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The effect of eccentricity on absolute instabilities (AI) in the Taylor–Couette system
with pressure-driven axial flow and fixed outer cylinder is investigated. Five modes of
instability are considered, characterised by a pseudo-angular order m, with here |m| 6 2.
These modes correspond to toroidal (m = 0) and helical structures (m 6= 0) deformed
by the eccentricity. Throughout the parameter range, the mode with the largest absolute
growth rate is always the Taylor-like vortex flow corresponding to m = 0. Axial advec-
tion, characterised by a Reynolds number Rez, carries perturbations downstream, and
has a strong stabilising effect on AI. On the other hand, the effect of the eccentricity e
is complex: increasing e generally delays AI, except for a range of moderate eccentricites
0.3 . e . 0.6, where it favours AI for large enough Rez. This striking behaviour is in con-
trast with temporal instability, always inhibited by eccentricity, and where left-handed
helical modes of increasing |m| dominate for larger Rez. The instability mechanism of
AI is clearly centrifugal, even for the larger values of Rez considered, as indicated by an
energy analysis. For large enough Rez, critical modes localise in the wide gap for low
e, but their energy distribution is shifted towards the diverging section of the annulus
for moderate e. For highly eccentric geometries, AI are controlled by the minimal annu-
lar clearance, and the critical modes are confined in the vicinity of the inner cylinder.
Untangling the AI properties of each m requires consideration of multiple pinch points.

Key words:

1. Introduction

The flow between rotating cylinders has attracted attention since the end of the 19th

century, starting with the experiments of Couette (1888b,a) and Mallock (1888), and
the landmark work by Taylor (1923), who first predicted theoretically the threshold for
centrifugal instability. Taylor characterised centrifugal effects using a non-dimensional
number appropriate in the limit of small clearance, d = (b − a) ≪ a, with a and b the
inner and outer cylinder radii (see figure 1). In this paper, a wide gap geometry with
radii ratio η = a/b = 0.5 will be considered, and centrifugal effects will be conveniently
measured by an azimuthal Reynolds number ReΩ = aΩd/ν, with Ω the inner cylinder
rotation rate and ν the kinematic viscosity.
Adding axial flow to this system, one obtains a simple prototype for the study of pat-

tern formation in real open flows. The effect of axial advection can also be measured by
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Figure 1. Eccentric annulus of radius ratio η = a/b = 0.5 and basic flow U = U⊥ +Wez.

a Reynolds number Rez = Wd/ν, based on the mean axial velocity W . First theoreti-
cal predictions of the absolute instability (AI) threshold were obtained by Tsameret &
Steinberg (1991a) with a criterion based on a one-dimensional Ginzburg-Landau equa-
tion (with coefficients determined by two-dimensional numerical simulations), and then
by Babcock et al. (1991, 1992), using the full set of hydrodynamic equations and a saddle-
point criterion (Briggs 1964; Bers 1983) that will be discussed in §2.3. They showed that
upon crossing the AI threshold, periodic self-sustained vortices appear, in contrast with
the irregular patterns emerging from noise amplification in the convectively unstable
régime. In these papers and subsequent work (Tsameret & Steinberg 1991b; Babcock
et al. 1992; Lücke & Recktenwald 1993; Swift et al. 1994; Babcock et al. 1994; Tsameret
& Steinberg 1994), effort was dedicated to identifying the noise sources (inlet noise versus
thermal noise) which sustain the convective instability (CI). These studies were restricted
to small axial Reynolds numbers Rez, typically below 4, and it was found that the most
unstable (fastest growing) perturbations were in the form of propagating Taylor vortices.
For higher values of axial advection, Takeuchi & Jankowski (1981) and Ng & Turner
(1982) had previously shown numerically (and also experimentally for the former refer-
ence) that critical modes consisted in propagating helical vortices, with helicity opposite
that of the basic flow, and with azimuthal order m increasing with Rez. However, the
concept of AI was not widespread in fluid mechanics back then, and these studies were
restricted to CI. Theoretical prediction of AI of helical modes was investigated only re-
cently (Hoffmann 2004, Altmeyer 2011). In these papers, the authors studied the effect
of axial through-flow on the spatio-temporal properties of toroidal and helical wavepack-
ets with angular orders |m| 6 2, for Rez 6 20. For |m| 6 1, it was shown that critical
azimuthal Reynolds numbers ReΩ are higher for AI than for CI, and that the difference
between the two thresholds increases with Rez. For |m| = 2 and a stationary outer cylin-
der, AI was found to occur in a closed region of the Rez-ReΩ plane, considering only the
saddle point originating at the critical conditions for CI with Rez = 0 (detailed in §2.4).
However, the authors mentioned other saddle points expected to destabilise these modes



Absolute instabilities in eccentric Taylor–Couette–Poiseuille flow 545

in other regions of parameter space and which will be taken into account in the present
article. More recent work on AI in the Taylor–Couette–Poiseuille flow concerned the ef-
fect of radial flow at the inner cylinder, representative of filtration devices (Martinand
et al. 2009). In this analysis, it was shown that axisymmetric modes become absolutely
unstable for inward radial flow, while helical modes with helicity identical to that of the
basic flow dominate at high enough Rez, for outward radial flow.
When the two cylinder axes do not coincide, axisymmetry is broken and the stabil-

ity properties of the flow are modified. Eccentricity is generally measured by the non-
dimensional distance between the two cylinders e = c/d (see figure 1). Adding eccentricity
to the Taylor–Couette flow with axial advection, one obtains a basic model for annular
mud flows in oil-well drilling, or lubrication flows present in high-speed journal bearings.
In the first case, mud is injected in a rotating drillstring, and flows back to the surface
through the annular domain between the drillstring and the rock face, with several en-
gineering functions: carry the rock cuttings out, lubricate, prevent inflow of formation
gases and wellbore collapse, etc. (Escudier et al. 2002; Guo & Liu 2011). For deep wells,
the drillstring inevitably bends along its axis, on a typical length scale much larger than
the well diameter. As a result, a parallel-flow assumption is reasonable, and the flow can
be locally described as a Taylor–Couette–Poiseuille flow between eccentric cylinders. In
high-speed turbomachinery, a similar configuration is found: oil is contained in eccen-
tric journal bearings for lubrication purposes, and a pressure gradient is imposed along
the shaft to evacuate damaging impurities (Sep 2008). Aside from its fundamental in-
terest, these industrial applications motivate the present analysis. In both applications,
transition to complex hydrodynamic régimes would result in increased frictional losses,
detrimental to the system efficiency. If the basic flow advection is weak compared to the
rotation rate, hydrodynamic resonance may occur and the entire flow would bifurcate
to an undesired self-sustained oscillatory state. This specific behaviour, called absolute
instability, is particularly ‘dangerous’, because it does not require a permanent forcing:
once the instability is triggered, it will propagate in both the downstream and upstream
directions, and amplify using energy from the basic flow. On the other hand, convective
instabilities correspond to wavepackets propagating only in the downstream direction: in
the absence of forcing, the system eventually relaxes to its initial state at any fixed loca-
tion, after perturbations have been ‘blown away’ from the source. The most temporally
amplified perturbations are given by a classical temporal stability analysis, and such a
study was recently carried out for this flow (Leclercq et al. 2013). It was shown that the
physics is essentially similar to the axisymmetric case (Takeuchi & Jankowski 1981; Ng &
Turner 1982), with propagating toroidal vortices replaced by helical structures of increas-
ing azimuthal complexity as Rez is increased. Eccentricity deforms the critical modes, but
does not introduce new instabilities to the problem. The effect of eccentricity is stabilis-
ing for all values of Rez, and this result is interpreted as a consequence of the reduction
of centrifugal effects in the basic flow. Indeed, as eccentricity increases, the azimuthal
flow rate decreases for a fixed inner cylinder rotation rate, resulting in weaker driving of
the instability. This is a consequence of the appearance of a recirculation region in the
wide gap which does not contribute to the net azimuthal flow rate. Outside this zone,
in the vicinity of the inner cylinder, the flow resembles an axisymmetric Taylor–Couette
flow with clearance scaling with the inner gap d(1 − e). The reduction of the ‘effective’
clearance ratio δ = d/a with eccentricity, or increase in ‘effective’ radius ratio η, also ex-
plains stabilisation (see DiPrima (1960) for the effect of η on the Taylor–Couette flow).
To date, it is, to the authors’ knowledge, the only available theoretical study of eccentric
Taylor–Couette–Poiseuille flow. The only known series of experiments were performed by
Coney & Mobbs (1969–70); Coney (1971); Younes (1972); Younes et al. (1972); Mobbs &
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Younes (1974); Coney & Atkinson (1978) and show good agreement with our a posteri-
ori predictions, despite small discrepancies attributed to finite-length effects. For a brief
review of other theoretical and experimental results on eccentric Taylor–Couette flow on
the one hand, and axisymmetric Taylor–Couette–Poiseuille flow on the other hand, we
refer to Leclercq et al. (2013).
The present paper extends this previous linear stability analysis by considering the

case of AI. In §2, the linear stability framework is presented. The governing equations
and numerical methods are briefly described, and the main properties of the basic flow
and normal modes are recalled. In §2.3, the methods used to investigate AI, based on the
Briggs (1964)–Bers (1983) pinching criterion, are described. In §3, results are presented
for the 5 modes of instability with angular orders |m| 6 2, which include the fastest
growing temporally unstable modes for Rez 6 50.

2. Linear stability framework

In the following, the geometry will be described using the ratio 0 < η = a/b < 1
between the inner and outer cylinder radii a and b (see figure 1), and the eccentricity
0 6 e = c/(b− a) < 1, based on the distance c between centers, divided by the clearance
d = b − a. The gap varies azimuthally between d(1 − e) and d(1 + e). The radii ratio
will be fixed at the value η = 0.5 throughout this paper. Rotation and axial advection
will be quantified using the two Reynolds numbers given in introduction: ReΩ = aΩd/ν
and Rez = Wd/ν, with Ω the inner cylinder rotation rate, W the basic flow mean axial
velocity and ν the kinematic viscosity.
The velocity u will be made non-dimensional with the rotation speed V ≡ aΩ. The

clearance d will be taken as the reference length scale L. Finally, the pressure p will be in
units of P ≡ ρV 2, with ρ the density of the fluid. All equations and physical quantities
will be written in non-dimensional form, using V , L and P .

2.1. Basic flow

The velocity u can be decomposed into a component w parallel to the axis ez, and a
component u⊥ = u− wez in a plane perpendicular to the axis. The axial flow is driven
by a pressure gradient G in the z-direction. Denoting the in-plane pressure gradient as
∇⊥p = ∇p−Gez , the incompressible Navier–Stokes equations read:

(∂t + u · ∇)

[

u⊥

w

]

= −

[

∇⊥p

G

]

+ Re−1

Ω
∇2

[

u⊥

w

]

,

∇ · u = 0,











(2.1)

with impermeability and no-slip boundary conditions on the fixed outer cylinder and
on the inner cylinder, whose rotational velocity is 1. In-plane and axial derivatives can
be separated, using convenient notations: u⊥ · ∇⊥ ≡ u · ∇− w∂z , ∇

2
⊥

≡ ∇2 − ∂2
zz and

∇⊥·u⊥ ≡ ∇·u−∂zw. Assuming an axially invariant flow, the problem is two-dimensional
and u⊥ becomes independent of w:

∂tu⊥ + u⊥ · ∇⊥u⊥ = −∇⊥p+ Re−1

Ω
∇2

⊥
u⊥,

∇⊥ · u⊥ = 0.

}

(2.2)

Basic flows Q ≡ (U, P ), denoted with capital letters, are defined as axially invariant,
steady solutions of (2.1). Such solutions are found by integrating forwards in time equa-
tion (2.2) until convergence of U⊥ is attained, and then solving for the corresponding
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Figure 2. Modified bipolar coordinate system (ξ, φ) fitting the eccentric annular domain. Polar
coordinates (r, θ) are centered on the inner cylinder, with θ = φ = 0 along the line joining the
cylinder axes.

axial velocity W , given by:

U⊥ · ∇⊥W = −G+ Re−1

Ω
∇2

⊥W. (2.3)

Equations are expressed using locally orthogonal, body-fitted coordinates (ξ, φ), with
−1 6 ξ 6 1 and 0 6 φ < 2π the pseudo-radial and pseudo-azimuthal coordinates respec-
tively (see figure 2). In this modified bipolar coordinate system, a Fourier–Chebyshev
pseudospectral projection method is implemented, with Nφ = 2Kφ + 1 Fourier modes,
and Nξ Gauss–Lobatto collocation points. For more details on the numerical procedure,
the reader is referred to Leclercq et al. (2013).
For an axisymmetric flow, the basic in-plane motion results from diffusion of axial

vorticity from the rotating inner cylinder to the fixed outer cylinder. In cylindrical co-
ordinates (r, θ), it takes the well-known form U⊥ = (0, Ar + B/r), with A and B two
constants depending on the geometry. For low eccentricities, the result is quite similar, as
can be seen in figure 3(1a). However, for higher eccentricities, a low-speed recirculation
region forms in the wide gap (figure 3(2a)). For the relatively high value of ReΩ = 500
presented here, small recirculation can already be seen for e = 0.2, whereas in Leclercq
et al. (2013), figure 3, it was not present for ReΩ = 100 and appeared around e ≈ 0.3 for
that lower value of ReΩ.
In the axisymmetric case, W is independent of U⊥, and the axial flow is very similar

to a parabolic Poiseuille flow, with small corrections due the annular geometry. As ec-
centricity is increased, W decreases in the small gap, because of viscous effects, and most
of the volume flux passes through the wide gap (see figure 3(2b)). Distortion also occurs,
due to coupling with U⊥, and the peak velocity is no longer in the symmetry plane. For
high rotation rates, the nonlinear interaction term U⊥ · ∇⊥W can locally dominate the
viscous term Re−1

Ω
∇2

⊥
W , and there is significant transport of W by in-plane components.

2.2. Normal modes

Let q′ ≡ q−Q be three-dimensional perturbations of small amplitude superimposed onto
the two-dimensional basic flow, and satisfying the linearized Navier–Stokes equations
with no-slip boundary conditions. Because of temporal and axial invariance of the basic
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(1a) (1b)

(2a) (2b)

Figure 3. Basic flows for ReΩ = 500: (1) weak eccentricity e = 0.2, (2) high eccentricity
e = 0.7. (a) Contours of equispaced in-plane streamfunction with superimposed U⊥ profiles at
θ = 0, π/2, π, 3π/2 (polar angle with respect to the inner cylinder). (b) Equispaced contours of
W .

flow, perturbations are sought in the form of normal modes

q′ = q̃(ξ, φ) exp i(kz − ωt) + c.c., (2.4)

where c.c. denotes the complex conjugate. In a general framework, k is the complex axial
wavenumber and ω is the complex frequency. As usual, ωr ≡ Re(ω) is the temporal
frequency and ωi ≡ Im(ω) is the temporal growth rate. Equivalently, kr ≡ Re(k) is the
wavenumber of the mode, and −ki ≡ −Im(k) is the spatial growth rate. Injecting the
modal form (2.4) into the linearized Navier–Stokes equations with boundary conditions,
one obtains a problem of the form (A− iωB)q̃ = 0, where (A,B) are two linear operators,
with A depending on k. Expressions for A and B are given in Leclercq et al. (2013), in
the modified bipolar coordinate system. The wavenumbers k and frequencies ω satisfying
this problem for non-zero q̃ define the dispersion relation D(k, ω) = 0. Using the same
Fourier–Chebyshev decomposition as for the basic flow, the linear problem is converted
into a generalized eigenvalue problem for ω and q̃ that can be solved numerically, using
LAPACK (www.netlib.org/lapack) or ARPACK++ (Lehoucq et al. 1997) routines. For
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RH2 RH1 TV LH1 LH2
m = −2 m = −1 m = 0 m = 1 m = 2

Figure 4. Structure (isovalues of axial velocity) of the five modes of interest m = −2, . . . , 2,
from left to right. For this example, e = 0, ReΩ = 68.19, Rez = 0 and k = 3.16, corresponding
to the critical conditions for temporal instability of the axisymmetric Taylor–Couette flow (see
DiPrima & Swinney (1985) for a review).

more information on the numerical procedure, the reader is referred to Leclercq et al.
(2013).
In this previous study, a temporal stability analysis was carried out to predict the

fastest growing perturbations with k real and ω complex. It was found that among the
large set of temporal modes ω(k), the most unstable ones were in the form of deformed
toroidal vortices for low Rez, or complex helical structure for higher Rez. The modes
were labelled according to a pseudo-azimuthal-integer-wavenumber m, or angular order.
The labelling was made in accordance to the axisymmetric case, where normal modes
can be written as q′ = q̃(r) exp i(kz +mθ − ωt) in polar coordinates (r, θ) (see figure 2).
Restricting attention to positive k, because of symmetry arguments to be discussed in
the next paragraph, positive values of m (resp. negative) correspond to helical structures
winding clockwise (resp. counter-clockwise) around the inner cylinder, and were called
left-helical (resp. right-helical), or LH|m| (resp. RH|m|) modes. The case m = 0 corre-
sponds to the classical toroidal Taylor vortex flow (TV). By following these modes as
eccentricity is continuously varied, one obtains the corresponding pseudo-angular-order
m for e 6= 0. Figure 4 shows the structure of modes m = −2, . . . , 2 for the classical
Taylor–Couette flow.
Note that the symmetry Π0 ≡ (m,ω,w) → (−m,−ω⋆,−w) (with ⋆ denoting the

complex conjugate) between RH and LH in figure 4 is broken when axial flow is added,
or when k is complex. Indeed, by taking the complex conjugate of the axisymmetric
modal form, the general symmetry Π1 ≡ (k,m, ω) → (−k⋆,−m,−ω⋆) appears, also valid
for e 6= 0. By considering the mirror image of the system (z → −z), one obtains another
symmetry: Π2 ≡ (Rez, k, w) → (−Rez,−k,−w). Combining Π1 and Π2, one gets

Π3 ≡ (Rez, k,m, ω, w) → (−Rez, k
⋆,−m,−ω⋆,−w). (2.5)

Setting Rez to zero and k real in Π3, one recovers Π0. In the general case, because of Π3,
one can choose to study only m > 0, or only Rez > 0, without loss of generality. Π1 also
indicates that it is possible to restrict computations to kr > 0.
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2.3. Absolute instability threshold

Absolute instability occurs when the impulse response wavepacket is temporally growing
at any fixed axial position z. The asymptotic dynamics of the wavepacket is dominated by
the normal mode which satisfies the pinching criterion of Briggs (1964)–Bers (1983) and
has the largest temporal growth rate. This mode has zero group velocity ∂ω/∂k(k0) = 0
for the complex absolute wavenumber k0. This condition indicates the presence of a saddle
point of ω(k) at k0. This saddle point is associated to a branch-point singularity at the
complex absolute frequency ω0 = ω(k0). Additionally, the saddle point must comply with
causality and result from the collision between downstream- and upstream-propagating
spatial branches, respectively denoted k+(ω) and k−(ω). The flow is absolutely unstable
if and only if the most unstable pinch point has positive absolute growth rate ω0,i. Other-
wise, the flow is either stable or convectively unstable. In the latter case, the wavepacket
grows while being advected away from the impulse location so the system eventually
relaxes to its initial state at any axial position. For a comprehensive review of these
concepts, the reader is referred to Huerre & Monkewitz (1990); Huerre (2000); Chomaz
(2005).
The border of the absolutely unstable domain is determined by following all the neu-

trally stable saddle points in parameter space. This is done by performing Newton–
Raphson iterations at each point, varying simultaneously kr, ki and ReΩ until |ωi|,
|Re(∂ω/∂k)| and |Im(∂ω/∂k)| are all below 10−6. Estimated values for the indepen-
dent variables are obtained by linear extrapolation with respect to the parameter being
varied, e.g. e, ReΩ or Rez. For |m| = 2, critical curves display folds, and it is necessary
to implement a continuation scheme based on an arclength variable (Keller 1977).
However, not all saddle points are valid and only the ones satisfying the pinching

criterion are relevant. In order to discard invalid saddle points, extensive tests are carried
out, where the two spatial branches k(ω) coalescing at k0 are tracked numerically as ωi

is increased from ω0. The saddle point is a genuine pinch only when the spatial branches
separate into the upper and lower half k-planes for large enough ωi. Indeed, causality
demands that this be true for ωi > ωi,max, where ωi,max is the maximum temporal growth
rate for real k. Spatial branches are obtained by numerically inverting the relation ω(k)
with a Newton–Raphson iteration.

2.4. Validation

To validate the numerical procedure, critical curves in the axisymmetric case were com-
puted and compared with literature results. For m = 0 and 1, Pinter et al. (2003)
provide the coefficients of fourth-order polynomials fm fitting their data in the range
−20 6 Rez 6 20, with step δRez = 1. The same procedure was applied here, and our
calculated values g̃m at the same points were fitted by polynomials gm. To compare our
results, the residual

∑20

−20
|fm(Rez) − gm(Rez)|

2 between the two fits was divided by

the residual
∑20

−20
|gm(Rez) − g̃m(Rez)|

2 between our fit and our calculated values. For
m = 0 and 1, this ratio is respectively 1.16 × 10−2 and 1.10 × 10−2, showing agree-
ment with the authors’ calculations. For m = 2, only graphical data was available, and
figure 5 shows excellent agreement with the ‘island’ of instability found by Altmeyer
et al. (2011) in ReΩ-Rez plane. In their analysis, the authors considered only the sad-
dle points originating at the real critical wavenumber kc of temporal instability with
Rez = 0, as will be explained now. For ReΩ above the temporal instability threshold
ReΩ,c, the medium is unstable, and the growing part of the wavepacket is bounded by
two spatio-temporal rays referred to as leading and trailing fronts, respectively z/t = V +

and z/t = V − with V − < V +. The fronts are defined by the conditions ∂ω/∂k(k±∗ ) = V ±
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Figure 5. ‘Island’ of AI in the axisymmetric case, for mode LH2. Line: present calculation;
dots: figure 8(b) in Altmeyer et al. (2011).

m 0 1 -1 2 -2

e 0.3 0.7 0.3 0.7 0.3 0.7 0.45 0.7 0.45 0.7

16× 8 402.59 283.22 475.66 285.22 431.88 300.21 465.54 305.73 472.77 347.83
16× 16 402.59 283.32 475.66 285.70 431.88 300.22 465.54 306.79 472.77 347.90
32× 32 402.59 283.33 475.65 285.71 431.88 300.29 465.52 306.80 472.46 348.34

Table 1. Critical azimuthal Reynolds number ReΩ for Rez = 50 and different resolutions
Nξ ×Kφ.

and ωi(k
±
∗ ) − V ±k±

∗,i = 0 (see Huerre (2000) for more details). At critical conditions for
temporal instability, ReΩ = ReΩ,c and k = kc, the constraint ∂ωi/∂k = 0 for k real
defines two degenerate fronts propagating at the group velocity Vmax of the most rapidly
amplified temporal mode: V ± = Vmax = ∂ω/∂k(kc). For ReΩ just above ReΩ,c, V

+ 6= V −

so the fronts are properly defined and the now complex wavenumbers k±∗ are close to
kc so V ± ≈ Vmax. In general, Vmax > 0, so the wavepacket is advected downstream and
the flow is only convectively unstable. But when ReΩ is further increased, one front may
eventually change propagation direction, which translates into the saddle-point condi-
tion ∂ω/∂k = 0 defining the AI threshold. In Altmeyer et al. (2011), only the two fronts
bounding the convectively unstable wavepacket at ReΩ slightly above ReΩ,c and Rez = 0
were considered. These specific fronts were followed as ReΩ and Rez were varied, and the
AI boundary in figure 5 corresponds to points where one of the fronts was stationary.
Saddle points corresponding to other stationary fronts were ignored in figure 5, even
though the authors mentioned the existence of more. Note that validation for m > 0 is
sufficient because of the Π3-symmetry (2.5).
In this study, only values of |m| 6 2 will be considered and a small number of Fourier

modes Kφ = 8 is deemed satisfactory, as can be seen in table 1. A higher number of
collocation points Nξ = 16 is however required for accuracy at large ReΩ.

3. Results

A parametric study has been performed within the ranges e 6 0.7, 0 6 Rez 6 60 and
0 6 ReΩ 6 500. Within these bounds, modes m = 0, 1, 2 are always the most temporally
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unstable, except for a small range e 6 0.3, 50 6 Rez 6 60, where m = 3 has the largest
temporal growth rate (Leclercq et al. 2013). It will be assumed that the absolute growth
rate of these modes will be higher than that of |m| > 3. However, right helical modes
RH1 and RH2 will be retained in the analysis, as RH are known to be more absolutely
unstable than TV and LH in some cases (e.g. high Rez, outward radial flow, e = 0, cf.
Martinand et al. (2009)). Because we are considering both positive and negative m, it is
unnecessary to consider negative Rez, because of the Π3-symmetry (2.5).

3.1. Reference saddle point

The bifurcation to (pseudo-)toroidal vortices without axial flow is a steady one, ωr(m =
0) = 0, so CI and AI thresholds, respectively denoted here ReΩ,c and ReΩ,c−a, coincide in
this case. For modes m 6= 0, CI occurs through Hopf bifurcations at Rez = 0, so AI only
occurs above a higher threshold: ReΩ,c−a > ReΩ,c. For these modes, ReΩ,c−a(Rez = 0) is
found by locating the saddle point with k0 closest to kc, the real critical wavenumber of
CI. This neutral saddle point corresponds to a stationary front of the impulse response
wavepacket for ReΩ just above ReΩ,c, as explained in detail in section §2.4. For m = 1, 2,
the stationary front is the trailing one: V− = 0, k0,i < 0. For negative m, k0,i > 0 because
of the Π3-symmetry (2.5), and the stationary front is the leading one: V+ = 0. The
present paragraph defined the reference saddle point for each m, obtained for Rez = 0
and e = 0. These saddle points are systematically followed in parameter space to define
critical curves of AI. However, as will be seen in the next paragraph, other saddle points
are also relevant to the spatio-temporal dynamics and must be considered.

3.2. Multiplicity of saddle points

Pinch points corresponding to other stationary fronts can be identified using the geo-
metric method described in §3.2 of Juniper (2006). The same approach is used here to
study the dispersion relation of mode m = 0 in the presence of strong axial advection,
Rez = 60, for three eccentricities around e = 0.3. Figure 6, similar to figure 2 in Ju-
niper (2006), shows isocontours of ωi(k) for complex values of k. The thick black line
indicates a contour in the complex k-plane including the steepest descent paths of all
genuine pinch points, here s1 and s2 (s3 and s4 are ‘spurious’ k−/k− saddle points). The
impulse response can be obtained at any time using a classical inverse Laplace transform
formula (see Huerre (2000) for instance), which is easily evaluated at large time using this
integration contour. The asymptotic response is indeed dominated by the pinch point of
largest temporal growth rate, which here is s2. With this geometrical approach, genuine
pinch points and invalid saddle points are easily identified.

If the eccentricity is varied by a small amount, the nature of the saddle points may
change: valid saddle points may become invalid and vice versa. This is illustrated in figure
7: in case (b), s1 and s2 are the two pinch points, but in case (a), only s1 is a pinch, and
in case (c), s1, s2 and s3 are all three valid. Since the growth rate of each saddle point
also varies with the control parameters, the dominant pinch may either be s1, s2 or s3,
and a careful analysis is required when parameters are varied.

Maps similar to figure 6 are drawn for each value of m, and a large number of saddle
points are identified each time. Saddle points with growth rate close to the reference-
saddle-point ’s are systematically followed in parameter space. Over the whole range of
parameters, three different ‘pinch points’ are found to be relevant for TV, two for LH1,
LH2 and RH2, but surprisingly, just one for RH1, despite numerous candidate saddle
points.
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554 Colin Leclercq, Benôıt Pier and Julian F. Scott

3.3. Critical azimuthal Reynolds number

In figure 8, the critical azimuthal Reynolds number is represented as a function of ec-
centricity, for Rez = 0, 10, . . . , 60. We start by describing the curves in terms of m. Solid
lines correspond to m > 0, and dotted lines are for m < 0. Changes of critical saddle
point are indicated with a filled (resp. open) circle for m > 0 (resp. m < 0). The most
important result is that for any value of e and Rez, m = 0 always has the lowest critical
ReΩ, followed by |m| = 1, and finally |m| = 2. This observation gives credence to the
assumption that modes with |m| > 3 can be ignored in the analysis. Curves 8(b) and 8(c)
also prove the importance of considering both positive and negative m, as LH are not
always more absolutely unstable than RH. Indeed, for low eccentricities, RH1 is slightly
more unstable than LH1, but the converse is true for high eccentricities. The dynamics
is even more subtle for |m| = 2, as LH2 are generally more unstable than RH2, except
for a small range of eccentricities that varies with Rez.
The effect of axial advection is to stabilize all the modes. For high enough Rez, the

critical ReΩ seems to increase almost linearly with Rez. The rate of increase is much
stronger for low eccentricities than for high eccentricities, regardless of the value of m, as
already mentioned. Critical ReΩ are typically one order of magnitude higher than Rez,
which means that the inner cylinder must be rotated much faster than the mean axial
velocity to have self-sustained oscillations. Indeed, axial flow prevents AI by carrying
perturbations downstream while rotation amplifies them.
The effect of eccentricity is more complex than that of Rez. For low eccentricities, ReΩ

increases slowly for m = 0, 1, but decreases for all other modes. For high enough e, all the
curves have the same shape: ReΩ decreases before reaching a minimum and then increases
again beyond this minimum. TV and LH1 display another similarity: they switch critical
saddle point between 0.2 6 e 6 0.4, for high enough Rez. This change of saddle point
coincides with the change in sign of the slope: critical ReΩ increases with e for the first
saddle point, but decreases for the second one. As was already mentioned in paragraph
§3.2, TV even changes pinch point twice for Rez = 60. On the other hand, the critical
curves for RH1 are smooth, because they are obtained by continuously following a single
saddle point. Finally, two saddle points define the critical curves of LH2 and RH2. For
low values of Rez and e, the AI threshold is quite complex, and the curves display folds.
Folds in the critical curves mean that there are finite ranges of AI in parameter space,
surrounded by CI. This unusual behaviour has already been pointed out by Altmeyer
et al. (2011) in the concentric case, but it seems important here to underline the fact that
for high enough ReΩ, all the modes eventually become absolutely unstable, regardless of
any ‘island’ of AI occurring at lower ReΩ (cf. figure 5).

3.4. Critical absolute wavenumber k0,r

Figure 9 shows the evolution of the absolute wavenumber k0,r, spatial growth rate −k0,i
and frequency ω0,r associated with the dominant mode m = 0, at critical conditions.
As before, curves are plotted as functions of e, for Rez = 0, 10, . . . , 60. The absolute
wavenumber k0,r (figure 9(a)) evolves in different ways below and above e ≈ 0.3. Below
e ≈ 0.3, critical modes have longer wavelengths as Rez increases, spanning up to 6
times the clearance for Rez = 60 and e ≈ 0.3. When e is high enough, the trend is the
opposite, and critical modes have shorter wavelengths as Rez increases. Below e ≈ 0.3,
k0,r is almost constant, or slightly decreasing with e, whereas above e ≈ 0.3, it is clearly
increasing with e. For large enough e, the critical wavelength seems to be controlled by
the smaller clearance d(1 − e). Small discontinuities in k0,r around e ≈ 0.3 indicate a
change of critical saddle point.
Comments on the curves obtained for other m, although not displayed here for clarity,
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Figure 8. Critical azimuthal Reynolds number ReΩ versus eccentricity e for (a) m = 0, (b)
|m| = 1 and (c) |m| = 2. Curves are drawn for Rez = 0, 10, . . . , 60. Solid lines are for m > 0,
and dotted lines for m < 0. Filled/open dots indicate a change of saddle point.

can be made. First, curves of k0,r for LH1 are very similar to those of TV, except that
LH1 only changes saddle point once for Rez = 60 instead of twice for TV. Ignoring the
change of saddle point, they are also qualitatively similar to those of RH1. For all m, k0,r
always increases with e for high enough eccentricities, showing that all modes scale with
the small gap at critical conditions. For |m| = 2, large values of k0,r up to 8 and more
are obtained for low eccentricites as well, provided Rez is high enough. This behaviour is
not found for other modes, where k0,r is always between 1 and 3.5 when e . 0.3. For LH2
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and RH2, a large discontinuity of axial wavenumber is observed upon switching saddle
point. For example, k0,r of LH2 varies from about 7.5 to about 3.5 for Rez = 60 and
e ≈ 0.6.

3.5. Critical absolute spatial growth rate −k0,i

The absolute spatial growth rate −k0,i (figure 9(b)) measures the ‘steepness’ of the sta-
tionary front of the impulse response wavepacket. For e . 0.3, it is slightly increasing
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with e. It varies quickly for Rez . 20, and then slowly varies in the range 2.5 . −k0,i . 4
for higher Rez. For e & 0.3, −k0,i increases with e, reaches a maximum value, and then
decreases again. For high enough e, −k0,i increases steadily with Rez.
Similar trends are noticed for LH1 and RH1, with comparable ranges of values. For LH2

and RH2 however, the curves are quite different. For low eccentricities, −k0,i increases
significantly with Rez, whereas it is almost constant for other m. Therefore, extreme
front steepness occurs for LH2 at low e, with −k0,i > 12 for Rez = 60.
For RH1 and RH2 at low Rez, −k0,i can be negative over the whole range of eccen-

tricities. Physically, this means that the stationary front is the leading one in this case
V+ = 0 (cf. section §2.4), and that the most temporally unstable RH wave has a negative
group velocity.
Finally, a common feature of all m is that −k0,i has a maximum as a function of e.

3.6. Critical absolute frequency ω0,r

The absolute frequency ω0,r (figure 9(c)) is given here for reference. After nonlinear
saturation of the instability, self-sustained oscillations with frequency close to ω0,r are
expected for a supercritical transition. Therefore, the values of ω0,r can be used as a good
estimate of the hydrodynamic resonance frequency of the flow, and may be of interest
for engineering applications. The trends of the curves are very similar to those obtained
for the spatial growth rate. The frequency range is shifted towards higher values as m
increases. For RH1 and RH2, ω0,r can be negative (always the case for RH2), indicating
that the absolute phase speed c0 ≡ ω0,r/k0,r of the mode is negative in this case. Finally,
discontinuities in the absolute frequency occur for all modes but RH1, because of changes
in critical saddle point. Discontinuities are not clearly visible for m = 0 and the change
of saddle point is ‘smooth’, as will be discussed later in §4.3.

3.7. Absolute temporal growth rate ω0,i maps

Critical curves in §3.3 indicate the AI domain for each m. However, they do not indicate
which mode will be the most absolutely unstable if ReΩ is above two or more thresholds.
Indeed, the mode which bifurcates first as ReΩ is increased does not necessarily have the
highest absolute growth rate ω0,i for larger driving. Figure 10 represents isocontours of
ω0,i in ReΩ-Rez plane for m = 0, 1, 2, and e = 0, 0.2, 0.7. Curves for m = −1,−2 can be
recovered upon applying the Π3-symmetry (2.5).
The first conclusion is that m = 0 remains the most unstable mode over the whole

range of parameters. However, for e = 0.7, isocontours of m = 1 are very close to those
for m = 0, and one may expect LH1 to become more absolutely unstable than TV for
larger eccentricities and large Rez.
Isocontours of ω0,i for m = 1 and m = −1 (using Π3-symmetry) are generally close.

For low eccentricity, RH1 is always more unstable than LH1, but for high eccentricity, the
converse is true. For a moderate eccentricity of e ≈ 0.5 (not shown here), the dominant
mode depends on the specific values of ReΩ and Rez.
For m = 1, 2, some isocontours have discontinuous slopes, as a consequence of a change

of dominant saddle point. In figure 10(3a), the ‘island’ of instability previously presented
in figure 5 is shown to be connected to a ‘continent’, for higher values of ReΩ, via a
change of critical saddle point. Indeed, in their analysis of m = 2 in the axisymmetric
case, Altmeyer et al. (2011) restricted their analysis to the reference saddle point defined
in §3.1, even though the authors mentioned the existence of other saddle points. Figure
10(3a) gives the complete AI boundary for this case. For higher eccentricities, the ‘conti-
nent’ of instability absorbs the ‘island’, and for e = 0.7, the saddle point associated to the
‘island’ is always sub-dominant. When considering the saddle point associated with the
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‘continent’, LH2 is generally more unstable than RH2. On the other hand, for low e and
very low Rez, RH2 can be more unstable than LH2 because of the ‘island’ of instability.
For moderate eccentricities, the ordering depends on the specific values of ReΩ and Rez.

4. Discussion

In this section, we study the critical modes and the production of perturbation kinetic
energy. We discuss the results and the instability mechanism in the light of these elements.

4.1. Critical modes

In figure 11(1,2), we examine the spatial distribution of the mode m = 0 at critical
conditions for Rez = 60 and three representative eccentricities: e = 0.2, 0.4, 0.7. The
three-dimensional distribution of axial velocity is shown, together with the corresponding
time-averaged distribution of perturbation kinetic energy E = 1

2
(‖ũ⊥‖

2 + |w̃|2) (the
exp[−kiz] dependence of the mode amplitude is omitted).
Consider the polar angle θ of the maximum of energy, with respect to the inner cylinder

center, indicated in figure 2. For low eccentricities or low Rez, the mode is localised in the
wide gap, at positive θ. However, for larger e or Rez, this maximum is shifted upstream
to the region −90◦ 6 θ 6 0◦. For e = 0.7, the mode concentrates in the vicinity of the
inner cylinder, on the wide gap side, but has a radial extent scaling with the small gap.
When e increases for Rez = 60, the ratio between the maximum, and the average value
increases from less than 2 for e = 0 to almost 14 for e = 0.7, indicating confinement of
the mode into a smaller region of the annulus. Finally, the only contribution of ũ⊥ to E
accounts for 65% to 85% of the total perturbation energy when e increases from 0 to 0.7.
Similar behaviour is found for LH1 at Rez = 60. For RH1 however, the energy is less

tightly concentrated. The maximum of E still occurs at negative angles, but does not go
beyond −45◦ in this case. It is concluded that the appareance of the peak of perturbation
energy at large negative angles is associated with the change of saddle point occurring
for both TV and LH1.
Surprisingly, the critical modes of AI and CI peak at completely different regions

of the annulus for moderate eccentricities and high Rez. In comparison (cf. Leclercq
et al. (2013)), the maximum energy of the critical mode of CI for e = 0.5 is always
localised at large positive angles. No direct comparison should be made with AI because
critical modes of CI are obtained for different threshold values of ReΩ. It is nonetheless
interesting to observe that modes can be localised at either positive or negative polar
angles depending on the situation.
Finally, we enumerate characteristics common to all m. First, in-plane motion accounts

for the larger contribution to the total perturbation kinetic energy of all m for Rez = 60.
Also, as e approaches 0.7 for Rez = 60, all m tend to have similar distributions of energy,
with strong localisation close to the inner cylinder, over a radial extent scaling with the
small gap. In addition, we recall that the critical wavenumber of all modes takes on large
values k0,r ∼ 6.5 − 8 when e = 0.7 and Rez = 60. These observations indicate that for
high eccentricities, the critical modes for all m scale with the small gap.

4.2. Production of perturbation kinetic energy

To further investigate the instability mechanism, the production of perturbation kinetic
energy is calculated. In the well-known Reynolds–Orr equation, the local rate of produc-
tion of E is given by −u′

· (u′
· ∇U). Averaging in time and separating velocities into

in-plane and axial components, one can define two contributions (the spatial growth of
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(1)
Re(w̃)

(2)
E

(a) e = 0.2 (b) e = 0.4 (c) e = 0.7

Figure 11. Critical mode m = 0 for Rez = 60, (a) e = 0.2, ReΩ = 465.82, (b) e = 0.4,
ReΩ = 432.74, (c) e = 0.7, ReΩ = 314.16. (1) Distribution of axial perturbation velocity Re(w̃).
Dark (resp. light) grey is for positive (resp. negative) values. (2) Distribution of perturbation
kinetic energy E = 1

2
(‖ũ⊥‖2 + |w̃|2). Dark grey indicates high values, and isocontours are equi-

spaced.

the mode amplitude along z is ignored again)

P⊥ = −
1

2
Re {ũ⋆

⊥ · (ũ⊥ · ∇⊥U⊥)} and Pz = −
1

2
Re {w̃⋆(ũ⊥ · ∇⊥W )} , (4.1)

corresponding to the work of the Reynolds stresses against the in-plane and axial shear
respectively. Expressions for the nonlinear terms in the modified bipolar coordinate sys-
tem are given in Leclercq et al. (2013). Because the basic flow is axially invariant, these
two terms are the only contributions to the production of E .
Figure 12 represents the distribution of P⊥ and Pz for m = 0 and Rez = 60, at

e = 0.2, 0.4, 0.7, as in figure 11. Only positive contributions are shown in grey shades,
as negative contributions inhibit temporal growth. Distributions of P⊥ and E look very
similar: P⊥ is maximum in the wide gap for low e, then at negative polar angles for
moderate e, then close to the inner cylinder on the wide gap side for e close to 1. The
dominant contribution to P⊥ comes from the Reynolds stress term involving the pseudo-
radial derivative of the azimuthal velocity V . The same calculation of P⊥ and Pz has
been performed for the critical mode of the CI at Rez = 60 and e = 0.5 (m = 2). P⊥

was also found to account for most of the kinetic energy production (81%), but the peak
was located at a positive polar angle of 92◦.
Distributions of Pz show larger contributions near the walls, where ‖∇⊥W‖ is larger.

As eccentricity increases, production of kinetic energy close to the outer cylinder de-
creases, as the mode concentrates in the vicinity of the inner cylinder. For e = 0.7, Pz
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(1)
P⊥

(2)
Pz

(a) e = 0.2 (b) e = 0.4 (c) e = 0.7

Figure 12. Distribution of kinetic energy production for m = 0 and Rez = 60, at criti-
cal conditions. (1) P⊥ and (2) Pz. (a) e = 0.2,ReΩ = 465.82, (b) e = 0.4,ReΩ = 432.74,
(c) e = 0.7,ReΩ = 314.16. Dark grey indicates large contributions and white corresponds to
zero or negative contribution. Isocontours are equispaced.

peaks almost in the same region as P⊥ and E , namely close to the inner cylinder in the
wide gap.
Integration of P⊥ and Pz over the annular domain for Rez = 60 indicates that in-

plane shear dominates the production of kinetic energy, P⊥ always accounting for more
than 85% of the total amount, and even more than 97% for e = 0.7. The dominant
contribution comes from the term involving pseudo-radial variations of pseudo-azimuthal
velocity, characteristic of a centrifugal instability.

4.3. Instability mechanism

The striking destabilisation occuring at moderate eccentricities remains difficult to ex-
plain even after examining the basic flow, the critical mode and the production of kinetic
energy. The transition from a stabilising to a destabilising effect of eccentricity occurs
around 0.2 6 e 6 0.4 for both TV and LH1, through a change of critical saddle point
when Rez is large enough. The recirculation region appears for e ≈ 0.2 for ReΩ ≈ 500
so it seems that the change of behaviour occurs after the recirculation zone has reached
a critical size. The basic flow is then significantly different from a classical Couette flow.
Indeed, while energy of the mode mostly localises in the vicinity of the inner cylinder,
it also partially spans over the recirculation region for moderate eccentricities (cf. fig-
ure 11(b)). Surprisingly, a region of the flow located at negative polar angles seems to
drive AI for moderate eccentricities, whereas kinetic energy production always peaks
at positive angles for CI at criticality. Arguments based on local stability of the flow,
however tempting in a quest of explanation, should be avoided here because of strong
non-parallelism of the basic flow in the pseudo-azimuthal direction. Indeed, assuming the
flow locally parallel in φ leads to completely wrong predictions of instability thresholds
of eccentric Taylor–Couette flow (DiPrima 1963; Ritchie 1968). The most temporally
unstable velocity profile, theoretically located at φ = θ = 0◦, does not coincide with the
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location of maximum vortex activity found in the experiments (Vohr 1968). On the other
hand, global analyses yield good results in this geometry (DiPrima & Stuart 1972, 1975;
Eagles et al. 1978), showing the limits of the local approach. Therefore, localisation of
the modes and kinetic energy production at moderate eccentricities should be regarded
as a global property of the entire flow field.
The consecutive switchovers of dominant saddle point for e ≈ 0.3 and Rez = 60

occur very near collisions of the distinct pinches into third-order saddle points (Davies
1989) or ‘super branch points’ (Healey 2004), satisfying simultaneously ∂ω/∂k = 0,
∂2ω/∂k2 = 0 and ωi = 0. Indeed, s1 and s2 collide while being neutral for e = 0.2839,
Rez = 50.115, ReΩ = 403.21 while s2 and s3 coalesce with ωi = 0 for e = 0.3032
and Rez = 43.188, ReΩ = 353.60. As a result, the saddle points swap dominance but
the absolute wavenumber, frequency, and spatial growth rate vary almost continuously
through the exchange (see figures 9a,b,c). Consequently, the spatial distribution of the
critical mode is little changed and the physical reason for the switchover remains unclear.
As e approaches 1, all m tend to behave in a similar way. After reaching a minimum

value, the critical ReΩ increases again as e becomes larger. Instability thresholds of all
m > 0, and even their respective absolute growth rate for any Rez-ReΩ combination,
become close at high e and less sensistive to variations of Rez. More similarities are
found by inspecting the critical modes. For Rez = 60, all m have absolute wavenumbers
k0,r in the range 6.5-8, indicating a similar length scale. Indeed, the kinetic energy of all
these modes is localised around the inner cylinder, on a radial extent of the order of the
smallest gap d(1−e), consistent with a small wavelength. The localisation is so strong that
the difference between toroidal or helical structure of the modes is partially ‘blurred’.
These similarities between m at high e is reminiscent of small gap Taylor–Couette–
Poiseuille flow, where critical thresholds associated with different m are very close (Ng &
Turner 1982; Leclercq et al. 2013). Indeed, as eccentricity increases, the Couette-like flow
associated with rotation of the inner cylinder scales as d(1− e), curvature effects become
less important, and m behaves more and more like a continuous real wavenumber, as
when η → 1. Matching between localisation of the modes and the Couette-like part of
the basic flow may also explain the weaker effect of axial advection on the instability
thresholds. Indeed, for large eccentricities, most of the axial volume flux passes through
the wide gap, and the maximum value ofW is located in the recirculation region, far from
the inner cylinder. Hence, the region where perturbations are most amplified is spatially
separated from the region where they are most rapidly ‘blown away’. This observation
could explain why critical ReΩ are less sensitive to Rez for e close to one.

4.4. Convective versus absolute instability

We conclude this section by comparing the thresholds of CI (Leclercq et al. 2013) and
AI in the eccentric Taylor–Couette–Poiseuille flow. Figure 13 represents the critical ReΩ
for CI (dotted lines), and for AI (solid lines), as a function of Rez for e = 0, 0.1, . . . , 0.7.
For Rez = 0, the two thresholds for m = 0 coincide, as expected for a steady bifurcation.
The critical ReΩ increases with Rez for both CI and AI, but with a much larger rate for
AI. This was expected as axial advection tends to carry the perturbations away from the
source, so a larger driving is required to reach AI. The critical mode is always m = 0 for
AI, corresponding to closed pseudo-toroidal Taylor vortices, propagating when Rez 6= 0.
For CI, LH modes of increasing m become critically unstable as Rez increases. Open
circles indicate a change of critical m on the CI thresholds. The effect of eccentricity is
clearly stabilising for CI, but the effect on AI is more complex. For high enough Rez,
as eccentricity increases, the critical ReΩ of AI slightly increases for low e, but then
decreases before reaching a minimum and increases again for larger values of e.
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Figure 13. Absolute (solid lines) and convective (dotted lines) instability thresholds: critical
ReΩ versus Rez, for e = 0, 0.1, . . . , 0.7. Open circles indicate a change of critical m for CI. For
AI, the critical mode is always m = 0.

5. Conclusions

In this paper, an absolute instability analysis has been performed for the flow between
eccentric cylinders, with rotation of the inner one and a superimposed pressure-driven
axial flow. The ratio between cylinder radii was fixed at η = 0.5, a value representative
of an oil-well-drilling configuration. Five modes of instability have been considered, m =
−2,−1, 0, 1, 2, thus including the most temporally unstable modes up to Rez = 50 found
in Leclercq et al. (2013). Throughout the range of Rez and e considered in the present
study, the mode with the largest absolute growth rate is always the pseudo-toroidal
vortex flow corresponding to m = 0. Unlike the temporal growth rate, the absolute
growth rate of left-handed pseudo-helical modes (m > 0) is not always larger than that
of right-handed ones (m < 0).
Increasing Rez tends to hinder absolute instability because axial flow sweeps pertur-

bations downstream. As a rule of thumb, the rotational velocity of the inner cylinder
needs to be approximately one order of magnitude larger than the mean axial velocity
to trigger absolute instability.
The effect of eccentricity is more complex and increasing e can result in destabilisation

for large enough Rez and moderate eccentricities 0.3 . e . 0.6. In this case, the critical
mode has a complex structure, and the production of kinetic energy peaks at a well-
defined region of the annulus, located in the diverging gap region. Outside this range of
eccentricities, increasing e has a stabilising effect, increasingly so as the limit of touching
cylinders is approached.
The instability mechanism is purely centrifugal in nature and the critical-mode axial

wavelength and radial extent scale as the smallest gap d(1−e). For large eccentricities, all
the modes localise in the vicinity of the inner cylinder, and their spatial distributions be-
come more and more similar. The effect of Rez on absolute instability thresholds becomes
weaker, and the distance between thresholds associated to different m diminishes.
Overall, many valid saddle points were found for the different instability modes, and
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the critical pinch point switches upon varying the flow parameters. The physical interpre-
tation of the switchovers of saddle point occuring near e ≈ 0.3 for m = 0 and Rez = 60
is unclear, because the saddle points are associated with modes having almost the same
spatial distribution and spatio-temporal properties. Indeed, when they swap, the saddle
points almost collide into third-order saddle points, where they would be impossible to
distinguish.
We believe that the most crucial outlook of this work is additional experiments to

confirm our findings on convective and absolute instabilities, since the last measurements
made on such a configuration are older than the introduction of absolute instability theory
to fluid mechanics (Huerre & Monkewitz 1985)! Even in the convectively unstable régime,
the literature is very lean, and only one apparatus seems to have ever existed, whereas
the domain of application is vast. On a theoretical viewpoint, it would be particularly
interesting to investigate the properties of nonlinear global modes, partly based on local
absolute instability properties (Pier et al. 2001), when eccentricity varies slowly along
the axis. Indeed, bending of the long drillstring results in axially varying eccentricity.
Moreover, such weakly non-parallel open flows are believed to be good candidates to
confirm the potential existence of hat modes (Pier & Huerre 1996, 2001), theoretically
predicted for model equations, but yet to be identified in a real configuration.
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