Bruno Escoffier
email: escoffier@lamsade.dauphine.fr

Martin Milanič
email: mmilanic@rutcor.rutgers.edu

Vangelis Th

Paschos
email: paschos@lamsade.dauphine.fr

Simple and fast reoptimizations for the Steiner tree problem

Keywords: Steiner tree, approximation algorithms, reoptimization

Nous étudions dans cet article le problème de l'arbre de Steiner du point de vue de la problématique appelée réoptimisation. Nous considérons qu'une solution optimale nous est fournie sur une instance du problème, l'objectif étant de maintenir une bonne solution quand l'instance est sujette à des modifications mineures, par exemple l'insertion ou la suppression d'un sommet. Nous proposons des stratégies de réoptimisation rapides pour le cas de l'insertion d'un ou plusieurs sommets, alors que dans le cas de la suppression d'un sommet, le maintient d'une bonne solution semble délicat. Nous présentons également des bornes inférieures pour les rapports d'approximation obtenues par les stratégies de réoptimisation considérées.

Introduction

Given a graph G = (V, E), a subset R ⊆ V of its vertex-set (the so-called terminal vertices), and nonnegative integer weights {w(e) : e ∈ E} on the edges of G, the Steiner tree problem consists in finding a lightest Steiner tree for (G, R), i.e., a subtree T of G with R ⊆ V (T) (where the weight of a tree is given by the sum of the weights of its edges).

We will assume in the sequel that the graph G is complete, and that the weights on the edges induce a non-negative integer metric on the subsets of size 2 of V , i.e., that for every three vertices x, y, z ∈ V , the triangle inequality: w(xz) w(xy)+w(xz) holds. Therefore, an instance of the Steiner tree problem is of the form (V, R, w) where R ⊆ V and w is a nonnegative integer metric on V . A Steiner tree for (V, R) is a Steiner tree for ((V, V 2), R).

The Steiner tree problem is one of the most famous combinatorial optimization problems in network design. The frequency with which it arises in such applications motivates numerous works on this problem, under several assumptions, hypotheses and models. Steiner tree is well known to be NP-hard. The first approximation algorithm for it appeared in [START_REF] Agrawal | When trees collide: an approximation algorithm for the generalized Steiner problem on networks[END_REF] (see also [START_REF] Gröpl | Approximation algorithms for the Steiner tree problem in graphs[END_REF][START_REF] Vazirani | Approximation algorithms[END_REF]). This algorithm is a primal-dual generalization of the following simple heuristic: compute the shortest paths between all pairs of terminal vertices and then compute a minimum-cost spanning tree over the shortest-path weighted complete graph with vertex-set R. Removal of redundant edges might be needed in order to transform the tree so computed to a Steiner tree of G. The approximation ratio achieved by this algorithm is bounded above by 2. If G is metric, then a minimum-cost spanning tree on the induced subgraph G [R] (in what follows, given a subset V ′ of vertices of a graph G, we denote by G[V ′] the subgraph of G induced by V ′) achieves the same approximation ratio. This result has been improved in [START_REF] Robins | Improved Steiner tree approximation in graphs[END_REF] down to 1.55 in complete metric graphs and to 1.28 for complete graphs with edge costs 1 and 2. A survey of approximation results for Steiner tree problem can be found in [START_REF] Gröpl | Approximation algorithms for the Steiner tree problem in graphs[END_REF].

In this paper we address the reoptimization issue where the following situation is considered. We are given an optimum solution of an initial instance and we wish to maintain a good solution efficiently, when the instance is slightly modified. This working framework has already been adopted for several optimization problems, such as scheduling problems ([4, 5, 10]) for practical applications, and classical polynomial problems, such as the minimum spanning tree, where the goal is to recompute the optimum solution as fast as possible ([START_REF] Eppstein | Sparsification -a technique for speeding up dynamic graph algorithms[END_REF][START_REF] Henzinger | Maintaining minimum spanning trees in dynamic graphs[END_REF]). It has been also addressed for the minimum traveling salesman problem in [START_REF] Archetti | Reoptimizing the traveling salesman problem[END_REF] and, recently for both minimum and maximum traveling salesman problems in [START_REF] Ausiello | Reoptimization of minimum and maximum traveling salesman's tours[END_REF].

For the Steiner tree problem handled here, we assume that an optimal solution T opt has already been computed for a metric complete graph G when some minor modification occurs in the graph. This modification may be the arrival of some (one or more) new vertices together with the edges linking them to G (in such a way that the extended graph G ′ remains complete and metric), or the removal of some vertices of G (together with the edges linking them to the surviving graph). Then, the question is: "can one maintain, or at least modify very quickly the existing solution, in order to obtain a good solution for the modified instance without the need to recompute such a solution thoroughly?". The "goodness" of a solution is measured by computing its approximation ratio. More precisely, if T is a Steiner tree for (V, R), then we say that T is a ρ-approximation for (V, R, w) if w(T) ρw (T opt) where T opt is a solution to the Steiner tree problem. We say that ρ is the approximation ratio achieved by T .

In what follows, we propose a simple reoptimization strategy, called REOPT, mainly based upon a minimum spanning tree computation adapted for the case studied (terminal, or nonterminal vertices), that efficiently tackles the case of vertex insertions in the graph. Let us note that most of the approximation algorithms known for the Steiner tree problem seem to be hard to adapt in order to tackle dynamic situations such as the ones handled in this paper. In Section 3, we handle insertion of one vertex x in the initial graph. We provide a tight 3/2-approximation ratio in both cases where x is terminal, or nonterminal. In Section 4, we handle insertions of more than one vertex in the graph. In Section 4.1, we study insertion of p 1 nonterminals and we prove, for this case also, a tight 3/2-approximation ratio for REOPT. On the other hand, in Section 4.2, we assume that p vertices are inserted, k of which being terminals. For this case we show that the ratio of REOPT is 2 -1/(k + 2), while its lower bound is 2 -2/(k + 2). In Section 5, we provide a general lower bound on the approximation ratios for a class of solution structures showing, informally, that if one tries to keep a good approximation ratio for the modified solution, she/he must eventually consider vertices that are not contained in the initial optimal solution.

Finally, for the complementary problem of vertex removals from the initial graph, we show in Section 5 that, sometimes, complete recomputation of a new solution for the "shrunk" instance is unavoidable.

Some easy preliminary results

We give in this section some preliminary results linking approximation of reoptimization to approximation of the Steiner tree problem. They can be seen as simple reductions from the reoptimization context to the classical approximation one. Their proofs, being fairly similar to the ones in Sections 3 and 4, are omitted.

Proposition 1 .

Let T be a ρ-approximation for an instance (V, R, w) of the Steiner tree problem. Suppose that a nonterminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their weights such that the new instance is again metric. Then, T is a ρ ′ -approximation for the extended instance such that:

ρ ′ 2(1 -(1/|R|))ρ.
The result of Proposition 1 is sharp. Indeed, let the weights of edges connecting the new vertex x to the vertices of R be equal to 1, and let all the remaining edge-weights be equal to 2. If we take the current Steiner tree to be an optimal Steiner tree in G, then w(T) = 2(|R| -1), while the new optimal weight is |R|. Proposition 2. Let T be a ρ-approximation for an instance (V, R, w) of the Steiner tree problem (with |R| 2). Suppose that a terminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their weights such that the new instance is again metric. Let T ′ denote the tree T , augmented with a lightest edge connecting a vertex of R with x (ties broken arbitrarily). Then, T ′ is a ρ ′ -approximation for the extended instance such that:

ρ ′ (2 -(1/|R|))ρ.
It is easy to verify that the counterexample of Proposition 1 shows the sharpness of Proposition 2 as well.

One vertex is added

In this section, we consider two cases, according to whether the new vertex is terminal or not.

The new vertex is nonterminal

Let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem. Suppose that a nonterminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their weights such that the new instance is again metric. Let T x denote a minimum spanning tree on the vertex-set R ∪ {x}.

We consider the algorithm REOPT which consists in computing the best solution between T and T x (ties broken arbitrarily). Obviously, its complexity is the one of computation of a minimum spanning tree on the clique induced by R ∪ {x}, i.e., O(|R| 2 log |R|).

Theorem 1. REOPT is a 3/2-approximation algorithm. This bound is tight.

Proof. Let T denote an optimal Steiner tree in the extended graph, and T ′ the solution computed by REOPT. If x / ∈ V (T), then T is optimum (and so is T ′). So we may assume that

x ∈ V (T). Let {x 1 , . . . , x k } be the set of neighbors of x in V (T). Removing x from T results in a forest F consisting of k 1 trees T 1 , . . . , T k with x i ∈ V (T i) for i ∈ [k] (in what follows, we denote by [k]
the set of integers from 1 to k). Note that k |R|, since every tree T i contains at least one terminal vertex. Let T 0 denote the set of edges adjacent to x in T . Then:

w T = k i=0 w (T i)
Now, link the vertices x 1 , . . . , x k with a path P = (x 1 , . . . , x k). Together with the trees T i (i 1), this is a Steiner tree on the initial graph, the value of which is at least w(T). By triangle inequality, we get that w(P) 2w(T 0). Therefore:

w T ′ w(T) 2w (T 0) + k i=1 w (T i) (1)
On the other hand, let i ∈ [k]. Using an Euler tour on T i (and triangle inequalities), we can easily find a path P i = (x i , v 1 i , . . . , v k i i) starting in x i and containing all the terminal vertices v 1 i , . . . , v k i i of T i such that w(P i) 2w(T i). Then, using again the triangle inequality (w

(xx i) + w(x i v 1 i) w(xv 1 i)), we get that the path (x, v 1 i , . . . , v k i i) has value at most w(xx i) + 2w(T i). Then, the union of these k paths (x, v 1 i , . . . , v k i i) if a Steiner tree T ′′ of value at most w(T 0) + 2 k i=1 w(T i).
Since this is a spanning tree on R ∪ {x}, we obtain:

w T ′ w (T x) w T ′′ w (T 0) + 2 k i=1 w (T i) (2)
The sum of (1) and (2) leads to: 2w(T ′) 3 k i=0 w(T i) = 3w(T), which proves the upper bound claimed.

For the tightness of the bound, consider the following instance (see Figure 1). In the initial graph, there are two groups V 1 and V 2 of n terminal vertices, and one nonterminal vertex v. The weight between v and a vertex in V 1 is equal to 1, as well as the weight between the new vertex x and a vertex in V 2 ; also, the weight between x and v is 1. All other weights are equal to 2. Then, on the initial instance, an optimum solution T is given by the union of all edges between v and a vertex in V 1 and a path starting in v and containing all the vertices in V 2 : w(T) = 3n.

• • • • • • v x V 1 V 2
Given the symmetry of the final instance, it is easy to see that an optimum spanning tree on R ∪ {x} has the same value. However, the Steiner tree depicted in Figure 1 has value 2n + 1.

Remark 1. If the number of terminal vertices is small, then one can slightly improve the bound of Theorem 1. REOPT is a ρ ′ -approximation algorithm, where:

ρ ′ 2 - 1 2 1 -1 |R| = 3 2 - 1 2(|R| -1)
Indeed, when computing the path P , by triangle inequality we get that w(P) 2w(T 0)w(xx 1) -w(xx n). Choosing (without loss of generality) xx 1 and xx n as the two heaviest among the edges xx i , w(P) 2(1 -1/k)w(T 0). Plugging this new inequality in the proof of Theorem 1 leads to the result. Remark 2. One can wonder what happens when, instead of starting with an optimal solution T , we are given a ρ-approximate solution. A slight modification of the proof of Theorem 1 leads to the fact that the solution computed by REOPT is a ρ ′ -approximation, where: ρ ′ min{2, 3ρ/(1 + ρ)} Remark 3. The example given in the proof of Theorem 1 shows that the result is the same even if we consider instances with all the weights 1 or 2.

Remark 4. If we redefine T ′ to be the shortest among T , T x , and T ′′ , where T ′′ denotes a minimum spanning tree on the vertex-set V (T) ∪ {x}, then the so obtained algorithm again has a tight approximation ratio of 3/2 -Θ(1/|R|).

The new vertex is terminal

In this subsection, we consider the case when the added vertex is terminal. As previously, let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem. Suppose that a terminal vertex, say x, is added to V together with new edges {xy : y ∈ V } and their weights such that the new instance is again metric. Let T x denote a minimum spanning tree on the vertex-set R ∪ {x}, and let T ′′ denote the tree T , augmented with a lightest edge connecting a vertex of R with x.

In this case, REOPT computes the best solution T ′ between T x and T ′′ (ties broken arbitrarily). The complexity of its implementation is O(|R| 2 log |R|).

Theorem 2. REOPT is a 3/2-approximation algorithm. Furthermore, this bound is tight.

Proof. As in the proof of Theorem 1, let x 1 , . . . , x k denote the neighbors of x in an optimum solution T on the extended graph, let T 1 , . . . , T k be the connected components obtained by removing x from T (with x i ∈ V (T i)), and let T 0 be the union of edges xx i . Then w(T ′) = k i=0 w(T i), and, as previously, the minimum spanning tree T x on R ∪ {x} satisfies:

w T ′ w (T x) w (T 0) + 2 k i=1 w (T i) (3)
If, as in the proof of Theorem 1, we link the vertices x i by a path P 1 = (x 1 , . . . , x n), then the union of P 1 and T i is a tree of value at most 2w(T 0) -w(xx 1) -w(xx n) + k i=1 w(T i). Then, to get a Steiner tree, we have to connect x. Note that each T i (and in particular T 1) has at least one terminal vertex. If we link x to one terminal vertex of T 1 , then this edge has value at most w(xx 1) + w(T 1).

Since T is an optimum solution on the initial instance, w(T

) 2w(T 0) -w(xx 1) -w(xx n) + k i=1 w(T i).
Moreover, since each terminal vertex is in V (T), the edge used by REOPT to connect x has value at most w(xx 1) + w(T 1). Then:

w T ′′ w(T) + w (xx 1) + w (T 1) 2w (T 0) + k i=1 w (T i) + w (T 1) -w (xx n)
We can do the same thing choosing, instead of T 1 , each of the T j 's:

w T ′′ 2w (T 0) + k i=1 w (T i) + w (T j) -w (xx j-1)
Summing up these inequalities leads to:

kw T ′′ (2k -1)w (T 0) + (k + 1) k i=1 w (T i) (4)
Adding (3) with coefficient (k -2) and (4) with coefficient 1 gives:

(2k -2)w T ′ (3k -3) k i=0 w(T)
The tightness of the bound follows from the instance given in the proof of Theorem 1 (Figure 1, considering now x as a terminal vertex).

As in Theorem 1, this result can be slightly improved when the number of terminal vertices is small. More precisely, using the fact that we can assume that each nonterminal vertex has degree at least 3 in an optimum solution, one can see that linking x to a terminal vertex of T i costs at most w(xx i) + w(T i)/2. Using this inequality, we get a ((3/2) -(1/(8|R| -6)))-approximate solution.

Moreover, as previously, if we start from a ρ-approximate solution instead of an optimum one, we get a min{2, 3ρ/(ρ + 1)}-approximate solution.

More vertices are added

In this section, we consider two cases, according to whether a set of nonterminal vertices or a set including terminal and nonterminal vertices is inserted to the current graph.

Nonterminal vertices

Let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem. Suppose that p nonterminal vertices Y = {y 1 , . . . , y p } are added to V together with new edges and their weights such that the new instance is again metric.

We generalize REOPT as follows. For Y ′ ⊆ Y , let T Y ′ denote a minimum spanning tree on the vertex-set R ∪ Y ′ . REOPT computes the best solution T ′ among the trees from {T } ∪ {T Y ′ : Y ′ ⊆ Y } (ties broken arbitrarily). The complexity of this implementation is at most O(2 p (|R| + p) 2 log (|R| + p)). Theorem 3. REOPT is a 3/2-approximation algorithm. This bound is tight.

Proof. Let Ỹ = V (T)∩Y be the set of new vertices used by an optimum solution T . We consider the connected components T 1 , . . . , T k of the subgraph obtained from T when we remove the new vertices. Moreover, let us denote by X 1 , . . . , X q the connected components of the subgraph obtained from T when we remove the initial vertices. Finally, if in T there is an edge between T i and X j , we denote this edge by e ij . Note that the bipartite graph B = [U, L, Ẽ] where Ẽ is the set of these edges e ij , U = {T i , i = 1, . . . , k} and L = {X j , j = 1, . . . , q}, is a tree. Obviously:

w T = k i=1 w (T i) + q j=1 w (X i) + w Ẽ (5)
First, we bound from above the value of the initial solution T . Starting from T , we remove all the X j 's (and edges adjacent to it), in order to get a solution on the initial instance. Consider X j and the edges e ij of T adjacent to it. This is a tree; using a Euler tour on this tree (and removing the vertices in X j), we can connect the T i 's adjacent to X j using a path P j of value at most 2 w(X j) + i|e ij ∈ Ẽ w ij . More precisely, if we note d X j = max i|e ij ∈ Ẽ {w(e ij)}, since we compute a path and not a cycle, we can find a path such that:

w (P j) 2   w (X j) + i|e ij ∈ Ẽ w ij   -d X j
Replacing all the X j 's (and edges adjacent to it) by the paths P j , we get a solution on the initial instance, the value of which is at least the value of T :

w(T) k i=1 w (T i) + 2 q j=1 w (X j) + 2w Ẽ - q j=1 d X j (6)
Now, we bound from above the value of a minimum spanning tree T Ỹ on R ∪ Ỹ . Starting from T , now we have to remove nonterminal vertices from the T i 's. We use the same technique. Consider T i and the edges e ij of T adjacent to it. Again, this is a tree and using a Euler tour on this tree, we can connect the X j 's adjacent to T i and the terminal vertices of T i (if any) using a path P ′ i . As previously, if we denote d T i = max j|e ij ∈ Ẽ {w(e ij)}, we can find a path such that w(

P ′ i) 2(w(T i) + j|e ij ∈ Ẽ w ij) -d T i .
Replacing the T i 's (and edges adjacent to it) by the P ′ i 's, we get a tree on R ∪ Y , the value of which is at least w(T Ỹ):

w T Ỹ 2 k i=1 w (T i) + q j=1 w (X j) + 2w Ẽ - k i=1 d T i (7)
Summing up (6) and (7), we get that the solution T ′ computed by REOPT satisfies:

2w T ′ 3 k i=1 w (T i) + 3 q j=1 w (X j) + 4w Ẽ - k i=1 d T i - q j=1 d T i
To conclude, using (5), we just have to show that k i=1 d T i + q j=1 d T i w(Ẽ). The left hand side corresponds to summing up, for each vertex in the tree B, the heaviest edge adjacent to this vertex. This sum is obviously greater than the total weight w(Ẽ) of the edges in B: to see this, just consider that w(Ẽ) can be seen as the sum, for each vertex (root excepted), of the edge linking this vertex to its father.

Several terminal and nonterminal vertices are added

Let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem. Suppose that p vertices Y = {y 1 , . . . , y p } are added to V together with new edges and their weights such that the new instance is again metric. Among these p new vertices, Y t = {y 1 , . . . , y t } are terminal, while the remaining p -t are nonterminal.

As in the case where nonterminal vertices are added, for Y ′ such that Y t ⊆ Y ′ ⊆ Y , let T Y ′ denote a minimum spanning tree on the vertex-set R∪Y ′ . Also, we consider a minimum spanning tree T (Y t) on the new terminal vertices, and link this tree to T using a lightest edge (ties broken arbitrarily) between Y t and V (T). This gives a solution T ′′ .

Then, REOPT computes the best solution T ′ among the trees from

{T ′′ } ∪ {T Y ′ : T t ⊆ Y ′ ⊆ Y } (ties broken arbitrarily). Theorem 4. REOPT is a (2 -(1/(t + 2)))-approximation algorithm.
Proof. As previously, let us denote by T an optimum Steiner tree of G. The proof of the theorem is based upon the following two cases:

1. the maximum weight w Ter between two terminal vertices (either new or initial) is greater than εw(T) (the value of ε will be specified later);

2. w Ter εw(T).

In the first case, let v 0 and v 1 be two terminal vertices such that w(v 0 v 1) > εw(T). Consider the tree T rooted at v 0 , and consider a depth-first visit of T , when v 1 is on the right hand side branch of the tree (the last visited). Then, if we stop this visit when visiting v 1 for the second time, we have a path on all vertices of V (T), of value at most 2w(T) -w(v 0 v 1) (thanks to triangle inequalities). Hence, a minimum spanning tree on the terminal vertices has value at most (2 -ε)w(T).

In the second case, revisit the proof of Theorem 3, in particular [START_REF] Gröpl | Approximation algorithms for the Steiner tree problem in graphs[END_REF] shown there (we use the same notations):

w T Ỹ 2 k i=1 w (T i) + q j=1 w (X j) + 2w Ẽ - k i=1 d T i (8)
Note that this solution T Ỹ is still feasible, and w(T ′) w T Ỹ . Revisit also [START_REF] Eppstein | Sparsification -a technique for speeding up dynamic graph algorithms[END_REF]:

w(T) k i=1 w (T i) + 2 q j=1 w (X j) + 2w Ẽ - q j=1 d X j (9)
Of course, T is not feasible (as soon as t 1). But since the weight between any two terminal vertices is at most εw(T), we can connect the t new terminal vertices to an initial one with a path of value at most tεw(T). In other words, the solution T ′′ satisfies w(T ′′) w(T) + tεw(T).

Using the fact that w(T) = k i=1 w(T i) + q j=1 w(X j) + w(Ẽ), we get from (9):

w T ′′ (1 + tε) k i=1 w (T i) + (2 + tε) q j=1 w (X j) + (2 + tε)w Ẽ - q j=1 d X j (10)
Since T ′ is better than T ′′ and T Ỹ , we can sum up (8) and [START_REF] Schäffter | Scheduling with forbidden sets[END_REF]. Using the fact that q j=1 d X j + q j=1 d X j w(E), we obtain:

2w T ′ (3 + tε) k i=1 w (T i) + (3 + tε) q j=1 w (X j) + (3 + tε)w Ẽ = (3 + tε)w T So, the solution T ′ is both a (2 -ε)-and a (3 + tε)/2-approximation. Letting ε = 1/(t + 2)
, we obtain the result.

Remark 5. The result of Theorem 4 is independent on the number of nonterminal vertices added. When t = 0, this is the 3/2-approximation for p new nonterminal vertices. Moreover, this bound is almost tight as shown in Theorem 5 (Section 5). Remark 6. The running time is roughly O(max{2 p-t (|R|+p) 2 log(|R|+p), t 2 log t, t|T |}). When the number of new nonterminal vertices is small, this is very quick.

Negative results

In the context of reoptimization, it seems natural to reuse the pre-computed solution when the initial instance is subject to modifications. So, we are interested in particular in algorithms that do not perform ex nihilo computations of a new solution but they rather exploit existing ones. Hence, a natural question is to determine whether it is always possible to maintain a good approximation ratio using only vertices of the initial solution plus, eventually, some newly added ones.

The next result shows that this is not the case. Informally, if we wish to keep a good approximation ratio, we have to consider vertices not contained in the current solution as well.

Theorem 5 .

Let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem, and X be the set of new vertices (either terminal or not). Let A be an algorithm for the reoptimization problem that produces a Steiner tree whose vertex-set is contained in V (T) ∪ X. Then, the following holds: Proof. We first deal with item 1. We consider the graph G i on 5 vertices {v i , u 1 i , u 2 i , u 3 i , t i } (see Figure 2), with the following weights:

1. if X =
• w(v i u k i) = 1, for k, l ∈ [3]; • w(u k i u l i) = 2, for k, l ∈ [3], k = l; • w(t i u k i) = 4/3, for k ∈ [3]; • w(v i t i) = 7/3.
The initial graph is composed of n copies G 1 , . . . , G n of G i , where {u k i : k ∈ [3], i ∈ [n]} are terminal vertices, with the following weights, for i, j ∈ [n]:

• w(t i t j) = 3 -ǫ, for i = j;

• all the other weights (between vertices of different copies) are equal to 4. This instance is metric. An optimum solution T on this instance is given by taking edges t i u k i , for k ∈ [3] and i ∈ [n], and by linking vertices t i by a path (t 1 , . . . , t n). Its total weight is

w(T) = 4n + (3 -ǫ)(n -1) ∼ (7 -ǫ)n.
Now, we add the new vertex x, where w(xv i) = 2, w(xu k i) = 3, and w(wt i) = 3 + 4/3 = 13/3 (for k ∈ [3] and i ∈ [n]). Assume that x is nonterminal. Then, x is useless to improve the solution T by considering only vertices in V (T). However, the solution T consisting in taking the edges xv i and v i u k i , for k ∈ [3] and i ∈ [n], has value 5n. If, on the other hand, x is terminal, the result is the same.

In the case of weights 1 or 2, we can get a similar result with a bound of 4/3. We use the same kind of graph, but instead of considering G i , we consider H i on 4 vertices {v i , u 1 i , u 2 i , t i } (see Figure 3) with the following weights: • w(t i u

• w(v i u k i) = 1, for k ∈ [2]; 1 1 1 4/3 4/3 4/3 t i u 2 i u 3 i u 1 i v i
k i) = 1, for k ∈ [2];
• all other weights are equal to 2.

The initial graph is composed of n copies H 1 , . . . , H n of H i , with weight 2 between vertices of different copies. An optimum solution T for this instance is given by taking edges t i u k i , for k ∈ [2] and i ∈ [n], and by linking vertices t i by a path (t 1 , . . . , t n). Its total weight is w(T) = 2n + 2(n -1) = 4n -2. Now, we add the new vertex x, where w(xv i) = 1, i ∈ [n], all other weights being equal to 2. Then, x is useless to improve the solution T by considering only vertices in V (T).

t i u 2 i u 1 i v i
However, the solution T consisting in taking the edges xv i and v i u k i , for k ∈ [2] and i ∈ [n], has value 3n. This completes the proof of item 1.

For the proof of item 2, i.e., for the case where t terminal vertices are added, consider that the initial graph has 3 vertices v 1 , v 2 , v 3 , with w(v 1 v 2) = 2 and w(v 1 v 3) = w(v 2 v 3) = 1. Vertices v 1 and v 2 are terminal. An optimum solution is T = {v 1 v 2 }. Then, add t terminal vertices, such that the weights between v 3 and the new vertices are 1, and all other weights are 2.

Then, an optimum solution without considering v 3 has value 2(t + 1), whereas a star centered in v 3 has value t + 2.

We now handle reoptimization when a vertex is removed from the graph. We so have an initial instance (V, R, w) of the Steiner tree problem, and one vertex x ∈ V is deleted. Of course, the strategy consisting of computing a minimum spanning tree on the set of surviving terminal vertices is a 2-approximation. If we consider, as previously, algorithms operating on some vertex-set contained in V (T) \ {x}, then we cannot improve this ratio. Theorem 6. Let T be an optimum solution for an instance (V, R, w) of the Steiner tree problem, and x ∈ V a vertex deleted from the current graph. Let A be an algorithm for the reoptimization problem that produces a Steiner tree whose vertex-set is contained in V (T) \ {x}. Then, A cannot achieve an approximation ratio better than 2, even if edge-weights are either 1 or 2.

Proof. Let us consider that the initial instance contains n terminal vertices v 1 , . . . , v n , and two nonterminal vertices x and y. Weights between terminal vertices are 2, as well as w(xy), while all other weights are 1. Then a star T on v 1 , . . . , v n centered in x is an optimum solution of the initial instance. When deleting vertex x, the best solution included in T \ {x} is a spanning tree on v 1 , . . . , v n , whose value is 2(n -1), while a star on v 1 , . . . , v n centered in y has value n.

Conclusion

We have presented in this paper simple and fast reoptimization algorithms for the Steiner tree problem. We have handled insertion of one vertex x in the initial graph. We have provided reoptimization techniques achieving tight non-trivial approximation ratios for the cases where one or more vertices are inserted in the initial instance. We also have provided lower bounds showing that good approximation ratios cannot always be obtained without considering vertices that are not contained in the initial optimal solution. Finally, we have shown that when handling vertex-removals, complete recomputation of a new solution for the resulting instance is sometimes unavoidable.

The analysis presented in the paper leaves several open questions that, to our opinion, deserve further research.

1. Can one devise a reoptimization with a ratio better than 3/2 in the case where edge-weights are 1 or 2? We feel that a tight approximation ratio of 4/3 should be possible.

2. The second question deals with the matching of the upper and lower bounds of REOPT in the case where several terminal and nonterminal vertices are added (Section 4.2). Is it possible to get a lower bound of 2 -1/(t + 2), or an upper bound of 2 -2/(t + 2), or finally, to cross them somewhere between? Can the negative result of 7/5 in item 1 of Theorem 5 be tightened?

3. Can we find "general" lower bounds when p nonterminal vertices are added? Is it possible, for instance, to get a bound of 3/2 when p nonterminal vertices are added?

Figure 1 :

 1 Figure 1: Instance with edges of weight 1.

Figure 2 :

 2 Figure 2: Graph G i (other weights correspond to shortest paths).

Figure 3 :

 3 Figure 3: Graph H i with edges of weight 1.

 {x} (one vertex is added, either terminal or not), A cannot achieve an approximation ratio better than 7/5; furthermore, if edge-weights are either 1 or 2, A cannot achieve an approximation ratio better than 4/3; 2. if X = {x 1 , . . . , x t } where, for i ∈ [t], x i is terminal (t terminal vertices are added), A cannot achieve an approximation ratio better than 2 -(2/(t + 2)), even if edge-weights are either 1 or 2.

Part of this work was carried out while the author was with the LAMSADE on a visiting researcher position supported by a common CNRS-NSF research project "Algorithmic Decision Theory" between the LAMSADE and the DIMACS