Hajime Tazaki

Emilio Mancini

Daniel Câmara

Thierry Turletti

Walid Dabbous

Direct Code Execution: Realistic Protocol Simulation with Running Code

Keywords: Network Stack, Experiment, Software Development, Direct Code Execution, Linux

We propose the demonstration of Direct Code Execution (DCE), a framework of network simulation running with both existing Linux kernel space protocol stack and POSIX socket based protocol implementations, to achieve a set of requirements for reproducible network experiment: 1) experimentation realism, 2) topology flexibility, 3) easy and low cost replication, 4) experimentation scalability, and 5) easy debugging. Our demonstration showcases the typical use cases of DCE: content centric networking over mobile ad hoc network with CCNx, and seamless handoff experiment with Linux the Multipath TCP implementation.

INTRODUCTION

Increasing demand for the reproducible network experiments requires sophisticated tools to conduct arbitrary network experiment with satisfying a set of requirements such as 1) experimentation realism, 2) topology flexibility, 3) easy and low cost replication, 4) experimentation scalability, and 5) easy debugging. Container-based emulation (CBE) [START_REF] Handigol | Reproducible network experiments using container based emulation[END_REF] as well as shared emulation testbed (PlanetLab [START_REF] Peterson | A blueprint for introducing disruptive technology into the Internet[END_REF]) are good at satisfying such requirements while network simulators are not as it had been lacked the functional realism of simulated protocols.

Porting existing network protocol implementations to network simulators is one possible direction to improve the functional realism of experimental result. OppBSD [START_REF] Bless | Integration of the freebsd tcp/ip-stack into the discrete event simulator omnet++[END_REF] or INETQuagga [START_REF]OMNeT++ wiki[END_REF] would take this approach to reuse existing protocol implementations (i.e., TCP/IP stack of FreeBSD and Quagga routing protocol suite), but they still left the painful task of manual patching for a particular network simulator, resulting difficulties to track the latest version of code. Network Simulation Cradle (NSC) [START_REF] Jansen | Simulation with real world network stacks[END_REF] introduces a nice way with automatically generating C source files of different operating system's net- work stacks (e.g., FreeBSD, Linux, OpenBSD, lwip) built to shared libraries used in network simulators. The automation alleviates the cost of tracking latest version of codes and supports a wide range of existing code with a single framework, but it still requires additional effort to introduce arbitrary protocols implementation rather than TCP.

We will present the Direct Code Execution (DCE) environment for ns-3, notable for being the first free, open source framework for integrating both Linux kernel space protocol stack and POSIX socket based user space application code with a leading discrete-event network simulator. DCE takes the traditional library operating system (LibOS) approach such as Exokernel [START_REF] Kaashoek | Application performance and flexibility on exokernel systems[END_REF] in its core architectural design to enable running and evaluating real network protocol implementations. As a result, DCE brings us functional realism to network simulationbased experiment as shown in Table 1.

SYSTEM OVERVIEW

The design of DCE is structured around three separate components as depicted in Figure 1. • POSIX layer. The POSIX layer builds upon the core and kernel layers to re-implement the standard socket APIs used by emulated applications.

Along with these components, DCE, in theory, enables to run any existing network protocol implementations upon ns-3 without any manual modifications to the original code. At the present moment, it supports a broader range of existing implementations running on ns-3: Linux kernel (2.6.36, 3.4-3.10 version), quagga (ripd, ripngd, ospfd, ospf6d, bgpd, and rtadv), ccnx, iperf, ip, ping/ping6, umip, bind9, unbound, thttpd, and bittorrent (opentracker/rasterbar).

DEMONSTRATION DETAIL

We will demonstrate the seamless simulation examples using existing protocol implementations over ns-3. To present major features of DCE, we pick two examples as representatives of user space application simulation and Linux kernel space protocol simulation.

User space protocol implementation running on DCE: CCNx1 over mobile nodes Contents Centric Network (CCN) [START_REF] Jacobson | Networking named content[END_REF] is a network architecture categorized clean-slate design, which brings a different perspective for the identifier of communications from traditional IP addresses to named data. Such floating identifier independent from physical conditions is beneficial especially in highly dynamic network topology like mobile ad hoc network [START_REF] Meisel | Ad hoc Networking via Named Data[END_REF].

In this showcase, we will present this new network paradigm with a CCN implementation, CCNx, over simulated dynamic topology via ns-3.

Kernel space protocol implementation running on DCE: Multipath TCP Multipath TCP (MPTCP) [START_REF] Raiciu | How hard can it be? designing and implementing a deployable multipath tcp[END_REF] is an extension of the standard TCP that allows to use multiple subflows with different IP addresses without modifying user space applications. Basically, this new transport protocol makes it possible to increase the throughput of an application by running it over multiple links, as well as transparent handoff using multiple IP addresses.

In this showcase, we will present a Linux MPTCP implementation2 running on DCE over ns-3 with the support of various user space applications (quagga, ip command, udhcpd, iperf). Multiple addresses to a mobile node are provided via two different wireless technologies of ns-3, LTE and Wi-Fi, and tries to switch its primary address between them during node movement, keeping ongoing TCP session available. Similar handoff scenario using Linux Mobile IPv6 implementation is available3 . In all demonstrations, we will present a typical network simulation using existing protocol implementations, with animated visualization of simulated nodes, traffic status, as well as measurement results with plotted graphs from each simulation.

Facilities for the Demonstration

The followings are the required facilities at the venue to demonstrate our system.

•Figure 1 :•

 1 Figure 1: Architecture of Direct Code Execution.

Figure 2 :

 2 Figure 2: CCNx in mobile and Wi-Fi ad hoc network.

Figure 3 :

 3 Figure 3: Similar Handoff simulation with the Linux Mobile IPv6 implementation.

Table 1 :

 1 Requirements for reproducible network experiments.

		Simulators Testbeds Emulators
	Functional Realism	???
	Timing	
	Realism	
	Topology Flexibility	(limited)
	Easy	
	Replication	
	Easy	
	Debug	
	Scalability	

http://www.ccnx.org/

https://github.com/multipath-tcp/mptcp

https://www.youtube.com/watch?v=y790NE3EPCg • Power outlet (2 slots for 2 Laptop PCs) • Table (enough space to put 2 PCs) • Wall or Stand to put a poster