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Résumé

Nous étudions dans cet article le problème de l’arbre de Steiner du point de vue de la

problématique appelée réoptimisation. Nous considérons qu’une solution optimale nous est

fournie sur une instance du problème, l’objectif étant de maintenir une bonne solution quand

l’instance est sujette à des modifications mineures, par exemple l’insertion ou la suppression

d’un sommet. Nous proposons des stratégies de réoptimisation rapides pour le cas de l’in-

sertion d’un ou plusieurs sommets, alors que dans le cas de la suppression d’un sommet,

le maintient d’une bonne solution semble délicat. Nous présentons également des bornes

inférieures pour les rapports d’approximation obtenues par les stratégies de réoptimisation

considérées.

Abstract

We address reoptimization issues for the Steiner tree problem. We assume that an optimal

solution is given for some instance of the problem and the objective is to maintain a good

solution when the instance is subject to minor modifications, the simplest such modifications

being vertex insertions and deletions. We propose fast reoptimization strategies for the case of

vertex insertions and we show that maintenance of a good solution for the “shrunk” instance,

without ex nihilo computation, is impossible when vertex deletions occur. We also provide

lower bounds for the approximation ratios of the reoptimization strategies studied.

Keywords: Steiner tree, approximation algorithms, reoptimization

1 Introduction

Given a graph G = (V,E), a subset R ⊆ V of its vertex-set (the so-called terminal vertices), and
nonnegative integer weights {w(e) : e ∈ E} on the edges of G, the Steiner tree problem consists
in finding a lightest Steiner tree for (G,R), i.e., a subtree T of G with R ⊆ V (T ) (where the
weight of a tree is given by the sum of the weights of its edges).

We will assume in the sequel that the graph G is complete, and that the weights on the
edges induce a non-negative integer metric on the subsets of size 2 of V , i.e., that for every three
vertices x, y, z ∈ V , the triangle inequality: w(xz) 6 w(xy)+w(xz) holds. Therefore, an instance
of the Steiner tree problem is of the form (V,R,w) where R ⊆ V and w is a nonnegative integer
metric on V . A Steiner tree for (V,R) is a Steiner tree for ((V,

(

V
2

)

), R).
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The Steiner tree problem is one of the most famous combinatorial optimization problems in
network design. The frequency with which it arises in such applications motivates numerous
works on this problem, under several assumptions, hypotheses and models. Steiner tree is well
known to be NP-hard. The first approximation algorithm for it appeared in [1] (see also [7, 11]).
This algorithm is a primal-dual generalization of the following simple heuristic: compute the
shortest paths between all pairs of terminal vertices and then compute a minimum-cost spanning
tree over the shortest-path weighted complete graph with vertex-set R. Removal of redundant
edges might be needed in order to transform the tree so computed to a Steiner tree of G. The
approximation ratio achieved by this algorithm is bounded above by 2. If G is metric, then a
minimum-cost spanning tree on the induced subgraph G[R] (in what follows, given a subset V ′

of vertices of a graph G, we denote by G[V ′] the subgraph of G induced by V ′) achieves the
same approximation ratio. This result has been improved in [9] down to 1.55 in complete metric
graphs and to 1.28 for complete graphs with edge costs 1 and 2. A survey of approximation
results for Steiner tree problem can be found in [7].

In this paper we address the reoptimization issue where the following situation is considered.
We are given an optimum solution of an initial instance and we wish to maintain a good solution
efficiently, when the instance is slightly modified. This working framework has already been
adopted for several optimization problems, such as scheduling problems ([4, 5, 10]) for practical
applications, and classical polynomial problems, such as the minimum spanning tree, where the
goal is to recompute the optimum solution as fast as possible ([6, 8]). It has been also addressed
for the minimum traveling salesman problem in [2] and, recently for both minimum and maximum
traveling salesman problems in [3].

For the Steiner tree problem handled here, we assume that an optimal solution Topt has
already been computed for a metric complete graph G when some minor modification occurs in
the graph. This modification may be the arrival of some (one or more) new vertices together
with the edges linking them to G (in such a way that the extended graph G′ remains complete
and metric), or the removal of some vertices of G (together with the edges linking them to the
surviving graph). Then, the question is: “can one maintain, or at least modify very quickly the
existing solution, in order to obtain a good solution for the modified instance without the need to
recompute such a solution thoroughly?”. The “goodness” of a solution is measured by computing
its approximation ratio. More precisely, if T is a Steiner tree for (V,R), then we say that T is
a ρ-approximation for (V,R,w) if w(T ) 6 ρw (Topt) where Topt is a solution to the Steiner tree
problem. We say that ρ is the approximation ratio achieved by T .

In what follows, we propose a simple reoptimization strategy, called REOPT, mainly based upon
a minimum spanning tree computation adapted for the case studied (terminal, or nonterminal
vertices), that efficiently tackles the case of vertex insertions in the graph. Let us note that most
of the approximation algorithms known for the Steiner tree problem seem to be hard to adapt
in order to tackle dynamic situations such as the ones handled in this paper. In Section 3, we
handle insertion of one vertex x in the initial graph. We provide a tight 3/2-approximation ratio
in both cases where x is terminal, or nonterminal. In Section 4, we handle insertions of more than
one vertex in the graph. In Section 4.1, we study insertion of p > 1 nonterminals and we prove,
for this case also, a tight 3/2-approximation ratio for REOPT. On the other hand, in Section 4.2,
we assume that p vertices are inserted, k of which being terminals. For this case we show that
the ratio of REOPT is 2−1/(k+2), while its lower bound is 2−2/(k+2). In Section 5, we provide
a general lower bound on the approximation ratios for a class of solution structures showing,
informally, that if one tries to keep a good approximation ratio for the modified solution, she/he
must eventually consider vertices that are not contained in the initial optimal solution.

Finally, for the complementary problem of vertex removals from the initial graph, we show in
Section 5 that, sometimes, complete recomputation of a new solution for the “shrunk” instance
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is unavoidable.

2 Some easy preliminary results

We give in this section some preliminary results linking approximation of reoptimization to
approximation of the Steiner tree problem. They can be seen as simple reductions from the
reoptimization context to the classical approximation one. Their proofs, being fairly similar to
the ones in Sections 3 and 4, are omitted.

Proposition 1 . Let T be a ρ-approximation for an instance (V,R,w) of the Steiner tree
problem. Suppose that a nonterminal vertex, say x, is added to V together with new edges
{xy : y ∈ V } and their weights such that the new instance is again metric. Then, T is a
ρ′-approximation for the extended instance such that: ρ′ 6 2(1 − (1/|R|))ρ.

The result of Proposition 1 is sharp. Indeed, let the weights of edges connecting the new vertex x
to the vertices of R be equal to 1, and let all the remaining edge-weights be equal to 2. If we
take the current Steiner tree to be an optimal Steiner tree in G, then w(T ) = 2(|R| − 1), while
the new optimal weight is |R|.

Proposition 2. Let T be a ρ-approximation for an instance (V,R,w) of the Steiner tree problem
(with |R| > 2). Suppose that a terminal vertex, say x, is added to V together with new edges
{xy : y ∈ V } and their weights such that the new instance is again metric. Let T ′ denote the
tree T , augmented with a lightest edge connecting a vertex of R with x (ties broken arbitrarily).
Then, T ′ is a ρ′-approximation for the extended instance such that: ρ′ 6 (2 − (1/|R|))ρ.

It is easy to verify that the counterexample of Proposition 1 shows the sharpness of Proposition 2
as well.

3 One vertex is added

In this section, we consider two cases, according to whether the new vertex is terminal or not.

3.1 The new vertex is nonterminal

Let T be an optimum solution for an instance (V,R,w) of the Steiner tree problem. Suppose
that a nonterminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their
weights such that the new instance is again metric. Let Tx denote a minimum spanning tree on
the vertex-set R ∪ {x}.

We consider the algorithm REOPT which consists in computing the best solution between T
and Tx (ties broken arbitrarily). Obviously, its complexity is the one of computation of a mini-
mum spanning tree on the clique induced by R ∪ {x}, i.e., O(|R|2 log |R|).

Theorem 1. REOPT is a 3/2-approximation algorithm. This bound is tight.

Proof. Let T̃ denote an optimal Steiner tree in the extended graph, and T ′ the solution computed
by REOPT. If x /∈ V (T̃ ), then T is optimum (and so is T ′). So we may assume that x ∈ V (T̃ ).
Let {x1, . . . , xk} be the set of neighbors of x in V (T̃ ). Removing x from T̃ results in a forest F
consisting of k > 1 trees T1, . . . , Tk with xi ∈ V (Ti) for i ∈ [k] (in what follows, we denote by [k]
the set of integers from 1 to k). Note that k 6 |R|, since every tree Ti contains at least one
terminal vertex. Let T0 denote the set of edges adjacent to x in T̃ . Then:

w
(

T̃
)

=

k
∑

i=0

w (Ti)
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Now, link the vertices x1, . . . , xk with a path P = (x1, . . . , xk). Together with the trees Ti

(i > 1), this is a Steiner tree on the initial graph, the value of which is at least w(T ). By triangle
inequality, we get that w(P ) 6 2w(T0). Therefore:

w
(

T ′
)

6 w(T ) 6 2w (T0) +
k

∑

i=1

w (Ti) (1)

On the other hand, let i ∈ [k]. Using an Euler tour on Ti (and triangle inequalities), we can easily
find a path Pi = (xi, v

1
i , . . . , v

ki

i ) starting in xi and containing all the terminal vertices v1
i , . . . , v

ki

i

of Ti such that w(Pi) 6 2w(Ti). Then, using again the triangle inequality (w(xxi) + w(xiv
1
i ) >

w(xv1
i )), we get that the path (x, v1

i , . . . , vki

i ) has value at most w(xxi) + 2w(Ti). Then, the

union of these k paths (x, v1
i , . . . , vki

i ) if a Steiner tree T ′′ of value at most w(T0)+2
∑k

i=1 w(Ti).
Since this is a spanning tree on R ∪ {x}, we obtain:

w
(

T ′
)

6 w (Tx) 6 w
(

T ′′
)

6 w (T0) + 2

k
∑

i=1

w (Ti) (2)

The sum of (1) and (2) leads to: 2w(T ′) 6 3
∑k

i=0 w(Ti) = 3w(T̃ ), which proves the upper bound
claimed.

For the tightness of the bound, consider the following instance (see Figure 1). In the initial
graph, there are two groups V1 and V2 of n terminal vertices, and one nonterminal vertex v. The
weight between v and a vertex in V1 is equal to 1, as well as the weight between the new vertex x
and a vertex in V2; also, the weight between x and v is 1. All other weights are equal to 2.

· · · · · ·

v x

V1 V2

Figure 1: Instance with edges of weight 1.

Then, on the initial instance, an optimum solution T is given by the union of all edges
between v and a vertex in V1 and a path starting in v and containing all the vertices in V2:
w(T ) = 3n.

Given the symmetry of the final instance, it is easy to see that an optimum spanning tree on
R ∪ {x} has the same value. However, the Steiner tree depicted in Figure 1 has value 2n + 1.

Remark 1. If the number of terminal vertices is small, then one can slightly improve the bound
of Theorem 1. REOPT is a ρ′-approximation algorithm, where:

ρ′ 6 2 −
1

2
(

1 − 1
|R|

) =
3

2
−

1

2(|R| − 1)

Indeed, when computing the path P , by triangle inequality we get that w(P ) 6 2w(T0) −
w(xx1)−w(xxn). Choosing (without loss of generality) xx1 and xxn as the two heaviest among
the edges xxi, w(P ) 6 2(1− 1/k)w(T0). Plugging this new inequality in the proof of Theorem 1
leads to the result.
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Remark 2. One can wonder what happens when, instead of starting with an optimal solu-
tion T , we are given a ρ-approximate solution. A slight modification of the proof of Theo-
rem 1 leads to the fact that the solution computed by REOPT is a ρ′-approximation, where:
ρ′ 6 min{2, 3ρ/(1 + ρ)}

Remark 3. The example given in the proof of Theorem 1 shows that the result is the same
even if we consider instances with all the weights 1 or 2.

Remark 4. If we redefine T ′ to be the shortest among T , Tx, and T ′′, where T ′′ denotes a
minimum spanning tree on the vertex-set V (T )∪ {x}, then the so obtained algorithm again has
a tight approximation ratio of 3/2 − Θ(1/|R|).

3.2 The new vertex is terminal

In this subsection, we consider the case when the added vertex is terminal. As previously, let T
be an optimum solution for an instance (V,R,w) of the Steiner tree problem. Suppose that a
terminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their weights
such that the new instance is again metric. Let Tx denote a minimum spanning tree on the
vertex-set R ∪ {x}, and let T ′′ denote the tree T , augmented with a lightest edge connecting a
vertex of R with x.

In this case, REOPT computes the best solution T ′ between Tx and T ′′ (ties broken arbitrarily).
The complexity of its implementation is O(|R|2 log |R|).

Theorem 2. REOPT is a 3/2-approximation algorithm. Furthermore, this bound is tight.

Proof. As in the proof of Theorem 1, let x1, . . . , xk denote the neighbors of x in an optimum
solution T̃ on the extended graph, let T1, . . . , Tk be the connected components obtained by
removing x from T̃ (with xi ∈ V (Ti)), and let T0 be the union of edges xxi. Then w(T ′) =
∑k

i=0 w(Ti), and, as previously, the minimum spanning tree Tx on R ∪ {x} satisfies:

w
(

T ′
)

6 w (Tx) 6 w (T0) + 2

k
∑

i=1

w (Ti) (3)

If, as in the proof of Theorem 1, we link the vertices xi by a path P1 = (x1, . . . , xn), then the
union of P1 and Ti is a tree of value at most 2w(T0)−w(xx1)−w(xxn) +

∑k
i=1 w(Ti). Then, to

get a Steiner tree, we have to connect x. Note that each Ti (and in particular T1) has at least
one terminal vertex. If we link x to one terminal vertex of T1, then this edge has value at most
w(xx1) + w(T1).

Since T is an optimum solution on the initial instance, w(T ) 6 2w(T0)−w(xx1)−w(xxn) +
∑k

i=1 w(Ti). Moreover, since each terminal vertex is in V (T ), the edge used by REOPT to connect x
has value at most w(xx1) + w(T1). Then:

w
(

T ′′
)

6 w(T ) + w (xx1) + w (T1) 6 2w (T0) +
k

∑

i=1

w (Ti) + w (T1) − w (xxn)

We can do the same thing choosing, instead of T1, each of the Tj ’s:

w
(

T ′′
)

6 2w (T0) +

k
∑

i=1

w (Ti) + w (Tj) − w (xxj−1)
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Summing up these inequalities leads to:

kw
(

T ′′
)

6 (2k − 1)w (T0) + (k + 1)

k
∑

i=1

w (Ti) (4)

Adding (3) with coefficient (k − 2) and (4) with coefficient 1 gives:

(2k − 2)w
(

T ′
)

6 (3k − 3)
k

∑

i=0

w(T )

The tightness of the bound follows from the instance given in the proof of Theorem 1 (Figure 1,
considering now x as a terminal vertex).

As in Theorem 1, this result can be slightly improved when the number of terminal vertices is
small. More precisely, using the fact that we can assume that each nonterminal vertex has degree
at least 3 in an optimum solution, one can see that linking x to a terminal vertex of Ti costs
at most w(xxi) + w(Ti)/2. Using this inequality, we get a ((3/2) − (1/(8|R| − 6)))-approximate
solution.

Moreover, as previously, if we start from a ρ-approximate solution instead of an optimum
one, we get a min{2, 3ρ/(ρ + 1)}-approximate solution.

4 More vertices are added

In this section, we consider two cases, according to whether a set of nonterminal vertices or a set
including terminal and nonterminal vertices is inserted to the current graph.

4.1 Nonterminal vertices

Let T be an optimum solution for an instance (V,R,w) of the Steiner tree problem. Suppose
that p nonterminal vertices Y = {y1, . . . , yp} are added to V together with new edges and their
weights such that the new instance is again metric.

We generalize REOPT as follows. For Y ′ ⊆ Y , let TY ′ denote a minimum spanning tree on
the vertex-set R ∪ Y ′. REOPT computes the best solution T ′ among the trees from {T} ∪ {TY ′ :
Y ′ ⊆ Y } (ties broken arbitrarily). The complexity of this implementation is at most O(2p(|R|+
p)2 log (|R| + p)).

Theorem 3. REOPT is a 3/2-approximation algorithm. This bound is tight.

Proof. Let Ỹ = V (T̃ )∩Y be the set of new vertices used by an optimum solution T̃ . We consider
the connected components T1, . . . , Tk of the subgraph obtained from T̃ when we remove the new
vertices. Moreover, let us denote by X1, . . . ,Xq the connected components of the subgraph
obtained from T̃ when we remove the initial vertices. Finally, if in T̃ there is an edge between Ti

and Xj , we denote this edge by eij . Note that the bipartite graph B = [U,L, Ẽ] where Ẽ is the
set of these edges eij , U = {Ti, i = 1, . . . , k} and L = {Xj , j = 1, . . . , q}, is a tree. Obviously:

w
(

T̃
)

=

k
∑

i=1

w (Ti) +

q
∑

j=1

w (Xi) + w
(

Ẽ
)

(5)

First, we bound from above the value of the initial solution T . Starting from T̃ , we remove all
the Xj ’s (and edges adjacent to it), in order to get a solution on the initial instance.

Consider Xj and the edges eij of T̃ adjacent to it. This is a tree; using a Euler tour on this
tree (and removing the vertices in Xj), we can connect the Ti’s adjacent to Xj using a path Pj
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of value at most 2
(

w(Xj) +
∑

i|eij∈Ẽ
wij

)

. More precisely, if we note dXj
= max

i|eij∈Ẽ
{w(eij)},

since we compute a path and not a cycle, we can find a path such that:

w (Pj) 6 2



w (Xj) +
∑

i|eij∈Ẽ

wij



 − dXj

Replacing all the Xj ’s (and edges adjacent to it) by the paths Pj , we get a solution on the initial
instance, the value of which is at least the value of T :

w(T ) 6

k
∑

i=1

w (Ti) + 2

q
∑

j=1

w (Xj) + 2w
(

Ẽ
)

−

q
∑

j=1

dXj
(6)

Now, we bound from above the value of a minimum spanning tree T
Ỹ

on R ∪ Ỹ . Starting

from T̃ , now we have to remove nonterminal vertices from the Ti’s. We use the same technique.
Consider Ti and the edges eij of T̃ adjacent to it. Again, this is a tree and using a Euler tour on
this tree, we can connect the Xj ’s adjacent to Ti and the terminal vertices of Ti (if any) using
a path P ′

i . As previously, if we denote dTi
= max

j|eij∈Ẽ
{w(eij)}, we can find a path such that

w(P ′
i ) 6 2(w(Ti) +

∑

j|eij∈Ẽ
wij) − dTi

.

Replacing the Ti’s (and edges adjacent to it) by the P ′
i ’s, we get a tree on R ∪ Y , the value

of which is at least w(T
Ỹ

):

w
(

T
Ỹ

)

6 2

k
∑

i=1

w (Ti) +

q
∑

j=1

w (Xj) + 2w
(

Ẽ
)

−

k
∑

i=1

dTi
(7)

Summing up (6) and (7), we get that the solution T ′ computed by REOPT satisfies:

2w
(

T ′
)

6 3
k

∑

i=1

w (Ti) + 3

q
∑

j=1

w (Xj) + 4w
(

Ẽ
)

−
k

∑

i=1

dTi
−

q
∑

j=1

dTi

To conclude, using (5), we just have to show that
∑k

i=1 dTi
+

∑q
j=1 dTi

> w(Ẽ). The left hand
side corresponds to summing up, for each vertex in the tree B, the heaviest edge adjacent to
this vertex. This sum is obviously greater than the total weight w(Ẽ) of the edges in B: to see
this, just consider that w(Ẽ) can be seen as the sum, for each vertex (root excepted), of the edge
linking this vertex to its father.

4.2 Several terminal and nonterminal vertices are added

Let T be an optimum solution for an instance (V,R,w) of the Steiner tree problem. Suppose
that p vertices Y = {y1, . . . , yp} are added to V together with new edges and their weights
such that the new instance is again metric. Among these p new vertices, Yt = {y1, . . . , yt} are
terminal, while the remaining p − t are nonterminal.

As in the case where nonterminal vertices are added, for Y ′ such that Yt ⊆ Y ′ ⊆ Y , let TY ′

denote a minimum spanning tree on the vertex-set R∪Y ′. Also, we consider a minimum spanning
tree T (Yt) on the new terminal vertices, and link this tree to T using a lightest edge (ties broken
arbitrarily) between Yt and V (T ). This gives a solution T ′′.

Then, REOPT computes the best solution T ′ among the trees from {T ′′}∪{TY ′ : Tt ⊆ Y ′ ⊆ Y }
(ties broken arbitrarily).

Theorem 4. REOPT is a (2 − (1/(t + 2)))-approximation algorithm.

7



Proof. As previously, let us denote by T̃ an optimum Steiner tree of G. The proof of the
theorem is based upon the following two cases:

1. the maximum weight wTer between two terminal vertices (either new or initial) is greater
than εw(T̃ ) (the value of ε will be specified later);

2. wTer 6 εw(T̃ ).

In the first case, let v0 and v1 be two terminal vertices such that w(v0v1) > εw(T̃ ). Consider
the tree T̃ rooted at v0, and consider a depth-first visit of T̃ , when v1 is on the right hand
side branch of the tree (the last visited). Then, if we stop this visit when visiting v1 for the
second time, we have a path on all vertices of V (T̃ ), of value at most 2w(T̃ ) − w(v0v1) (thanks
to triangle inequalities). Hence, a minimum spanning tree on the terminal vertices has value at
most (2 − ε)w(T̃ ).

In the second case, revisit the proof of Theorem 3, in particular (7) shown there (we use the
same notations):

w
(

T
Ỹ

)

6 2

k
∑

i=1

w (Ti) +

q
∑

j=1

w (Xj) + 2w
(

Ẽ
)

−

k
∑

i=1

dTi
(8)

Note that this solution T
Ỹ

is still feasible, and w(T ′) 6 w
(

T
Ỹ

)

.
Revisit also (6):

w(T ) 6

k
∑

i=1

w (Ti) + 2

q
∑

j=1

w (Xj) + 2w
(

Ẽ
)

−

q
∑

j=1

dXj
(9)

Of course, T is not feasible (as soon as t > 1). But since the weight between any two terminal
vertices is at most εw(T̃ ), we can connect the t new terminal vertices to an initial one with a
path of value at most tεw(T̃ ). In other words, the solution T ′′ satisfies w(T ′′) 6 w(T ) + tεw(T̃ ).
Using the fact that w(T̃ ) =

∑k
i=1 w(Ti) +

∑q
j=1 w(Xj) + w(Ẽ), we get from (9):

w
(

T ′′
)

6 (1 + tε)

k
∑

i=1

w (Ti) + (2 + tε)

q
∑

j=1

w (Xj) + (2 + tε)w
(

Ẽ
)

−

q
∑

j=1

dXj
(10)

Since T ′ is better than T ′′ and T
Ỹ

, we can sum up (8) and (10). Using the fact that
∑q

j=1 dXj
+

∑q
j=1 dXj

> w(E), we obtain:

2w
(

T ′
)

6 (3 + tε)

k
∑

i=1

w (Ti) + (3 + tε)

q
∑

j=1

w (Xj) + (3 + tε)w
(

Ẽ
)

= (3 + tε)w
(

T̃
)

So, the solution T ′ is both a (2 − ε)- and a (3 + tε)/2-approximation. Letting ε = 1/(t + 2), we
obtain the result.

Remark 5. The result of Theorem 4 is independent on the number of nonterminal vertices
added. When t = 0, this is the 3/2-approximation for p new nonterminal vertices. Moreover,
this bound is almost tight as shown in Theorem 5 (Section 5).

Remark 6. The running time is roughly O(max{2p−t(|R|+p)2 log(|R|+p), t2 log t, t|T |}). When
the number of new nonterminal vertices is small, this is very quick.
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5 Negative results

In the context of reoptimization, it seems natural to reuse the pre-computed solution when the
initial instance is subject to modifications. So, we are interested in particular in algorithms
that do not perform ex nihilo computations of a new solution but they rather exploit existing
ones. Hence, a natural question is to determine whether it is always possible to maintain a good
approximation ratio using only vertices of the initial solution plus, eventually, some newly added
ones.

The next result shows that this is not the case. Informally, if we wish to keep a good
approximation ratio, we have to consider vertices not contained in the current solution as well.

Theorem 5. Let T be an optimum solution for an instance (V,R,w) of the Steiner tree
problem, and X be the set of new vertices (either terminal or not). Let A be an algorithm for the
reoptimization problem that produces a Steiner tree whose vertex-set is contained in V (T ) ∪ X.
Then, the following holds:

1. if X = {x} (one vertex is added, either terminal or not), A cannot achieve an approximation
ratio better than 7/5; furthermore, if edge-weights are either 1 or 2, A cannot achieve an
approximation ratio better than 4/3;

2. if X = {x1, . . . , xt} where, for i ∈ [t], xi is terminal (t terminal vertices are added), A

cannot achieve an approximation ratio better than 2− (2/(t + 2)), even if edge-weights are
either 1 or 2.

Proof. We first deal with item 1. We consider the graph Gi on 5 vertices {vi, u
1
i , u

2
i , u

3
i , ti} (see

Figure 2), with the following weights:

• w(viu
k
i ) = 1, for k, l ∈ [3];

• w(uk
i ul

i) = 2, for k, l ∈ [3], k 6= l;

• w(tiu
k
i ) = 4/3, for k ∈ [3];

• w(viti) = 7/3.

The initial graph is composed of n copies G1, . . . , Gn of Gi, where {uk
i : k ∈ [3], i ∈ [n]} are

terminal vertices, with the following weights, for i, j ∈ [n]:

• w(titj) = 3 − ǫ, for i 6= j;

• all the other weights (between vertices of different copies) are equal to 4.

This instance is metric. An optimum solution T on this instance is given by taking edges tiu
k
i ,

for k ∈ [3] and i ∈ [n], and by linking vertices ti by a path (t1, . . . , tn). Its total weight is
w(T ) = 4n + (3 − ǫ)(n − 1) ∼ (7 − ǫ)n.

Now, we add the new vertex x, where w(xvi) = 2, w(xuk
i ) = 3, and w(wti) = 3+ 4/3 = 13/3

(for k ∈ [3] and i ∈ [n]). Assume that x is nonterminal. Then, x is useless to improve the
solution T by considering only vertices in V (T ). However, the solution T̃ consisting in taking
the edges xvi and viu

k
i , for k ∈ [3] and i ∈ [n], has value 5n. If, on the other hand, x is terminal,

the result is the same.
In the case of weights 1 or 2, we can get a similar result with a bound of 4/3. We use the

same kind of graph, but instead of considering Gi, we consider Hi on 4 vertices {vi, u
1
i , u

2
i , ti}

(see Figure 3) with the following weights:

• w(viu
k
i ) = 1, for k ∈ [2];

9



1
1

1

4/3
4/3

4/3
ti

u2
i u3

iu1
i

vi

Figure 2: Graph Gi (other weights correspond to shortest paths).

• w(tiu
k
i ) = 1, for k ∈ [2];

• all other weights are equal to 2.

The initial graph is composed of n copies H1, . . . ,Hn of Hi, with weight 2 between vertices of
different copies.

ti

u2
iu1

i

vi

Figure 3: Graph Hi with edges of weight 1.

An optimum solution T for this instance is given by taking edges tiu
k
i , for k ∈ [2] and i ∈ [n],

and by linking vertices ti by a path (t1, . . . , tn). Its total weight is w(T ) = 2n+2(n−1) = 4n−2.
Now, we add the new vertex x, where w(xvi) = 1, i ∈ [n], all other weights being equal to 2.

Then, x is useless to improve the solution T by considering only vertices in V (T ).
However, the solution T̃ consisting in taking the edges xvi and viu

k
i , for k ∈ [2] and i ∈ [n],

has value 3n. This completes the proof of item 1.
For the proof of item 2, i.e., for the case where t terminal vertices are added, consider that the

initial graph has 3 vertices v1, v2, v3, with w(v1v2) = 2 and w(v1v3) = w(v2v3) = 1. Vertices v1

and v2 are terminal. An optimum solution is T = {v1v2}. Then, add t terminal vertices, such
that the weights between v3 and the new vertices are 1, and all other weights are 2.

Then, an optimum solution without considering v3 has value 2(t+1), whereas a star centered
in v3 has value t + 2.

We now handle reoptimization when a vertex is removed from the graph. We so have an
initial instance (V,R,w) of the Steiner tree problem, and one vertex x ∈ V is deleted. Of
course, the strategy consisting of computing a minimum spanning tree on the set of surviving
terminal vertices is a 2-approximation. If we consider, as previously, algorithms operating on
some vertex-set contained in V (T ) \ {x}, then we cannot improve this ratio.

Theorem 6. Let T be an optimum solution for an instance (V,R,w) of the Steiner tree problem,
and x ∈ V a vertex deleted from the current graph. Let A be an algorithm for the reoptimization
problem that produces a Steiner tree whose vertex-set is contained in V (T )\{x}. Then, A cannot
achieve an approximation ratio better than 2, even if edge-weights are either 1 or 2.

Proof. Let us consider that the initial instance contains n terminal vertices v1, . . . , vn, and two
nonterminal vertices x and y. Weights between terminal vertices are 2, as well as w(xy), while

10



all other weights are 1. Then a star T on v1, . . . , vn centered in x is an optimum solution of the
initial instance. When deleting vertex x, the best solution included in T \ {x} is a spanning tree
on v1, . . . , vn, whose value is 2(n − 1), while a star on v1, . . . , vn centered in y has value n.

6 Conclusion

We have presented in this paper simple and fast reoptimization algorithms for the Steiner tree
problem. We have handled insertion of one vertex x in the initial graph. We have provided
reoptimization techniques achieving tight non-trivial approximation ratios for the cases where
one or more vertices are inserted in the initial instance. We also have provided lower bounds
showing that good approximation ratios cannot always be obtained without considering vertices
that are not contained in the initial optimal solution. Finally, we have shown that when handling
vertex-removals, complete recomputation of a new solution for the resulting instance is sometimes
unavoidable.

The analysis presented in the paper leaves several open questions that, to our opinion, deserve
further research.

1. Can one devise a reoptimization with a ratio better than 3/2 in the case where edge-weights
are 1 or 2? We feel that a tight approximation ratio of 4/3 should be possible.

2. The second question deals with the matching of the upper and lower bounds of REOPT in
the case where several terminal and nonterminal vertices are added (Section 4.2). Is it
possible to get a lower bound of 2−1/(t+2), or an upper bound of 2−2/(t+2), or finally,
to cross them somewhere between? Can the negative result of 7/5 in item 1 of Theorem 5
be tightened?

3. Can we find “general” lower bounds when p nonterminal vertices are added? Is it possible,
for instance, to get a bound of 3/2 when p nonterminal vertices are added?
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