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ABSTRACT

Twitter is one of the largest social networks using exclusively
directed links among accounts. This makes the Twitter so-
cial graph much closer to the social graph supporting real
life communications than, for instance, Facebook. There-
fore, understanding the structure of the Twitter social graph
is interesting not only for computer scientists, but also for
researchers in other fields, such as sociologists. However,
little is known about how the information propagation in
Twitter is constrained by its inner structure.

In this paper, we present an in-depth study of the macro-
scopic structure of the Twitter social graph unveiling the
highways on which tweets propagate, the specific user ac-
tivity associated with each component of this macroscopic
structure, and the evolution of this macroscopic structure
with time for the past 6 years. For this study, we crawled
Twitter to retrieve all accounts and all social relationships
(follow links) among accounts; the crawl completed in July
2012 with 505 million accounts interconnected by 23 billion
links. Then, we present a methodology to unveil the macro-
scopic structure of the Twitter social graph. This macro-
scopic structure consists of 8 components defined by their
connectivity characteristics. Each component group users
with a specific usage of Twitter. For instance, we identified
components gathering together spammers, or celebrities. Fi-
nally, we present a method to approximate the macroscopic
structure of the Twitter social graph in the past, validate
this method using old datasets, and discuss the evolution of
the macroscopic structure of the Twitter social graph during
the past 6 years.

Categories and Subject Descriptors

H.3.5 [On-line Information Services]: Web-based ser-
vices
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1. INTRODUCTION
Twitter is one of the largest social networks with more

than 500 million registered accounts. However, it differs
from other large social networks, such as Facebook and
Google+, because it uses exclusively arcs among accounts1.
Therefore, the way information propagates on Twitter is
close to how information propagates in real life. Indeed, real
life communications are characterized by a high asymmetry
between information producers (such as media, celebrities,
etc.) and content consumers. Consequently, understand-
ing how information propagates on Twitter has implications
beyond computer science.

However, studying information propagation on a large so-
cial network is a complex task. Indeed, information propaga-
tion is a combination of two phenomena. First, the content
of the messages sent on the social network will determine
its chance to be relayed. Second, the structure of the social
graph will constrain the propagation of messages. In this pa-
per, we specifically focus on how the structure of the Twitter
social graph constrains the propagation of information. This
problem is important because its answer will unveil the high-
ways used by the flows of information. To achieve this goal,
we need to overcome two challenges. First, we need an up-
to-date and complete social graph. The most recent publicly
available Twitter datasets are from 2009 [16, 9], at that time
Twitter was 10 times smaller than in July 2012. Moreover,
these datasets are not exhaustive, thus some subtle prop-
erties may not be visible. Second, we need a methodology
revealing the underlying social relationships among users, a
methodology that scales for hundreds of millions of accounts
and tens of billions of arcs. Standard aggregate graph met-
rics such as degree distribution are of no help because we
need to identify the highways of the graph followed by mes-
sages. Therefore, we need a methodology to both reduce the
social graph and keep its main structure.

In this paper, we overcome these challenges and make the
following specific contributions.

1. We collected the entire Twitter social graph, repre-
senting 505 million accounts connected with 23 billion
arcs. To the best of our knowledge, this is the largest
complete social graph ever collected.

2. We unveil a macroscopic structure in the Twitter so-
cial graph that preserves the highways of information
propagation. Our method extends the one of Broder

1Arcs—that are directed edges—represent the follow rela-
tionship in Twitter. If A follows B, A receives tweets from
B, but B will not receive tweets from A, unless B follows A.



et al. [7] and can be applied to any kind of directed
social graph.

3. We show that not only the macroscopic structure of
the Twitter social graph constrains information prop-
agation, but that each component of the macrostruc-
ture corresponds to group of users with a specific us-
age of Twitter. In particular, we show that regular,
abandoned, and malicious accounts are not uniformly
spread on the components of the macroscopic structure
of the Twitter social graph. This result is important
to understand how Twitter is used, where users with a
specific usage are, and how to sample Twitter without
a significant bias.

4. We present a simple methodology to explore the evo-
lution of the macroscopic structure of Twitter with
time, we validate this methodology, and show that old
datasets from 2009 do not represent the current struc-
ture of the Twitter social graph. We explore this time
evolution to understand the changes in the usage of
Twitter since its creation.

The remainder of this paper is structured as follows. In
Section 2, we present our methodology to crawl Twitter and
discuss the dataset we collected. We present and discuss,
in Section 3, the notion of macroscopic structure, then we
describe a methodology to unveil this macroscopic struc-
ture. We present the result of applying this methodology to
our dataset in Section 4. In Section 5, we propose a sim-
ple approach to estimate the evolution of the macroscopic
structure of the graph with time, validate this approach, and
discuss the evolution of the Twitter social graph from 2007
to 2012. Finally, we present the related work in Section 6,
and conclude in Section 7.

2. MEASURING TWITTER AT SCALE
In this section, we describe the methodology used to crawl

the Twitter social graph, some high level characteristics of
the dataset, the limitations of our crawl, and the ethical
issues.

2.1 Crawling Methodology
In order to collect our dataset, we used the Twitter REST

API version 1.0 [3] to crawl the information about user ac-
counts and arcs between users. The main challenge of the
crawl is that API requests are rate-limited; an unauthenti-
cated host could make at most 150 requests per hour with
that API. However this limit could be overcome by using a
whitelisted machine. Twitter used to whitelist the servers
of research teams and data-intensive services upon request,
this service has been discontinued since February 2011, but
existing whitelisted machines could still be used. We used
four whitelisted machines to perform our crawl, two ma-
chines with a rate limit of 20,000 requests per hour and two
with 100,000 requests per hour.

We also implemented and deployed a distributed crawler
on 550 machines of PlanetLab [2], doubling the crawling rate
compared to whitelisted machines only.

We crawled Twitter by user ID, such numeric IDs are
assigned for new accounts sequentially, but with gaps [14].
Therefore, we first determined using a random polling that
the largest assigned ID is lower than 800 million, then we
divided the range from 1 to 800 million into chunks of 10,000
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Figure 1: The difference in number of followers
and followings between the data from user accounts
and the public social graph reconstructed from our
dataset.

IDs. We selected an upper bound (800 million) much larger
than the largest observed ID to be sure to do not miss any
account.

We performed our crawl from March 20, 2012 to July 24,
2012. We implemented a crawler that assigns chunks of
10,000 IDs to each crawling machine. Then, for a given
chunk, each crawling machine performs two steps. First,
the machine makes 100 requests for 100 IDs, the maximum
number of IDs the lookup method of the API accepts, using
an API call [20]. When an ID corresponds to a valid account,
we retrieve public numerical, boolean and date information2.
Second, the machine collects the list of followings for all non-
protected and valid accounts with at least one following.

We now define the notions of following, followers, and pro-
tected accounts that we use in this paper. Each Twitter
account can have followings and followers. An account re-
ceives all published tweets from its followings, and all its
followers receive its tweets. Tweets, and list of followers
and followings, are by default visible to everyone. However,
users can make their account protected which makes this
information visible only to its followers. Furthermore, fol-
lowing a protected account requires manual approval from
its owner [5].

2.2 Limitations of the crawl
There are some accounts that we could not crawl, rep-

resenting 6.33% of the entire Twitter social graph. We ex-
plain in the following the reasons why some accounts are not
present in our dataset.

1. 32,112,668 accounts (5.97% of the accounts in our
dataset) are protected, so we cannot get their list of
followings. The degrees of nodes in the graph we an-
alyzed do not take into account arcs to and from pro-
tected accounts.

2. 1,855,945 accounts were referenced in the list of fol-
lowings of other accounts, but the API lookup did not
return any profile information for these referenced ac-
counts. Then we tried to perform further API lookups
for these referenced accounts, and we obtained profile
information for only 137,899 (7.43%) of them. For the
rest, the API lookups did not return any profile in-
formation. We guess that these accounts were either

2The public information returned by the API call we make
is described in this URL https://dev.twitter.com/docs/
platform-objects/users. We note that the history of the
published tweets is not part of it.



deactivated [6] during the crawl or suspended by Twit-
ter because these accounts violated Twitter’s terms of
use. Users can reactivate their account at any time
during 30 days after deactivation, so we guess that the
observed 7.43% have reactivated their accounts.

3. For 5,938 accounts, we did not crawl the list of follow-
ings because the API consistently returned an error
code. We counted the number of followings for such
accounts as 0.

4. 1,180 user accounts were lost because our archives with
data were partially corrupted due to a system bug on
two crawling machines.

The number of followings and followers for each account
can be obtained in two ways. Either we get these values
from an API call, or we compute them based only on the
list of followings for each account. We use the latter to build
our social graph, so we cross-validated the number of follow-
ing and followers using the latter method with the former
one. We see in Figure 1 that there is no difference between
the numbers of followers (resp. followings) returned by the
API and the number of followers (resp. followings) in the
social graph we computed for 69.14% (resp. 78.79%) of the
collected accounts. The difference observed for the other
accounts is due to three different reasons. First, our graph
does not include protected accounts and their incoming and
outgoing arcs, so the number of following and followers in
the computed graph is smaller than from the API, which
explains that we observe a higher number of positive dif-
ferences in Figure 1. Second, there is a delay between the
time the account information was crawled and the time the
list of followings was crawled because of the implementa-
tion of the crawler described in Section 2.1. This delay of 9
hours on average (9.5 minutes median) causes a difference in
the number of followings reported by the API and the num-
ber of followings obtained by computing the social graph,
because some arcs might be added or removed during this
delay. Third, we crawled all accounts during a four months
period. So a given account crawled at time T might be fol-
lowed (resp. unfollowed) by accounts after time T , accounts
that we crawled after they added (resp. removed) the follow
links. Thus, there is a larger (resp. smaller) number of fol-
lowers for this given account in the computed social graph
than returned by the API.

2.3 Measured Twitter Social Graph
We collected all Twitter accounts, consisting of 537 million

accounts at the end date of our crawl in July 2012, and ac-
counts’ public information (including account creation date,
number of published tweets, number of followings and fol-
lowers, etc.) We remind that there are 5.97% of all accounts
(32 million) that are protected, which means one needs their
approval to get the lists of their followings. So we collected
the list of all followings for non-protected accounts only, re-
sulting in a social graph with 505 million nodes and 23 billion
arcs. The average node in-degree of this graph is 45.6, the
median is 1, and the 90th percentile is 33.

Our dataset is, to the best of our knowledge, the largest
and most complete dataset of a social network available to-
day. We also believe that it will be harder in the future
to collect such a large and complete dataset. Indeed, com-
panies are taking measures to prevent large crawls of their
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Figure 2: Macrostructure of any directed graph.

social networks. For instance, Twitter is no more whitelist-
ing machines. Moreover it has discontinued on June 11, 2013
the API 1.0 that supported anonymous requests and use of
already whitelisted machines. The new API 1.1 requires
user authentication for each request making crawls harder
and longer to perform. For these reasons, we acknowledge
that our dataset has value to communities interested in so-
cial graphs, and we release it for academic use only (with
precautions described in Section 2.4) [1].

2.4 Ethical Issues
There are two main ethical issues with large scale mea-

surement studies. First, we need to take care of users pri-
vacy. All data collected in this study are publicly available
through the Twitter API, the Twitter applications, and the
Twitter Web site. In particular, we did not collect any data
that is not publicly available, or did not work around any
protection mechanisms.

Second, we need to respect Twitter terms of use. We used
the regular Twitter API to perform our crawl. We made half
of our crawl using machines whitelisted by Twitter, and half
of the crawl using a distributed crawler which used the reg-
ular Twitter API and conformed to its rate constraint. On
average, we generated from the distributed crawler around
20 requests per second to the API, a rate of requests we
believe to be negligible for the Twitter infrastructure.

We release our dataset [1] that consists of the Twitter so-
cial graph in the format of an adjacency list. In the released
dataset each account ID is anonymized.

3. GRAPH ANALYSIS METHODOLOGY
We start discussing the motivation and insights behind the

analysis of the macroscopic structure—henceforth called the
macrostructure—of the Twitter social graph. There is a fun-
damental difference between directed social graphs such as
Twitter and other directed graphs such as the Web. In a di-
rected social graph, not only the links among accounts show
the influence of accounts, but they also constrain the propa-
gation of information. Therefore, unveiling the macrostruc-
ture of a social graph sheds light on the highways of infor-
mation propagation.

However, it is a challenge to extract a macrostructure on
a social graph of the size of Twitter. The intuition behind



our macrostructure analysis is the following. We want to
understand how the Twitter graph constrains the flow of in-
formation. Therefore, we start by identifying all the strongly
connected components (SCCs) that are components with a
directed path between any two nodes. In such components,
the information can freely circulate, so we abstract each of
these components by a single node. After this stage, we ob-
tain a directed acyclic graph (DAG) that is half of the size
of the original graph (in terms of number of nodes), still
too large to be analyzed. Consequently, the next stage is
to group nodes in this DAG based on their connectivity to
the largest SCC. As discussed in the following, the largest
SCC represents roughly half of the nodes. This is large and
there is undoubtedly an interesting analysis to make on this
component, but we keep this analysis for future work and
focus in this paper on the macrostructure. After this stage,
we have 8 components representing a tractable graph. We
now describe the details of this process.

We compute the macrostructure of the Twitter social
graph in two stages. In the first stage, we use the Tarjan
algorithm [23] to compute the SCCs of the Twitter social
graph. Then, we replace each SCC with a single vertex, and
the multiple arcs between any two vertices with a weighted
arc of weight equal to the number of arcs it replaces. As a
result, we obtain a directed acyclic graph.

In the second stage, to uncover the macrostructure of the
directed acyclic graph shown in Figure 2, we use the follow-
ing procedure. We first identify the Largest Strongly Con-
nected (LSC) component, the component with the largest
number of original nodes. From this LSC component, we
run a breadth first search (BFS). We define the set of ver-
tices we find to be the OUT component, that is the set of
nodes with a directed path from the LSC component. Inside
the OUT component we distinguish levels (shown as hatched
ellipses on Figure 2). Each level is a bin of SCCs that have
the same distance from the LSC component. Then we run
a reverse BFS from the LSC component and define the set
of vertices we find to be the IN component which is a set of
nodes with a directed path to the LSC component. Similarly
to OUT we distinguish levels inside the IN component based
on the distance to the LSC component. Next, we perform
a BFS starting from the IN component and a reverse BFS
from the OUT component, reachable nodes that were not yet
in the LSC, IN or OUT components were identified as IN-
TENDRILS and OUT-TENDRILS respectively. Inside the
tendrils we can also identify levels depending on the distance
to the components these tendrils are growing from. We sepa-
rated nodes that were identified as both IN-TENDRILS and
OUT-TENDRILS into the BRIDGES category that consist
of accounts connecting the IN and OUT bypassing the LSC
component, we can also distinguish levels based on the dis-
tance to OUT and distance to IN. After that we put the
nodes that were not categorized on previous steps into the
OTHER category when there is an undirected path from
them to categorized nodes or to DISCONNECTED category
otherwise. All the possible arcs between the components of
the macrostructure are shown on Figure 2.

The methodology we describe and the macrostructure rep-
resentation is inspired from the work of Broder et al. [7] in
the context of the Web for 203 million Web pages. How-
ever, our methodology is significantly different from the one
presented by Broder et al. Indeed, unlike our methodol-
ogy that is exhaustive, they used a small random sample
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Figure 3: Macrostructure of Twitter in July 2012.
The size of the circles is proportional to the number of ac-
counts in components. The labels on arrows give the number
of arcs between components.

of 570 nodes from the LSC component to find other com-
ponents. This difference in methodology has two important
consequences. First, we perform a complete and accurate
classification of all accounts, which is not possible with the
methodology of Broder et al., a methodology only intended
to show the macrostructure, but not to accurately classify
accounts. Second, the macrostructure we describe is more
detailed and accurate. In particular, unlike Broder et al., we
identified a new component called OTHER, the structure of
levels within components, links between components, and
the exact number of such links.

In addition, insight we can get from unveiling the
macrostructure of the Web is very different from the insight
we can get from unveiling the one of a directed social graph
such as Twitter. Indeed, the Web forms a directed graph
and the arcs among Web pages are hypertext links. There-
fore, the directed graph of the Web represents the paths to
access Web pages, but no information propagates along the
arcs of the graph. On the contrary, the directed graph of
Twitter consists of the follow relationship among accounts.
Each tweet published can only propagate along the paths of
this graph. Therefore, whereas the notion of content prop-
agation is irrelevant in the context of the Web graph, it is
central in the context of the Twitter graph.

In summary, we present a method to compute the
macrostructure of any directed graph. Figure 2 is not spe-
cific to Twitter and can be applied to any directed graph,
and in particular to social graphs, where the components
group together accounts with different roles in the social
graph. This representation is, to the best of our knowledge,
the first attempt to extract exhaustively a macrostructure
of a large social graph, such as the one of Twitter, taking
into account the connectivity of accounts in this graph. In
Section 4, we will discuss the role of the Twitter accounts,
depending on the component they belong too.

4. THE MACROSTRUCTURE OF TWIT-

TER IN JULY 2012
Exploring the macrostructure of the Twitter social graph

is interesting because it sheds light on how information prop-
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LSC 96.95 100 88.66 94.28 97.01 1.17
OUT 3.05 0 10.79 1.33 2.99 0.43
IN 0 0 0.07 0.01 0 1.77
DISC. 0 0 0.47 0.01 0 5.11
OUT-T. 0 0 0 0 0 0.18
IN-T. 0 0 0 0 0 0.49
BRID. 0 0 0 0 0 0
OTHER 0 0 0.01 0 0 1.25

Table 1: Distribution of noteworthy accounts among
components. The first three columns represent the 10,000
accounts with the largest number of followers, followings,
and tweets for the entire Twitter social graph. The fourth
column represents the 2.91 million experts identified by
Sharma et al. [22] as influential users in their field (the sum
of this column is not 100% because 4.37% of the experts are
not present in our dataset, most likely because they closed
their account, or have been suspended). The fifth column
represents the accounts verified by Twitter. The last column
represents the percentage of suspended accounts.

agation is constrained. However, this macrostructure would
be even more interesting if we can map specific usages of
Twitter to components in this macrostructure. Unraveling
a correlation between accounts usages and the macrostruc-
ture will improve the understanding of how Twitter is used.

In this section, we dissect the macrostructure of the Twit-
ter social graph, focusing on regular, abandoned, and sus-
picious accounts. i) Regular accounts are by definition
accounts that are neither abandoned or suspended. Such
accounts show the regular activity on Twitter. ii) Aban-
doned accounts are accounts with few followers and fol-
lowings, and no recent tweet activity. Such accounts are im-
portant to understand Twitter adoption and to accurately
quantify the bias when analyzing Twitter, bias due to these
accounts that do not take part in any social activity. iii)
Suspicious accounts are often suspended by Twitter be-
cause they infringed its terms of use. We checked that most
suspended accounts show evident signs of malicious activity
(bunch of sequentially generated accounts, accounts’ user
name generated with automatic patterns, etc.). There is no
ground truth for the malicious activity, but the notion of
suspended accounts is a reasonable metric to detect (in ret-
rospect) malicious accounts [24]. For the purposes of our
study we have recrawled a set of 1 million random users
from our dataset on May 6, 2013 to check if they are still
active. In the rest of the paper, we refer to the number
of suspended accounts as the number of accounts for which
Twitter returned the ‘suspended’ status during this recrawl.

Figure 3 shows the macrostructure of Twitter computed
with the methodology presented in Section 3. We identify
8 components in this graph, with 4 of them (LSC, OUT,
IN, DISCONNECTED) representing 98.96% of all Twitter
accounts; so we focus on them.

Arcs
(%)

Tweets
(%)

Accounts
(%)

followers followings

LSC 98.01 96.13 98.05 50.71
OUT 1.96 0.02 1.49 5.30
IN 0.02 3.83 0.25 21.36
DISC. <0.01 <0.01 0.21 21.60
Others <0.01 0.02 <0.01 1.03

Total 23× 109 127× 109 505 × 106

Table 2: Distribution of the arcs, tweets and ac-
counts per component. At the scale of the entire Twitter
social graph, there is the same number of followings and fol-
lowers, because they represent the same notion of arc. But,
for each component, the number of followings and followers
might be different due to the ingress and egress arcs, so we
make a distinction between followings and followers for each
component.

Component
No

follower
(%)

No
following

(%)

No
tweet
(%)

LSC 0 0 23.87
OUT 0 92.97 61.82
IN 96.13 0 60.10
DISCONNECTED 99.63 99.63 79.31
OUT-TENDRILS 99.13 0 73.20
IN-TENDRILS 0 98.78 70.40
BRIDGES 0 0 67.34
OTHER 51.39 46.67 67.56

Table 3: Percentage of accounts with no follower, no
following or no tweet per component.

The LSC (Largest Strongly Connected) component is the
core of the regular Twitter activity. Indeed, according to
Table 1, the LSC component contains 96.95% of the 10,000
most followed accounts, 100% of the 10,000 accounts that
follow the most, 88.66% of the 10,000 accounts that tweet
the most, 94.28% of the 2.91 million experts identified by
Sharma et al. [22] as influential accounts in their field, and
97.01% of the verified accounts [4] that are accounts of highly
sought users (in music, acting, politics, etc.) that Twit-
ter verified to be authentic. In addition, Table 2 shows
that more than 96% of the following and follower links, and
98.05% of the tweets are for accounts in the LSC.

However, it is wrong to believe that the LSC component
is the only one that matters when studying Twitter, other
components contain a lot of accounts with specific roles in
the Twitter ecosystem. We see in Table 2 that the LSC
contains only 50.71% of all accounts. This is surprising be-
cause it is easy to be part of the LSC component, an account
only needs one following and one follower already in the LSC
component. Also, we observe that a large fraction of the sus-
picious activity in Twitter is outside of the LSC component,
as we see in Table 1 (last column). Finally, when looking at
the percentage of accounts with no follower, no following, or
no tweet, we see in Table 3 that each of the four main com-
ponents has fundamentally different characteristics. Indeed
92.97% of the accounts in the OUT component have no fol-
lowing, 96.13% of the accounts in the IN component have no
follower, and almost all accounts in the DISCONNECTED



0 10 20 30 40 50
0

0.25

0.5

0.75

1

Age of account (month)

C
C

D
F

 o
f c

om
po

ne
nt

 s
iz

e

 

 

LSC
OUT
IN
DISCONNECTED

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

# months between account creation and last published tweet

C
C

D
F

 o
f c

om
po

ne
nt

 s
iz

e

 

 

LSC
OUT
IN
DISCONNECTED

Figure 4: Characterization of abandoned accounts.
(top) Identification of old abandoned accounts. CCDF of
accounts with at most one follower and one following in a
component according to the account creation date. (bot-
tom) Characterization of accounts who published at least
one tweet. CCDF of the duration between the creation date
of an account and the date of its last published tweet for
accounts with at most one follower and one following.

component have no following and no follower. Moreover, at
least 60% of the accounts in these three components never
sent any tweet, whereas it is only 23.87% for the LSC.

In summary, we see that even if most of the regular Twit-
ter activity is in the LSC component, other components con-
tain half of the Twitter accounts and present characteristics
worth studying. In the following, we dig into each compo-
nent to discuss its main characteristics.

4.1 LSC Component
We have seen that most of the regular Twitter activity is

in the LSC component. However, due to the simplicity to
belong to the LSC component, many abandoned and suspi-
cious accounts also belong to it.

4.1.1 Abandoned Accounts

Most accounts with one following and one follower in the
LSC are abandoned accounts. We see in Figure 4 (top, solid
line) that there are 4.18% of accounts in the LSC component
with one following and one follower. In addition, out of the
accounts with one following and one follower in the LSC
component, 86.34% are more than 6 months old and 59.57%
never sent any tweet.

In summary, a large fraction of accounts in the LSC com-
ponent with one following and one follower did not have
any change in their number of followings and followers for
months and did not send tweets recently. Considering that
it is unlikely that such accounts will actively follow a sin-
gle other account for month (so no serious follow activity)
without tweeting anything (so no publishing activity), it is
reasonable to believe that these accounts are abandoned.
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LSC 0.33 1.15 1.99 97.83 3.02
OUT 1.15 10.30 5.20 0.45 5.26
IN 2.78 96.87 3.87 96.87 3.89
DISC. 1.38 1.33 7.43 2.84 7.48

Table 4: Percentage of suspended accounts (on the
6th of May 2013) per component for 5 outlier cat-
egories. The first three columns represent the 10,000
accounts with the largest number of followers, followings,
and tweets for the entire Twitter social graph. The fourth
column is for the 10,000 accounts with the largest number
of followings and at most one follower. The last column is
for the 10,000 accounts with the largest number of tweets
and at most one follower.

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

10
10

x

U
se

rs
 w

ith
 #

 fo
llo

w
er

s 
>

 x

 

 

LSC
IN
OUT
DISCONNECTED

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

10
10

x

U
se

rs
 w

ith
 #

 fo
llo

w
in

gs
 >

 x

 

 

LSC
OUT
IN
DISCONNECTED

Figure 5: Distribution of followers (top) and follow-
ings (bottom) by category. Accounts with no follower
(top) and no following (bottom) are filtered out (see Table 3)

4.1.2 Suspicious Accounts

The LSC component also contains suspicious accounts.
We present in Table 4 the percentage of suspended accounts
per component for five outlier categories. An outlier ac-
count is followed, following, or tweeting much more than a
regular account, thus it is a good candidate for suspicious ac-
tivity. The first three columns represent accounts with the
largest number of followers, largest number of followings,
and largest number of tweets. The fourth and fifth columns
are for the accounts with the largest number of followings
and tweets, but with at most one follower. We consider this
notion of outliers because following a lot of accounts is a
known technique used by spammers [24]. To reduce the im-
pact of spammers, we remind that Twitter imposes a limit
of 2,000 followings for accounts with no follower, and then a
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Figure 6: Age of accounts in each component. CCDF
of accounts in a component according to the account creation
date.

linear increase with the number of followers. Accounts close
to this limit and with at most one follower are more likely
to be spammers. The last column is for accounts that send
the largest number of tweets, but with at most one follower.
This is also a suspicious behavior, because it is strange to
send a lot of tweets if nobody (or a single other account) fol-
lows them. Spammers can send a lot of tweets to interfere
with trending topics or the Twitter search functionality, and
to direct messages to a specific user using @mentions [24].

Considering the huge number of suspicious accounts, we
cannot afford to manually inspect all of them. Therefore,
we consider a suspicious account to be malicious if it was
suspended by Twitter, see Table 4.

As expected, the top followed accounts in the LSC compo-
nent are regular, only 0.33% have been suspended. Indeed,
it is complex to manipulate the number of followers, because
it requires to either manipulate other accounts in order to
incite them to follow, or to create fake accounts whose only
one goal is to follow. More surprising, the top following ac-
counts are also regular for Twitter, only 1.15% have been
suspended. We expect accounts that follow a lot of other
accounts to be spammers, but, according to Figure 5 (bot-
tom), the LSC component is the only one to have accounts
that break the limit of 2,000 followings. So the top following
in the LSC component also have a lot of followers, thus the
low number of suspended accounts.

Then we observe in Table 4 two important behaviors that
characterize well the outlier activity in the LSC component.
First, 97.83% of the top following with at most 1 follower
have been suspended. This means that most of the accounts
in the LSC component close to the limit of 2,000 follow-
ings are malicious. Second, only 3.02% of the top tweeting
accounts, but with at most a single follower have been sus-
pended. The rest looks like regular for Twitter. By manually
inspecting these accounts that looks regular for Twitter, we
found bots used as an interface to job forums, news site, Ya-
hoo!Answers, YouTube published videos, etc. So, it seems
that Twitter is used by developers to generate a stream of
data collected from third party Web sites. As these accounts
have only one follower, we guess that they are either used for
tests only, or that the developers are using a Twitter widget
to embed their account timeline into a Web site.

4.2 OUT Component
The OUT component represents all Twitter accounts with

a directed path from the LSC component. In addition, these
accounts can also have directed paths from other compo-
nents, but no account in OUT can have a directed path to

any other component (directed paths among OUT accounts
are possible, so if an OUT account has following links, they
necessarily come to other OUT accounts).

4.2.1 Regular Accounts

A specificity of the OUT component is that a small set
of accounts (belonging to celebrities) attract most of the
follower links for this component. These are regular OUT
accounts. We see in Figure 3 that more than 500 million
links between components are directed to OUT, 37.93% of all
inter-components links, whereas the OUT component repre-
sents only 5.30% of all accounts. Also, we see in Table 2 that
accounts in OUT presents 1.96% of all follower links, which
make it the second component with the largest number of
follower links (we sum all follower links for all accounts in a
given component). Among the 100 accounts that have the
largest number of followers, we found that there are 35 ver-
ified accounts representing 12% of the arcs from the LSC to
OUT. These accounts are owned by celebrities that belong
to the OUT component because they do not follow any other
account.

We observe another interesting specificity of the OUT
component in Figures 4 (top) and Figures 6. The OUT
component is the only one to show an inflection point for
both curves around 20 months, meaning that the propor-
tion of recent accounts in the component is lower than for
other components. To explain this inflection point, we need
to characterize the kind of accounts that stay in the OUT
component. According to Table 3, 92,97% of the OUT ac-
counts have no followings, but they all have at least one fol-
lower because they belong to the OUT component. These
accounts are what we call selfish (they are not interested in
tweets from other accounts), a decreasing trend in Twitter
in the past two years. We will discuss further this trend in
Section 5.3.

4.2.2 Abandoned Accounts

As we discussed in Section 4.1, most accounts with at most
one following and one follower are also abandoned accounts
for the OUT component. We see in Figure 4 (top) that
50.94% of the accounts have at most one following and one
follower, and 40.11% are more than 1 year old. We see in Fig-
ure 4 (bottom) that 82.89% of the accounts with at most one
following and one follower never sent a tweet, and that only
5.13% of the accounts with at least one following and one
follower sent a tweet more that 1 month after their creation
date. This is a consequence of the Find friends feature avail-
able in Twitter that allows users to search their entire con-
tact lists for Twitter accounts. By default, once the search
is done, all accounts are checked to be followed. As a con-
sequence, we observe many accounts in the LSC component
that followed abandoned accounts in the DISCONNECTED
component, making these abandoned accounts move to the
OUT component.

4.2.3 Suspicious Accounts

There are fewer malicious accounts in the OUT compo-
nent than for other components. We see in Table 4 that
the percentage of suspended accounts for outlier accounts
is low for the OUT component. We explain the low num-
ber of suspended accounts for the top followings because no
account reaches the limit of 2,000 followings, and that few
accounts have more than a hundred followings, see Figure 5
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Figure 7: The distribution of number of tweets by
component. Accounts with no tweets are filtered out (see
Table 3).

(bottom). As long as an account in OUT follows an ac-
count in the LSC, it belongs to the LSC, so spammers using
following links to spam are likely to escape in the LSC com-
ponent. We explain the low number of suspended accounts
for the top tweeting with at most one follower because (as
for the LSC component) most of these accounts are oper-
ated by bots. Finally, we see in Table 1 that out of the 4
main components, OUT is the component with the smallest
number of malicious accounts.

4.3 IN Component
The IN component is much different from the two previous

ones because accounts in this component have few followers
(see Figure 5, top) and the distribution of the number of
tweets is very different (see Figure 7) from the ones of the
LSC and OUT components. The IN component contains
the second largest fraction of abandoned and suspicious ac-
counts, after the DISCONNECTED component.

4.3.1 Regular Accounts

The regular users for the IN component are passive fol-
lowers, that are accounts who follow accounts in the LSC,
but never publish tweets and are not followed. Indeed, in Ta-
bles 2 and 3 we see that the IN component contains 21.36%
of all Twitter accounts, but 96.13% of them have no follower,
and 60.10% of them published no tweet (we remind that ac-
counts with followers in IN are followed by other accounts in
IN only). This component consists of accounts who follow
accounts in the LSC (99.6%) or an account in IN (0.4%). We
will see in Section 5.3 that the trend of accounts to be pas-
sive followers on Twitter (that is, belong to IN component)
has been growing since 2009.

Many accounts belonging to the IN component move to
the LSC component. We see in Figure 4 (top) that 30.56% of
the accounts in the IN component have at most one following
and one follower, but that only 14.61% are more than one
year old. So even if few of them have been tweeting close to
the creation date of their accounts (see Figure 4, bottom), it
is likely that they moved to the LSC component and tweeted
from it. Indeed, we see in Table 1 that only 1.77% of the
accounts in the IN component have been suspended, but
that accounts are much younger in the IN component than
in the LSC and OUT components, see Figure 6.

4.3.2 Abandoned Accounts

Whereas 96.13% of the accounts in the IN component
never published any tweet (see Table 3), the fraction of aban-
doned accounts is much lower in this component than in the

OUT and DISCONNECTED components. Indeed, we see
in Figure 4 (top) that only 30.56% of the accounts in the
IN component have at most one following and one follower,
and 20.88% have at most one following, one follower, and
never published any tweet. Moreover, according to Figure 5
(bottom), 23.04% of the accounts follow at least 10 other
accounts, thus a passive follower activity.

4.3.3 Suspicious Accounts

The IN component contains many malicious accounts
among the outliers. We see in Table 4 that 96.87% of the ac-
counts with the largest number of followings are suspended.
We note that all top followings have at most 1 follower in
this component. There is also 3.87% of the accounts that
tweeted the most that were suspended. For the rest, after
manual inspection, we also found, as for the two previous
components, that they are used by bots.

Finally, the IN component has a very interesting property
for people looking for a reliable metric to assess influencers.
Cha et al. [9] show that the number of followers is not a
reliable metric, because users perform link farming [10] to
increase their number of followers. However, this is a rare
problem in the IN component. Indeed, accounts in the IN
are clearly not interested in increasing their number of fol-
lowers (see Figure 5, top) thus the accounts they follow will
not be biased by this problem. Evaluating the benefit of
considering accounts in the IN to assess influencers is an
interesting problem for future work.

4.4 DISCONNECTED Component
Accounts in the DISCONNECTED component, like in the

IN one, have few followers (see Figure 5, top) and the dis-
tribution of their number of tweets is very different (see
Figure 7) from the ones of the LSC and OUT. The DIS-
CONNECTED component contains the largest fraction of
abandoned and suspicious accounts. There are almost no
regular users in this component.

4.4.1 Abandoned Accounts

A specificity of the DISCONNECTED component is that
is contains a lot of abandoned accounts. In spite of be-
ing the second largest component with 21.6% of all ac-
counts (see Table 2), 78.94% of accounts in the DISCON-
NECTED component have no followers and no followings,
and never published any tweet. Furthermore, 72.44% of
accounts in DISCONNECTED component are older than
one month. Therefore, we can conclude that the DISCON-
NECTED component has, by far, the largest number of
abandoned accounts. We see in Fig. 4 (top) that 99.97%
of its accounts have at most one following and one follower,
but only 41.93% of them are older than 12 months. Like for
the IN component, many account in the DISCONNECTED
component are recent (see Figure 6), thus some accounts in
this component have moved to another component.

4.4.2 Suspicious Accounts

Finally, we see in Table 1 that the DISCONNECTED
component contains the largest fraction of malicious ac-
counts, but we don’t observe in Table 4 an outlier category
grouping them. Indeed, most accounts have no followings,
no followers and no tweets, so the number of outliers is much
smaller than our sample size.

In summary, the DISCONNECTED component hosts a



lot of abandoned accounts and a large fraction of the mali-
cious activity on Twitter, it is also a transitional place for
new accounts before they migrate to another component.

4.5 Other Components
The smallest components, IN-TENDRILS, OUT-

TENDRILS, BRIDGES, and OTHER represent 1.03% of
all accounts. Most accounts in these components are either
accounts created for test, or new accounts that will migrate
to another component after some time. We do not discuss
deeper these components as their impact on the Twitter
social graph is small compared to the 4 main components.

4.6 Discussion
We can draw several important lessons from the results

discussed in this section.
First, the macrostructure of the Twitter social graph sig-

nificantly constrains the propagation of information. There-
fore, models of information propagation in social networks
might lead to wrong results when abstracting the underly-
ing social graph. This work sheds light on how to correctly
abstract the social graph, and because the macrostructure
is reasonably simple, with 3 main components with active
accounts, we believe it is possible to model the underlying
graph constraint.

Second, we identify a correlation between components in
the macrostructure and the usage of accounts in these com-
ponents. This result challenges the sampling techniques that
follow arcs (such as random walks or bi-directional breadth
first search) because the statistical validity of the sample
might be low. For instance, all sampling techniques follow-
ing arcs that start from well connected (or active) accounts
will miss all of the malicious activity located in the DIS-
CONNECTED component.

Last, the identification of the role of accounts in each com-
ponents is important to understand who are the influencers
in Twitter. For instance, as discussed in Section 4.3.3, users
try to increase their popularity in Twitter by either offering
reciprocation to the users that accept to follow them, or by
buying follower links on the black market. Therefore, we
can identify real influencers by focusing exclusively on the
followers in the IN component, removing suspicious accounts
by filtering out all accounts younger than, e.g., six months.

5. EVOLUTION OF THE MACROSTRUC-

TURE OF THE TWITTER SOCIAL

GRAPH WITH TIME
In this section, we discuss the evolution of the macrostruc-

ture of the Twitter social graph with time from January 2007
to July 2012. To present this evolution, we first describe the
estimation technique we use to estimate the Twitter social
graph in the past. Then we validate our technique using
two public datasets collected in 2009 [16, 9]. We discuss the
evolution of the macrostructure of the Twitter social graph
with time and explain how new accounts led to the time evo-
lution we observed, shedding light on the evolution of the
usage of Twitter in the past 6 years.

5.1 Methodology to Estimate the Macrostruc-
ture

The evolution with time of the macrostructure of the
Twitter social graph is interesting, because it shows the evo-
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Figure 8: Comparison of our estimated graphs of
2009 (labeled Jul and Jan) with two existing Twit-
ter datasets made in August [16] and September [9]
2009. Our simple methodology gives an approximation of
the macrostructure of the Twitter social graph that is con-
sistent with existing datasets.

lution of the Twitter usage. We have seen in Section 4 that
components represent specific categories of usage. However,
the Twitter API does not give access to the past social graph
of Twitter.

We propose a simple approach to approximate the
macrostructure of the Twitter social graph. The dataset we
describe in Section 2.3 covers all Twitter accounts in July
2012 (with the limitation described in Section 2.2), and for
each account we have the creation date. To approximate
the macrostructure of the Twitter social graph at date D,
we remove from our dataset all accounts created after this
date, and all arcs to and from these accounts. Then, we
use the methodology described in Section 3 to compute the
macrostructure of the resulting graph at date D.

This simple methodology has two important limitations.
First, we do not have any suspended and deactivated ac-
counts in our dataset. Accounts are suspended by Twitter
because they infringed the terms of use, most of the time
they are spammers. Deactivated accounts have been closed
by users themselves. We believe such accounts, when they
were still active, had a small impact of the Twitter social
graph. Second, the Twitter API does not give access to the
arc creation date3. Therefore, we assume that all arcs be-
tween any two accounts in July 2012 existed at date D as
long as the two accounts existed at this date; equivalently
we assume that if there is an arc between two accounts, it is
created close to the creation date of the youngest account.
We are aware that, as reported by Kwak et al., the creation
of arcs among accounts is more complex than our simple
approximation [15]. However, our goal is to understand the
evolution of the macrostructure of the Twitter social graph
with time, not the fine grain evolution of arcs between ac-
counts. For this reason, we believe that our approximation
is reasonable.

Moreover, to validate this approximation on creation
dates of arcs, we compare our approximation with two
datasets collected in 2009 [16, 9]. Kwak et al. [16] and Cha
et al. [9] independently collected two Twitter datasets in
August 2009 and September 2009 respectively and used dif-
ferent methodology. Kwak et al. used a technique close to

3For a given account, Meeder et al. observed that the 1.0
Twitter API returned the arcs in an order that was the re-
verse order of creation of the arcs for this account [19]. Our
recent experiments with the Twitter API have shown that
it is no more possible to rely on this ordering property.
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Figure 9: The estimated evolution of the
macrostructure of Twitter with time. (top) Sizes of
components in log scale. (bottom) Sizes of the same com-
ponents as a percentage of the size of the graph.

a BFS and reverse BFS from a popular account and also
collected accounts referring to trending topics (so active ac-
counts only), and Cha et al. used a crawl by account ID (as
we did). For each of the two datasets we computed the Twit-
ter macrostructure according to the methodology described
in Section 3, and we approximated the macrostructure of
Twitter using our dataset in July 2009 and January 2010.
We show in Figure 8 the result of this validation: the or-
der of the size of each components is consistent between the
two validation datasets and our dataset. In addition, we
have compared the dataset by Kwak et al. with our clos-
est estimation (July 2009). We found that 88.25% of the
users common to both datasets belong to the same compo-
nents in both datasets. We cannot make such a validation
for the second dataset because Cha et al. have anonymized
it. In summary, the dynamics of the creation and deletion
of arcs is complex [15], but we have shown that our sim-
ple approximation is reliable enough for the purpose of our
macrostructure study.

There is no DISCONNECTED component in Figure 8,
because this component is missing in the two validation
datasets. Either the methodology did not permit to crawl
accounts in this component [16], or these accounts were fil-
tered out in the published dataset [9]. We observe in Fig-
ure 8 some small variations for the OUT, IN-TENDRILS,
and OUT-TENDRILS components between the two valida-
tion datasets and our dataset. These variations can be ex-
plained by a major change in the Twitter macrostructure
that happened in 2009. We discuss further this change in
the next section.

5.2 Evolution of the Macrostructure
To observe the evolution of the Twitter social graph with

time, we approximate its macrostructure using the simple
methodology discussed in Section 5.1 every six months from
January 1, 2007 to July 1, 2012. The first account on Twit-
ter was created on March 21, 2006, but due to the small
number of accounts created between March and July 2006,

we decided to skip the macrostructure of the Twitter social
graph in July 2006 and start our analysis in January 2007.

We see in Figure 9 (top) the evolution of the size of each
component with time, confirming that the LSC, OUT, IN,
and DISCONNECTED have always been the largest com-
ponents in Twitter. However, by looking at the size of
each component normalized with the graph size in Figure 9
(bottom), we observe an interesting change in proportion of
macrostructure components in 2009.

Before 2009, the proportion of the DISCONNECTED
component was around 30%, the IN component was stable
in size, and the size of the OUT component was increas-
ing. The real public adoption of Twitter started in 2009
where the total number of accounts went from 4.265 million
in January 2009 to 67.487 million in January 2010. Several
events contributed to attract new users on Twitter during
that period: the terrorist attacks in Mumbai was one of the
first event followed on Twitter in November 2008, attract-
ing the attention of other news media such as CNN; some
influential celebrities started to use Twitter such as Oprah
Winfrey, and, for the first time, some accounts reached one
million followers.

We see in Figure 9 (bottom) that the large adoption of
Twitter in 2009 led to changes in the macrostructure of
its social graph. The proportion of the DISCONNECTED
component dropped to 10% while the LSC jumped to 70%.
We have seen in Section 4 that the DISCONNECTED com-
ponent corresponds to abandoned accounts, so during such
a large adoption phase, the proportion of abandoned ac-
counts is much lower. However, this proportion increased
in 2010 and 2011 to reach a stable value, with the DIS-
CONNECTED component representing around 20% of all
accounts.

We also observe in Figure 9 (bottom) that the proportion
of the OUT component has been decreasing since 2009. The
reason is that a large fraction of celebrities joined Twitter
in 2009 and 2010. Some of these celebrities created an ac-
count to increase their visibility, but never intended to follow
other accounts, thus they joined the OUT component. The
fraction of such celebrities is decreasing compared to regular
accounts, and also joining Twitter without following anyone
in the LSC component is a decreasing trend. Indeed, the
proportion of the IN component has been increasing since
2009, showing that it is an increasing trend to follow ac-
counts in the LSC component without tweeting and being
followed.

It is worth noticing that the two most popular Twitter
datasets [16, 9] have been collected in 2009. We have seen
that the Twitter social graph macrostructure has signifi-
cantly changed during the period 2009/2010, calling for a
newer dataset such as the one we collected, which is more
representative of the actual Twitter social graph. We also
note that the two datasets of 2009 do not contain accounts
belonging to the DISCONNECTED component, unlike our
dataset, which is an issue for researchers focusing on mali-
cious activities and abandoned accounts on Twitter.

5.3 Distribution of New Accounts in Compo-
nents

In this section, we evaluate to which component the new
accounts created during each 6 months period belong to.
To find this distribution, we use the approximations of
the Twitter social graph macrostructure described in Sec-
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Figure 10: Distribution of new accounts per com-
ponents with time. (top) Number of new accounts per
component. (bottom) Fraction of the total number of new
accounts per component.

tion 5.2. Then, for each pair of contiguous approximations
in time (e.g., July 2008 and January 2009), we remove all
accounts already present in the oldest one to the newest one.
This way, we obtain the evolution with time of the distribu-
tion of the new accounts in components, see Figure 10.

We observe in Figure 10 (top) that the total number of
new accounts increases with time for the LSC, IN, and DIS-
CONNECTED components, but not for OUT. This decrease
confirms our discussion in Section 4.2 on the OUT compo-
nent, explaining that new selfish accounts are decreasing in
Twitter.

Figure 10 (bottom) shows the fraction of the total number
of new accounts per component. We observe that new ac-
counts join most the LSC component, but this is a decreasing
trend at the benefit of the IN and DISCONNECTED compo-
nents. We explain this trend by two changes in the usage of
Twitter initiated in 2009. First, passive followers are taking
an increasing role in Twitter; passive followers are accounts
that follow other accounts, but that are not followed and
never publish tweets, as described in Section 4.3. This in-
creasing role of passive followers shows that Twitter is more
and more used as a regular information media in which peo-
ple receive information, but do not produce any. However,
more than 40% of new accounts are still joining the LSC
component, making Twitter the largest and most participa-
tive information media. Second, as Twitter is very popular,
it is attracting a large fraction of users that are just creating
a Twitter account out of curiosity, but never effectively use
it. Most of these accounts end up in the DISCONNECTED
component.

6. RELATED WORK
Twitter has been widely studied for years. A large fraction

of the literature is on the identification of malicious behavior
on Twitter [24, 27, 10], on the study of tweets propagation
[21, 26], and on privacy [12, 18]. All these studies are not
directly related to our work as they do not crawl the Twitter
social graph and do not explore its properties.

Closer to our work, several studies focused on the Twitter
social graph. Some of them crawled partially the graph be-
fore 2009 [13, 14, 11], so before the wide adoption of Twitter.
Two studies made a large crawl of the Twitter social graph.
Kwak et al. used a technique close to a BFS and reverse BFS
from a popular account and also collected accounts refer-
ring to trending topics. This crawling methodology cannot
capture some users that are not connected to the LSC com-
ponent, and that do not tweet about trending topic, thus a
partial view of the Twitter social graph. Cha et al. [9] used
a crawl by account ID, that is close to what we did. Both of
these studies made their dataset publicly available and oth-
ers built on it [17, 25, 8, 22], but the datasets were collected
in 2009 during the main change in the Twitter social graph
we discussed in Section 5.2.

To the best of our knowledge, the dataset we present is
the most up-to-date and the most complete description of
the Twitter social graph. Moreover, none of these studies
explores the macrostructure of the Twitter social graph, a
new way to represent directed social graphs. Broder et al.
[7] introduced first the notion of macrostructure for a di-
rected graph in the context of the Web, but we significantly
improved it, and we are the first ones to apply it to Twitter.
Unlike what Broder et al. proposed, we present a methodol-
ogy to compute the exhaustive macrostructure of any large
directed social graph, along with the categorization of each
account in the identified component, which is a significant
methodological step.

7. CONCLUSION
In this paper, we present the largest, most complete, and

most up-to-date crawl of the Twitter social graph. This
graph contains 505 million accounts connected with 23 bil-
lion arcs. In addition, we present a methodology to prac-
tically compute the macrostructure of any directed social
graph and to exhaustively classify each account to one of
the identified components. We applied this methodology to
the Twitter social graph and found that only 50.71% of the
accounts belong to the LSC component, and that 21.60%
of the accounts (in the DISCONNECTED component) have
no path to the other accounts.

We show that the main components of the macrostruc-
ture of the Twitter social graph correspond to specific us-
ages. For instance, the LSC component hold most of the
regular Twitter activity, and the IN component holds pas-
sive followers. Finally, we present a simple methodology to
explore the evolution of the macrostructure of Twitter with
time, we validate this methodology, and we show that the
public datasets crawled in 2009 do not represent the current
macrostructure of the Twitter social graph.

We believe that our collected dataset is a gold mine
for any researcher working on social graphs and that the
macrostructure analysis sheds a new light on the Twitter
social graph that will be useful for both theoreticians and
experimenters.
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