes

listResourcesResponse

listResourcesResponse

Figure 9: FITeagle Sequence Diagram (first steps only)

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 26/45

3.1.2 Enabling PTM with SFA and SFAAdapter

PTM is the domain manager installed in a testbed in order to expose its resources via an
interface. The PTM interface is a secure SOAP interface, accessible publicly by applications
and usually via the Teagle Gateway (The interface is also known as the T1 interface). PTM
is based on Open Services Gateway initiative (OSGI) (http://www.osgi.org/Main/HomePage)
and consists of several loaded bundles, like the Resource Adaptation Layer and the Resource
Adapters. Each Resource Adapter is responsible for wrapping a resource API to a homogeneous
API, responding to RESTful commands (i.e. POST,GET, PUT, DELETE) on a resource
instance. Having these in mind we have created inside the PTM a Java bundle called SFA
Adapter. The SFA adapter enumerates all the Resource Adapters which reside in the PTM and
exposes them via an RSpec. It is assumed that such a call comes via the RESTful interface of
the TeagleGW. The same result can be returned if tools implement the SOAP calls of the PTM
(towards T1 interface).

Figure 10: PTM enhanced architecture with SFAAdapter

To be compliant with other tools the RSpec is wrapped around the TeagleGW response, in
the SFAresp tag, like the following code shows:

<?xml version=”1.0” encoding=”utf−8”?>
<sfaadapter>
<uuid type=”string”>uop.sfaadapter−14</uuid>
<SFAReq>null</SFAReq>
<SFAresp>RSPEC encoded</SFAresp>
</sfaadapter>

Listing 7: The SFAresp tag

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 27/45

The following is a part of the RSpec response of the PTM. The example is from the PTM
installed in the UoP testbed:

<rspec xmlns=”http://www.protogeni.net/resources/rspec/2” type=”advertisement”
valid until=” 2013−05−23T17:12Z ” generated=”2013−05−23T16:12Z”>
<statistics call=”ListResources”>
<aggregate status=”success” name=”upatras” elapsed=”0.1”/>
</statistics>
<network name=”upatras”>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+sflow” component name=”sflow”
site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”target” ></setting>
<setting name=”sflow id” ></setting>
</settings>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+qos rate limiting” component name=”qos rate limiting”
site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”vif” ></setting>
<setting name=”ingress policing rate” ></setting>
<setting name=”ingress policing burst” ></setting>
</settings>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+imscreateuseraccount”
component name=”imscreateuseraccount”
site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”Username” ></setting>
<setting name=”Password” ></setting>
</settings>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+uop ovswitch001” component name=”uop ovswitch001”
site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”IP” ></setting>
<setting name=”attachedVifs” ></setting>
</settings>
</node>
<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+vm ofattached” component name=”vm ofattached”
site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”InstalledOS” ></setting>
<setting name=”VIFs” ></setting>
<setting name=”ElasticIP” ></setting>
</settings>
</node>
</network>
</rspec>

Listing 8: A simplified response RSpec

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 28/45

The rspec returned by a PTM is simplified. It contains information found by browsing the
Resource Adapters installed within the PTM. This is done by using OSGI services that queries
all installed bundled for an implementation of the Java RA interface. If they bundle responds,
the SFAAdapter browses for each available configurable properties. So each node in the rspec
corresponds to a Resource Adapter, the component name is the Resource Adapter name, and
the settings are the configurable properties available. This is the response when requesting the
rspec.

To create a resource adapter (i.e. to configure a resource) an rspec should be injected with
the requested settings of that particular resource. For example, to request a new username and
password towards the IMS, the following RSpec should be posted towards the teagle gateway:

<rspec type=”request”>
<network name=”upatras”>

<node component manager id=”urn:publicid:IDN+upatras+authority+cm”
component id=”urn:publicid:IDN+upatras:teaglegw+node+imscreateuseraccount”
component name=”imscreateuseraccount” site id=”urn:publicid:IDN+upatras:p2e+authority+sa”>
<location country=”GR” longitude=”21.7885” latitude=”38.2845”/>
<settings>
<setting name=”Username” >myusername</setting>
<setting name=”Password” >mypwd</setting>
</settings>
</network>
</node>

Listing 9: How to set a user and password

To identify and expose via the rspec all the deployed Resource Adapters within the PTM,
the BundleContext of the OSGI container is used to get access to the service registry. A
BundleContext is a bundle’s execution context within the OSGI container. The context is
used to grant access to other methods so that this bundle can interact with the OSGI container.
BundleContext methods allow a bundle to:

• Subscribe to events published by the Framework.

• Register service objects with the Framework service registry.

• Retrieve ServiceReferences from the Framework service registry.

• Get and release service objects for a referenced service.

• Install new bundles in the Framework.

• Get the list of bundles installed in the Framework.

• Get the Bundle object for a bundle.

• Create File objects for files in a persistent storage area provided for the bundle by the
OSGI container.

The BundleContext object is created for the SFAAdapter bundle when the bundle is started.
The Bundle object associated with a BundleContext object is called the context bundle. The

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 29/45

BundleContext object is passed to the BundleActivator.start(BundleContext) method during
activation of the SFAAdapter context bundle. The same BundleContext object is passed to the
BundleActivator.stop(BundleContext) method when the SFAAdapter context bundle is stopped.
The SFAAdapter BundleContext object is only valid during the execution of its context bundle;
that is, during the period from when the context bundle is in the STARTING, STOPPING, and
ACTIVE bundle states. Since all Resource Adapters within PTM are bundles, the SFAAdapter
uses the getServiceReferences method of the BundleContext to get a collection of ServiceRefer-
ence objects registered within the OSIGI container implementing the RA.class service.

3.1.3 Integrating the TSSG IMS testbed with the control framework

The TSSG efforts to make our IMS testbed available through the broader federation of testbeds
has progressed according to plan. As per the analysis in the earlier stages of the project we
deemed it important to fulfil our goal of integrating our testbed with the Teagle framework.
In conjunction with our partners in UoP, the PTM has been installed and configured on our
testbed in the TSSG. A test Resource Adapter and resource instance were also installed and
tested successfully and our PTM is now listed in the TeagleGW hosted in UoP. This is setting
the foundation for exposing the resources offered by the TSSG testbed as available services to
the community of interested experimenters.

(a) PTM hosted on TSSG VM (b) TSSG PTM listed in UoP
hosted TeagleGW

Figure 11: TSSG IMS Testbed Integration

A separate and interesting scenario for integrating the TSSG IMS testbed has arisen from
the WONDER project – a successful proposal from the 2nd Open Call for experiments. The
experimenters from Portugal Telecom and Deutsche Telekom propose to evaluate WebRTC
service delivery mechanisms, including IMS, and inter-domain scenario testing is on their wish
list. To this end the integration of the TSSG NGN testbed with UoPs OSIMS testbed has
gained some traction over the past while and some early baselining and planning has taken
place, namely at the new experiment negotiation meeting in Paris and related conference calls.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 3 – page 30/45

3.2 Contributions to the SFA-OMF interoperability

As described in section 2.3, our first deployment of SFA over OMF has been based on OMF-v5
in an effective , although a bit awkward way. We had announced during the review meeting in
Madrid that we were intending to integrate more tightly SFA into OMF-v6, taking advantage
of that redesign to make the coupling smoother and with a wider applicability.

The integration of SFA in OMF version 6 is a joint development between NICTA and UTH.
During the first year of the project, NICTA developed an AM implementation prototype with
an SFA-compatible interface, which would be adopted in the new version of OMF. Building
on its experience in implementing the SFAWrap for the NITOS testbed, UTH contributed
several enhancements to the OMF SFA implementation. More specifically, the efforts of UTH
and NICTA were focused on integrating NITOS Scheduler functionalities in the OMF SFA

AM implementation. We have extended the basic resource model to include new reservation
information. Furthermore, we upgraded the AM API version from GENI AM v1 to GENI AM

v2. We will further continue upgrading the AM API as required (e.g. to v3), similar to the work
done for the SFAWrap.

The final goal for this task is to deliver a native SFA API support for OMF testbeds, so as to
ease the federation of the existing OMF testbeds and possible new ones. The OMF SFA AM will
be provided as a new entity, which could be installed on top of existing OMFv6 deployments.
Following the design approach of OMFv6 the new AM will be treated as another resource,
responsible for controlling the testbed. Due to that fact, in addition to the SFA interface, OMF

AM is also exposing an FRCP (Described in section 4) interface, through which users are able
to control the underlying resources during the experiment.

The latest implementation of OMF SFA, together with information about its development,
are available here: https://github.com/mytestbed/omf_sfa.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

https://github.com/mytestbed/omf_sfa

OpenLab: Extending FIRE testbeds and tools Section 4 – page 31/45

4 Task 1.3 “Bridging SFA and the Experimental Plane”

As introduced in the previous OpenLab Deliverable D1.1, we proposed to develop an open
protocol named Federated Resource Control Protocol (FRCP), which will be used by various
user/facility entities to communicate with testbed resources, and by testbed resources themselves
to interact with each other. This section provides an update on our recent work in developing
FRCP.

4.1 FRCP Design and Specification

We published the design and the specification of the FRCP protocol online earlier this year [6].
This subsection summarises that online document.

4.1.1 Messaging System, Naming and Addressing

As introduced in D1.1, we adopted a publish-and-subscribe (pubsub) message system for han-
dling communication between resources and the entities interacting with them. In such a system,
participants can create topics, subscribe to them and publish messages in them. A message which
is published in a given topic is forwarded via the messaging system to all the subscribers of that
topic. As such, the communication is effectively one-way. Any reply to a message can only be
performed by another published message and some mutually agreed convention on how to relate
messages. However, we do assume that the messaging system is reliable and will attempt to
deliver every message in a timely manner. However, there is no guarantee that every message
will be delivered to all subscribed entities. The primary reason for a failed delivery will be due
to an overflowing inbox for a particular subscriber.

The basic message pattern assumes that every active resource is associated with a topic (ad-
dress) and all messages to and from this resource are published to this topic. The messages
create, configure, request, and release are sent to the resource, while the inform message origi-
nates from the resource itself. The inform message is usually in response to a received message,
but can be sent on its own. For instance, a resource may periodically publish its state, while on
the other hand it may respond to multiple requests with a single inform. However, to simplify
client logic we adopt the convention that every message contains a message ID and that the
inform message includes a list of message IDs it received since the last inform message.

Any entities and resources in this proposed scheme can subscribe to none or many topics on
the pubsub system. Any pubsub system that supports the above can be used for this proposed
messaging scheme, for example XMPP-based or AMQP-based pubsub systems.

A resource has a globally unique ID. This unique ID is selected by the parent of a resource
upon its creation. An implementation of this proposed scheme must adopt a convention to map
this globally unique ID to a unique topic name (aka topic address) within the deployed pubsub
system. We propose the following mapping between a resource’s globally unique ID and its
unique topic name. Assuming that the resource ID is ’123456’, the communication layer used is
XMPP-based pubsub, the resource access the pubsub system via the server ’foo.bar.com’; then,
the mapped topic for that resource would be: xmpp://123456@foo.bar.com

A resource must subscribe to the topic address which corresponds to its globally unique name,
and must publish any inform message that it issues to this topic address. In addition if that

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 4 – page 32/45

inform message is a reply to a request message which contained a specific <replyto> field with
a topic set to it, then the inform message must also be published to that reply topic. A resource
may subscribe to any other topics as required by the user.

4.1.2 Protocol and Interactions

The basic protocol consists of a message being sent by a requester to a component (or resource).
The component may accept the message and perform the requested associated actions. This
may lead to further messages being sent to an observer. We introduced a separate observer to
allow for different messaging frameworks. For instance, in an RTP like framework the observer
is usually the requester itself, while in a publish-subscribe framework the observer is a stand-in
for a publication.

The protocol consists of five messages inform, configure, request, create, and release. A basic
interaction pattern is shown in Figure 12.

Figure 12: Basic protocol interaction using FRCP.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 4 – page 33/45

4.1.3 Message Syntax

FRCP messages can be marshalled using either XML or JSON. The remaining of this page will
describe the XML formats of FRCP messages, the corresponding JSON formats are described
on our JSON format for FRCP page. The schema definitions for XML messages of FRCP are
available online8.

The generic format of a message element is described in listing 10:

<MTYPE xmlns=”http://schema.mytestbed.net/omf/X.Y/protocol” mid=ID>

<src>RID</src>
<ts>TIMESTAMP</ts>
<replyto>TOPIC</replyto>
....

</MTYPE>

Listing 10: FRCP Message Format

Here is how to interpret this snippet :

• X.Y = the version of the protocol (currently 6.0)

• MTYPE = the type of message, either “create”, “configure”, “request”, “inform”, or
“release”

• ID = a globally unique ID for this message

• RID = a globally unique ID for the resource that published this message. Note that every
entities are resources. Thus a software acting on behalf of a user, such as an experiment
controller, will also have an unique resource ID. We propose to use an URI for this ID.

• TIMESTAMP = the Posix/Unix time in second when this message was generated by its
publisher. This ’ts’ and the ’mid’ child elements are used to prevent message replays.

• TOPIC = optional. If the publisher of this message would like any replying messages to
be published to a specific topic address, then it must set TOPIC to that address in the
’replyto’ element.

This message element may then have child elements, which further describe various informa-
tion specific to the message type. The online FRCP specification describes each message type
in details.

In addition to these message type-specific child elements, FRCP also defines two other child
elements which are used in various message types. The first one is the ’guard’ element, which
carries constraint information. When this child element is present, an entity will only act on
a received message if it satisfies the constraints described in the ’guard’ element. This ’guard’
element is described in more details at the end of this page. The second one is the ’props’
element which declares various properties related to a message and which is described next.

8http://schema.mytestbed.net/omf

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 4 – page 34/45

FRCP provides an optional mechanism to verify that a given message was published by a
given entity. The online FRCP specification provides a detailed description of the adopted
Authentication and Authorization mechanisms.

The following listing 11 shows an example of the exchange of a configure and an inform

FRCP messages between two FRCP-enabled entities “node123” and “iperf456”.

<configure xmlns=”http://schema.mytestbed.net/omf/6.0/protocol” mid=”83ty28”>
<src>xmpp://node123@domainA.com</src>
<ts>1360895974</ts>
<properties xmlns:iperf=”http://foo.com/iperf”>

<iperf:target type=’hash’>
<ip type=’string’>192.168.1.2</ip>
<port type=’fixnum’>5001</port>

</iperf:target>
</properties>

</configure>

<inform xmlns=”http://omf.mytestbed.net/omf/6.0/protocol” mid=”d934l8”>
<src>xmpp://iperf456@domainB.com</src>
<ts>1360895982</ts>
<cid>83ty28</cid>
<itype>STATUS</itype>
<properties xmlns:iperf=”http://foo.com/iperf”>

<iperf:target type=’hash’>
<ip type=’string’>192.168.1.2</ip>
<port type=’fixnum’>5001</port>

</iperf:target>
</properties>

</inform>

Listing 11: Example of a FRCP Message Exchange

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 4 – page 35/45

4.2 FRCP Implementation and Deployment Status

4.2.1 Implementation

The FRCP protocol is currently implemented in the latest release of the OMF framework, which
allows experimenters to describe, instrument and orchestrate experiments using resources across
multiple testbed facilities. This OMF version 6 release is available online on the OMF website9.

The source code of the OMF implementation of FRCP is also available as a reference for
developers looking to interface their own experiment controller or testbed resources with other
FRCP-enabled entities10. This reference implementation is in Ruby, but a third party may use
any other programming language to implement FRCP.

Other partners in OpenLab have proposed to implement FRCP communication stacks for
Experiment-Plane tools such as NEPI and TEAGLE. The progress on these tasks are available
as part of other related OpenLab Deliverables.

4.2.2 Deployment

FRCP is currently used as part of OMF6 on NICTA’s wireless indoor testbed. Other OpenLab
partners are also in the process of testing OMF6 deployment on their own testbeds (e.g. UTH).

Furthermore OMF6 is also being deployed as an upgrade to the previously available OMF5-
friendly slice option on PlanetLab Europe. NICTA and the PlanetLab Europe team at INRIA
have discussed and agreed on the required deployment steps to insure authentication of FRCP
entities on PlanetLab. They are currently working together in implementing the final steps of
this roadmap, in essence the slice-side of PLE slivers is mostly finished as of MyPLC-5.2.6, and
we expect to be able to announce the availability of this feature to the experimenter community
shortly.

9http://mytestbed.net/doc/omf/file.INSTALLATION.html
10https://github.com/mytestbed/omf/tree/master/omf common/lib/omf common

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 36/45

5 Task 1.4 “Extension of the Facility and Ops-oriented Tools”

5.1 MySlice developments

5.1.1 Description

MySlice consists in a user-centric tool, tailored to support the full users’ experiment lifecycle,
from setup through completion. It includes a portal functionality allowing users to register, au-
thenticate and request slices. A dashboard presents them with an overview of the federation, as
well as the resources and slices they have access to. Finally, as it embeds an extended SFA client,
MySlice allows users to browse and select resources of interest for their experiments. In partic-
ular, it features third-party measurement and monitoring information, as well as visualization
and navigation components allowing users to make sense of available resources.

The challenge MySlice solves is that the different platforms of interest for an experimenter
typically realize one given functionality (SFA deals with the control plane, OMF with the ex-
perimental plane, TopHat with measurements, etc.) which is decoupled from users needs at the
various stages of the experiment lifecycle. Through MySlice, a user can get a consistent access
to those different services. For instance, the tool takes advantage of measurements originating
from TopHat and OML, and bring them into a context useful for a users (measurements about
a testbeds, a resource, a slice, . . .).

We distinguish two parts in MySlice, denoted backend and frontend, corresponding to the
two major bricks in the architecture. For the sake of clarity, we have distinguished the Manifold

component which is at the heart of the MySlice backend, and that provides an interconnection
framework for heterogeneous data, as well as a set of users interfaces. MySlice inherits the archi-
tecture of this component as well as its extensions capabilities: gateways allows new platforms
to be added, such as testbeds via SFA; plugins allow for specialization of the web GUI in order to
provide a consistent and full-featured user interface, still adapted to the needs of each testbed.

Notable features of MySlice include: balancing uniformity and heterogeneity; combining
multiple sources of data; hiding complexity from users; providing a variety of user interfaces;
ensuring ease of development for developers. Full reference and documentation is available on the
project website: http://www.myslice.info and the related wiki: http://trac.myslice.info.
A journal paper describing MySlice (in addition to SFAWrap) is available in [1].

In this section, we focus on describing the major improvements that have been done in the
component, towards the realization of an integrated portal for the federation of experimental
facilities.

5.1.2 Evolutions to the MySlice web frontend

Until recently and for historical purposes, MySlice relied on the Joomla! PHP framework for
the implementation of its web user interface. This framework was not judged production-ready
and caused several issues for operating the component. This motivated the migration towards
django, a famous python-based framework, in order to build a more robust, easily deployable
and manageable user interface. Since it builds on the Python programming language, this moved
allowed us to get a more consistent codebase with the backend with which it peers.

After an initial development phase that consisted in bringing functionalities existing in the

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

http://www.myslice.info
http://trac.myslice.info

OpenLab: Extending FIRE testbeds and tools Section 5 – page 37/45

Joomla frontend in a production ready-state, we are now considering the adaptation of plugins
to the new django framework. Despite the move to another programming language (from PHP
to python), the amount of work to port existing plugins is minimal. Indeed, most of the function-
alities are developed in Javascript, which is common to both architectures. The Python/PHP
part consist only in a few lines of codes that serves for the initialization of the plugins and its
dependencies. It was a design decision to keep the actual interface for plugins, in order not
to confuse existing developers, and to plug existing work as seamlessly as possible in the new
architecture.

This last step will allow us to open a unified portal for real users before the end of 2013. This
portal will have the two main functionalities exposed below:

• what we name the portal component, responsible for handling user registration and their
slice requests, to be validated by a responsible PI,

• the slice manangement component, in charge of allowing users to browse and reserve
resources for their slice.

5.1.3 MySlice portal functionalities

The first page that users will be faced with is the MySlice portal, allowing them to register
and login, to create slices, and to browse and reserve testbed resources. For some of the more
complex tasks, users will be guided through a series of simple steps. During registration for
example, depending on their choices, they will be invited to generate a keypair that will be used
for authentication to the testbeds, or simply upload their public key and delegate some of their
rights to MySlice. More details about the portal functionality can be found in [2].

Figure 13 present two screenshots of the user registration and slice request pages.

(a) User Registration Form (b) Slice Request Form

Figure 13: Screenshots from the MySlice portal

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 38/45

Dashboard Once a user has been authenticated by MySlice and authorized by a testbed, he
can access that testbed’s resources. The MySlice dashboard (Fig. 14) is the page that welcomes
users upon login. It provides an overview of the user’s account and authorization credentials, the
various types of resources that the user can access through the different federated authorities,
as well as a list of the slices with which the user is associated. To generate this page, MySlice
issues a series of queries to retrieve information about the different SFA objects related to the
logged user, such as user, authority or slice information.

Figure 14: MySlice dashboard

Future work Future planned work towards release consists in adding functionalities for PI to
get notified of new requests, and to be informed of pending users and slices to be validated.

5.1.4 Improvements to the backend

Improvements towards a production version As mentioned earlier, we have reworked
the MySlice backend so as to isolate its generic core, that can be used in completely different
contexts. This generic core has been named manifold, and represents a very substantial portion
of the code, with all the specifics (SFA interface, DB interfaces, and so on) being implemented
as gateways in the manifold framework.

MySlice relies heavily on its XMLRPC interface, both for communication with end users, and
to support the queries originating from the frontend. The API has thus been extended to be
a full-featured XMLRPC server. A set of useful management scripts have also been developed,
that are necessary for the daily operation of the service. All these components now support a
series of options that can be configured either with default options, command line arguments,
or options in a configuration file. An initialization script, coupled with the configuration file,
allows for a seamless usage of manifold.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 39/45

Packages for major linux distributions (fedora, debina and ubuntu) are now provided for the
stable version of manifold, allowing users to easily come up with an operational installation of
the component. Nightly builds are also available for developers.

Multiple improvements have been done to the backend in order to stabilize a critical set of
functionalities, required for a production-grade instance of MySlice, such as a robust handling
of users queries, extensive logging and error reporting.

Finally, a shell allows a user to run commands to the federation, which turns out to be a
particularly useful feature for quick access to data, or for troubleshooting some issues with either
the component or the platforms.

Extension of the SFA gateway The SFA gateway allows SFA information (resources, slices,
users and authorities) to be exposed to MySlice. To better fit the component architecture, and
for performance issue, the SFA gateway has been rewritten to support multiple asynchronous
requests within a single thread. This is especially useful in a context where several SFA gateways
are defined in a MySlice deployment, so that all the SFA calls - each of which being likely to
take quite some time - can be run in parallel rather than sequentially.

In addition, gateways are responsible for performing SFA actions on behalf of the user. For
MySlice to be able to issue these calls, the preferred mode is for the user to delegate her rights to
the tool (by means of a delegated SFA credential). However, this can be somehow complex for
the user, and a second mode has been devised so that this complexity is fully hidden and taken
over by MySlice. The SFA gateway now has a so-called “managed” mode that can boostrap
and handle all necessary authentication and authorization tokens. Accountability is preserved
by using the native SFA delegation feature, and these actions can be safely traced back to the
originating user.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 40/45

5.2 Provisioning reservable resources through MySlice

The last step towards the goal of making the NITOS testbed SFA-compliant, was the develop-
ment of a plugin for MySlice, in order to provision NITOS reservable resources. To this end,
UTH developed the NITOS Scheduler plugin which parses NITOS RSpecs and provides a decent
layout for reserving resources.

5.2.1 Developing NITOS Scheduler’s plugin

MySlice framework has a modular structure based on the concept of plugins for implementing
different core functionalities, like “query editing”, “data display” and “resource allocation”.
NITOS Scheduler plugin lies in the “data display” category, where resources that match the
selected query are being displayed.

Like every MySlice plugin, the NITOS Scheduler plugin consists of a PHP11 script, together
with a CSS file which is responsible for rendering, and some javascript code which is responsible
for the interactions with both the user and other plugins. We tried to build a structural plugin
that will allow other testbeds to take advantage of it, in order to expose their reservable resources
through SFA. As soon as a testbed uses the same RSpecs as NITOS, it is a matter of a few
modifications in the code and its different types of reservable resources will appear in the NITOS
Scheduler’s plugin tabs.

5.2.2 NITOS Scheduler’s plugin layout

Figure 15: NITOS Scheduler plugin layout

A user can start the reservation procedure by filtering his query in the first section of plugins
and based on his selection, our plugin will provision him the corresponding resources as depicted
in figure 15. At the left section of the layout, a picture of the testbed’s topology is displayed
and at the right section lies a tab for each different type of resource. Subsequently, he will check

11This plugin is currently being ported to the new django-base MySlice framework.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 41/45

their availability, and select those that match his requirements. Finally, he will see the selected
resources in the “resource allocation” section of the MySlice portal as depicted in figure 16 and
update his slice with the reservation information of the corresponding time slots.

Figure 16: Updating the slice

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 5 – page 42/45

5.3 Extension of the TSSG testbed facilities with OpenFlow

TSSGs contribution to extending the operation-oriented tools within the facility has focused on
our implementation of an OSGI-based OpenFlow framework for experimentation. This has been
implemented using the Floodlight Open SDN controller.

At the lower level of the system, the framework statically deploys elements such as Open-
VSwitch, OpenFlow enabled switches and OpenFlow controller parts for controlling, provisioning
and administering underlying network resources. An API implementation in Java/RabbitMQ
at the upper layer permits access to the architectures control plane logic and in turn access to
OpenFlow which manages the network elements.

A network provisioning engine has been created with two functions in mind. Firstly, to enable
a logical network overview to be discovered composing of nodes, links and interfaces. Secondly,
the provisioning of these resources is also being enabled with the ability to host intelligent logic
from P2P routing algorithms in the overlay manager.

Figure 17: TSSG Floodlight OpenFlow Controller

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 7 – page 43/45

The deployment of the GRE (Generic Routing Encapsulation) protocol as a tunnelling inter-
connect between the two sites (TSSG and UoP) allows the two partners to connect their testbeds
Ethernet broadcast domains seamlessly. This extends the researchers and experimenters access
to TSSG and UoP software defined network facilities. The GRE implementation is based on the
OpenVSwitch solution and can be easily ramped up to incorporate other broadcast domains,
further enhancing the user experience. As part of the WONDER project from the 2nd open
call we are also looking into the possibility of interconnection at the IMS Network-SBC (Session
Border Control) interface.

6 Task 1.5 “Enlarging the facility Consortium”

We refer the reader to Deliverable D1.5 [4], which as a matter of fact is entirely dedicated to
providing a status on this particular matter, and that will be issued at the end of the Project by
Month 30. This section is mentioned here only for compliance with the Description of Work [3].

7 Conclusion

WP1 is deemed essentially on track. Our achievements during this second year have allowed us
to bring substantial improvements to all four of our technological focuses, namely again SFA,
teagle, FRCP and MySlice.

Although the former two have reached a rather mature status in terms of design and devel-
opment, the latter two are still under active development as of this writing. We intend to focus
primarily on these two bricks over the third and last year of the project, with the following goals
in mind :

• Promote FRCP as a big player in the Experimental Plane arena; again this paradigm
currently already has been backed by big players like, of course, OMF, but also PlanetLab,
NEPI, and other user tools, and we want to make this even more appealing;

• Improve MySlice even further; if measured simply in terms of functionalities, the progress
of MySlice over this past year is modest. This is due to the major redesign tasks undertaken
both on the backend and frontends. Now that these redesigns have been carried out we
are confident to be able to attract more developers to build on top of this framework,
and so to be able to come up next year with a feature rich user portal that will allow
experimenters to seamlessly manage federation-wide experiments, especially if we manage
to have MySlice take advantage of FRCP.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 7 – page 44/45

References

[1] Jordan Augé, Thierry Parmentelat, Nicolas Turro, Sandrine Avakian, Loic Baron, Mo-
hamed Amine Larabi, Mohammed Yasin Rahman, , Timur Friedman, and Serge Fdida.
Tools to foster a global federation of testbeds. Computer Networks, Special issue on Future

Internet Testbeds, 2013.

[2] Loc Baron, Jordan Augé, Timur Friedman, and Serge Fdida. Towards an integrated portal
for networking testbed federation, an open platform approach. FIRE Engineering workshop,
Nov 6-7 2012.

[3] The OpenLab Consortium. Description of work, annex to contract, June 2011.

[4] Openlab d1.5: Second revised facility consortium agreement.

[5] Federated e-infrastructure dedicated to european researchers innovating in computing net-
work architectures. http://www.fp7-federica.eu/.

[6] Architectural foundation for federated experimental facilities (omf6 design).
http://mytestbed.net/projects/omf6/wiki/Architectural Foundation.

[7] The global environment for network innovations. http://www.geni.net/.

[8] Alex Glikson. FI-WARE: Core Platform for Future Internet Applications. In Proceedings

of the 4th Annual International Conference on Systems and Storage, pages ??–??, Haifa,
2011.

[9] Denis Havlik, Sven Schade, Zoheir a Sabeur, Paolo Mazzetti, Kym Watson, Arne J Berre,
and Jose Lorenzo Mon. From Sensor to Observation Web with environmental enablers in
the Future Internet. Sensors, 11(4):3874–907, January 2011.

[10] Alastair C Hume, Yahya Al-Hazmi, Bartosz Belter, Konrad Campowsky, Luis M Carril,
Gino Carrozzo, Vegard Engen, David Garćıa-Pérez, Jordi Jofre Ponsat́ı, Roland Kbert,
Yongzheng Liang, Cyril Rohr, and Gregory Seghbroeck. BonFIRE: A Multi-cloud Test
Facility for Internet of Services Experimentation. In Thanasis Korakis, Michael Zink, and
Maximilian Ott, editors, Testbeds and Research Infrastructure. Development of Networks

and Communities, volume 44 of Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, pages 81–96. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[11] Timur Friedman Jordan Augé. The open slice-based facility architecture (open sfa).
http://opensfa.info/doc/opensfa.pdf, 2012.

[12] Nitos wireless testbed. http://nitlab.inf.uth.gr/NITlab/index.php/testbed.

[13] L Peterson, S Sevinc, J Lepreau, and R Ricci. Slice-based facility architecture. Draft

version, 2009.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

OpenLab: Extending FIRE testbeds and tools Section 7 – page 45/45

[14] Protogeni registry api v1.
http://www.protogeni.net/ProtoGeni/wiki/ClearingHouseAPI1.

[15] Very large scale open wireless sensor network testbed. http://www.senslab.info/.

[16] Sfa: Geni aggregate manager api version 2.
http://groups.geni.net/geni/wiki/GAPI AM API V2.

[17] Sfa: Geni aggregate manager api version 3.
http://groups.geni.net/geni/wiki/GAPI AM API V3.

[18] Christos Tranoris and Spyros Denazis. Federation Computing: A pragmatic approach for
the Future Internet. In 2010 International Conference on Network and Service Management,
pages 190–197. IEEE, October 2010.

[19] Christos Tranoris and Spyros Denazis. FSToolkit: Adopting Software Engineering Practices
for Enabling Definitions of Federated Resource Infrastructures. In Federico Álvarez, Frances
Cleary, Petros Daras, John Domingue, Alex Galis, Ana Garcia, Anastasius Gavras, Stamatis
Karnourskos, Srdjan Krco, Man-Sze Li, Volkmar Lotz, Henning Müller, Elio Salvadori,
Anne-Marie Sassen, Hans Schaffers, Burkhard Stiller, Georgios Tselentis, Petra Turkama,
and Theodore Zahariadis, editors, The Future Internet, volume 7281 of Lecture Notes in

Computer Science, pages 201–212. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[20] G Tselentis. Towards the Future Internet: A European Research Perspective. IOS Press,
2009.

[21] University of thessaly. http://www2.uth.gr/main/index/index en.html.

[22] Sebastian Wahle. A Generic Framework for Heterogeneous Resource Federation. Phd thesis,
Technische Universität Berlin, 2011.

[23] Sebastian Wahle, Thomas Magedanz, and Konrad Campowsky. Interoperability in het-
erogeneous resource federations. In Testbeds and Research Infrastructures. Development of

Networks and Communities, pages 35—-50. Springer, 2011.

[24] Sebastian Wahle, C. Tranoris, S. Denazis, A. Gavras, K. Koutsopoulos, T. Magedanz, and
S.; Tompros. Emerging Testing Trends and the Panlab Enabling Infrastructure. IEEE

Communications Magazine, 49(March):167–175, 2011.

[25] Sebastian Wahle, Christos Tranoris, Shane Fox, and Thomas Magedanz. Resource Descrip-
tion in Large Scale Heterogeneous Resource Federations. In Testbeds and Research Infras-

tructure. Development of Networks and Communities, pages 100—-115. Springer, 2012.

Deliverable D1.2 “Control plane extension – Status of the SFA deployment”

	Introduction
	Task 1.1 ``Improve and Contribute to the SFA''
	Aggregate Manager API v3
	Implementation
	Experiment lifecycle within AM API v3

	Resource reservation
	Exposing NITOS testbed through SFA
	SFA interface for the OSIMS testbed
	Enabling OSIMS with SFA
	Advertised RSpec

	Task 1.2 - ``Federation Framework Interoperability''
	Contributions to the SFA-Teagle interoperability
	SFA-related extensions of the Teagle framework
	Enabling PTM with SFA and SFAAdapter
	Integrating the TSSG IMS testbed with the control framework

	Contributions to the SFA-OMF interoperability

	Task 1.3 ``Bridging SFA and the Experimental Plane''
	FRCP Design and Specification
	Messaging System, Naming and Addressing
	Protocol and Interactions
	Message Syntax

	FRCP Implementation and Deployment Status
	Implementation
	Deployment

	Task 1.4 ``Extension of the Facility and Ops-oriented Tools''
	MySlice developments
	Description
	Evolutions to the MySlice web frontend
	MySlice portal functionalities
	Improvements to the backend

	Provisioning reservable resources through MySlice
	Developing NITOS Scheduler's plugin
	NITOS Scheduler's plugin layout

	Extension of the TSSG testbed facilities with OpenFlow

	Task 1.5 ``Enlarging the facility Consortium''
	Conclusion

